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ABSTRACT 
 

 

Murine cytomegalovirus (MCMV) in its natural host, the mouse, is an excellent 

model for studying the biology of cytomegalovirus infection. Mostly this model 

has been used to study gene homologues of human cytomegalovirus (HCMV). 

Of the predicted 170 MCMV open reading frames (ORFs) only 78 have 

significant amino acid identity with genes in HCMV. To better understand the 

biological mechanisms underlying the differences between the viruses, for 

example their species specificity and immune evasion genes, MCMV unique 

ORFs need to be examined. Here the role of m29 and m29.1 ORFs in the 

MCMV (Smith strain), which have no homology with ORFs of any other 

cytomegalovirus, have been examined.  

 

The m29 and m29.1 ORFs are overlapping and encoded on opposite strands 

of the double-stranded DNA genome. Sequence analysis over this region 

showed a discrepancy to the published sequence. An additional G (guanine) 

nucleotide was found at nucleotide position 36,198 that alters the predicted 

ORFs, m29 being 242 amino acids shorter and m29.1 210 amino acids longer 

than the predicted sequence. This was confirmed by sequencing the MCMV 

Birmingham K181 strain, the Birmingham Smith strain and MCMV wild type 

isolates- N1, K17A and G4. Transcripts from the newly identified m29 and 

m29.1 ORFs were confirmed by reverse transcriptase PCR (RT-PCR). They 

were produced at early (3h) and immediate-early (2h) times post-infection 

respectively as determined by cycloheximide and phosphonoacetic acid 

treatment but were continuously expressed up to at least 24h post-infection. 5' 

and 3'-RACE (rapid amplification of cDNA ends) analysis from m29.1 ORF 

confirmed the production of a ~2.4 kb transcript and a low abundance spliced 

transcript from which a 123bp intron had been removed.  

 

Mutants of ORF m29 and m29.1 have been produced in which ET 

recombination was used to introduce stop codon mutations within these 

overlapping ORFs. This was achieved by single base alterations near to the 5` 

end of each ORF that prevented translation but not transcription of each ORF 



individually. Linear dsDNAs containing the mutations were introduced into the 

Smith MCMV BAC replacing an antibiotic cassette that had been inserted into 

the gene of interest. Mutant viruses, Rc29 and Rc29.1 respectively, were 

recovered from these mutant BACs by in vitro passage in tissue culture cells. 

Revertant virus (Rv29.1) was made by a further 2 step process in which the 

mutant m29.1 ORF was first replaced by the antibiotic cassette and then by the 

wt ORF. 

 

These mutants were characterized both in tissue culture and in 

immunocompetent BALB/c and immunodeficient SCID mice. Both mutants 

produced their expected transcripts but Rc29.1 virus produced no 

corresponding protein as examined by western blot using an antibody 

produced in rabbits to bacterially expressed protein. Failure to express the m29 

ORF in bacteria and failure of a synthetic peptide to generate rabbit antibodies 

that bound to denatured m29 protein meant that protein expression of the m29 

gene in either mutant could not be determined. 

 

Mutant virus Rc29 replicated similarly to wild type virus both in tissue culture 

and in BALB/c mice. Mutant virus Rc29.1 replicated poorly with lower yields, a 

delay of about 2-3 days in reaching peak titres and an earlier decline compared 

to wt and revertant (Rv29.1) virus in tissue culture. Rc29.1 virus also showed 

delayed replication in the salivary glands of BALB/c mice compared to wt and 

Rv29.1 viruses and in SCID mice peak titres occurred later and mice became 

sick and had to be humanely killed approximately 8 days later that mice 

infected with wt virus. These results suggest that m29 and m29.1 ORFs are 

dispensable for viral replication in vitro in NIH 3T3 cells and in animal hosts. 

However, the m29.1 ORF is required for optimal viral growth in vitro and in 

vivo. 
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Introduction 

 

1. INTRODUCTION 

 

1.1 The Herpesviridae 
 

Cytomegalovirus belongs to the family Herpesviridae comprising more than 

one hundred viruses. These viruses have some features in common: host 

restriction, nuclear replication, damage of host cell and latency. They are 

grouped into three subfamilies- the Alphaherpesvirinae (α), the 

Betaherpesvirinae (β) and the Gammaherpesvirinae (γ) on the basis of their 

biological properties and sequence homology, genome sequence 

arrangements and similarity between the viral proteins (162). The members of 

the Alphaherpesvirinae have some unique features. They can infect a wide 

range of hosts, have short reproductive cycles, are capable of spreading 

rapidly in cultures, can efficiently destroy infected cells and can produce latent 

infections in sensory ganglia. Viruses belonging to the subfamily 

Betaherpesvirinae have a restricted host range. Their reproductive cycles are 

prolonged, replication occurs slowly in tissue culture and the infected cells 

become enlarged (cytomegalia). Cytomegalovirus belongs to this subfamily. 

The virus is maintained in a latent state in a variety of tissues including 

secretory glands and kidneys. Members of the last subfamily, the 

Gammaherpesvirinae, are also host specific. They replicate in cells of 

lymphoblastoid origin and sometimes also cause lytic reactions in epithelial 

and fibroblastic cells. The members of this family have specificity for either T or 

1 



Introduction 

B lymphocytes (135). Table 1.1 illustrates the properties of the human 

herpesvirus family members. 

 

DNA extracted from Herpesviruses is linear and double stranded. An 

icosahedral nucleocapsid comprising 162 capsomers surrounds the genome of 

this virus.  The genome is released directly into the host cell nucleus where it 

circularises. The size of the DNA varies between different herpesviruses, being 

approximately 120-250kbp.  The herpesvirus genome contains internal and 

terminal repeats in varying copy number. Sometimes spontaneous deletions 

occur giving rise to mutants. The G+C content varies from 31% to 75% (135). 

The Herpes virus nucleocapsid is surrounded by an envelope composed of a 

lipid bi-layer embedded with viral glycoproteins. The space (tegument) 

between the envelope and the nucleocapsid contains virally encoded proteins 

and enzymes involved in the initiation of replication (162).  

 

The HCMV virion is 150-200 nm in diameter with a 100 nm icosahedral capsid. 

Three major layers constitute the HCMV virion. The first layer is composed of 

nucleocapsid, which contains a linear 230-kbp double stranded DNA genome. 

The adjacent layer is protein rich tegument layer, which is surrounded by an 

envelope composed of a host derived lipid bi-layer with viral glycoproteins 

(162) (Figure 1.1).  

2 
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Figure 1.1 Structure of CMV virion 

 

 

 

 

 

 

 

 

 
Figure 1.1 Structure of CMV virion. From Brennan, 2001 (18) 

 

 

1.2 Transmission of Cytomegalovirus 
 
Cytomegalovirus (CMV) infection is prevalent in a significant proportion of the 

population. Transmission occurs in most cases either perinatally or 

congenitally. The former route involves virus infection in the birth canal or after 

birth by virus from the mother while in the latter route, infection detected within 

the first few months of pregnancy, is transmitted transplacentally or within the 

uterus. In addition, the virus may be spread through most secretions, 

particularly saliva, vaginal secretions, semen and also in urine. Surprisingly it is 

found in highest levels in semen. Therefore, this virus is also transmitted 

sexually. Again it can be spread to patients who have blood transfusions and 

transplants. In seropositive mothers, the virus may be transmitted to infants via 

breast milk (156). Though not highly contagious, it has been found to infect day 

care workers in day centres. Women who care for children younger than two 
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years of age have higher levels of serum antibodies than women who care for 

children older than that age (1). 

 

1.3 Pathogenesis of Cytomegalovirus 
 

The immune status of the host determines the pathogenesis of CMV disease. 

Innate and adaptive immune systems control the typical primary infection of 

this virus but the latent infection is maintained for life. Primary infection, 

enduring latency, and recurrent spread from reactivation generally occur 

without any obvious disease consequences. Primary infection classically 

commences with replication in mucosal epithelium as a consequence of direct 

contact with contagious secretions from an infected person (106). A general 

phase of infection spreads virus in the host via a leukocyte-associated viraemia 

that may last for several months (132). Cell-free infectious virus is not found in 

blood, even if viral DNA escapes degradation, which is identified in plasma 

from immunocompromised individuals (154). Peripheral blood (PB) neutrophils, 

monocytes, and endothelial cells have also been detected to transmit 

infectious virus in immunocompromised hosts (48). Cell culture studies on 

spread of clinical strains in the absence of full replication have demonstrated 

neutrophils might act as carrier to transmit infectious virus and viral particles 

(47). PB monocytes are vehicles for transmission of CMV (161). The systemic 

phase of primary infection in adults occurs with persistent viral release in urine, 

saliva, breast milk, and genital secretions, which may be the key basis for 

spread between hosts. The delivery of virus during acute infection is best 

understood from studies in the immunocompromised host, but a range of 
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endothelial, epithelial, and haematopoietic cells in tissues might be susceptible 

in immunocompetent individuals (120). Myeloid-lineage haematopoietic cells 

develop as the primary cell type for viral latency. Viraemia lasts for a long 

period of time after an adaptive immune reaction can be first detected (132). 

Although an early persistent infection is evident, all immunocompetent 

individuals are able to clear the infection and elicit a slow rise in cell-mediated 

immunity. The lack of immunity in infants allows a relatively long period of 

persistence and continual virus secretion over this period ensures efficient 

transmission to uninfected individuals (106).  

 

Transplantation of solid organs or bone marrow and transfusion of whole blood 

also aid transmission of CMV. PB mononuclear cells of the myeloid lineage 

can also maintain latent infection. In healthy seropositive individuals, latent 

infection arises from bone marrow (106).  

 

Therefore, pathogenesis of CMV infection is directly related to the condition of 

the immune system of the host. Both primary infection and reactivation from 

latency play important roles in pathogenesis. Innate and adaptive immune 

systems manage acute viral infection, maintain latency, and alter virus during 

reactivation. Immune deficiencies such as in the case of bone marrow 

transplantation, stem cell allografting, and PB stem cell autografting (106) 

render the host vulnerable to CMV infection and consequent disease. 
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1.4 Clinical manifestations 
 

The incidence of HCMV infection in the population varies between 30 - 70% 

(118). CMV is more prevalent and contracted earlier in populations of 

developing countries and within lower socio-economic groups (60). The 

presence of specific antibodies to CMV correlates with increasing age and with 

sexual promiscuity (134). Therefore, elderly people are more likely to be CMV 

seropositve than younger individuals, while sex workers and those who are in 

immediate contact with small children also have high risk of infection with 

HCMV (117, 155). HCMV infection of immunocompetent hosts is 

asymptomatic; very few infected individuals exhibit symptoms and then of a 

non-specific nature. Mononucleosis, malaise, headache, fatigue, 

lymphadenopathy, pharyngitis, splenomegaly, fever and hepatomegaly are the 

clinical signs and symptoms seen in symptomatic individuals (19, 117).   

 

1.4.1 Infection in pregnant women 
 

During a primary infection of the pregnant woman, HCMV can spread via the 

placenta to the foetus resulting in congenital abnormalities, which includes 

microcephaly, rash, jaundice, brain calcification and hepatosplenomegaly (19). 

This may lead to unilateral or bilateral hearing loss and mental retardation. In 

latently infected pregnant females, reactivation of the virus in the cervix 

produces less severe symptoms in the infected foetus and congenital 

abnormalities are generally absent. Another mode of HCMV transmission 

happens perinatally. CMV remains latent in the cervical epithelium and 
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reactivates in the process of immunosuppression associated with pregnancy 

and virus may infect the baby as it is passing through the birth canal. The child 

may also be infected after birth through the process of lactation as the breast 

epithelium harbours virus. But in both cases, the infant remains asymptomatic 

(117).   

 

1.4.2 Infection in immunosuppressed/immunocompromised 
patients 
 

The care of immunosuppressed patients may be complicated as HCMV is one 

of the most common and difficult of opportunistic pathogens. Latent virus may 

be reactivated, reinfection may occur in these patients who have previously 

had this infection, or a primary infection may occur; all these facilitate the 

infection to be common. Again, transfusions or transplants in the patients can 

simultaneously aid the transmission of CMV. Because, at these times, the 

patients become maximally immunosuppressed and diagnosis and causes of 

disease make the case critical (117). Again in case of immunocompromised 

patients, HCMV has the risk of reactivating if they are seropositive or can be 

infected from an exogenous source if they are seropositive or seronegative. 

Specifically, immunosuppression is required in solid organ or bone marrow 

transplantation for the survival of the graft, and here viral infection can cause 

death (117). In immunocompromised AIDS patients or immunosuppressed 

transplant patients, reactivation leads to uncontrolled HCMV replication and 

often results in high levels of mortality and morbidity. Thus, reactivation of 

latent HCMV constitutes a very severe clinical problem (146). It has also been 

found in organ transplant patients that reactivation occurs from the transplant 
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recipient’s own latent HCMV rather than virus transmitted from donor (153). 

Factors that govern the infection include whether the graft donor or recipient 

are seropositive or seronegative, blood products, HLA matching and the level 

of immunosuppression (117, 149). Use of immunosuppressive and cytotoxic 

drugs may aid the development of HCMV disease (45). Pneumonitis, hepatitis, 

adenopathy, splenomegaly, fever, fatigue, gastrointestinal ulceration and 

fungal infections are clinical signs found in bone marrow and solid organ 

transplant recipients (19). Hence, CMV-pneumonitis is the leading cause of 

death in such recipients (52). In the case of AIDS patients, HCMV can be a 

major problem. It has been found that retinitis occurs in up to 15% of all AIDS 

patients. Besides this, interstitial pneumonia, colitis, oesophagitis, hepatitis and 

encephalitis are also observed in these patients (19). In HIV positive 

individuals, highly active anti-retroviral therapy (HAART) can lower the 

prevalence of CMV viraemia and is correlated with increasing frequency of 

CD4+ lymphocytes (39). Anti-CMV therapy can be replaced by HAART in 

patients responding well to the latter (9). Some reports indicated HAART may 

give rise to immune reconstitution uveitis (IRU) due to an immunologic 

response to CMV in the retina (69).  

 

1.5 Genome organisation of human and mouse 
Cytomegalovirus 
 

Human cytomegalovirus is isolated routinely in different laboratories and 

several strains such as AD169, Towne and Toledo have been propagated in 

tissue culture for several generations (106). These HCMV strains have 90-95% 

similarity in their genome organization. Chee and colleagues (30) described 

9 



Introduction 

AD169 as the largest viral genome sequence when it was completely 

sequenced. The genome size was approximately 230 Kbp and consisted of a 

total of 208 ORFs, some of which may produce spliced products. At the same 

time, they also suggested that some ORFs might not actually encode proteins. 

Davison and colleagues (37) refined this analysis and recognised 164-167 

ORFs and G+C content 57.2% in the genome of HCMV.  

 

HCMV has a linear, double stranded DNA. It has two covalently linked unique 

segments, one long (UL) and the other short (US). Each of the unique regions 

is flanked by inverted repeats (TRL and IRL, TRS and IRS) (106) (Figure 1.2).  

The UL region is 166,972bp in size and contains 132 ORFs while, in the US 

region, there are 36 ORFs of 35,418bp in size. The terminal repeat long (TRL) 

resides at the 5’end of the UL region and at its 3’end, the inverted repeat long 

(IRL), collectively known as repeat long (RL) of 11,247bp containing 14 ORFs. 

The inverted repeat short (IRS) region and the terminal report short (TRS) are 

together designated as repeat short (RS) of 2,524bp with one ORF in the 

orientation opposite to the terminal long in the ends. “a” sequence of 578bp is 

found at both termini of the genome which is the part of RL and RS (30). 

 

Murphy and colleagues (107) sequenced two HCMV laboratory strains (AD169 

and Towne) and four HCMV clinical isolates (Toledo, FIX, PH and TR) and 

identified a total of 252 ORFs with potential to encode proteins that are 

conserved in all four clinical isolates. Dolan and colleagues (41) sequenced the 

235,645 bp genome of a low passage strain (Merlin). Comparative analyses 
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with the published genome sequence of a high passage strain (AD169) 

showed that Merlin accurately reflects the wild-type complement of 165 genes. 

 

The murine cytomegalovirus (MCMV) genome consists of a single unique 

sequence with short direct repeats (31bp) at either end (Figure 1.2). The G+C 

content of the genome is 59%, which is relatively high but similar to HCMV. 

The genome is 230,278bp in length and it encodes 170 ORFs; 78 of these 

have significant homology with HCMV (128). The homologues are found in the 

central conserved part of the MCMV genome. The designation M, e.g., M28, 

denotes murine genes with homology to those of HCMV; non homologous 

genes are labelled m, e.g. m29.1 (128). 

 

The original MCMV genome sequence (128) has recently been reannotated 

and an additional 126 ORFs predicted (20). Tang and colleagues (170) 

reanalysed the MCMV genome sequence (128) and predicted 14 additional 

ORFs. The expression of seven of these ORFs was confirmed by either DNA 

microarray or RT-PCR analysis. Thus, the final number of ORFs expressed by 

MCMV has yet to be determined. 
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Figure 1.2 Schematic representation of the HCMV and MCMV genomes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6 CMV replication 
 

1.6.1 Entry 
 

Major cell types including monocyte/macrophages, endothelial cells, epithelial 

cells, smooth muscle cells, fibroblasts, stromal cells, neuronal cells, neutrophils 

and hepatocytes are candidates for HCMV infection and capable of 

maintaining life-long infection within the host (65). Cell lines representative of 

these cell types are also susceptible to HCMV infection and membrane 

proteins of these cells bind HCMV. Nonetheless, other host cell factors govern 

Figure 1.2 Schematic representation of the HCMV and MCMV genomes. 
Abbreviations: a and DR, direct repeat; a`, inverted repeat; TRL, terminal repeat 
long; TRS, terminal repeat short; IRL, inverted repeat long; IRS, inverted repeat 
short; UL, unique sequence long; US, unique sequence short; HCMV, human 
cytomegalovirus and MCMV, murine cytomegalovirus. Modified from Roizman and 
Pellet (135). 
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the viral penetration into these cells (114). Multiple receptors and ubiquitous 

molecules on the cell surface allow recognition and entrance of HCMV into the 

host. It utilizes several cellular and viral proteins for entry into such a wide 

range of cells. A model for HCMV entry (Figure 1.3) illustrates that HCMV 

infection begins with low affinity tethering to heparan sulphate proteoglycans 

(HSPGs) (35). Two viral glycoprotein complexes, the heterodimer gM/gN and 

the gB homodimer of the virion have heparan binding ability. This then leads to 

firm docking to epidermal growth factor receptors via gB (178). However, 

susceptible hematopoietic cells lack EGFRs, which argues for the existence of 

other HCMV receptors. Cellular integrins also interact with gB (33). Eventually 

the virus envelope fuses with the plasma membrane thus enabling the 

deposition of viral components in the cytoplasm. Membrane fusion requires the 

heterotrimeric envelope glycoprotein complex, gH/gL/gO. 

 

1.6.2 CMV gene expression and regulation 
 

Nucleocapsids released into the cytoplasm following membrane fusion are 

probably transported to the nucleus along microtubules to dock with the 

nuclear pore (51). DNA then enters the cell through nuclear pores and is 

transcribed. CMV genes are grouped into three families as they are temporally 

regulated and transcribed at immediate early (IE, α), early (E, β) or late (L, γ) 

times post infection (106). IE gene expression is independent of de novo 

protein synthesis, i.e. after the host cell is infected, they are transcribed within 

0-4 hours in the presence of protein synthesis inhibitors such as 

cycloheximide. When the virus enters the host cell, some viral tegument 
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proteins are delivered along with the DNA to the nucleus and one is required to 

bind to host transcription factors required for IE gene expression.  Expression 

of IE genes is required for E gene transcription. This latter phase occurs 

between 4-24 hours post infection. L genes are transcribed 12-48 hours post 

infection. The latter L genes can be further divided into early late (E-L or γ1) or 

true late (L or γ2), the latter being viral DNA synthesis dependent. E-L 

transcription may take place prior to viral DNA synthesis but generally is 

enhanced during the late stages of infection. True L gene expression takes 

place only after the onset of viral DNA synthesis (28). 

Figure 1.3 Model for HCMV entry 

 

Figure 1.3 Model for HCMV entry. Initial attachment of HCMV in tethering 
interactions to heparan sulphate proteoglycans (HSPGs) through gM/gN and/or gB 
glycoproteins. A stable docking step allows gB to cooperate with the epidermal 
growth factor receptor (EGFR) in HCMV permissive cell types and other receptors in 
hematopoietic cells. HCMV envelope glycoproteins and cellular integrins allow 
receptor clustering and thereby activate fusion facilitating internalisation of virion 
components (33). Abbreviations: HCMV, Human cytomegalovirus and TLRs, Toll-like 
receptors. 
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1.6.2.1 Immediate early gene expression 
 

IE genes are transcribed by the host cell machinery, immediately after entry of 

linearised double stranded viral DNA into the cell nucleus and they are 

independent of any viral gene expression. Transcription is mediated by the 

CMV major immediate-early promoter (MIEP) utilising host cell RNA 

polymerase II and the basal cellular transcription machinery. The MIEP is 

located downstream from a strong enhancer located between ~-50 and -550bp 

relative to the transcription start site. Host nuclear transcription factors bind at 

multiple binding sites on the enhancer and these 16-, 18-, 19- and 21-bp 

repeats play a central role in the regulation of expression. Two genetic 

elements designated IE1 and IE2 are under the control of the single MIEP 

(Figure 1.4). From these regions, at least three IE-RNA transcripts are 

produced. A single open reading frame (ORF) designated as UL123 initiating in 

exon 2 and continuing through exons 3 and 4, comprises the IE-RNA 

transcript, that ultimately encodes IE1 p72 (a phosphoprotein, MW 72 kDa). 

Two RNA transcripts of 2.25 and 1.7-kb are encoded by IE2. These transcripts 

are generated through differential splicing mechanisms in the IE2 region. 

Hence, three exons of IE1 are fused to IE2 region. The 1.7-kb mRNA encodes 

a 55-kDa protein while the other transcript encodes the 86-kDa (UL-122) 

protein. IE1 p72 acts as a transactivator of MIEP whereas IE2 p86 acts as a 

repressor to control expression from the MIEP. However, IE1 and IE2 are 

transcription factors for E gene promoters (99, 159). The products of the 

MCMV ie-1(m123) and ie-3(M122) genes are analogous to HCMV IE1 and IE2. 

These products act as transactivators and repressors respectively under the 

control of the MIEP promoter (75, 101). MCMV ie-2 encodes IE2 (1.7-kb) which 
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appears to have no function or sequence homology with the HCMV genome. 

This gene is transcribed by a separate promoter in the opposite direction to ie-

1 and ie-3 (103) and deletion of ie-2 has no effect on virus replication in vitro or 

in vivo (27). Cytomegalovirus ie1 and ie2 have no homologues in other 

members of the herpesvirus family and this is a distinctive feature of CMV. 

Figure 1.4 Probable organization of multiple MIE gene products 
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Figure 1.4 Probable organisation of multiple MIE gene products. In HCMV 
infected cells, IE1 p72 and IE2 p86 appears more noticeable. IE1 p72 is a 491 amino 
acid protein encoded by exons 2, 3 and 4 whereas IE2 p86 is a 579 amino acid 
protein corresponding to exons 2, 3 and 5. Minor RNA splice variants produce the 
p55, p38 and p18 proteins. All the major and minor products contain the same 5’-
untranslated region (grey box) and are regulated by the enhancer (black box) (98). 
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1.6.2.2 Early gene expression 
 

As described above, the products of IE genes, including IE1 and IE2, 

transactivate E promoters. During early gene expression, the machinery 

required for DNA replication is formed. These include the DNA polymerase (UL 

54), helicase (UL 105), primase (UL70) and the associated proteins required 

for DNA synthesis (7). E genes are transcribed from all along the CMV 

genome. The E gene transcription region (UL112-113) lies in proximal vicinity 

to the IE transcription sites and this region has homology to the e1 transcription 

region (M112-113) found in MCMV. UL112-113 encodes a family of 

alternatively spliced RNAs that produce a series of related phosphoproteins 

(160). Products of both immediate early and early genes are responsible for 

the initiation of expression of the late gene set (γ1+ γ2) which ultimately 

produces viral structural proteins.  

 

1.6.2.3 Late gene expression 
 

The final phase of gene expression, designated late (L), begins with the onset 

of virion DNA replication. It is also accompanied by the synthesis of structural 

proteins and other proteins responsible for the packaging of the replicated viral 

DNA genome. E gene products activate the promoters of L genes facilitating 

the expression of these genes. E gene products are responsible for viral DNA 

replication but the L proteins are involved in the formation of mature virus 

particles. Some genes are designated as γ1 because these genes are 

transcribed initially during or before DNA synthesis and are not true L genes. 
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All the true L genes belong to the subset γ2. Some E genes, such as UL4 is 

expressed in both E and L phases of the virus replication cycle (164). 

 

1.6.3 DNA replication and packaging 
 

DNA replication occurs and the progeny virus particles are assembled in the 

late phase. HCMV DNA replication requires six herpesvirus-conserved 

replication-fork proteins; the DNA polymerase (UL54), a single stranded 

binding protein (UL57), polymerase accessory protein (UL44), and a three 

subunit helicase-primase complex (UL70, UL102, UL105) (106). The products 

of additional CMV genes (UL84, UL112, UL113, UL114) are also required for 

optimal replication (7, 126, 137). The unique replication origin (oriLyt) initiates 

binding of the replication complex and rolling cycle mechanism is followed for 

DNA synthesis.  

 

HCMV DNA replication starts at approximately 16 hpi and peaks at 60-80 hpi. 

In the nucleus of permissive cells within 4 hpi, the HCMV genome circularises 

and replication generates concatemers late in infection.  Most replicating viral 

DNA lacks terminal fragments although they are larger than genome length. 

Short conserved sequence elements at the genome termini, pac1 and pac2, 

direct the signal for the cleavage of the concatemers into unit length genomes 

and packaging of the CMV genome. The packaging proteins bind to pac2 

sequences and direct the entrance of cleaved viral genomes into the capsid 

(95). In HSV-1, the viral genome is packaged into the capsid through a capsid 

protein encoded by UL6, called the vertex portal protein (113). CMV employs a 
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similar type of mechanism which is also conserved in bacteriophages. The 

homologous internal repeats in the HCMV genome permits US and UL regions 

to invert with respect to each other and therefore DNA is packaged into virions 

in any of the four isomeric forms. After a unit length linear DNA genome is 

packaged, mature nucleocapsids accumulate in the nucleus and gather at the 

inner nuclear membrane prior to budding into the perinuclear space. They also 

acquire matrix proteins and an envelope in the process.  

 

1.6.4 Egress of viral progeny  
 

Enveloped capsids in the perinuclear space fuse with the outer nuclear 

membrane and the bare nucleocapsid is released into the cytoplasm. The 

nucleocapsid again acquires both the matrix proteins and an envelope by 

budding into the Golgi. It is then transported inside a vesicle towards the cell 

membrane where the vesicle membrane fuses with cell membrane and the 

virion is released (66). Thus, it is predicted that the Golgi contributes towards 

the viral glycoproteins and matrix proteins are acquired in the cytoplasm. 

 

1.7 Innate immunity to CMV 
 

Entry of CMV into the host triggers strong anti-pathogen responses, which 

includes the activation of the innate immune system. Induction of interferon –

α/β takes place after the recognition of virions by Toll-like receptors (TLRs). 

Over many years, it has been known that CMV elicits interferon-α/β, but the 

mechanisms of inducing such responses have been elucidated only recently. 
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Activation of the innate immune system takes place during binding and entry of 

virions into the host cells. It has been confirmed through transcriptional profiling 

studies that CMV induces inflammatory cytokines and interferon –α/β (22, 144, 

189, 190). Transcriptional up-regulation of innate markers as well as activation 

of a variety of cell signalling pathways occur rapidly upon infection, including 

activation of NF-κB and the key transcriptional regulator of interferon-α/β 

interferon regulatory factor-3 (IRF3) (22, 112, 125, 183-185). The interferon-α/β 

response to viral infection takes place in two phases, an activation phase 

followed by an amplification phase (171, 172). The former phase commences 

with initial recognition of the virus, proliferation of intracellular signals and ends 

with the secretion of interferon-α/β (157). TLRs are one way in which cells can 

initiate these processes. Overall, TLRs function as general pathogen 

recognition receptors (PRRs) that detect and initiate immune responses to 

numerous pathogens (167). The important effects of TLR activation are 

inflammatory cytokine secretion, expression of immune co-stimulatory 

molecules, dendritic cell maturation, and for defined TLRs, the secretion of 

interferon-α/β (168). All these contribute to control of viral replication and 

initiate and modulate adaptive immune responses by B and T-cells.  

 

TLRs are type I transmembrane glycoproteins with a cysteine and leucine-rich 

extracellular domain. They also possess a cytoplasmic tail with structural 

analogy to the IL-1 receptor, which is known as TIR (Toll/IL-1 receptor) (96). 

Akira and colleague (3) identified 12 members of the TLR family in mammals 

and these TLRs recognize pathogen-associated molecular patterns (PAMPs), 

different types of bacterial products such as lipoproteins, glycolipids, 
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lipopolysaccharides, peptidoglycans, flagellins and bacterial DNA. Viral DNA 

and RNA and viral envelope glycoproteins and endogeneous ligands, i.e 

Hsp60, are also recognized. Stimulation of TLRs activates the adaptor protein 

MyD88 (myeloid differentiation factor 88) that employs IRAK (IL-1R-associated 

kinase) and TRAF6 (tumor necrosis factor receptor associated factor 6) (97). 

Thus, NF-κB and MAPK (mitogen-activated protein kinase) are activated, 

proinflammatory cytokines are synthesized and co-stimulatory molecules 

CD80/CD86 are expressed (3). Compton (33) found a range of cells like 

macrophages, neutrophils and DCs manifest TLR expression. NK cells express 

TLRs (63) and absence of TLR signalling caused DCs to produce insufficient 

amounts of type I IFN and only partial NK cell activation (3).  

 

Several groups have demonstrated a central role for TLRs in CMV infection 

(33, 79, 166). TLR2-dependent early innate immune activation was reported by 

Compton and colleagues (34). Nonetheless, this finding is in doubt as TLR2-

deficient mice showed no defect in their response to MCMV infection (166). 

They further showed TLR3 signalling in Lps2 mice which have a non-sense 

mutation in their Trif gene. This gene encodes an essential adaptor molecule, 

that is required for MyD88- independent signalling downstream of TLR3 and 

TLR4. These mice were vulnerable to MCMV infection and did not produce 

type I IFN. Another type of TLR, TLR9, also plays a role in CMV infection. 

TLR9 recognizes double-stranded DNA unmethylated at CpG motifs (79, 166) 

and TLR9 knock-out mice showed a severely impaired NK cell response to 

MCMV infection and insufficient production of cytokines (166). Krug and 

colleagues (79) found similar results for DCs in that TLR 9-dependent 
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secretion of IFN-γ and IL-12 was found to be critical for the prevention of 

MCMV replication by Ly49H+ NK cells. These findings showed a clear role for 

TLR signalling in NK cell activation and control of CMV infection.  

 

Once activated NK cells are attracted to the site of infection through the 

synergistic effect of cytokines such as IFN-α/β, IL-2, IL-12, IL-15 and IL-18 

(11). Multiple activating receptors come into action to recognize infected cells 

and in the contrary, the receptors of self MHC class I molecules inhibit their 

action (81). NK cells also coordinate the regulation of the specific immune 

response between the innate and the adaptive immune system. NK cell activity 

is controlled through MHC class I expression and this prevents damage to 

healthy cells. NK cells have the potential to recognize infected cells expressing 

low levels of MHC class I molecules and ligands for activating receptors. NK 

cells process two types of receptors: inhibitory and stimulatory. Both types of 

receptor are classified into one of two families according to their chemical 

structures: Ig-like ectodomain receptors and C-type lectin-like domain 

receptors. NK cells express both types of receptor which may also be 

expressed on T cells (67, 127). An amino acid sequence motif is found in the 

cytoplasmic tail of inhibitory receptors, which is denoted as an immuno 

receptor tyrosine-based inhibitory motif (ITIM). Binding of ligands to those 

receptors leads to phosphorylation of tyrosines in ITIMs and subsequently NK 

cell activation is inhibited through activation of the tyrosine phosphatase SHP-

1. Stimulatory receptors lack ITIMs but associate with adaptor molecules that 

contain an activating motif called immunoreceptor tyrosine-based activation 

motif (ITAM) or an YxxM motif (81).  
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A range of diverse ligands along with MHC class I molecules bind to activating 

receptors, though inhibitory NK cell receptors are specific for MHC class I 

molecules. So far, three types of NK cell receptor specific for MHC class I 

molecules have been identified and they are: killer cell Ig-like receptors (KIRs) 

in humans, Ly49 in rodents, and the CD94/NKG2 heterodimer expressed in 

humans and rodents.  KIRs belong to the Ig superfamily and consist of two 

(2D) or three (3D) Ig domains and a long (L) or short (S) cytoplasmic tail (174). 

The long cytoplasmic tail contains ITIMs and act as inhibiting receptors whilst 

KIRs having short cytoplasmic tails are activating receptors that bind with the 

adaptor molecule DAP12. The Ly49 gene family is polymorphic and polygenic 

in nature and encodes both inhibitory and activating receptors. MHC class I 

molecules are directly recognized by both KIRs and Ly49 receptors and thus 

differentiate healthy cells from infected cells and are subjected to down-

modulation of MHC class Ia molecules. The third type, the CD94/NKG2 

heterodimer family is specific for MHC class I molecule expression (54).  

 

NK cells undoubtedly play an important role in early control of CMV infection. 

Still there is some debate whether they are essential for this early control. Most 

laboratory mouse strains do not exert any NK cell response to CMV. Mouse 

strains are either susceptible (e.g. BALB/c mice) or resistant (e.g. C57BL/6 

mice) to MCMV infection (138). A single dominant locus, designated as Cmv1, 

located in the NK gene complex on mouse chromosome 6 (40, 46, 138-140), 

controls the  NK cell response and depletes MCMV titres in spleen and lungs. 

MCMV susceptible (Cmv1s) mice show higher virus titres as NK cells are 

unable to control the infection at early times. Therefore, depletion of NK cells in 
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these mice has a negligible effect on virus titres. In contrast, resistant (Cmv1r) 

mice can inhibit MCMV replication which in turn lowers virus titres and 

depletion of NK cells leads to high titres. Therefore, Cmv1s mice are 

susceptible to MCMV infection while Cmv1r r mice are resistant.  The Cmv1

(Ly49h) gene expresses the Ly49H receptor belonging to the Ly49H family of 

NK cell receptors (21, 36, 83) and is found on approximately half of the 

population of NK cells in C57BL/6 mice (151). Non-covalent interactions occur 

between Ly49H and the adaptor molecule DAP12 and an activation signal is 

passed into the cell through its ITAM (32, 150). Ly49H differs from other 

members of the Ly49 receptor family and binds to an MCMV encoded protein, 

the m157 gene product, while other members bind to MHC class I molecules 

(8, 152). Similar to a number of MCMV m145 gene family members, the m145 

protein has some structural homology to MHC class I molecules. Thus, the 

Ly49H NK cell activation receptor is expressed in C57BL/6 mice conferring 

resistance to MCMV infection through the interaction between Ly49H and the 

m157 protein. Cells infected with a mutant virus in which the m157 gene was 

deleted, were not recognised by NK cells and thus this virus induced a severe 

infection in vivo (25). Therefore, mice devoid of the Ly49H receptor (BXD-8/Ty 

mice) and mice lacking Ly49H+ NK cells are susceptible to MCMV infection 

and, as a result, removal of the m157 gene does not have any effect. Though 

the Cmv1 host resistance locus primarily controls MCMV infection through the 

NK cell response in the spleen, recent studies have shown that the Ly49H NK 

cell receptor can also control viral infection in the lungs (25).   
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NK cells may kill target cells either directly or indirectly. The direct mechanism 

employs cytolytic granule (perforin and granzyme inside) exocytosis, the Fas-

Fas ligand pathway, the TNF-related apoptosis-inducing ligand (TRAIL) 

pathway, the membrane TNF-α pathway, and the antibody-dependent cellular 

cytotoxicity (ADCC) through CD16. Noncytolytic effects comprise the secretion 

of IFN-γ and TNF-α from NK cells (127). 

 

It has been also found that low numbers of virus specific CD8+ T cells can 

protect an MCMV infected host. The major immunoevasion mechanism of 

CMV compromises the signalling via the NK cell receptor NKG2D, which is 

also a co-receptor on T cells. 

 

1.8 The adaptive immune response 
 

HCMV-specific CD8+- T cell mediated cytotoxicity is observed in virus infected 

cells isolated from the peripheral blood mononuclear cells (PBMCs) of normal 

healthy HCMV carriers (179). Identification of the major immediate-early 

protein as a major T-cell target in MCMV was followed by the discovery of 

human CD8+-T cells as a potential candidate for recognizing the homologous 

IE1 protein in HCMV (179). The lower matrix protein pp65, an HCMV T-cell 

antigen, can also be recognized by CD8+ T-cells from HCMV infected 

individuals (94, 177). Furthermore, it has been found that six different HCMV 

proteins expressed by recombinant vaccinia viruses are recognised by CD8+ T 

cells, but these are regarded as minor antigens (15). Specific virus carriers 

showed higher CD8+ T cell responses to IE1 proteins and were found to have 
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much higher frequencies of IE1 specific T-cells. These findings were similar to 

those CD8+ T cells specific for the pp65 protein, when individual donors were 

compared for cytotoxic T cell frequencies using HCMV-infected fibroblasts 

(73). 

 

Increased disease incidence results from impaired T cell immunity during bone 

marrow transplantation or stem cell transplantation. Removal of reconstituted 

CD8+ cells in murine models of bone marrow transplantation leads to death 

and disease in immunocompromised mice can be prevented if reconstituted 

with CD8+ cells (130). 

 

Bone marrow transplantation in MCMV infected mice initiates the reconstitution 

of CD8+ T-cells and resolves the productive infection although latency is 

established with a high level of silenced genomes. The antiviral CD8+T-cells 

can effectively lyse infected cells in all three temporal stages, i.e. IE, E and L, 

of viral gene expression (62, 123). These cells persist during the whole life 

span of such bone marrow transplant recipient mice with little decline in 

absolute numbers (123).  

 

It is usual that high titres of antibody are able to reduce the prevalence and 

multiplication of infectious virus. Maternal antibody was thus found to protect 

the foetus against HCMV infection (16). Similarly, in vivo models have shown 

that neutralising antibodies play a role in the course of infection. Passive 

immunization with polyclonal antibodies obtained from immune donors was 

found to give protection prior to challenge infection. Both polyclonal antibodies 
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raised against MCMV and single envelope proteins expressed from 

recombinant virus were able to protect (91, 142). Injection of monoclonal 

antibodies specific for different structural proteins of MCMV also resulted in 

lower mortality (43). Furthermore, adoptive transfer of antisera to B-cell 

deficient mice were able to reduce MCMV titres to the same extent as 

immunocompetent mice and antiviral antibody prevented spread of virus to 

unaffected organs and confined the recurrent infection to the site of 

reactivation (68). But all these cases lacked a direct correlation between the 

level of protection and antibody neutralisation titres in vitro. Both ineffectual 

and potent monoclonal antibodies in regard to neutralisation of MCMV were 

able to offer similar protection in vivo. Although monoclonal antibodies were 

able to reduce MCMV titres in the livers of BALB/c and C57BL/10 mice 

showing close correlation with their neutralisation titres in vitro, they were still 

found incapable in reducing MCMV titres in spleen.  

 

1.9 Latency and reactivation 
 

HCMV persists as a lifelong infection in the normal human host without any 

noticeable clinical symptoms and is maintained in the absence of detectable 

infectious virus. Thus, it establishes a latent infection (146). It is still unclear 

how the virus remains in some cells without producing any further virus 

particles. Virus can reactivate in these cells upon certain external stimuli and 

produce new viral progeny to infect new cells (106). 
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The sites and mechanisms of HCMV latency are still poorly defined. Peripheral 

blood monocytes have been suggested as one site of latency in humans. 

Analysis of CD34+ bone marrow progenitor cells, precursors of monocytes, 

has revealed endogenous HCMV without viral IE gene expression (100). 

Similar results were found in the case of HCMV DNA, which is detectable 

predominantly in peripheral blood monocytes (PBM) of normal, seropositive 

individuals but IE gene expression was absent. Clinical isolates of HCMV have 

the capacity to efficiently infect monocytic cells at different developmental 

stages but the differentiation state of these cells determines the extent of viral 

gene expression. In normal individuals persistently infected with HCMV, the 

bone marrow may act as a reservoir for the virus. Following primary infection, 

HCMV may infect bone marrow stem cells with the capacity for self- renewal 

(105). In one study, it was found that granulocyte-macrophage progenitors 

(GM-Ps), progenitors of monocytes, granulocytes, and dendritic cells, 

expressed latency-associated transcripts (LATs), whereas mature 

macrophages, granulocytes, T cells, and B cells lack evidence of these 

transcripts. The differentiation state of GM-Ps appears critical in dictating 

whether latency is maintained or is reactivated. The progenitors of dendritic 

and myeloid lineage cells harbour latent virus in a similar manner to that of 

cultured GM-Ps (55). Again it was found that arterial endothelial cells harbour 

latently infected HCMV apart from the role of HCMV in governing the 

pathogenesis of atherosclerosis (59). 

  

CMV replication in undifferentiated or unstimulated cells in vitro was compared 

with their differentiated or stimulated counterparts to establish a model of 
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latency and reactivation. In the case of non- differentiated cells, IE gene 

expression is down-regulated. It can be induced if some agents which initiate 

differentiation are employed. This result implies that if the major promoter of IE 

region is induced by host or viral transcription factors, productive infection will 

develop. So it was inferred by the investigators that reactivation was the 

predicted outcome of IE gene expression (72, 104). However, most latently 

infected cells express IE RNA and their protein products insufficiently. As a 

result E gene expression is not initiated. When reactivation is perturbed, IE 

gene expression may be up-regulated enabling production of some E gene 

products. Therefore, threshold levels of E RNAs accumulate in some cells, 

permitting DNA replication and L gene expression. As a consequence, a few 

infectious virions initiate infection in new cells leading to lytic cascades and 

generation of viral particles.  In undifferentiated cells, modulator binding factor 

one (MBF1) apparently binds to the modular section of MIEP and represses 

transcription. Another repressor that also comes into action is transactivating 

binding protein (YY1) (86), which binds to the 21-bp repeat element of the 

MIEP enhancer and represses transcription from this region (76, 147). During 

lytic infection, virion associated proteins, such as the upper matrix protein 

(ppUL82), interact with host DNA binding proteins and initiate transcription 

from the MIEP. It is evident that these proteins are not available to carry out 

this function in latently infected cells. Acute inflammation and macrophage 

activation play vital roles in this regard. MIEP has cAMP response elements. 

Furthermore, prostaglandin E-2(PGE-2) can up-regulate the expression of 

MIEP, as determined by transient expression of the chloramphenicol 

acetyltransferase (CAT) gene under the control of the MIEP.  PGE-2 induced 
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cAMP expression and simultaneously produced cytokines such as tumour 

necrosis factor (TNF)-α and interleukin-1 (IL-1)-β. TNF-α, IL-1 β, IL-6 and IL-10 

act additively with PGE-2 in this effect (158). However, TNF-α has also been 

shown to inhibit CMV replication (5), so there should be a regulatory balance 

between these effects. There are other pathways in which cytokines may also 

activate the MIEP. An 18-bp repeat element in this region has four consensus 

binding sites for NF-kβ and this nuclear factor can activate the CMV promoter 

in a monocytic cell line and in mouse liver (88). These studies may therefore 

explain why immunosuppression is associated with CMV reactivation. 

 

Two other factors may control virus reactivation: chromation remodelling and 

CD8+ cells coupled with virus immunoevasion. Silencing/desilencing of 

expression takes places by chromatin opening and it leads to reactivation of 

viral transcription. All essential genes must adopt an open viral genome 

chromatin structure together with local desilencing at the MIE locus. The 

dynamic opening and closing provide a suitable environment for the production 

of essential proteins to start the productive viral cycle. The immune system 

recognises new expressed membrane proteins or stops reactivating virus by 

killing infected cells or by inhibitory lymphokines. Specifically, the 

immunodominant IE1 epitopes are recognised by CD8+ T-cells in the earliest 

stage of viral transcriptional reactivation (145).  

 

Reactivation from latency has also been investigated in the murine model. 

Latency is established in many organs and genes are silenced by histone 

binding to episomal viral DNA. It is estimated that 1 in 60,000 latent genomes 
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actively transcribe IE1 from the MIEP, as histone loss desilences this part of 

the genome. Following TNF-α mediated reactivation, expression proceeds to 

IE3 expression in approximately 1 in 104 genomes but still reactivation does 

not proceed to E or L gene expression without further immunosuppression 

suggesting that there are further check points mediated by CD8+ T cells. 

Cytotoxic T cells that recognise the IE1 nonapeptide probably keep the virus 

from reactivating. Possibly other CD8+ T cells with specificities for E and L 

gene products provide further checkpoints (145). 

 

It is well established that cytomegaloviruses express gene products that help to 

evade immune recognition, so called immuno-evasions, and these may play an 

important role in virus reactivation. Hence, the pp37/40 protein encoded by the 

MCMV early m152 gene retains MHC class I molecules with bound IE1 peptide 

in the ER to be directed to lysosomes by the m06 gene products (gp48) and 

thence degraded. Failure of recognition of the IE1 nonapeptide by CD8+ T 

cells may allow virus to reactivate. Cells lacking MHC class I expression would 

be recognised by NK cells but expression of gp34 (the product of the m04 

gene) transport MHC class I molecules devoid of IE1 peptide to the cell surface 

to inhibit NK cell killing. Similarly, mutation in the m157 protein, recognised by 

NK cells, prevents NK cell killing, while m145, m152 and m155 gene products 

inhibit expression of the NK cell activating ligands MULT-I, RAE-I and NKG2D 

respectively (58, 77, 87). Furthermore, the virus encodes an MHC class I 

homologue (m144) and Fc receptor to further avoid host defences (80, 173). 
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1.10 Treatment and prevention of HCMV infection 
 

Nucleoside analogues have been used over the years to inhibit viral infections. 

These nucleoside analogues target viral DNA polymerases or reverse 

transcriptases in host cells. One nucleoside analogue, ganciclovir (GCV), an 

acyclic nucleoside analogue of 2’-deoxyguanosine, is used for treatment of 

HCMV (Table 1.2). It is converted into ganciclovir triphosphate, its active form, 

by both viral and cellular enzymes. CMV UL97 encodes a protein kinase which 

catalyzes the initial phosphorylation of ganciclovir, the other two phosphates 

are added by host enzymes (163). The triphosphate competes with dGTP and 

inhibits DNA synthesis by the UL 54 encoded viral DNA polymerase. Other 

antiviral drugs e.g. valganciclovir, foscarnet, cidofovir, acyclovir, fomivirsen, 

have also been used for the treatment of CMV (12). Their mode of action is 

more or less similar encompassing the inhibition of viral DNA synthesis. 

 

The nucleoside analogues show detrimental side effects. They have proved to 

have an unfavourable safety profile, with severe acute and long-term toxicities. 

Haematologic abnormalities including neutropaenia, anaemia 

thrombocytopaenia and reproductive toxicity and carcinogenicity are reported 

on preclinical toxicological studies (12). Poor bioavailabilty and solubility limit 

the use of nucleosidic anti-viral drugs (38) to treat CMV in solid organ 

transplant patients and haematopoietic stem cell transplant recipients. There is 

still some concern as to whether prophylactic or pre-emptive therapy should be 

used. The cell mediated immune response is reported to be affected in 

prophylactic therapies (14, 84, 148). A guide line has been established by the 
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International Herpes Management Forum as to when these anti-viral drugs can 

be used in either therapies in these high risk patients (129). 

 

The non-nucleosidic drug, foscarnet (FOS), binds to the pyrophosphate binding 

site and inhibits the activity of the viral DNA polymerase. Then, it blocks the 

cleavage of pyrophosphate from the terminal nucleoside triphosphate added to 

the growing DNA. As this drug is administered for the treatment for CMV 

retinitis in AIDS patients, the major dose-limiting toxicity causes renal 

impairment which emphasizes the utility of adequate hydration and regular 

monitoring of serum creatine levels in these patients. Renal impairment can 

cause mineral and electrolyte abnormalities leading to a number of cardiac or 

neurologic disorders, including seizures and in extreme cases, death (12).  In 

the patients with failed GCV therapy due to viral resistance, or those who can 

not be treated with GCV therapy due to dose-limiting neutropenia or 

leucopenia, FOS is considered as second-line therapy (129). CMV can be 

treated with fomivirsen, a 21-nucleotide anti-sense RNA. It specifically binds to 

mRNA expressed from the major immediate-early transcriptional unit of CMV. 

Ocular inflammation (uveitis) is one of the most frequent adverse effects of 

fomivirsen (12).  

 

Several anti-CMV drugs are in clinical development, especially for congenitally 

infected neonates. These drugs are designed to be potent, selective and 

bioavailable. Marivabir (1-(β-L-ribofuranosyl)-2-isopropylamino-5,6-

dichlorobenzimidazole) prevents replication in cell culture (13, 186) by 

inhibiting viral nucleocapsid egress from the nucleus (78). Other drugs 
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including BAY 38-4766, GW275175X and Cidofovir esters are presently 

undergoing clinical trials and are expected to be free from toxicity and other 

associated problems of the previous described nucleoside analogue drugs 

(12). 

 

A number of approaches have been taken to develop a suitable vaccine to 

prevent CMV infection. The attenuated Towne strain was used as a vaccine in 

both healthy immunocompetent and CMV positive and CMV negative renal 

transplant patients. In CMV positive patients, a virus-specific cellular immunity 

was present for over ten years post immunization (122) but in the latter case, 

i.e. CMV negative recipients, the attenuated virus was unable to induce an 

immune response capable of  preventing re-infection but it did show  some 

decrease in severity of infection (121).  

 

This disappointing finding led to the development of a recombinant subunit 

vaccine. Naturally infected patients produce a neutralising antibody response 

to glycoprotein B (gB). Thus, incorporation of this glycoprotein into a 

baculovirus and its subsequent expression in chinese hamster ovary cell lines 

enabled it to be a potential candidate for a subunit vaccine (74). Another 

approach utilized a canarypox virus recombinant expressing gB. This has 

shown promise in that an antibody response to gB and neutralising antibodies 

were induced by this vaccine in humans (50). Similarly, DNA plasmids 

expressing CMV genes (gB, pp65) have shown excellent results in mouse 

models (116).  

34 



Introduction 

Table 1.2 Structure of the drugs approved today for the therapy of HCMV 

 

Structure Compound Clinical usage
Ganciclovir (GCV, DHPG) 

- guanosine analogue

•Therapy of HCMV disease

•preemptive therapy of active HCMV 
infection

•prophylaxis of active HCMV infection and 
disease in immunosuppressed patients

Valganciclovir (ValGCV)

-guanosine analogue, L-valinester
of GCV

•Therapy of HCMV disease

•prophylaxis of active HCMV infection and 
disease in immunosuppressed patients

Cidofovir (CDV, HPMPC) 

- acylic cytosine analogue
•Therapy of HCMV disease (second line)

• Especially for GCV-resistant HCMV due to 
UL97 mutation

5`-GCGTTTG

CTCTTCTTC

TTGCG-3`

Fomivirsen (ISIS2922) 

– antisense phosphorothioate
oligonucleotide

•Therapy of HCMV retinitis in HCMV 
patients. For GCV- and PFA-resistant 
HCMV

Foscarnet (PFA) 

– pyrophosphate analogue

•Therapy of HCMV diseases

• Especially for GCV-resistant HCMV due to 
UL97 mutation, 

•prophylaxis of active HCMV infection and 
disease in immunosuppressed patients

Acyclovir (ACV) - guanosine
analogue

•Therapy of diseases with HSV and VZV

• Prophylaxis of active HSV and VZV 
infections 

• Prophylaxis of HCMV infections in solid 
organ transplantation?
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1.11 MCMV as model of HCMV infection 
 

CMV is species specific. HCMV can replicate inside human hosts and cause 

persistent infections. But other animal species are not permissible for HCMV 

infection. However, MCMV in mice has been proved to be a useful model for 

HCMV disease. This virus can cause acute, latent and persistent infection of its 

natural host. Also the pathogenesis of these two viruses is closely related and 

shows similar clinical syndromes. Sequencing of these two viruses has 

revealed analogy in genome architecture, expression and function. Analysis of 

the complete nucleotide sequence of MCMV has depicted that more than 75 

ORFs have significant homology to those of HCMV (30, 128). Thus, elucidation 

of mechanisms of MCMV expression will be useful to provide insight into 

functions of HCMV in infection and pathogenesis.   

 

1.12 Mutagenesis approaches 
 

Mutagenesis is a powerful tool for studying the function of virus-encoded 

genes. The viral genome is subjected to mutation and viral mutants are 

screened in both tissue culture and animals for possible growth defects or 

functional loss in vitro and/or in vivo. Several mutagenesis strategies have 

been adopted over the years for fast, efficient and productive manipulation of 

the viral genome (23). Chemical mutagens were used for the production of 

temperature sensitive (ts) mutants around 30 years ago (141) and later this 

approach was adopted to produce mutants of MCMV (2, 136). Large numbers 

of mutants can be produced by this method which induces random point 
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mutations, insertions or deletions but has the disadvantage of being laborious 

and technically difficult to identify the mutations responsible for the observed 

phenotype.  

 

Site directed mutagenesis, a method by which targeted mutation of individual 

genes is achieved, was developed for members of the herpes virus family. This 

strategy adopts the recombination and repair machinery of bacterial cells 

together with selectable markers. Though mutation is very much specific, 

purification still remains laborious and sometimes impossible because the 

mutant has a poor growth rate as compared to wild type virus (23). 

 

Herpesvirus genomes have been cloned as a series of overlapping cosmid 

clones facilitating efficient manipulation of the cloned segment. The targeted 

mutation can be introduced into a cloned sequence and, following transfection 

of cosmid DNA into the tissue culture cells of choice, a generally homogeneous 

population of mutant virus is generated by homologous recombination of 

overlapping DNA segments (42, 71). The advantage of this methodology is the 

generation of mutant virus only, there is no requirement of selection against 

wild type virus and it precludes the presence of any foreign DNA (selectable 

marker) (93). Finding suitable restriction sites and overlapping mutated regions 

in long cosmids may give rise to difficulty. However, apart from these, many 

recombination events are necessary for the assembly of the full-length viral 

genome in the transfected cells.  
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Cloning vectors have been developed based on replicons of bacterial F 

plasmids, which are capable of maintaining large DNA fragments of up to 

300kbp, named BAC (Bacterial artificial chromosome). In a single BAC, the 

largest herpes virus genome can be easily cloned and it retains the power of 

infection in permissive cells. The clone is maintained stably and is easy to 

handle. This breakthrough led to a new era of mutagenesis of large virus 

genomes. The methods of genetic engineering in prokaryotes could now be 

directed to mutate the BAC efficiently. With the help of this technology, 

alteration of viral genes and their functional analyses can be done more quickly 

in an efficient manner (23). The MCMV genome was first cloned and 

maintained as 230 Kbp BAC in E. coli (102, 176). Similarly, this technique was 

employed to clone the other human and animal CMV genomes as infectious 

BACs in E. coli (Table 1.3) (24). The BAC cassette controls the replication of 

the BAC plasmid in E .coli in low copy number. It is inserted into the viral 

genome by homologous recombination in eukaryotic cells. The introduced viral 

flanking regions at each end of the BAC cassette govern the recombination 

event. Recombination deficient E. coli is then transformed with circular 

intermediates of viral genomes containing the BAC cassette. Simultaneously, 

the viral genome can be subjected to any kind of mutation (deletion, insertion 

or point mutation) or reversion of the mutation with the methods of bacterial 

genetics. Following this event in E. coli, the viral BAC plasmid can be used to 

produce infectious virus particles in tissue culture. 
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Table 1.3 Cytomegaloviruses cloned as BACs in E. coli 

 
Virus, Strain Full length BAC excisable Reference 

MCMV, Smith No No (102) 
MCMV, Smith Yes Yes (176) 
MCMV, K181 Yes Yes (131) 
HCMV, AD169 No No (17) 
HCMV, AD169 Yes Yes (61) 
HCMV, AD169 Yes Yes (182) 
HCMV, Towne No No (92) ATCC
HCMV, Towne No No (57) RIT
HCMV, Towne No No (57) LONG
HCMV, Toledo No No (57) 
HCMV, FIX No No (56) 
HCMV, PH No No (107) 
HCMV, TR No No (107) 
GPCMV, 22122 Yes No (93) 
RhCMV, 68-1 Yes Yes (29) 

MCMV, Murine cytomegalovirus; HCMV, Human cytomegalovirus 
GPCMV, Guinea pig cytomegalovirus; RhCMV, Rhesus Cytomegalovirus 
 
 

A novel approach, ET recombination, has been employed to modify the BAC 

plasmids in the host (110, 187). This method is independent of the presence of 

restriction sites and the size of the DNA molecule to be modified and based on 

the homologous recombination mediated by RecE and RecT proteins (Figure 

1.5). RecE proteins are exonucleases which have 5’-3’activity. It degrades the 

DNA in 5’-3’direction starting from a double-stranded break. RecT proteins are 

DNA annealing proteins. These proteins bind to the single stranded DNA and 

form a recombinogenic proteonucleic filament. A functional interaction between 

these two proteins catalyzes homologous recombination. Strategies involving 

ET recombination and two rounds of BAC mutagenesis (24) are illustrated in 

Figure 1.6. In a two-step approach, a PCR product carrying selectable and 

counter-selectable marker genes is first introduced at the location to be 

modified and in the second step replaced by non-selectable DNA carrying 

mutation (108, 188). This approach can be used to generate a second-round 
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Figure 1.5 Mechanism of Red/ET recombination 

 

Figure 1.5 Mechanism of Red/ET recombination. Recombinase 
protein pairs (RecE/RecT or Redα/Redβ) starts double-stranded break 
repair. Here, RecE (Redα) digest one strand of the DNA from the 
double-stranded break, leaving the other strand as a 3` protruding 
end. RecT (Redβ) recognises and coats the DNA overhang to form the 
protein-nucleic acid filament aligning with homologous DNA. Then the 
3` end acts as primer for DNA replication (109). 
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Figure 1.6 BAC mutagenesis using linear DNA fragments 

gene X
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Figure 1.6 BAC mutagenesis using linear DNA fragments. A viral 
gene (X) is first replaced by a selectable (sel) and a counter-selectable (c-
sel) marker cassette flanked by two homology arms (hm). In a second 
step, the marker cassette is replaced either by the wild type or a mutated 
gene sequence (24). 
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product that includes the intended sequence change (s) or insertion of DNA 

region of interest completely free of any operational sequences used for the 

engineering. If oligonucleotides and short PCR products are used, absolute ET 

recombination efficiencies may approach 1 in 100. Hence, the correct 

recombinants can be confirmed by PCR (111). 

 

1.13 Aim 
 

The aim of the project is to determine the role of the m29 and m29.1 ORFs in 

MCMV replication both in vitro in tissue culture and in vivo in 

immunocompetent and immunodeficient mice. Both ORFs are located in the 

HindIII-B (Figure 1.7) region of MCMV genome. This 26.4kb long MCMV 

HindIII-B region as defined by Rawlinson and colleagues(128) consists of 18 

ORFs, of which 11 have HCMV homologues.  

 

While MCMV homologues of HCMV ORFs are actively being pursued by a 

number of groups, ORFs unique to MCMV with little or no sequence homology 

to HCMV or other herpesvirus have been relatively neglected despite the fact 

that several of these (e.g. m04, m06, m152, m155, m157) are functional HCMV 

homologues involved in immune evasion. Approximately 90 of the MCMV 

ORFs have no sequence homology with HCMV ORFs but may have important 

functions for virus replication in tissue culture. More likely, such genes may be 

dispensable for replication in cultured cells and may function to modulate the 

interaction between the virus and its host. The role of these genes will never be 

understood if HCMV homologues only are targeted.  
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Figure 1.7 A probable map of MCMV and HindIII digested MCMV (Smith strain) genome giving 
emphasis to the HindIII-B fragment 
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Introduction 

The m29 and m29.1 ORFs were previously mutated by Dr. Melissa Kirby in this 

Laboratory. These mutants were constructed, using RecE/RecT homologous 

recombination, by insertion of 1.3 Kb kanamycin cassette at the restriction 

enzyme site BamHI of m29 and SfoI of m29.1 and confirmed through 

sequencing. However, she was unable to produce revertants to wt which 

necessitated a different strategy. Furthermore, early indicators were that the 

published sequence was incorrect. A selection/counterselection system using 

the established RecE/RecT recombination method (110, 187) allowed mutants 

to be selected through kanamycin resistance and a wt revertant produced in a 

similar manner with selection for streptomycin resistance. As indicated in 

Figure 1.7, m29 and m29.1 occur on different strands of DNA in overlapping 

reading frames making it difficult to knock out each gene independently using 

transposon mutagenesis or insertion of an antibiotic cassette. Using the above 

approach, it was intended to generate stop codon mutants and revertants of 

m29 and m29.1 ORFs. 

 

Infectious mutant viruses will be generated following transfection of NIH 3T3 

cells with MCMV BAC DNA. The genome of the reconstructed virus will be 

investigated by sequencing to confirm the desired mutation and by PCR to 

confirm the presence and absence of the BAC cassette. Both mutant and 

revertant viruses will be characterised phenotypically in vitro by examining 

replication at high and low MOI in primary mouse embryo fibroblasts and in 

vivo in adult immunocompetent and SCID mice. Temporal expression of the 

transcripts will be examined and the 5’ and 3’ end of the transcripts determined 

44 



Introduction 

by RACE analysis. Protein will be expressed in E. coli and antibodies 

developed in rabbits to examine whether transcripts are translated. 
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Materials and methods 

 

2. MATERIALS AND METHODS 

 

2.1 Maintenance of cell lines 

 

2.1.1 NIH 3T3 cells 
 

The immortalised mouse embryo fibroblast cell line, NIH 3T3 (CRL-1658), was 

purchased from the American Type Culture Collection (ATCC) (Middlesex, UK) 

and propagated in growth medium (GM) comprising Dulbecco’s Modified 

Eagle’s Medium (DMEM) (Sigma, Dorset, England) supplemented with 10% 

(v/v) newborn calf serum (NCS) (Cambrex, Nottingham, UK), 2% L-glutamine 

(Invitrogen, Paisley, UK) and 2% Penicillin-Streptomycin (Invitrogen, Paisley, 

UK). 

 

2.1.2 Isolation and maintenance of primary mouse embryo 
fibroblasts 
 

Mouse embryo fibroblasts (MEF) were aseptically isolated from foetuses of 14-

day-old CD-1 mice. Embryos were decapitated, washed twice with 25ml 

phosphate buffer saline (PBS) (Oxoid, Hampshire, England) and forced 

through a 20ml syringe to remove foetal membranes and excess fluids. 10ml of 

Trypsin:EDTA (0.5% trypsin; 5.3mM EDTA) (TE) (Invitrogen, Paisley, UK) was 

added to the cells, which were shaken and incubated for 10 minutes at 37°C. 

The digested sample was mixed by rigorous shaking and filtered through a fine 
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metal sieve. 5ml of NCS and 10ml DMEM was added and the homogenate 

placed in a universal. After centrifugation at 720xg for 10 minutes at room 

temperature, the pellet was resuspended in 10ml of GM and seeded into a 

162cm2 tissue culture flask (Corning Incorporated, USA) containing 40ml of 

GM and incubated at 37°C overnight with 5%CO2/95% air. The following day 

GM and non-adherent cells were removed from the flask and attached cells 

were washed with PBS and 40ml of GM was added. The cells were cultured at 

37°C and passaged when the cells were grown until 90-95% confluent.  

 

2.1.3 Subculturing of cells 
 

Cells were subcultured at 90-95% confluence. GM was removed from the 

162cm2 tissue culture flask and the cells washed with 10ml of PBS. The cells 

were rinsed with 2ml of TE and incubated at 37ºC for 1 minute. The cells were 

observed using an inverted microscope and, after detachment, 10ml of GM 

was added to neutralize the effect of TE. These cells were seeded into a 

162cm2 tissue culture flask at a split ratio of 1:2 to 1:6 containing 40ml GM, 

cultured at 37°C until 80-90% confluent and passaged as required. 

 

2.1.4 Long term storage of NIH 3T3 cells 
 

2The cells in 100% cell confluent 162cm  tissue culture flasks were trypsinised 

as described above (section 2.1.3). Trypsinised cells were harvested by 

centrifugation at 750xg for 10 minutes at room temperature. The cell pellet was 

resuspended in 3.6ml NCS. 0.4ml of tissue culture grade dimethyl sulphoxide 
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(DMSO) (Sigma, Dorset, England) was added to the resuspended cells, mixed 

and the cells were aliquoted (1ml) into cryovials (Nalgene, Hereford, UK). The 

cryovials were placed in a freezing vessel containing isopropanol and 

incubated at -80°C. After 24 hours, the cryovials were moved to liquid nitrogen 

for permanent storage. 

 

2.1.5 Resuscitation of NIH 3T3 cells 
 

Cells stored in liquid nitrogen were defrosted at room temperature and added 

to a 25cm2 tissue culture flask (Corning Incorporated, USA). 3ml of GM was 

added to the flask and incubated at 37ºC. After 24 hours, the GM was removed 

and fresh GM was added. Cells were incubated for several days until 80-90% 

confluent. Trypsinised cells were then passaged into a 75cm2 tissue culture 

flask (Corning Incorporated, USA) and subsequently into 162cm2 tissue culture 

flasks as required. 

 

2.2 Viruses 
 

The reconstructed virus from MCMV smith BAC plasmid (176) was provided by 

Dr. Melissa Kirby for this study. Two kanamycin cassette insertional mutant 

viruses of MCMV Smith strain, designated as Kn29 and Kn29.1 in this study, 

were kindly provided by Dr. Melissa Kirby. Wild type viruses and reconstructed 

viruses used in this study are shown in Table 2.1. 
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2.2.1 Transfection of MCMV BAC plasmids into NIH 3T3 cells 
 

ExGen500 in vitro transfection reagent (Fermentas, York, UK) and a modified 

method recommended by the manufacturer was applied. ExGen500 is a sterile 

non-pyrogenic solution of linear 22 kDa polyethylenimine in water; it belongs to 

an efficient new class of non-viral, non-liposomal gene delivery reagents. 

4x105 NIH 3T3 cells were seeded per well of a 6-well flat bottomed plate 

(Corning Incorporated, USA) in 3ml of GM 12-16 hours before the transfection. 

At transfection, the cell monolayers were 70-80% confluent. 150mM NaCl was 

added to a 1.5ml eppendorf tube containing 5μg BAC plasmid DNA (section 

2.4.6) to make a final volume of 300μl. 15.5μl of ExGene500 reagent was 

added and the solution mixed for 10 seconds. 300μl of the ExGen500/DNA 

mixture was then added to each well. The control well contained only 150mM 

NaCl and ExGene500 reagent. The plate was gently rocked back and forth and 

from side to side to achieve even distribution. The cells were then incubated at 

37°C in a gassed incubator for 20-48 hours and then subcultured in a 162cm2 

tissue culture flask at 100% confluence (section 2.1.3). Formation of plaques 

was monitored using an inverted microscope. If no plaques were present by 

this time, the cells were passaged and incubated for several weeks at 37°C 

(section 2.1.3).  
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Table 2.1 Wild type and reconstructed viruses used in this study 

Virus name Description Source Reference 
wt Reconstructed from MCMV Smith BAC M. Kirby (176) 
Kn29 Reconstructed from mutated MCMV Smith 

BAC, insertional mutant of m29 gene 
M. Kirby This work 

Kn29.1 Reconstructed from mutated MCMV Smith 
BAC, insertional mutant of m29.1 gene 

M. Kirby This work 

Rc29 Reconstructed from mutated MCMV Smith 
BAC, stop codon mutant of m29 gene 

This work 

Rc29.1 Reconstructed from mutated MCMV Smith 
BAC, stop codon mutant of m29.1 gene 

This work 

Rv29.1 Reconstructed from mutated MCMV Smith 
BAC, revertant of Rc29.1mutant 

This work 

2K181 mouse passaged, wild-type CA Mims (136) 
K17A Wild-type MCMV isolate GR Shellam1 (89) 
N1 Wild-type MCMV isolate GR Shellam1 (89) 
G4 Wild-type MCMV isolate GR Shellam1 (89) 

 
1. Department of Microbiology, University of Western Australia 
2. Department of Microbiology, United Medical and Dental Schools of Guy’s and St 

Thomas Hospital, London. 

 

2.2.2 Plaque purification of BAC derived virus 
 

NIH 3T3 cells were seeded at 1 x 106 cells in 3ml of GM into each well of 6-well 

flat bottomed plates and cultured overnight at 37°C. Harvested supernatants 

from the transfection reactions were serially diluted 10 fold in GM. Following 

removal of GM from the 6 well plates, 20μl of individual dilutions were added to 

a single well. The cells were incubated at 37°C and plaque formation was 

monitored using an inverted microscope. Several distinct plaques were found 

in several wells after 4 to 5 days of infection. The GM was removed from these 

wells and, using the inverted microscope, an area was found that contained a 

single plaque. A P200 Gilson tip was used to remove the plaque and the 

surrounding cells which were added to 2ml maintenance medium (MM) (2% 

NCS, 2% L-glutamine and 2% Penicillin-Streptomycin in DMEM) in a bijou 

container. 100μl of medium was taken, flushed over the area and added to the 
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Bijou. A flask of nearly confluent NIH 3T3 cells was prepared for each plaque 

by removing most of the GM. 2ml MM containing the isolated plaque contents 

were added to each flask containing cells and incubated for 1 hour at 37°C. A 

further 2-5ml GM was added so that the monolayer was well covered. The 

flask was incubated at 37°C until 100% cytopathic effect (CPE) was observed. 

The viruses were harvested (section 2.2.3) and the cell pellet used for DNA 

extraction (section 2.2.7). The virus from this stage was designated as 1st 

passage stock. Several passages were required to recover virus free of the 

BAC. Aliquots of BAC free plaque purified virus stock were used for generation 

of viral seed and working stocks. 

 

2.2.3 Virus harvesting 
 

2NIH 3T3 cells were seeded in 162cm  tissue culture flasks in 40ml of GM and 

cultured overnight at 37°C. The GM was removed from the flask when the cell 

confluence was 80 to 100%. 0.2ml of virus was added to the flask, incubated at 

37ºC for one hour and then supplemented with 15ml of MM. When the cell 

monolayer showed 100% CPE the medium was transferred to a centrifuge 

tube. The cells were then detached using a cell scraper and transferred back to 

the centrifuge tube. This was then centrifuged at 750xg for 10 minutes at room 

temperature and the supernatant containing the viral stock was then 

supplemented with 10% DMSO and stored at -80ºC. The pellet was kept for 

DNA extraction (section 2.2.7). 
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2.2.4 Production of viral seed and working stocks 
 

Seed stocks were generated from plaque purified virus (section 2.2.2) once it 

was demonstrated that the BAC cassette had been eliminated from the virus 

genome. NIH 3T3 cells were seeded into 162cm2 tissue culture flask and the 

virus harvested and stored as described in section 2.2.3. Working stocks were 

generated from viral seed stock. MEF cells were seeded into 162cm2 tissue 

culture flask and the virus harvested and stored as described in section 2.2.3. 

The virus titre was determined by plaque assay (section 2.2.6). 

 

2.2.5 Growth kinetics of recombinant viruses 
 

MEF cells were seeded at a concentration 1x105 cell in 0.5ml of GM into each 

well of a 24 well tissue culture plate (Corning Incorporated, USA). Cells were 

allowed to adhere overnight at 37ºC to establish a confluent monolayer after 

attachment. The cells were then infected at an MOI of either 0.05 (low) or 5.0 

(high) plaque forming units (PFU) per cell. After one hour incubation at 37 ºC, 

the culture medium was removed, the cells washed with PBS, and 900μl of GM 

added to each well. The cells were incubated at 37ºC and at different time 

points, three 450μl aliquots were collected from each well and stored at -80°C. 

When required, the samples were thawed and viral titres were determined by 

plaque assay (section 2.2.6). 
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2.2.6 Virus titration 
 

A plaque assay with MEF cells was used to determine viral titres. The amount 

of virus present in viral stocks (section 2.2.4), tissue culture supernatants 

(section 2.2.5), is expressed in PFU per ml and virus present in mouse tissue 

homogenates (section 2.15) is expressed as PFU per tissue.  

 

5MEF cells were seeded at 1x10  cells in 0.5ml of GM into each well of a 24 

well tissue culture plate. Cells were allowed to adhere overnight at 37ºC. The 

GM was replaced by 200μl of serially diluted virus samples diluted in MM. The 

control well only contained MM. After 1 hour incubation at 37°C, 1ml of overlay 

medium [2/3 carboxymethylcellulose (CMC) and 1/3 GM] was added to each 

well. After 5 days incubation at 37ºC, the cells were fixed and stained. 0.5ml of 

formal saline fixative (4% formaldehyde in PBS) was added directly to each 

well, removed after 10 minutes and another 0.5 ml of fixative added. Following 

incubation at room temperature for 30 minutes the fixative was removed and  

0.5 - 1.0ml of 0.3% crystal violet solution [0.3% (w/v) crystal violet dissolved in 

10% (v/v) methanol in water] added to each well. The plates were left for 1 

hour at room temperature. The wells were washed gently with running tap 

water and the plates left on the bench to air dry. The plaques were counted 

using a light microscope. 
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2.2.7 Isolation of viral DNA from cultured animal cells 
 

Viral DNA was isolated from infected cells using the DNeasy Tissue Kit 

(Qiagen, West Sussex, UK) according to the manufacturer’s instructions. 

Briefly, virus infected attached and lysed cells were harvested from 162cm2 

tissue culture flasks using a cell scraper and pelleted by centrifugation at 

720xg for 10 minutes at  room temperature. This was either stored at -20ºC 

and used subsequently after thawing or used directly. The pellet was 

resuspended in 200μl PBS. 20μl proteinase K and 200μl buffer Al was added 

to the sample, mixed thoroughly by vortexing and incubated at 70°C for 10 

minutes. To this homogeneous solution, 200μl of 100% ethanol was added and 

mixed thoroughly by vortexing. The mixture was then pipetted into the DNeasy 

mini spin column placed in a 2 ml collection tube followed by centrifugation at 

6000xg for 1 min. The flow-through and collection tube was discarded and the 

column was placed in a new 2 ml collection tube. 500μl buffer AW1 was added 

onto the column and the column was centrifuged for 1min at 6000xg. The flow-

through and collection tube were again discarded and the column placed in a 

new 2 ml collection tube. 500 μl buffer AW2 was added to the column followed 

by centrifugation for 3 min at 18200xg to dry the DNeasy membrane. After 

discarding the flow-through and collection tube, the column was placed in a 

clean 1.5 ml microfuge tube and 200 μl buffer AE was pipetted onto the 

DNeasy membrane.  The column was incubated at room temperature for 1 

minute and then centrifuged for 1 minute at 6000xg to collect the elute. The 

eluted DNA was stored at 4°C. 
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2.3 Bacterial hosts and plasmids 
 

Stab cultures of wild type MCMV BAC (Smith) plasmids maintained in E. coli 

strain DH10B were kindly supplied as indicated in Table 2.2. MCMV BAC 

(Smith) plasmid was designated as pSM3fr (176). Plasmid pCR®4Blunt-TOPO 

(Figure 2.1) was purchased from Invitrogen, Paisley, UK. A linear PCR product 

of 1945 bp from the MCMV Smith BAC (nt 35241 to nt 37244) (128) was 

previously cloned into this plasmid by Dr. Melissa Kirby. The modified 

pCR®4Blunt-TOPO plasmid was designated pCR4B-29 in this study. Plasmid 

pET28a (Figure 2.2) was provided by Dr. Lynn Dover as DNA and transformed 

into host bacteria (Table 2.2). A temperature-sensitive plasmid named pRpsl-

neo (carrying a kanamycin resistance cassette in the vector backbone) and an 

ET protein expression plasmid, pKD46 were also provided by Dr. Melissa 

Kirby. Strains and plasmids used in this study are shown in Table 2.2. 

 

2.3.1 Media for bacterial cultures 
 

Bacterial cultures were grown in Luria-Bertani medium (LB) prepared by 

dissolving 10gm tryptone, 5gm yeast extract and 10gm NaCl in 800ml distilled 

water. All culture media were autoclaved for 15 minutes at 121°C and, where 

required, mixed with appropriate antibiotics (Table 2.2). To make agar plates, 

100 to 200ml aliquots of LB supplemented with 15gm/l bacto-agar (L-Agar) 

were autoclaved, cooled and stored at 4°C. The L-Agar was dissolved by 

boiling, cooled to 50°C and supplemented with appropriate antibiotics (Table 
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2.2). In a laminar flow hood, 20-25ml of L-Agar was poured into each petri dish 

(agar plate) and left to solidify for 20 to 30 minutes. 

 

Table 2.2 Strains and plasmids used in this study 

Plasmid name Host Selection Source Reference 
wt MCMV BAC DH10B 12μg/ml Cm1 Koszinowski5 (176) 
pCR4B-29 TOP10 100μg/ml Carb2 M. Kirby - 
pCR4B-29* XL1-Blue 100μg/ml Carb2 This work 
pCR4B-29.1* XL1-Blue 100μg/ml Carb2 This work 

4 2pKD46 TOP10 M. Kirby (181) 50μg/ml Carb
pRpsL-neo4 3TOP10 Gene Bridges 20μg/ml Kn
MCMV BAC-rpsl-neo DH10B 20μg/ml Kn3 This work  plus 

12μg/ml Cm1

Rc29MCMV BAC DH10B 12μg/ml Cm1 This work 
Rc29.1MCMV BAC DH10B 12μg/ml Cm1 This work 
pET28a TOP10 3  Novagen 25μg/ml Kn

3pET28a-m29 TOP10 This work 25μg/ml Kn
3pET28a-m29.1 TOP10 This work 25μg/ml Kn

 
1. Cm, chloramphenicol 
2. Carb, carbenicillin 
3. Kn, kanamycin 
4. Temperature sensitive origin of replication (30°C) 
5. Ludwig-Maximilians-Univesität Műnchen, Germany 

 

2.3.2 Preparation of bacterial cultures and storage 

 
Single colonies isolated from agar plates were transferred aseptically into 5 or 

10ml of LB supplemented with appropriate antibiotics (Table 2.2). Bacteria 

were then grown at 30°C/37°C on a shaker at 200rpm overnight. For storage of 

bacterial cultures, 500μl overnight cultures were transferred to 2ml cryovials 

followed by addition of 500μl 80% (w/v) glycerol and stored at -80°C. 
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Figure 2.1 Map of the pCR®4Blunt-TOPO vector 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.1 Map of the pCR®4Blunt-TOPO vector.  A linear 1945 bp DNA fragment 
containing m29 and m29.1 ORF was cloned between the EcoRI sites. 

 

2.3.3 Preparation of chemically competent cells 

 
An aliquot of 2ml overnight culture (section 2.3.2) was added to 100ml of pre-

warmed LB broth supplemented with appropriate antibiotics (Table 2.2). Cells 

were grown at 37°C with shaking until the absorbance at 600nm reached 0.39. 

Cells were then centrifuged at 750xg for 10 minutes at 4°C, the supernatant 

discarded and 40ml ice-cold transformation buffer-1 [30mM potassium acetate, 

10mM rubidium chloride, 10mM calcium chloride, 50mM manganese chloride, 
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15% (v/v) glycerol, pH 5.8] added to resuspend the pellet, which was then 

incubated on ice for 5 minutes. Following another round of centrifugation under 

the same conditions,  the pellet was resuspended in 4ml ice-cold 

transformation buffer-2 [10mM MOPS {3-(N-morpholino) propanesulfonic acid}, 

75mM calcium chloride, 10mM rubidium chloride, 15% (v/v) glycerol, pH 6.5]. 

The cells were then incubated on ice for 2 hours, dispensed in aliquots 

(200μl/tube) and frozen in liquid nitrogen prior to storage at -80°C. 

Figure 2.2 Map of the pET28a vector 

 

Figure 2.2 Map of the pET28a vector. The m29 and m29.1 gene was cloned between 
the XhoI and NcoI sites. 
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2.3.4 Transformation of plasmid DNA into competent cells 
 

Chemically competent cells (section 2.3.3) were thawed on ice, plasmid DNA 

(1 to 5ng) added, mixed by tube flicking and incubated on ice for 15 minutes. 

The cells were then heat shocked at 42°C for 30 seconds followed by 

incubation on ice for 30 seconds. 800μl of LB broth, pre-warmed to room 

temperature, were added to the cells and then incubated at 37°C with shaking 

at 200rpm for one hour.  The sample (50-100μl) was then spread on LB agar 

plate supplemented with appropriate antibiotics (Table 2.2) and cultured at 30 

or 37°C overnight. 

 

2.3.5 Preparation of electrocompetent cells 
 

The ET expression plasmid DNA, pKD46 (1 to 5ng), was transformed (section 

2.3.4) into chemically competent cells (section 2.3.3) of E. coli strain DH10B 

containing the wild type MCMV BAC (Smith) (176). Following culture overnight 

at 30°C, a single colony was picked and grown in 5ml LB medium with 

antibiotics (Table 2.2) overnight with shaking at 30°C. 0.7 ml of overnight 

culture was then added to 70ml of pre-warmed LB broth supplemented with 

appropriate antibiotics (Table 2.2), and incubated at 30°C with shaking until the 

absorbance at 600nm reached 0.1– 0.15. 350μl of 1M L-arabinose was added 

to the culture to induce ET protein expression. Incubation was continued at 

30°C until the absorbance at 600nm reached 0.3– 0.4. To harvest the cells, the 

centrifuge and rotor was prechilled by centrifuging for 10 minutes at -5°C at 

4000xg and then 35ml of cells were centrifuged at 4000xg for 10 minutes at -
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5°C and the remainder was kept on ice. The supernatant was discarded and 

the harvesting step was repeated with the remaining amount of cells. To wash 

the cells, the pellet was resuspended in 5ml ice cold 10% (w/v) glycerol and a 

further 25 ml of 10% (w/v) glycerol was added followed by centrifugation as 

above. The supernatant was discarded and the washing step was repeated 

twice. The supernatant was poured away and the tube was immediately dried 

with Kleenex tissue. The cells were resuspended in the remaining liquid (little 

more than 100μl final resuspended volume). 50μl of cells were transferred into 

a pre-cooled eppendorf tube and frozen in liquid nitrogen prior to storage at -

80°C. 

 

2.3.6 Electroporation 
 

Electrocompetent cells (section 2.3.5) were thawed on ice and DNA solution 

(100-300ng linear DNA in a maximum volume of 10μl) was added. 

Electroporation was performed using a 1mm gap ice-cold cuvette and a Bio-

Rad gene pulser set to 25μF, 2.3 KV with pulse controller set at 200 ohm. SOC 

medium (1ml) (2.0gm tryptane, 0.5gm yeast extract, 1ml 1M MgCI2, 1ml 1M 

MgSO4, 1ml 1M NaCI, 250μl 1M KCI and 1.8μl 20% glucose in 100ml distilled 

water) was added immediately after electroporation. The cells were incubated 

at 37°C for 75 minutes with shaking and spread on an antibiotic plate for 

selection. 
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2.4 Plasmid DNA Isolation 

 

2.4.1 Small scale preparation of plasmid DNA 
 

Overnight cultures (1.5 to 3 ml) grown from a single colony with appropriate 

selective antibiotics were aliquoted into an eppendorf tube and centrifuged at 

750xg at room temperature for 5 minutes.  The supernatant was discarded and 

the pellet was completely resuspended in 100μl of solution-I (25mM Tris pH 

8.0; 10mM EDTA ph 8.0; 0.5M sucrose). After resuspension, 200μl of freshly 

prepared solution-II (0.2M NaOH; 1% SDS) was added to lyse the cells and the 

tube was inverted several times. The lysed cell suspension was then mixed 

with 200μl solution-III (117.78gm potassium acetate; 46 ml glacial acetic acid 

in 400ml distilled water), incubated for 15 minutes on ice and then centrifuged 

at 15680xg for 15 minutes at room temperature. The supernatant was then 

transferred to a fresh eppendorf tube containing 500μl isopropanol followed by 

centrifugation at 15680xg for 10 minutes at room temperature as above. The 

pellet was suspended in 100μl distilled water and 2μl RNase (10mg/ml) was 

added followed by incubation at 37ºC for 15 minutes. 100μl distilled water and 

200μl phenol-chloroform was then added to the cells followed by centrifugation 

at 15680xg for 3 minutes at room temperature. The aqueous layer was 

pipetted into a new tube. This phenol-chloroform extraction was repeated and 

20μl 3M sodium acetate and 600μl 100% ethanol was added to the final 

aqeous layer followed by incubation at -80ºC for 15 minutes. The precipitated 

DNA was centrifuged at 15680xg for 10 minutes at room temperature, the 
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pellet washed with 70% ethanol, air dried and resuspended in 50μl distilled 

water. 

 

2.4.2 Maxi preps 

 
®A NucleoBond  PC kit (Abgene, Epsom, UK) was used for the isolation of low-

copy number plasmids according to the manufacturer’s instructions. An 

overnight bacterial culture was set up by inoculating 500ml of LB medium (plus 

antibiotics) with a single colony picked from a freshly streaked plate. The 

culture was centrifuged at 6000xg for 15 minutes at 4ºC and the pelleted 

bacterial cells resuspended in 24ml of buffer S1. 24ml of buffer S2 was then 

added to the suspension which was mixed by gently inverting the tube 6-8 

times. The mixture was incubated at room temperature for 5 minutes, when 

24ml of pre-cooled buffer (4ºC) S3 was added and the lysate immediately 

mixed gently by inverting the flask 6-8 times until a homogeneous suspension 

containing an off-white flocculate was formed. The suspension was then 

incubated on ice for 5 minutes. For clarification of the lysate, a NucleoBond® 

folded filter was placed in a small funnel for support and the filter prewetted 

with a few drops of buffer N2. The bacterial lysate was loaded onto the wet 

filter and the flow-through was collected. The cleared lysate from the above 

step was loaded onto the NucleoBond® AX 500 (Maxi) column, previously 

equilibrated with 6ml of buffer N2, and the column allowed to empty by gravity 

flow. The column was washed twice with 18ml of buffer N3. The flow-through 

was discarded and the plasmid DNA eluted with 15ml of buffer N5. 11ml of 

room temperature equilibrated isopropanol was added to precipitate the eluted 
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plasmid DNA, which, after careful mixing, was centrifuged at 15000xg for 30 

minutes at 4ºC. The pellet was washed with 70% ethanol and centrifuged at 

15000xg for 30 minutes at room temperature. After removing ethanol, the pellet 

was air dried for 10-20 minutes and resuspended in 150μl distilled water. 

 

2.4.3 Midi preps 
 

QIAGEN Plasmid Midi Kit (Qiagen, West Sussex, UK) was used to purify low-

copy number plasmids according to the manufacturer’s instructions. A single 

colony from a freshly streaked LB agar plate was picked and inoculated as a 

starter culture in 5ml LB medium containing the appropriate selective antibiotic 

(Table 2.2). The culture was incubated overnight at 37°C with vigorous 

shaking.100ml of LB was inoculated with 500µl of starter culture followed by 

incubation overnight at 37°C with vigorous shaking. The bacterial cells were 

harvested by centrifugation at 6000xg for 15 minutes at 4°C and the pellets 

resuspended in 4ml buffer P1. 4ml of buffer P2 was added to the resuspended 

pellet, mixed thoroughly by vigorously inverting the sealed tube 4–6 times 

which was then incubated at room temperature for 5 minutes. 4ml of chilled 

buffer P3 was added, the contents mixed immediately and thoroughly by 

vigorously inverting the tube 4–6 times, which was then incubated on ice for 15 

minutes. The cells were centrifuged at 20,000xg for 30 minutes at 4°C, the 

supernatant containing plasmid DNA removed and centrifuged again at 

20,000xg for 30 minutes at 4°C. The supernatant was removed and applied to 

a QIAGEN-tip 100 which had previously equilibrated with 4ml buffer QBT. The 

QIAGEN-tip was washed twice with 10ml buffer QC and then DNA was eluted 
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with 5ml buffer QF and precipitated by addition of 3.5ml room-temperature 

isopropanol. The solution was mixed and centrifuged immediately at 15,000xg 

for 30 minutes at 4°C. The supernatant was decanted carefully and the DNA 

pellet washed with 2ml of room-temperature 70% ethanol followed by 

centrifugation at 15,000xg for 10 minutes. The supernatant was decanted 

carefully without disturbing the pellet, which was air dried for 5–10 minutes and 

the DNA dissolved in 80μl distilled water. 

 

2.4.4 Mini preps 
 

® The Wizard plus SV minipreps DNA purification kit (Promega, Southampton, 

UK) was used according to the manufacturer’s instructions to prepare DNA 

particularly for sequencing. Briefly, cultures were grown overnight in LB broth 

with appropriate selective antibiotics (Table 2.2). The overnight culture (10ml) 

was centrifuged at 15680xg for 10 minutes and the pellet resuspended in 250μl 

cell resuspension solution. To lyse the cells, 250μl cell lysis solution was 

added and the tube inverted 4 times to mix. The mixture was incubated for 5 

minutes at room temperature after adding 10μl of alkaline protease solution. 

Neutralization solution (350μl) was then added and the sample centrifuged at 

15680xg for 10 minutes. The lysate was then transferred to a spin column 

inserted into the collection tube and centrifuged for 1 minute. Washing was 

carried in two steps with 750μl and 250μl of wash solution successively and, in 

each step, addition of wash solution was followed by centrifugation for 2 min at 

room temperature. The spin column was then transferred to a sterile 1.5 ml 
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micro centrifuge tube and centrifuged for 1 minute at 15680xg after addition of 

100μl of nuclease-free water. 

 

2.4.5 Small scale BAC plasmid DNA purification 
 

An aliquot of 1.5 ml overnight culture was transferred to a 2.0ml eppendorf 

tube and centrifuged at 15680xg for 5 minutes at room temperature in a 

microfuge. The pellet was resuspended in 300μl of resuspension buffer (15mM 

Tris-HCl, pH 8.0, 10mM EDTA, 100μg/ml RNase), 300μl of lysis solution [0.2N 

NaOH, 1% (w/v) SDS] added and the tube mixed gently. After 5 minutes 

incubation at room temperature, 300μl of 3M potassium acetate (pH 5.5) was 

added; the sample was mixed gently and incubated on ice for 10 minutes. The 

supernatant was transferred to a fresh tube containing 0.8ml isopropanol and 

mixed by inversion. After incubation at -80°C for 15 min, the sample was 

centrifuged at 15680xg for 15 minutes at room temperature, the supernatant 

removed and the pellet washed with 500μl ethanol followed by centrifugation at 

15680xg for 5 minutes at room temperature. Again the supernatant was 

discarded, the DNA pellet air-dried on the bench for 10-30 minutes.  The DNA 

was resuspended in 50μl distilled water and stored at 4°C. 

 

2.4.6 Large scale BAC plasmid DNA purification 
 

®A NucleoBond  BAC kit (Abgene, Epsom, UK) was used for the isolation of 

low-copy BAC plasmid DNA according to the manufacturer’s instruction. The 

same procedure was carried out as described in section 2.4.2 except that the 
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NucleoBond® ® BAC 100 column was used instead of the NucleoBond AX 500 

column. 

 

2.5 Polymerase Chain Reaction 
 

The polymerase chain reaction (PCR) was performed both for screening and 

cloning purposes using primers and annealing temperatures as indicated in 

Table 2.3. 

 

2.5.1 Amplification of DNA by PCR  
 

For screening purposes, DNA was amplified using 2x ReddyMixTM PCR Master 

Mix (Abgene, Epsom, UK). PCR was performed in 50μl reactions as below: 

 
Component Amount (μl) 

2x ReddyMixTM PCR Master Mix 25 

3 Forward primer(10μM)( Sigma-Genosys) 

3 Reverse primer(10μM)( Sigma-Genosys) 

DNA (300ng) -- 

Distilled Water to 50 
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Each PCR reaction was set up as follows: 

 
 

 oInitial denaturation 94 C 2 minutes 1 cycle 
    

 oDenaturation  94 C 45 seconds 
Annealing Annealing temperature 

(Table 2.3) 
45 seconds 30 cycles 

Extention 72 oC 1 minute/kb of DNA 
    

 oDenaturation 94 C 45 seconds 
Annealing Annealing temperature 

(Table 2.3) 
45 seconds 1 cycle 

Extention 72 oC 7 minutes 
 
 

For cloning purposes, DNA was amplified using Extensor Hi-Fidelity PCR 

Master Mix (ABgene, Epsom, UK). PCR was performed in 25μl reactions as 

below: 

 

Component Amount (μl) 

Extensor Hi-Fidelity PCR Master Mix 12.5 

1.5 Forward primer(10μM)( Sigma-Genosys) 

1.5 Reverse primer(10μM)( Sigma-Genosys) 

DNA (300ng) -- 

Distilled Water to 25μl 
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Each PCR reaction was set up as follows:  

 
 oInitial denaturation 94 C 2 minutes 1 cycle 

    
 oC 45 seconds 10 cycles Denaturation  94

Annealing Annealing temperature 

(Table 2.3) 

30 seconds  

Extention 72 oC 1 minute/kb of DNA 

    
 oC 45 seconds Denaturation 94

20 cycles Annealing Annealing temperature 

(Table 2.3) 

30 seconds 

(+10s/cycle) 

Extention 72 oC 1 minute/kb of DNA 

    
 oDenaturation  94 C 45 seconds 

Annealing Annealing temperature 

(Table 2.3) 

30 seconds 
1 cycle 

 oC 7 minutes Extension 72
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Table 2.3 Primers used in this study 

 

Primer name Forward sequence Tm(o 1C)
35610F GCGGCCACAGGCGGAATCGG 60.0 
36371F CGACGAAGTCATTCATGTCC 60.0 
35938F GGCAAATGGCGAAACCTCCC 60.0 
36790F GCGTGGACGACGGCGCAGG 60.0 
35195 GATCAGATCGCCGTGACTCC 60.0 
g GGATACTCAGCGGCAGTTTGC 58°C 
b GCCCGCCTGATGAATGCTC 58°C 
RPSL FOR GGGTGGAGAGGCTATTCGGC 60.0 
m29F CGCATATGGTCATCTCGGAGGAC 60.0 
RTm29F ATCCGCATACCGACAGCTTCC 64.0 
RTm29.2F AACAGAGGGATGGAAGCGCC 60.0 

2 CATGCCATGGGCATGATCCGCATACCG P29F 56.0 
2 CCGCTCGAGCTAGATGGTGGTGTTTCTCC P29.1F 63.0 

M29.1FOR CTAGATGGTGGTGTTTCTCCTGC 58.0 
M75F TGATCATCAGGTTCCTGTCC   56.0 
M123F CAACATGTCCTCCAGAGTC 53.0 

TMGeneRacer  5` Primer CGACTGGAGCACGAGGACACTGA 68.0 
GSP29.1F ACAGGCGAGTGCGTCGCTATCGT 68.0 
GSP29F GCCGATAGGGACACTCCTCACGAA 68.0 

3 TAGAAACGCCCACTAGTCATACGATCGCACG m29*F 65.0 
3 CGCTAGTATGGAATGCTATCTAGCGTGCACC m29.1*F 65.0 

ETm29F4 55.0 AGGCGACGGAGGTGGGGACGGGCACGGTCGGTTGGAT
AACCATCTCCGAGAAGGCCTGGTGATGATGGCGGGATC 

Reverse sequence   
36304R GCGCCGCTCCGAGCGGAAGG 60.0 
35722R CTGGAAGCTGTCGGTATGCG 60.0 
f GGTTACTGGATGGGTACGAG 58°C 
36744R CGACAGGTATCTTCTCACCG 62.3 
REV-RPSL GCCGAATAGCCTCTCCACCC 60.0 
m29REV GATTAATTAACTGCGGATCTGCG 60.0 
RTm29R GGATGAAAGCGAAAGTGGCGG 64.0 
RTm29.2R GATCGGGACCTGGATCTCTC 60.0 

2 CCGCTCGAGTCCATACTAGCGTCT P29R 56.0 
2 CATGCCATGGGCTCGCGTACGGTTATGG P29.1R 63.0 

M29.1REV GATCTCATGGTCAACTTCGCGG 58.0 
M75R GAT GAG ACG CAT CTT GAT CC   56.0 
M123R GATGAGAACCGTGTCTACC 53.0 

TMGeneRacer  3` Primer GCTGTCAACGATACGCTACGTAACG 68.0 
GSP29.1R GCCTGTCGTGGCTCGGACATGAA 68.0 
GSP29R TCC ACT AAC GCC GCT CCT CTG TTG 68.0 

3 CGTGCGATCGTATGACTAGTGGGCGTTTCTA m29*R 65.0 
3 GGTGCACGCTAGATAGCATTCCATACTAGCG m29.1*R 65.0 

ETm29R4 55.0 TCCTCCACGCTCGCGTATAAAATAGGTCTCTGCGAGAGT
TGCGCTTCAGACTCAGAAGAACTCGTCAAGAAGGCG 

 
1. Annealing temperature of primer 
2. Restriction enzyme recognition site incorporated into primers is shown with bold letters 
3. Point mutation incorporated into primers for inverse PCR is indicated in bold letter 
4. Homology sequence specific to MCMV genome incorporated into primers is shown with 

bold Italic letters 
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2.5.2 Inverse PCR 
 

Inverse PCR was used to introduce point mutations into template DNA. Inverse 

PCR was performed using the QuickChange site-directed mutagenesis kit 

(Stratagene, Cambridge, UK) as below: 

 
Component Amount 
10X Reaction buffer 5.0μl 

dNTP mix 1.0μl 

Forward primer(10μM)( Sigma-Genosys) 1.3μl 

Reverse primer(10μM)( Sigma-Genosys) 1.3μl 

DNA (50ng) --μl 

Distilled Water to 50μl 

 

Then 1μl of PfuTurbo DNA polymerase (2.5U/μl) was added to the reactions. 

Each PCR reaction was set as follows: 1 cycle of 95°C for 2 minutes and 12 

cycles of 95°C for 30 seconds, annealing temperature (Table 2.3) for 1 minute 

and 68°C for 7 minutes. 

 

2.6 Restriction enzyme digestion of DNA 
 

DNA was digested with different restriction enzymes according to the enzyme 

manufacturer’s instructions. Usually digestion was carried out in 20μl of final 

solution with 1-3μg of DNA, 1μl each of enzyme, 2μl of 10X buffer and, where 

appropriate, bovine serum albumin, followed by overnight incubation at 37°C. 

For cloning purposes, digestion was carried out in 50μl of final solution with 3-5 

μg of DNA, 2μl each of enzyme and 5μl of 10X buffer. After digestion, samples 
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were run on an agarose gel (section 2.7) and the samples were stored at 4°C. 

Restriction enzymes EcoRI, DpnI, NcoI and XhoI (NEB, Herts, UK) were used 

in this study. 

 

2.7 Agarose gel electrophoresis 
 

Restriction enzyme digest products (section 2.6) and PCR products (section 

2.5) were visualized under UV light after resolution by gel electrophoresis 

through an agarose gel, comprising of 0.8% to 1.0% w/v agarose. Agarose was 

dissolved in 0.5x TBE buffer (45mM Tris base, 45mM boric acid, 1mM EDTA, 

pH 8.0). The solution was cooled to 60°C and ethidium bromide was added to 

a final concentration of 0.5μg/ml and poured into a gel tray containing a comb 

to produce wells for loading DNA samples. The gel was left to solidify on the 

bench for 20 to 30 minutes. 50μl of the DNA sample was mixed with 10μl of 5x 

loading buffer [0.25% bromphenol blue, 15% ficoll type 400 (Pharmacia) in 

water] before loading into a well of the agarose gel. The gel tank was filled with 

0.5x TBE buffer and the gel was run in 100V for 40 minutes. A 1kb DNA ladder 

(Fermentas, York, UK and NEB, Herts, UK) was used as a marker exhibiting 

bands ranging from 1 to 10 kb. 

 

2.8 Purification of DNA 
 

After PCR or gel electrophoresis, DNA was purified using the GFX™ PCR DNA 

and Gel Band Purification Kit (GE Healthcare, Bucks, UK) according to the 

manufacturer’s instructions. After purification, all DNA was stored at 4°C. 
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To purify DNA from PCR products, a GFX column was placed in a collection 

tube, 500µl of capture buffer was added to the column followed by addition of 

the sample (up to 100µl).  The solution was mixed thoroughly by pipetting up 

and down 4-6 times. The column was then centrifuged for 30 seconds at 

18200xg at room temperature, the flow-through discarded from the collection 

tube, and the GFX column replaced in the collection tube. 500µl of wash buffer 

was added to the column, centrifuged at 18200xg for 1 minute, and the flow-

through again discarded. The GFX column was transferred to a fresh 1.5ml 

microcentrifuge tube and 50µl of double distilled water applied to the top of the 

glass fibre matrix in the column to elute the DNA. After 1 minute incubation at 

room temperature, the column was centrifuged at 18200xg for 1 minute to 

recover the purified DNA. 

 

To purify DNA from gels, the gel was placed onto an ultraviolet illuminator to 

visualise the DNA band of interest. A clean scalpel blade was used to remove 

the band of interest and the gel slice was transferred to a 1.5ml eppendorf 

tube. 500µl of capture buffer was added to the eppendorf tube and incubated 

at room temperature until the agarose was completely dissolved. The sample 

was then transferred to the GFX column and the remainder of the procedure 

was as described above. 

 

2.9 Site-directed mutagenesis 
 

The QuickChange site-directed mutagenesis kit (Stratagene, Cambridge, UK) 

was used to generate a point mutation in the genes of interest using plasmid 
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pCR4B-29 (section 2.3). The strategy used for site-directed mutagenesis is 

shown in Figure 2.3. Two synthetic oligonucleotide primers containing a point 

mutation (Table 2.3) were made according to the manufacturer’s instructions. 

The Wizard®Plus purified DNA from plasmid pCR4B-29 (section 2.4.4) was 

used as template DNA. The oligonucleotide primers, each complementary to 

opposite strands of the vector, were extended by inverse PCR (section 2.5.2). 

A mutated plasmid containing a staggered nick was generated by incorporation 

of oligonucleotide primers. After temperature cycling, 1μl of DpnI was added to 

the amplification reaction and centrifuged for 1 minute followed by incubation at 

37ºC for 1 hour to digest the parental DNA. The XL1-Blue supercompetent 

cells (Stratagene, Cambridge, UK) were thawed on ice and 50μl was aliquoted 

to a prechilled Falcon2059 polypropylene tube. 1μl of the DpnI-treated DNA 

was then transformed into the supercompetent cells as described in section 

2.3.4. After incubation, 250μl of cells were transferred to an LB agar plate 

(section 2.3.1) supplemented with appropriate antibiotics (Table2.2). After 

overnight culture at 37°C, separate bacterial cultures (section 2.3.2) were 

prepared from 6 single colonies for the isolation of DNA using Wizard®Plus 

DNA miniprep purification kit (section 2.4.4). DNA from each colony was 

sequenced (section 2.10) to verify that selected clones contained the desired 

mutation. 
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Figure 2.3 Strategy used for site-directed mutagenesis 
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Figure 2.3 Strategy used for site-directed mutagenesis. Two oligonucleotide 
primers, complementary to each other, containing a point mutation were used to 
generate the mutated plasmid containing a staggered nick. The parental plasmid 
DNA was digested by DpnI and the mutated plasmid DNA was transformed into E. 
coli strain XL1-Blue. 
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2.10 Sequencing 
 

DNA was sequenced using the ‘ABI PRISM™ BigDye™ Terminator Cycle Ready 

Reaction Kit’ (Perkin Elmer Applied Biosystems Division, Foster City, CA) on 

an automated ABI 377 sequencer. The concentration of template DNA used in 

sequencing reactions is shown below:  

 
Template Size (bp) Quantity (ng) 
PCR product 100-200 1-3 

200-500 3-10 

500-1000 5-20 

1000-2000 10-40 

>2000 40-100 

Plasmid DNA - 300 

 

The sequencing was carried out in a 10μl reaction volume comprising of 

3.2pmol primer, template DNA and sterile water using the University of 

Birmingham Functional Genomics Laboratory, Plasmid to Profile sequencing 

reaction (Birmingham, UK). Several primers were used for each gene to be 

sequenced in order to obtain overlapping sequences in both 5’ to 3’ and 3’ to 5’ 

directions (Table 2.3). The sequences obtained from the ABI 3700 DNA 

analyser were analysed with Chromas software (version 1.45, Griffith 

University, Queensland, Australia).  The BLAST programme (6) was used to 

compare obtained sequences with that of the published MCMV Smith strain 

sequence (accession number U68299) (128). 
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2.11 ET homologous recombination 
 

A two-step ET homologous recombination was preformed as described 

previously (110, 187, 188). The strategy used for ET homologous 

recombination is shown in Figure 2.4. 

 

2.11.1 Inserting the rpsl-neo cassette into MCMV BAC 

 
A linear rpsl-neo PCR product flanked by MCMV homology arms was used in 

the first step. The rpsl-neo cassette was amplified by PCR (section 2.5) from 

pRpsl-neo plasmid DNA (section 2.4.2) using primers ETm29F and ETm29R 

(Table 2.3). After amplification, the PCR products were run on an aragose gel 

(section 2.7) to confirm that an amplicon of the correct size had been 

generated. PCR samples were then purified (section 2.8), digested overnight to 

remove residual template DNA with DpnI (section 2.6) and then purified once 

again (section 2.8) and used to electroporate (section 2.3.6) cells (section 

2.3.5) containing the MCMV BAC (Wagner et al., 1999). 100μl of the resultant 

culture were spread on an LB agar plate containing kanamycin (20μg/ml) plus 

chloramphenicol (12μg/ml) and an LB agar plate containing chloramphenicol 

(12μg/ml) only for the control. The plates were then incubated overnight at 

37°C. To identify true recombinants, the resulting primary colonies were 

restreaked in parallel on plates containing 12µg/ml chloramphenicol plus 

20µg/ml kanamycin and on plates containing 12µg/ml chloramphenicol plus 

80µg/ml streptomycin. The plates were incubated at 37°C overnight to test the 

function of rpsl-neo cassette. Due to insertion of rpsl-neo cassette, true clones 
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should not grow on the streptomycin plate, but should grow on the kanamycin 

plate as the rpsl gene confers streptomycin sensitivity and neo gene confers 

kanamycin resistance. The streptomycin plate was checked and the clones 

which didn’t grow on this plate were identified. Recombinant BAC plasmid DNA 

was isolated (section 2.4.5) and used for PCR screening (section 2.5) to 

confirm the MCMV BAC-rpsl-neo clones. 

 

2.11.2 Replacing the rpsl-neo cassette with an oligo carrying the 
desired point mutation 
 

A restriction enzyme digested linear DNA fragment containing a point mutation 

was used to replace the rpsl-neo cassette in the MCMV BAC. The ET 

expression plasmid DNA, pKD46 (1 to 5ng), was transformed (section 2.3.4) 

into competent cells (section 2.3.3) of the E. coli strain DH10B containing the 

MCMV BAC-rpsl-neo clones (section 2.11.1) and electrocompetent cells were 

prepared as described in section 2.3.5. Plasmid pCR4B-29 with an insert 

containing both of overlapping m29 and m29.1 ORFs (1945 bp) (nt 35241 to 

37244) (128) was mutated twice separately using QuickChange site-directed 

mutagenesis kit (section 2.9) to introduce a point mutation at nt position 35,896 

in the m29 ORF and at nt position 36,484 in the m29.1 ORF to introduce stop 

codon mutations at the 5’ end of each ORF. These mutated plasmids were 

digested overnight at 37°C with EcoRI (section 2.6) to release a 1945 bp linear 

DNA fragment. The fragments were separated on an agarose gel (section 2.7), 

purifed (section 2.8) and used to electroporate (section 2.3.6) bacterial cells 

containing the MCMV BAC-rpsl-neo clones. 100μl of the resultant culture were 

spread on an LB agar plate containing streptomycin (80μg/ml) plus 
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chloramphenicol (12μg/ml) and on an LB agar plate containing 

chloramphenicol (12 μg/ml) only for the control. The plates were then 

incubated overnight at 37°C. To identify true recombinants, the resulting 

primary colonies were restreaked in parallel on plates containing 12µg/ml 

chloramphenicol plus 80µg/ml streptomycin and on plates containing 12µg/ml 

chloramphenicol plus 20µg/ml. kanamycin. Due to replacement of the rpsl-neo 

cassette with mutated DNA, true clones should not grow on the kanamycin 

plate, but should grow on the streptomycin plate as loss of the rpsl gene 

confers streptomycin resistance whereas loss of the neo gene confers 

kanamycin sensitivity. The plates were incubated at 37°C overnight. The 

kanamycin plate was checked and the clones which didn’t grow on this plate 

were identified. The recombinant BAC plasmid DNA was isolated (section 

2.4.5) and used for PCR screening (section 2.5) and sequencing (section 2.10) 

to confirm the mutated MCMV BAC (Rc29MCMV BAC and Rc29.1MCMV 

BAC). After confirmation, the recombinant BAC plasmid DNA was isolated 

again (section 2.4.6) and transfected (section 2.2.1) into NIH 3T3 cells to 

generate mutant viruses. 
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Figure 2.4 Counterselection strategy 

 

  

 

 

 

Figure 2.4 Counterselection strategy. The illustration at the top shows E. Coli 
DH10B harbouring the low copy, temperature sensisitve, RecE/RecT expression 
plasmid, pKD46 and wt MCMV BAC. In the first step, a PCR product of the neo and 
rpsl genes flanked by two homology arms (hm) was introduced by selection for 
kanamycin resistance. In the second step, a restriction enzyme digested linear DNA 
carrying the desired mutation was used with selection for the loss of rpsl and 
restoration of streptomycin resistance. 
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2.12 Cloning 

 

The aim of this section was to clone the m29 and m29.1 genes into the protein 

expression vector pET28a (Figure 2.2). 

 

2.12.1 Preparation of insert and vector 
 

The DNA fragments (m29 and m29.1 gene) to be ligated were generated from 

MCMV genomic DNA by PCR. The primers used in the PCR contained 

restriction enzyme site NcoI or XhoI at 5’ end (Table 2.3). The PCR products 

and plasmid pET28a were digested with NcoI and XhoI enzymes (section 2.6), 

separated on an agarose gel (section 2.7), purified (section 2.8.2) and 

quantified using Hyper ladder-I (Bioline, London, UK). 

 

2.12.2 Ligation 
 

The m29 and m29.1 inserts were ligated into the pET28a backbone at the 

common restriction sites (NcoI and XhoI) using T4 DNA ligase (New England 

Biolabs). The ligation reactions were performed in 20μl volume as follows: 

 

Component Amount 
pET28a vector (100ng) --μl 

m29 or m29.1 gene insert (120 ng) --μl 

T4 DNA ligase 1.0μl 

10X Ligase buffer 2.0μl 

Distilled water to 20μl 
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The ligation was carried out overnight at room temperature. 2μl of ligation 

reaction was transformed into 200μl of competent E. coli TOP10 cells (section 

2.3.3). 50μl of such cells were plated onto LB agar (section 2.3.1) 

supplemented with appropriate antibiotics (Table 2.2) and grown overnight at 

37°C. Bacterial colonies grown on these agar plates were screened for the 

presence or absence of the inserted gene by both restriction enzyme digestion 

(section 2.6) and PCR (section 2.5). 

 

2.13 RNA work 
 

2.13.1 Isolation of total RNA 
 

Total RNA was isolated from MCMV infected NIH 3T3 cells at different time-

points using the RNeasy® Mini Kit (Qiagen, West Sussex, UK). NIH 3T3 cells 

were seeded at 5x105 cells in 3ml GM in each well of a 6 well flat bottomed 

tissue culture plate. After 12 to 16 hours incubation at 37oC, GM was discarded 

and the cells were infected with wt or mutant viruses at an MOI of 1. After 1 

hour adsorption at 37oC, the inoculum was replaced with 2ml of maintenance 

medium and the plate incubated at 37oC. At different time-points, the medium 

was discarded and the cells washed with PBSA. 350µl of buffer RLT with β-

mercaptoethanol (10µl mercaptoethanol per 1ml buffer RLT) was added to 

each well. Lysed cells were homogenised by vigorous pippetting, transferred to 

a 1.5ml eppendorf tube, drop frozen in liquid nitrogen and stored at -80oC. 

Frozen samples were thawed at room temperature and incubated at 37oC for 

10 minutes. Cell lysate (350µl) was transferred onto a QIAshredder column 
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(Qiagen, West Sussex, UK) and centrifuged for 2 minutes at 16,170xg at room 

temperature. 350µl of 70% ethanol were added to the lysate, mixed well by 

pipetting, and up to 700µl of lysate was applied to an RNeasy mini column and 

centrifuged for 15 seconds at 9,280xg at room temperature. The flow-through 

was discarded. 700µl buffer RW1 was added to the RNeasy column, which 

was centrifuged at 9,280xg for 15 seconds. The RNeasy column was 

transferred to new 2ml collection tube, 500µl of buffer RPE (ethanol added) 

added and centrifuged for 2 minutes at 15,680xg at room temperature. The 

RNeasy column was placed into a new collection tube and centrifuged for 1 

minute at 15,680xg at room temperature. The RNeasy column was then placed 

into an RNase free eppendorf, 50µl RNase free water added and the column 

centrifuged for 1 minute at 9,280xg at room temperature to elute the RNA. The 

elution step was repeated using the first elutant. 

 

2.13.2 DNA removal from RNA samples 
 

The TURBO DNA-free™ Kit (Ambion, Warrington, UK) was used to remove 

DNA from RNA samples (Section 2.13.1) according to the manufacturer’s 

instructions. 5µl (0.1 vol) of 10X TURBO DNase buffer and 1µl of TURBO 

DNase (2U/µl) were added to 50µl of RNA sample. The mixture was then 

incubated for 30 minutes at 37°C, 5µl of DNase inactivation reagent (0.1vol) 

added and incubated for a further 2 minutes at room temperature with 

occasional mixing followed by centrifugation for 1.5 minutes at 10,000xg at 

room temperature. The supernatant was transferred to a new tube and stored 

at -80oC. 
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2.13.3 Protein and DNA synthesis inhibition 
 

Inhibition of protein and DNA synthesis was achieved using cycloheximide and 

phosphonoacetic acid (Sigma, Dorset, UK) respectively. NIH 3T3 cells were 

seeded at 5x105 cells in 3ml GM in each well of a 6 well flat bottomed tissue 

culture plate. After 12 to 16 hours incubation at 37oC, GM was discarded and 

the cells were infected with wt virus at an MOI 1. After 1 hour adsorption at 

37oC, the inoculum was replaced with 2ml of MM supplemented with 200μg/ml 

cycloheximide or 300μg/ml phosphonoacetic acid and incubated for 4 hours or 

24 hours at 37oC. RNA was then isolated as described in section 2.13.1. 

 

2.13.4 Reverse transcriptase polymerase chain reaction (RT-PCR) 

 
The reverse transcription reaction was setup as follows: 

 

Component Amount (μl) 

Total RNA (1-5 µg) -- 

2.0 Gene specific primer (GSP) (1μM) )( Sigma-Genosys) 

dNTP mix (5mM each)(Abgene) 1.0 

RNase free water to 12 

 

oThis mixture was heated to 65 C for 5 minutes and then chilled on ice. After a 

brief centrifugation, 4μl of 10x first-strand buffer (Invitrogen, Paisley, UK), 2μl 

of 0.1M DTT (dithiothreitol) (Invitrogen, Paisley, UK) and 1μl of RNasin® 

RNase inhibitor (Promega, Southampton, UK) was added to the mixture. The 

contents of this tube were incubated for 2 minutes at 42oC and then 1μl of 

SuperscriptTM II Reverse Transcriptase (200 units) (Invitrogen, Paisley, UK) 
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owas added. The transcription of RNA to cDNA was performed at 42 C for 50 

minutes. Finally, the reaction was stopped by heating at 70oC for 15 minutes. 

The generated first-strand cDNA was used as template for PCR (Section 

2.5.1). 

 

2.13.5 RACE 
 

Rapid amplification of cDNA ends (RACE) was carried out using the 

GeneRacerTM kit (Invitrogen, Paisley, UK) as recommended by the 

manufacturer.  The protocol used for RACE is shown in Figure 2.5. 

 

2.13.5.1 Dephosphorylating RNA 
 

Total RNA was isolated from wt MCMV infected NIH 3T3 cells (section 2.13.1). 

To dephosphorylate mRNA, 10μl reactions were prepared as below: 

 
-- RNA (1 to 5μg ) 

10x CIP buffer 1μl 
TM (40U/μl) 1μl RNAaseOut

CIP (10U/μl) 1μl 

DEPC water to 10μl 

 

The samples were mixed gently by pipetting, vortexed briefly and centrifuged 

to collect the fluid. After incubation at 50oC for 1 hour, the samples were 

centrifuged briefly and placed on ice. The RNA was then precipitated as 

described in section 2.13.5.2. 
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Figure 2.5 Strategy used in RACE 
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Figure 2.5 Strategy used in RACE. 1. Total RNA is treated with calf intestinal 
phosphatase (CIP) to remove 5´ phosphate from partial transcripts. 2. RNA is treated 
with tobacco acid pyrophosphatase (TAP) to remove the cap from capped mRNA and 
expose the 5´ phosphate. 3. The GeneRacer™ RNA Oligo is ligated to the TAP 
treated mRNA with T4 RNA ligase. 4. A cDNA template is generated by reverse 
transcription using SuperScript™ III RT and the GeneRacer™ Oligo dT Primer. 5. 5´ 
ends are PCR amplified from these cDNA templates with a primer for the 
GeneRacer™ RNA Oligo  (GeneRacer™ 5´ Primer) and gene-specific primer (GSP). 
6. 3´ ends are PCR amplified from these cDNA templates with a primer for the 
GeneRacer™ Oligo dT (GeneRacer™ 3´ Primer) and GSP. 

85 



Materials and methods 

2.13.5.2 Precipitating RNA 
 

To precipitate RNA, 90μl DEPC water and 100μl phenol:chloroform were 

added. The samples were vortexed for 30 seconds, centrifuged at 20,880xg for 

5 minutes at room temperature and the aqueous (top) phase transferred to a 

fresh tube. 2μl mussel glycogen (10mg/ml), 10μl 3M sodium acetate and 220μl 

95% ethanol were added, the samples vortexed briefly and then frozen in dry 

ice for 10 minutes. The RNA was pelleted by centrifugation at 20,880xg for 20 

minutes at +4 oC, the supernatant carefully removed, 500μl of 70% ethanol 

added, mixed by inversion several times, vortexed briefly and then the contents 

centrifuged at 20,880xg for 2 minutes. The supernatant was removed carefully, 

the pellet allowed to air-dry for not more than 1-2 minutes at room temperature 

and then resuspended in 7μl DEPC water. 

 

2.13.5.3 Removing the mRNA cap structure 
 

To remove the cap structure, the following 10μl reaction was set up: 

 
Dephosphorylated RNA 7μl 

10x TAP buffer 1μl 
TMRNAaseOut  (40U/μl) 1μl 

TAP(0.5U/μl) 1μl 

DEPC water to 10μl 

 

The samples were mixed gently by pipetting, vortexed briefly and centrifuged 

to collect the fluid. After incubation at 37oC for 1 hour, the samples were 
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centrifuged briefly and placed on ice. The RNA was then precipitated as 

described previously (section 2.13.5.2). 

 

2.13.5.4 Ligating the RNA oligo to decapped mRNA 
 

The 7μl of dephosphorylated, decapped RNA was added to a tube containing 

the pre-aliquoted, lyophilized GeneRacerTM RNA Oligo (0.25μg), mixed and 

centrifuged briefly to collect the fluid in the bottom of the tube. The mixture was 

incubated at 65oC for 5 minutes to relax the RNA secondary structure and then 

placed on ice for 2 minutes. 1μl of 10x ligase buffers, 10mM ATP, 

RNAaseOutTM (40U/μl) and T4 RNA ligase (5U/μl) were added to the tube. The 

samples were mixed gently by pipetting and centrifuged briefly. After 

incubation at 37oC for 1 hour, the samples were centrifuged briefly and placed 

on ice. The RNA was then precipitated as described previously (section 

2.13.5.2). The final resuspension in this step, however, was in 10μl DEPC 

water. 

 

2.13.5.5 Reverse transcribing mRNA 
 

TMTo reverse transcribe the mRNA, GeneRacer  oligo dT primer (1μl), dNTP 

mix (1μl) and DEPC water (1μl), were added to the 10μl of ligated RNA, 

incubated at  65oC for 5 minutes to remove any RNA secondary structure, 

chilled on ice for 1 minute and centrifuged briefly. 4μl first strand buffer (5x), 

1μl DTT (0.1M), 1μl RNAaseOutTM (40U/μl) and 1μl SuperscriptTM III (200U/μl) 

were added to the 13μl ligated RNA and primer mixture. The samples were 
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mixed gently by pipetting and centrifuged briefly. The sample was incubated at 

50oC for 1 hour and then at 70oC for 15 minutes to inactivate the reverse 

transcriptase. This was then chilled on ice for 2 minutes and centrifuged briefly. 

1μl RNase H (2U) was added and the reaction mix incubated at 37oC for 20 

minutes. Again the samples were centrifuged briefly, diluted in distilled water at 

1:20 ratio and used immediately for amplification or stored at -20oC. The 

control template supplied in this kit was Hela cell total RNA. 

 

2.13.5.6 Amplifying cDNA ends, cloning and sequencing 
 

The 5’ ends were amplified by standard PCR (section 2.5.1) using 2μl diluted 

cDNA from the above step with RNA oligo specific GeneRacerTM 5’ primer and 

reverse GSP and 3’ ends were amplified with oligo dT specific GeneRacerTM 3’ 

primer and forward GSP. The PCR products were analysed by agarose gel 

electrophoresis (section 2.7) and the appropriate sized PCR products were 

cloned in pGEM®-T Easy vector (Promega, Southampton, UK) and later 

sequenced (section 2.10) with a vector and GSP. 

 

2.13.6 Northern blot 
 

Northern blotting was carried out using Northern Max® kit (Ambion, 

Warrington, UK). 20µg total RNA (Section 2.13.1) was precipitated as 

described as Section 2.13.5.2 and dissolved directly in 20µl formaldehyde load 

dye. The RNA samples and 5µl of RNA Millennium Markers™ (Ambion, 

Warrington, UK) were incubated for 15 minutes at 65°C to denature RNA 

88 



Materials and methods 

secondary structure. Samples were then loaded onto a 1% formaldehyde-

agarose gel prepared using RNase-free water and denaturing gel buffer 

(contains formaldehyde). The gel was run at 5V/cm for 3 hours using MOPS 

gel running buffer (Ambion, Warrington, UK). 

 

RNA was transferred from the gel to a BrightStar-Plus membrane (Ambion, 

Warrington, UK) by a downward transfer assembly as described in the kit. This 

is a modified method from Chomczynski (31). Transfer buffer (0.5ml/cm2 of gel 

surface) was added to a plastic flat bottomed dish larger than the dimension of 

the agarose gel to accommodate the transfer buffer and to wet the blotting 

paper, membrane, and bridge. The membrane and 3MM Whatman filter paper 

were cut slightly larger than the gel. Three filter paper bridges were cut large 

enough to cover the area of the gel and to reach across into the transfer buffer 

reservoir. The blot was set up on a stack of paper towels (~3 cm high), overlaid 

with 3 pieces of filter paper, 2 pieces of wet filter paper, a wet membrane, the 

gel, 2 pieces of wet filter paper and 3 filter bridges with one end in the transfer 

buffer reservoir. The stack was covered with the casting tray to prevent 

evaporation and a small weight (150–200 g) placed on top of the stack to 

ensure even contact of all the stack components. After 1.5 to 2 hours transfer, 

the membrane was rinsed briefly in 1x gel running buffer and crosslinked using 

a UV crosslinker (UVI Tec, Cambridge, England). The membrane was stained 

with 0.04% (w/v) methylene blue (Sigma, Dorset, UK) in 0.5M sodium acetate 

pH 5.2 for 5 minutes and then destained in RNase-free water to check that the 

RNA had transferred successfully. 
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2Membranes containing RNA were prehybridised in ULTRAhyb (10ml/100cm  

membrane) at 42°C in a Hybaid minioven. After 30 minutes, the radioactive 

probe (see Sections 2.13.5.1 and 2.13.5.2 below) was added and the 

hybridisation continued overnight. The hybridised membrane was washed 

twice at room temperature with low stringency solution # 1 (Ambion, 

Warrington, UK) for 5 minutes and also washed twice with high stringency 

solution # 2 for 5 minutes with agitation. The blot was then exposed to X-ray 

film for autoradiography. 

 

2.13.6.1 Production of random primed DNA probe 
 

Random primed DNA probes were generated using the DECAprime™ II 

random primed DNA labeling Kit (Ambion, Warrington, UK) according to the 

manufacturer’s instructions. Briefly, PCR template DNAs containing part of the 

m29 or m29.1 ORF were used in the probe synthesis reaction. Linear template 

double stranded DNA was diluted in water to a concentration of 1-2.5 ng/μl in a 

volume of up to 11.5μl. 2.5 μl of 10x Decamer solution was added and 

incubated at 95-100ºC for 3–5 minutes to denature the DNA. The denatured 

DNA/decamer mix was then added to the reaction tube in the following 

amounts: 

 
5X Reaction buffer (–dCTP) :5μl  

[α-32P]dCTP (GE Healthacare) :5μl 

Water :to 24μl 

Exo-klenow :1μl 
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The contents of tube were mixed by gentle flicking or pipetting and then 

incubated for 10 minutes at 37°C. The reaction was stopped by adding 1μl of 

0.5 M EDTA. The resultant DNA probe was diluted (~10 fold) with 10mM 

EDTA, incubated for 10 minutes at 90°C and centrifuged briefly to collect the 

solution at the bottom of the tube. Approximately 500μl ULTRAhyb was added 

to the denatured probe and then transferred to the prehybridised blot. 

 

2.13.6.2 Production of single stranded PCR probe 
 

The single stranded PCR probe was generated using the Strip-EZ® PCR kit 

(Ambion, Warrington, UK) according to the manufacturer’s instructions. The 

reaction was assembled on ice as below: 

 
Components Amount 
10X PCR buffer 2μl 

10X dNTP solution 2μl 

[α-32P] dATP (3000 Ci/mmol, 10 mCi/ml) (GE Healthacare) 2μl 

Antisense strand primer (10μM) 2μl 

PCR DNA template 2-10ng 

BIOTAQ DNA polymerase (5 U/μl) (Bioline, London, UK) 0.3μl 

Distilled water to 20μl 

 

The PCR reaction was set as follows: 1 cycle of 95°C for 30 seconds and 35 

cycles of 95°C for 30 seconds, 55°C for 20 seconds and 72°C for 1 minute. 

2.2μl of 5M NH4OAc and 45μl of 100% ethanol were added to the 20μl 

labelling reaction, incubated at –20°C for 15 minutes and microfuged for 15 

minutes at top speed at 4°C. The supernatants were removed carefully, 

dissolved the pellet dissolved in 50μl of water and stored at –20°C until use. 
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2.14 Protein work 

 

2.14.1 Preparation of protein samples from bacterial cells 
 

The expression vector, pET28a-m29 and pET28a-m29.1, was used to 

transform Escherichia coli C41 (DE3) cells (Imaxio, France). A single 

transformant colony was used to inoculate 3ml LB broth containing 25μg/ml 

Kanamycin and grown overnight at 37°C. Expression cultures were inoculated 

using 5ml of the starter culture per litre of LB broth at 37°C.  Once the cells had 

grown to A600=0.5-0.7, the m29 and m29.1 protein expression was induced 

with 1mM isopropyl-1-thio-β-D-galactopyranoside. Growth was continued for a 

further 4 hours at 37°C when cells were harvested by centrifugation at 4,000xg 

for 30 minutes at 4°C and stored frozen at -20°C. The thawed cells were 

resuspended in 50 mM Tris/HCI, 500 mM NaCl pH 7.9 and then lysed using a 

French Pressure cell at 3000 psi. The resuspension was monitored by SDS-

PAGE (section 2.14.3) to check the expression of recombinant protein. The 

lysate was clarified by centrifugation at 20,000xg at 4°C for 15 minutes and the 

supernatant was monitored by SDS-PAGE (section 2.14.3) to check the 

solubility of the recombinant protein. 

 

2.14.2 Preparation of protein samples from infected NIH 3T3 cells 
 

Protein samples were generated from wt, mutant virus and mock infected NIH 

3T3 cells. Virus or mock infected cells from 75cm2 tissue culture flasks were 

detached using a cell scraper and transferred back to the centrifuge tube. This 

was then centrifuged at 6,000xg for 10 minutes at room temperature, the cell 
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pellets lysed in 500μl ice-cold lysis buffer (1% Triton-X-100, 50mM Tris HCL 

pH 7.5, 150mM NaCl, 1mM EDTA, 10% glycerol, 1mM PMSF and 1μg/ml each 

of chymostatin, aprotinin, leupeptin and pepstatin) for 15 minutes and the 

lysates were clarified by centrifugation at 15,000xg for 10 minutes at 4°C; the 

supernatants were stored at -80°C. 

 

2.14.3 SDS-PAGE 
 

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) was 

used to separate the proteins using a Mini-Protean 3 gel system (Bio-Rad, 

Herts, UK) according to the manufacturer’s instructions. The following reagents 

were used for SDS-PAGE: 

 
Resolving gel (15%) 
 

Distilled water 1.1ml 

30% acrylamide mix 2.5ml 

1.5M TRIS (pH 8.8)                            1.3ml 

10% SDS                                            0.05ml 

10% ammonium persulfate                 0.05ml 

TEMED 0.002ml 

 

Stacking gel (4%) 
 

Distilled water 3.025ml 

30% acrylamide mix 0.67ml 

0.5M TRIS (pH 8.8)                            1.25ml 

10% SDS                                            0.05ml 

10% ammonium persulfate                 0.025ml 

TEMED 0.005ml 
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10x SDS-PAGE running buffer 
 

TRIS 30.3 g 

Glycine 144 g 

SDS 10 g 

Distilled water to 1 litre 

 

Coomassie stain 
 

Coomassie blue 83 0.1% (w/v) 

Methanol 45% (v/v) 

Glacial acetic acid 10% (v/v) 

 

Gel de-stain solution 
 

Acetic Acid 70ml 

Methanol 250ml 

Distilled water to 1 litre 

 

Proteins were run with 1x SDS PAGE running buffer at 200V until the marker 

dye reached the end of the gel. The gel with unstained marker (Fermentas) 

was stained overnight with coomassie blue and destained again in destaining 

solution and the gel with stained marker (NEB, Herts, UK) was used for 

western blot analysis (section 2.14.5). 

 

2.14.4 Purification of His-m29.1 protein 
 

  The expression vector, pET28a-m29.1, was used to transform Escherichia coli 

C41 (DE3) cells (Imaxio, France). A single transformant colony was used to 

inoculate 50ml LB broth containing 25µg/ml Kanamycin, which was grown to 
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mid-exponential phase for several hours at 37°C. Expression cultures were 

inoculated using 5ml of the starter culture per litre of LB broth at 37°C.  Once 

the cells had grow to A600=0.7-0.9, m29.1 protein expression was induced with 

1mM isopropyl-1-thio-β-D-galactopyranoside. Growth was continued for a 

further 4 hours when cells were harvested by centrifugation at 4,000xg for 30 

minutes at 4°C and stored frozen at -20°C. 

 

The cells were resuspended in 50 mM Tris/HCI, 500 mM NaCl pH 7.9, lysed 

using a French Pressure cell at 3000 psi. The lysate was clarified by 

centrifugation at 27,000xg for 30 minutes at 4°C and the supernatant was 

loaded directly onto a Ni2+  -loaded His-Trap affinity column (GE Healthcare, 

Bucks, UK) pre-equilibrated with the lysis buffer.  After loading, the column was 

washed with 10 column volumes of 50mM Tris/HCl pH7.9 containing 500mM 

NaCl, and the protein was eluted with a gradient of increasing imidazole 

concentration in the same buffer. Elution was monitored by SDS-PAGE. 

Fractions containing pure protein were pooled and stored at -20°C. 

 

2.14.5 Western blot 
 

Western blots were performed to monitor the presence of m29 and m29.1 

protein in virus infected cells. The proteins (section 2.14.2) separated by 

electrophoresis in a polyacrylamide gel were transferred to a PVDF membrane 

(Bio-Rad, Herts, UK) by transverse electrophoresis in western blot buffer 

(Glycine 14.4g, Tris 3g, Methanol 400ml and distilled water up to 1 litre) at 

100V for 1 hour and 20 minutes. After blocking in 5% non-fat dried milk in TBS 
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buffer (Tris 3.03g, NaCl 8g, Tween 20 500μl pH 8 and distilled water up to 1 

litre) for 1 hour, blots were washed three times (each time for 15 minutes) in 

TBS buffer. Membranes were incubated with primary antibody (section 2.14.6) 

in 5% non-fat dried milk in TBS buffer (dilution of 1:300) for 1-2 hours. 

Membranes were washed three times in TBS buffer and incubated overnight 

with peroxidase conjugated anti-rabbit IgG (Sigma, Dorset, England) in 5% 

non-fat dried milk in TBS buffer (dilution of 1:1000). Membrane was washed 

three times and immersed in developer solution [16ml PBS, 4ml 4-chloro-1-

naphthol (4mg/ml) (Sigma, Dorset, England) and 30µl H O2 2] until the colour 

developed and was then finally washed in cold water to stop the reaction. 

 

2.14.6 Generation of antibodies to m29 and m29.1 proteins 
 

A synthetic peptide (CDRDTPHEQRSGVSG) from m29 was synthesised 

(Biogenes, Berlin, Germany). Two rabbits were immunised with the synthetic 

peptide to raise polyclonal antibodies. The immunisation of each animal was 

carried out according to the following protocol (Biogenes, Berlin, Germany): 

 

Day works Serum (ml) 
0 pre-serum/ immunisation 1.5 

7 boost -- 

14 boost -- 

28 boost -- 

35 bleeding 20 

49 boost -- 

63 bleeding 20 

77 boost -- 

91 final bleeding 75 
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The m29.1 protein (Section 2.14.4) was supplied to Biogenes (Berlin, 

Germany) to raise polyclonal antibodies by immunising two rabbits. The 

immunisation protocol was undisclosed. 

 

2.15 Viral growth studies in animals 
 

BALB/c (4 weeks old) and CB17 SCID (6 weeks old) mice were obtained from 

the Biomedical Services Unit at the University of Birmingham and housed 4 

animals/cage in a positive pressurized flexible film isolator one week before the 

experiment. The food and water were available ad libitum. The experiment was 

carried out in accordance with home office project licence PPL 40/2422 and 

personal licence PIL 40/8120. One hundred and twenty eight BALB/c mice 

were arranged into 4 groups of 32 animals and each group was inoculated 

intraperitoneally with 50µl of MM containing 104 PFU of wt, Rc29, Rc29.1 and 

Rv29.1 viruses. Sixty four CB17 SCID mice were arranged into 2 groups of 32 

animals and each group was inoculated intraperitoneally with 50µl of MM 

containing 104 PFU of wt or Rc29.1 viruses. At 3, 7, 10, 14, 21, 28, 35 and 42 

days post-infection, 4 animals were sacrificed and dissected aseptically to 

remove salivary glands, liver, kidneys, heart, spleen and lungs which were 

frozen at -80°C. Once thawed, tissues were homogenised in 1ml (spleen) or 

2ml (all other tissues) of GM using a homogeniser (Pro 200, Monroe, USA). 

Homogenised tissues were centrifuged at 720xg for 10 minutes at 4°C and the 

supernatants stored at -80°C. The frozen samples were thawed at room 

temperature and titres were determined by plaque assay (section 2.2.6). 
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3. RESULTS 
 

To characterize the role of the m29 and m29.1 ORFs in MCMV replication, the 

genes were mutated to introduce a point mutation to produce a stop codon and 

mutant viruses were analyzed for their growth properties both in vitro and in 

vivo. 

 

3.1 Newly identified ORFs 
 

The wild type virus reconstructed from MCMV Smith BAC (176) was previously 

sequenced over the m29 and m29.1 ORFs region by Dr Melissa Kirby in our 

laboratory. She identified a sequence discrepancy to the published MCMV 

genome (128) in our Smith strain MCMV BAC. An extra nucleotide, a guanine 

residue, at nucleotide (nt) position 36,198 (Figure 3.1) changed the predicted 

ORFs for m29 and m29.1. To confirm this, the MCMV Smith strain 

(Birmingham), the K181 strain (Birmingham) (136) and natural wild type 

isolates (N1, K17A and G4) (89) were sequenced (Figures 3.1, 3.2 & 3.3). The 

predicted protein of the newly identified ORF for m29 is 242 amino acids, 85 

amino acids shorter than that published (128) (Figure 3.4) whereas the m29.1 

protein is 210 amino acids, 27 amino acids longer than the published sequence 

(Figure 3.5). A single base change (G to C) was also found at nt position 

35,944 (128) in MCMV Smith (Birmingham), K181, K17A, G4 and N1 (89) 

(Figure 3.2). A further cytosine insertion at nt position 37263, as identified by 
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Dr Melissa Kirby, in our Smith strain MCMV BAC which also alters the 

predicted ORF for m30. To confirm this, the MCMV Smith Strain (Birmingham) 

and natural wild type isolates (N1, K17A and G4) were sequenced (Figure 3.6), 

although it was not an objective of this study. This insertion alters the ORF 

such that the stop codon in m30 no longer exists and the predicted protein 

continues into the published M31 ORF. All sequences were deposited in the 

EMBL database under the following accession numbers: 

 

Strain Gene name Accession numbers 

K181 Birmingham m29 AM491340 

K17A Birmingham m29 AM491341 

Smith Birmingham m29 AM491342 

Smith BAC Germany m29 AM491343 

N1 Birmingham m29 AM491344 

G4 Birmingham m29 AM491345 

K181 Birmingham m29.1 AM491346 

Smith Birmingham m29.1 AM491347 

Smith BAC Germany m29.1 AM491348 

K17A Birmingham m29.1 AM491349 

N1 Birmingham m29.1 AM491350 

G4 Birmingham m29.1 AM491351 

K17A Birmingham m30 AM600907 

G4 Birmingham m30 AM600906 

N1 Birmingham m30 AM600908 

Smith BAC Germany m30 AM600910 

Smith Birmingham m30 AM600909 
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  Smith BAC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35938F 1      TGGTGGTTGTGTTGGTGGATGCGGCGGGAGTCGCCGCGGACG 42 
                |||||||||||||||||||| ||||||||||||||||||||| 
  MCMV    36178 TGGTGGTTGTGTTGGTGGAT-CGGCGGGAGTCGCCGCGGACG 36218 
 
 

100 

 K181 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35938F 1   TTGTGGTGGTTGTGTTGGTGGATGCGGCGGGAGTCGCCGCGG 42 
             ||||||||||||||||||||||| |||||||||||||||||| 
  MCMV 36175 TTGTGGTGGTTGTGTTGGTGGAT-CGGCGGGAGTCGCCGCGG 36215 
 
 
  K17A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35938F  1    TTGTGGTGGTTGTGTTGGTGGATGCGGCGGGAGTCGCCGCGG  42 
               ||||||||||||||||||||||| |||||||||||||||||| 
  MCMV  36175  TTGTGGTGGTTGTGTTGGTGGAT-CGGCGGGAGTCGCCGCGG  36215 
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 G4 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35938F 1   TTGTGGTGGTTGTGTTGGTGGATGCGGCGGGAGTCGCCGCGG 42 
             ||||||||||||||||||||||| |||||||||||||||||| 
  MCMV 36175 TTGTGGTGGTTGTGTTGGTGGAT-CGGCGGGAGTCGCCGCGG 36215 
 
 N1 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35938F 1   TTGTGGTGGTTGTGTTGGTGGATGCGGCGGGAGTCGCCGCGG 42 
             ||||||||||||||||||||||| |||||||||||||||||| 
  MCMV 36175 TTGTGGTGGTTGTGTTGGTGGAT-CGGCGGGAGTCGCCGCGG 36215 
 
 Smith Birmingham 
 

 

 

 

 

 

 
 
  35938F 1   TTGTGGTGGTTGTGTTGGTGGATGCGGCGGGAGTCGCCGCGG 42 
             ||||||||||||||||||||||| |||||||||||||||||| 
  MCMV 36175 TTGTGGTGGTTGTGTTGGTGGAT-CGGCGGGAGTCGCCGCGG 36215 

Figure 3.1 Sequencing over extra nucleotide (nt) region in MCMV Smith BAC, K181, 
K17A, G4, N1 and Smith Birmingham using primers 35938F. 
 

 
The extra nt Guanine (G) is indicated in red. The gap in the published Smith strain MCMV 
genome (accession no. U68299) is shown with a dash. 
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Figure 3.2 Nucleotide sequence alignment of MCMV K181 (Birmingham), K17A, G4, N1, 
Smith (Birmingham) (A), Smith BAC (B) and Smith published sequence (C) over the m29 
region (nt 35747 to 36474) (accession no U68299).

Nucleotides which differ from the published sequence (accession no U68299) are shown in 
the red box and the extra nucleotide in all viruses is shown with the highlights. 
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Figure 3.3 Nucleotide sequence alignment of MCMV K181 (Birmingham), K17A, G4, N1, Smith 
(Birmingham) (A), Smith (BAC) (B) and Smith published sequence (C) over m29.1 region (nt 
36029 to 36660)  

 

 
Figure 3.3 Nucleotide sequence alignment of MCMV K181 (Birmingham), K17A, 
G4, N1, Smith (Birmingham) (A), Smith (BAC) (B) and Smith published sequence 
(C) over m29.1 region (nt 36029 to 36660) (accession no U68299). The extra 
nucleotide is shown by highlights. 
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Figure 3.4 Amino acid sequence alignment of predicted protein of the newly identified ORF for 
m29 (A) and for the published m29 (B) 
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Figure 3.5 Amino acid sequence alignment of predicted protein of the newly identified ORF for 
m29.1 (A) and for the published m29.1 (B) 
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Figure 3.6 Nucleotide sequence alignment of MCMV Smith (Birmingham) (A), G4, K17A, 
N1, Smith BAC (B) and Smith published sequence (C) over the m30 region (nt 36884 to 
377429) (accession no U68299).

Nucleotides which differ from the published sequence (accession no U68299) are shown in 
the highlights. 
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3.1.1 Amino acid sequence comparison of the newly identified 
genes with other CMV proteins
 

Computation was performed using BLAST network service (6) to test whether 

the newly identified m29 and m29.1 genes are homologous with any other 

CMV proteins. Neither of these predicted proteins was found to have significant 

homology to any recorded proteins in the database. 

 

3.2 RT-PCR for viral gene expression in wt MCMV infected 
cells 

 

3.2.1 Detection of m29 and m29.1 gene expression 
 

The expression of m29 and m29.1 transcripts was detected in wt MCMV 

infected NIH 3T3 cells by RT-PCR. Total RNA was isolated from infected and 

mock infected cells at different times post-infection. Gene specific primers 

(GSP) RTm29R and M29.1FOR (Table 2.3) were used in generating cDNA to 

detect the m29 and m29.1 transcripts respectively.  

 

Primers RTm29F/RTm29R and M29.1FOR/M29.1REV were designed to 

amplify a 708bp and 596bp RT-PCR product from m29 and m29.1 ORFs 

respectively. The whole MCMV genomic DNA was used as a positive control 

for the PCR reaction and in the negative control, the reverse transcriptase was 

omitted to confirm that the isolated RNA was free from DNA contamination. 

Amplification of a 708bp (Figure 3.7) and a 596bp (Figure 3.8) product 
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confirmed the expression of m29 and m29.1 respectively in wt MCMV infected 

NIH 3T3 cells. 

 

The m29 gene specific transcript was first detected 3 hours post-infection and 

for all tested samples at subsequent times up to at least 24 hours post-

infection (Figure 3.7). However, a RT-PCR product of approximately 300bp 

(Figure 3.7) was also detected in all tested and mock infected samples. It was 

expected that this product might come from a host gene i.e. a mouse gene. 

This 300bp product was sequenced to confirm this (data not shown). The 

m29.1 gene specific transcript was first detected at 2 hours post-infection and 

detected in all tested samples at subsequent times (Figure 3.8). 

 

3.2.2 Detection of newly predicted m29.2 gene expression 
 

Brocchieri and colleagues (20) predicted a new ORF, named m29.2, on the 

complementary strand of the MCMV genome just prior to the m29.1 ORF, 

which had not been predicted during the previous sequence analysis (128). To 

confirm the expression of this newly identified m29.2 ORF in wt MCMV infected 

NIH 3T3 cells, RT-PCR was performed. Total RNA was isolated from infected 

and mock infected cells at 24 hours post-infection. The GSP RTm29.2F (Table 

2.3) was used to generate cDNA and primers RTm29.2F and RTm29.2R were 

used to amplify a 121bp RT-PCR product from the m29.2 gene. The whole 

MCMV genomic DNA template was used as a positive control for the PCR and 

in the negative control, the reverse transcriptase was omitted to confirm that 

the isolated RNA was free from DNA contamination. Amplification of a 121bp 
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(Figure 3.9) product confirmed the expression of m29.2 gene in wt MCMV 

infected NIH 3T3 cells. 

 

 
Figure 3.7 RT-PCR for m29 gene expression 
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Figure 3.7 RT-PCR for m29 gene expression. Total RNA was isolated from wt 
MCMV and mock infected NIH 3T3 cells at different time-points post-infection. An 
RT-PCR product of 708bp (lane 2) indicates the presence of the m29 gene specific 
transcript at 3, 4, 6, 8, 10, 12, 16, 20 and 24 hours post-infection. A PCR product of 
approximately 300bp (RT+) indicates the presence of a non-specific transcript also 
seen in mock infected cells. MCMV genomic DNA was used as a positive control 
(lane 1) and reverse transcriptase was omitted in the negative control for the reverse 
transcription reaction (lane 3). The size of the markers from the 1kb ladder 
(Fermentas) are shown on the right and the left margins in bp. 
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Figure 3.8 RT-PCR for m29.1 gene expression 
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Figure 3.8 RT-PCR for m29.1 gene expression. Total RNA was isolated from wt 
MCMV and mock infected NIH 3T3 cells at different time-points post-infection. An 
RT-PCR product of 596bp (lane 2) indicates the presence of the m29.1 gene specific 
transcript at 2, 3, 4, 6, 8, 10, 12, 16, 20 and 24 hours post-infection. MCMV genomic 
DNA was used as positive control (lane 1) and reverse transcriptase was omitted in 
the negative control for the reverse transcription reaction (lane 3). The size of the 
markers from the 1kb ladder (Fermentas) are shown on the right and the left margins 
in bp. 
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Figure 3.9 RT-PCR for m29.2 gene expression 
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 Figure 3.9 RT-PCR for m29.2 gene expression. Total RNA was isolated 

from wt MCMV and mock infected NIH 3T3 cells at 24 hours post-infection. 
The RT-PCR product of 121bp (lane 2) indicates the presence of the m29.2 
gene specific transcript. MCMV genomic DNA was used as positive control 
(lane 1) and reverse transcriptase was omitted from the negative control for 
the reverse transcription reaction (lane 3). The size of the markers (M) from 
the 1kb ladder (Fermentas) are shown on the right and the left margins in 
bp. 

 
 
 

 

 

 

 

3.2.3 Classification of m29 and m29.1 gene specific transcripts in wt 
MCMV infected cells 
 

Results from Section 3.2.1 indicated that the m29 and m29.1 genes are 

transcribed in wt MCMV infected NIH 3T3 cells at different time post-infection. 

Another RT-PCR experiment was performed using RNA isolated from wt 

MCMV infected NIH 3T3 cells treated with protein and DNA synthesis inhibitors 

to categorise the observed temporal expression of m29 and m29.1 genes into 

IE, E or L kinetic classes. IE genes do not require de novo protein synthesis for 

their expression. Therefore, IE genes are expressed in virus infected cells 

treated with cycloheximide, a protein synthesis inhibitor. L genes are 
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essentially expressed after the onset of viral DNA synthesis (106). Thus, viral 

transcription is restricted to IE and E gene expression in virus infected cells 

treated with phosphonoacetic acid, a DNA synthesis inhibitor. 

 

MCMV gene m123(ie1/3), M112/113(e1) and M75 have been previously 

classified as IE, E and E-L genes respectively and these were chosen as 

internal controls to check the inhibitory conditions used for the kinetic class 

experiments. Total RNA was isolated from wt MCMV infected NIH 3T3 cells 

treated with cycloheximide or phosphonoacetic acid at 4 hours and 24 hours 

post-infection respectively and Oligo(dT) was used in generating cDNA. The 

whole MCMV genomic DNA template was used as a positive control and the 

reverse transcriptase was omitted from the negative control. Primers were 

designed to bind either side of an intron for genes m123(ie1/3) and 

M112/113(e1), which have been reported to have spliced transcripts (128). The 

m123(ie1/3) spliced transcript, but not the M112/113(e1) transcript, was 

detected in wt MCMV infected, cycloheximide treated cells at 4 hours post-

infection (Figure 3.10.A). The e1 transcript was detected in phosphonoacetic 

acid treated cells (data not shown). The 500bp M75 gene specific product was 

expressed in the presence and absence of phosphonoacetic acid but was 

always less prominent in phosphonoacetic acid treated cells compared to 

untreated cells harvested at 24 hour post-infection (Figure 3.10.B); this is 

because transcription of the M75 gene is an E/L transcript, its synthesis 

beginning before the viral DNA synthesis but decreasing in the presence of the 

DNA inhibitor. From both experiments it was confirmed that the inhibitory 
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conditions used were suitable for examining the kinetic class of the m29 and 

m29.1 ORFs. 

Figure 3.10 RT-PCR to check the inhibitory conditions used in kinetic experiments 
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Figure 3.10 RT-PCR to check the inhibitory conditions used in kinetic 
experiments. Total RNA was isolated from wt MCMV and mock infected NIH 3T3 
cells treated with cycloheximide (A) at 4 hours post-infection and treated with (+) or 
without (-) phosphonoacetic acid (PAA) (B) at 24 hours post-infection. A. The RT-
PCR product of 113bp indicates expression of the ie1/3 spliced transcript (lane 2) 
and no product indicates that e1 does require protein synthesis for its expression 
(lane2). B. The RT-PCR product of 500bp indicates the expression of M75 gene in 
the presence and absence of PAA. MCMV genomic DNA was used as the positive 
control (lane 1) and reverse transcriptase was omitted from the negative control for 
the reverse transcription reaction (lane 3). The size of the markers (M) from the 1kb 
ladder (Fermentas) are shown on the right and the left margins in bp. 
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The kinetic class of m29 and m29.1 were determined using the same primer 

pairs that successfully amplified the 708 and 596bp products respectively at 

different times post-infection (Section 3.2.1). Total RNA was isolated from wt 

MCMV infected NIH 3T3 cells treated with or without either cycloheximide or 

phosphonoacetic acid at 4 hours and 24 hours post-infection respectively and 

the GSP was used in generating cDNA. A transcript produced from the m29 

gene was not detected by RT-PCR in wt MCMV infected cells treated with 

cycloheximide at 4 hours post-infection, but was detected at this time in non-

treated cells. In contrast, the m29 transcript was detected in wt MCMV infected 

phosphonoacetic acid treated cells at 24 hours post-infection (Figure 3.11).  In 

contrast, the m29.1 transcript was detected in wt MCMV infected cells treated 

with cycloheximide at 4 hours post-infection but was also detected in cells 

treated with  phosphonoacetic acid at 24 hours post-infection (Figure 3.12). 

Three independent experiments confirmed the same results indicating that the 

m29 gene belongs to E and the m29.1 gene to IE viral kinetic class. 
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Figure 3.11 RT-PCR for m29 gene classification 
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Figure 3.11 RT-PCR for m29 gene classification. Total RNA was isolated from wt 
MCMV and mock infected NIH 3T3 cells treated with (+) or without (-) cycloheximide 
(Cyc) at 4 hours post-infection and or cells treated with (+) or without (-) 
phosphonoacetic acid (PAA) at 24 hours post-infection. RT-PCR product of 708bp 
(lane 2) indicate the presence of the m29 transcript in cells untreated with 
cycloheximide and cells treated with/without phosphonoacetic acid. The PCR product 
of approximately 300bp (RT+) indicates the presence of the non-specific transcript. 
MCMV genomic DNA was used as the positive control (lane 1) and reverse 
transcriptase was omitted from the negative control for the reverse transcription 
reaction (lane 3). The size of the markers from the 1kb ladder (Fermentas) are 
shown on the right and the left margins in bp. 
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Figure 3.12 RT-PCR for m29.1 gene classification 
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Figure 3.12 RT-PCR for m29.1 gene classification. Total RNA was isolated from 
wt MCMV and mock infected NIH 3T3 cells treated with (+) or without (-) 
cycloheximide (Cyc) at 4 hours post-infection and or cells treated with (+) or without 
(-) phosphonoacetic acid (PAA) at 24 hours post-infection. RT-PCR product of 
596bp (lane 2) indicate the presence of the m29.1 transcript in cells treated with or 
without either cycloheximide or phosphonoacetic acid. MCMV genomic DNA was 
used as the positive control (lane 1) and reverse transcriptase was omitted from the 
negative control for the reverse transcription reaction (lane 3). The size of the 
markers from the 1kb ladder (Fermentas) are shown on the right and the left 
margins in bp. 
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3.3 BAC mutagenesis 
 

For the production of mutant viruses, the MCMV genome cloned as a BAC, 

was modified by targeted mutagenesis in E. coli strain DH10B. Incorporation of 

a point mutation into the viral genome was performed by homologous 

recombination between the MCMV BAC and a fragment containing the 

corresponding gene with the introduced point mutation. The fragments for 

homologous recombination were made by PCR and then cloned into the 

plasmid vector. 

 

3.3.1 Stop codon mutants of m29 and m29.1 
 

For the production of stop codon mutants of m29 and m29.1, firstly, point 

mutations were introduced into m29 or m29.1 by site-directed mutagenesis 

(Section 3.3.1.1) and these were then introduced into the corresponding gene 

of the MCMV BAC using ET recombination (Section 3.3.1.2). 

 

3.3.1.1 Site-directed mutagenesis of m29 and m29.1 
 

Genetic analysis of DNA viruses is complicated by the presence of many 

overlapping ORFs. The genome of the MCMV has ORFs on both strands like 

that of other dsDNA viruses. The m29 and m29.1 ORFs are overlapping and 

coded on opposite strands of the viral genome (128), thus making it impossible 

to delete one ORF without affecting the other. To overcome this problem, a 

stop codon mutation was introduced into each ORF in independent mutant 
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viruses near to their 5’ ends so that the mutation did not affect ORFs on the 

complementary strand. 

 

Inverse PCR amplification using primers m29*F and m29*R (Table 2.3) on 

template pCR4B-29 DNA containing both overlapping ORFs (Section 2.3) 

incorporated a point mutation (C to G) at nt position 35,896 (128) in the m29 

gene which results in the conversion of an existing tyrosine codon (TAC) to a 

stop codon (TAG) (Figure 3.13.A). The resulting construct was designated 

m29*pCR4B. A similar round of inverse PCR was carried out to incorporate a 

point mutation (C to G) at nt position 36,484 (128) in the m29.1 gene using 

primers m29.1*F and m29.1*R (Table 2.3) on same pCR4B-29 template DNA 

resulting in the conversion of an existing tyrosine codon (TAC) to a stop codon 

(TAG) (Figure 3.13.B). The resulting construct was designated m29.1*pCR4B. 

Finally, the mutations were confirmed by sequence analysis (data not shown). 

The stop codon mutation was designed to interrupt protein synthesis, but not to 

interrupt mRNA synthesis of each gene. 
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Figure 3.13 Amino acid sequence alignments of the wt m29 protein and of the 
truncated mutant m29 protein (A) and of the wt m29.1 protein and of truncated 
m29.1 protein (B) 
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3.3.1.2 ET recombination 
 

Two-step ET recombination (187, 188) was carried out to produce m29 and 

m29.1 stop codon mutants and their revertant to wild type viruses.  

 

In the first step, a linear DNA fragment (1.3kb) containing a streptomycin 

sensitivity and kanamycin resistance cassette rpsl-neo flanked by homology 

arms identical in sequence to either side of the targeted locus on the MCMV 

BAC (Section 2.11.1) was amplified by PCR using primers ETm29F and 

ETm29R (Table 2.3). The ETm29F primer was 75 nt in length and consisted of 

52 nt upstream of the m29 ORF (nt 35556 to 35607) and 23 nt of the 5’ end of 

the pRpsl-neo cassette. Similarly, the ETm29R primer was 75 nt in length and 

consisted of 51 nt upstream of the m29.1 ORF (nt 36749 to 36799) and 24 nt 

of the 3’ end of the pRpsl-neo cassette. Using ET recombination the PCR 

product containing the pRpsl-neo cassette was introduced into the MCMV BAC 

genome replacing the m29/m29.1 ORFs. A mutant was selected through 

kanamycin resistance and streptomycin sensitivity and the resulting construct 

was designated MCMV BAC-rpsl-neo. PCR screening was performed to check 

the correct MCMV BAC-rpsl-neo construction with primer sets, m29F/REV-

RPSL and RPSL FOR/m29REV (Table 2.3). Primers m29F and m29REV bind 

to the MCMV BAC viral sequence whereas primers RPSL FOR and REV-

RPSL bind to rpsl-neo cassette (Figure 3.14.A). The PCR products of 954bp 

with primer set m29F+REV-RPSL and of 1138 bp with primer set RPSL 

FOR+m29REV indicated the presence of the rpsl-neo cassette in the correct 

position and orientation in the MCMV BAC (Figure 3.14.B). The positive control 

shows the 1065bp product amplified from the MCMV genomic DNA template 
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with primers m29F and 36304R. Primer 36304R binds to the region of the 

MCMV BAC genome which has been replaced by the rpsl-neo cassette (Figure 

3.14.B). Thus, no product was amplified in the negative control where the 

MCMV BAC-rpsl-neo DNA template was used and primers m29F and 36304R 

(Figure 3.14.B). 

Figure 3.14 PCR confirmation of the correct integration of the rpsl-neo cassette into the MCMV 
BAC genome 
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Figure 3.14 PCR confirmation of the correct integration of the rpsl-neo cassette 
into the MCMV BAC genome. A. The position of the primers m29F and m29REV 
binding to the MCMV BAC genome and primers RPSL FOR and REV RPSL binding 
to rpsl-neo cassette. B. The m29F/REV RPSL PCR product of 954bp (lane 1) and 
RPSL FOR/m29REV PCR product of 1138bp (lane 2) indicate the presence of rpsl-
neo cassette in the correct position in the MCMV BAC genome. Lanes 3 and 4 are 
negative and positive controls respectively. The size of the markers (M) from the 1kb 
ladder (NEB) are shown on the right and the left margins in kb. 
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In the second step, the rpsl-neo cassette in the MCMV BAC was replaced by a 

restriction enzyme digested linear DNA fragment containing the point mutation. 

Plasmids m29*pCR4B and m29.1*pCR4B (Section 3.3.1.1) were digested by 

EcoRI to release the mutated m29 and m29.1 gene fragment, respectively. The 

rpsl-neo cassette was replaced by the relevant mutated ORF through ET 

recombination and selection for streptomycin resistance and kanamycin 

sensitivity (Section 2.11.1). The resulting constructs were designated 

Rc29MCMV BAC and Rc29.1MCMV BAC. PCR screening was performed to 

check the correct insertion and orientation with primer sets m29F/36744R and 

36371F/m29REV. All primers bind to MCMV BAC viral sequence. The PCR 

products of 1505bp with primer set, m29F+36744R and of 814bp with primer 

set, 36371F+m29REV indicated the replacement of rpsl-neo cassette in MCMV 

BAC (Figure 3.15). The positive control shows the 954bp product amplified 

from the MCMV BAC-rpsl-neo DNA template with primers m29F and RPSL-

REV. Primer RPSL-REV binds to the rpsl-neo cassette which has been 

replaced by the mutated MCMV sequence. Thus, no product was amplified in 

the negative control where the MCMV genomic DNA template was used and 

primers m29F and RPSL-REV. 

122 



Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M          1             2             3           4         M

M          1             2             3           4         M

M          1             2             3           4         M

1.0

1.5

0.5

1.5

1.5

1.0

1.0

0.5

0.5

1.5

1.5

1.5

1.0

0.5

1.0

1.0

0.5

0.5

A

B

C

M          1             2             3           4         M

M          1             2             3           4         M

M          1             2             3           4         M

1.0

1.5

0.5

1.5

1.5

1.0

1.0

0.5

0.5

1.5

1.5

1.5

1.0

0.5

1.0

1.0

0.5

0.5

A

B

C

Figure 3.15 PCR confirmation of the replacement of the rpsl-neo cassette by the 
restricted fragment carrying the required mutation in Rc29MCMV BAC (A), Rc29.1MCMV 
BAC  (B) and Rv29.1MCMV BAC (C) genome. 

 

 

The m29F/36744R PCR products of 1505bp (lane 1) and 36371F/m29REV PCR products of 
814bp (lane 2) indicate the replacement of rpsl-neo cassette in MCMV BAC. Lanes 3 and 4 
are negative and positive controls respectively. The size of the markers (M) from the 1kb 
ladder (NEB) are shown on the right and the left margins in kb. 
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To rescue the m29.1 mutant to wt, a two step ET recombination was performed 

as descried above. Firstly, the rpsl-neo cassette was inserted into the mutant 

Rc29.1MCMV BAC DNA and secondly, the rpsl-neo cassette was replaced by 

linear wt DNA sequence. Revertant BAC DNA was identified by PCR (Figure 

3.15) and designated Rv29.1MCMV BAC. 

 

3.3.2 Partial sequencing of MCMV BAC DNA 
 

DNA isolated from the Rc29MCMV BAC, Rc29.1MCMV BAC and 

Rv29.1MCMV BAC was sequenced and identified a C to G mutation at nt 

position 35,896 in the m29 gene in the Rc29MCMV BAC genome and a C to G 

nt position 36,484 in the m29.1 gene in the Rc29.1MCMV BAC (Figure 3.16). 

The Rv29.1MCMV BAC DNA was found to be similar to MCMV wild type DNA 

(data not shown).  

 

3.4 Production of mutant viruses 
 

Following extraction of MCMV BAC plasmid DNA using a commercial kit 

(Section 2.4.2), it was transfected into NIH 3T3 cells using ExGen500 

transfection reagent (Section 2.2.1). Plaques were detected in Rc29MCMV 

BAC and Rc29.1MCMV BAC DNA transfected cells after 8 days and in 

Rv29.1MCMV BAC DNA transfected cells 7 days post-transfection. The 

Rc29MCMV BAC, Rc29.1MCMV BAC and Rv29.1MCMV BAC derived virus 

were designated Rc29, Rc29.1 and Rv29.1 virus respectively. 
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 Rc29MCMV BAC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35610F 1 CCCGAAATAGAAACGCCCACTAGTCATACGATCGCACG 38 
         |||||||||||||||||||||| ||||||||||||||| 
wt MCMV 35874 CCCGAAATAGAAACGCCCACTACTCATACGATCGCACG 35911 
 
 
 
 
 Rc29.1 MCMV BAC 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3677R 1 GAGGTGCACGCTAGATAGCATTCCATACTAGCGTCT 36 
         ||||||||||||||||| |||||||||||||||||| 
wt MCMV 36501 GAGGTGCACGCTAGATACCATTCCATACTAGCGTCT 36466 
 
 

Figure 3.16 Sequencing over the point mutation introduced into the m29 and m29.1 
genes of the corresponding MCMV BAC DNA using the 35610F and 3677R primers 
respectively. 

 

 

The nucleotide (nt) of the single point mutation is denoted in red and the corresponding stop 
codon is indicated in the box. The wild-type viral DNA sequence corresponds to the published 
Smith strain MCMV genome (accession no. U68299). 
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Two further mutant viruses, kn29 and kn29.1, in which a 1.3kb kanamycin 

cassette had been inserted into the BamHI enzyme restriction site of the m29 

gene and the SfoI site of m29.1 gene respectively, were kindly supplied by Dr. 

Melissa Kirby in our laboratory. 

 

3.4.1 Virus passaging 
 

The BAC cassette was excised from mutant viruses by passaging in tissue 

culture cells (176). Once transfected into NIH 3T3 cells, the virion containing 

supernatants were used to infect new monolayers of NIH 3T3 cells and distinct 

plaques were observed (Section 2.2.2). Viruses from this stock were referred 

to as first passage virus. The mutant viruses Rc29, Rc29.1 and revertant virus 

Rv29.1 were passaged 4, 2 and 4 times respectively, when the BAC was 

shown to have been lost. The mutant virus kn29 was passaged once whereas 

kn29.1 was passaged twice. Viral DNA was extracted at all stages of passage 

and analysed for the presence of the BAC (Section 3.4.4) or kanamycin 

cassette (Section 3.4.3) by PCR. 

 

3.4.2 Partial sequencing of Rc29 and Rc29.1 to confirm the 
presence of the mutation 
 

DNA extracted from working stocks of the Rc29 and Rc29.1 viruses was 

analysed by PCR and confirmed the presence of the mutation at nt positions 

35,896 and 36,484 in Rc29 and Rc29.1 viruses respectively (data not shown). 
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3.4.3 Confirmation of the kanamycin cassette insertion in kn29 and 
kn29.1 viral genomes 
 

DNA extracted from working stocks of the kn29 and kn29.1 viruses was 

subjected to PCR screening. Primers 35610F and 36304R bound to the MCMV 

genome as shown in Figure 3.17.A and the 2kb PCR amplified from kn29 viral 

DNA indicated the presence of the kanamycin cassette in kn29 viral DNA 

(Figure 3.17.C). In the positive control, wt MCMV DNA was used with same 

primers and 700bp product indicated the absence of the kanamycin cassette in 

wt MCMV genome (Figure 3.17.C). Similarly, using primers 36371F and 

36744R (Figure 3.17.B) The PCR product of 1.5kb indicated the presence of 

the kanamycin cassette in the kn29.1 viral genome (Figure 3.17.C) and the 

370bp product indicated of its absence in the wt MCMV genome.  

 

3.4.4 Excision of BAC Cassette from the mutant viruses 
 

To remove the BAC from virus, the MCMV BAC must be passaged in tissue 

culture cells (176). DNA extracted from mutant viruses at each passage was 

PCR screened with two sets of primers, f/g and b/g, which demonstrated 

excision of BAC cassette (Figure 3.18.A). If excision of the BAC has occurred, 

a f/g PCR product of 590bp would be generated; without excision a 7kb 

product would be generated. The PCR conditions used did not allow the 7kb 

product to be amplified. The f/g PCR product of 590bp implied the efficient 

excision of the BAC (Figure 3.18.B and Figure 3.19).  
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Figure 3.17 PCR screening for the presence of the kanamycin cassette in kn29 and kn29.1 viral 
DNA 
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Figure 3.17 PCR screening for the presence of the kanamycin cassette in kn29 
and kn29.1 viral DNA. The location of the primers 35610F and 36304R binding to 
kn29kn viral DNA are shown with the black arrows (A) and of the primers  36371F 
and 36744 R binding to the kn29.1 viral DNA are shown with black broken arrows  
(B).  The 35610F/36304R PCR product of 2kb (lane 1) and 36371F/36744R PCR 
product of 1.5 kb (lane 3) indicate the presence of kanamycin cassette in Kn29 and 
Kn29.1 viral DNA respectively (C). Lanes 2 and 4 are positive controls (C). The sizes 
of the markers (M) from the 1kb ladder (Fermentas) are shown on the right and the 
left margins in kb. 
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PCR with primer set g/b was performed to confirm the result of the PCR screen 

with primer set f/g. Primer b bound to the BAC sequences as shown in Figure 

3.18.A. Amplification of a 1950bp PCR product indicated the presence of a 

BAC containing genome whereas the lack of an amplified product 

demonstrated loss of the BAC (Figure 3.18.B and Figure 3.19). 

Figure 3.18 PCR screening for the absence of the BAC in viral DNA extracted from mutant virus 
Kn29 and Kn29.1 
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Figure 3.18 PCR screening for the absence of the BAC in viral DNA extracted from 
mutant virus Kn29 and Kn29.1 (A). The location of the primers g/f binding to the MCMV 
DNA and the primer b binding to the BAC are shown with black and broken arrow 
respectively. (B). The f/g PCR product of 590bp and no product with primers b/g indicate the 
loss of the BAC from the MCMV genome in kn29 and kn29.1 2nd passage virus. Again, the 
b/g PCR product of 1,950bp indicates the presence of the BAC in MCMV genome of kn29.1 
1st passage virus. The size of markers (M) from the 1kb ladder (NEB) are shown on the right 
and the left margins in bp. 
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Figure 3.19 PCR screening for the absence of the BAC in viral DNA extracted from mutant virus 
Rc29, Rc29.1 and revertant virus Rv29.1 
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Figure 3.19 PCR screening for the absence of the BAC in viral DNA extracted 
from mutant virus Rc29 (A), Rc29.1 (B) and revertant virus Rv29.1 (C). The f/g 
PCR product of 590bp and lack of product with primers b/g indicate the loss of the 
BAC from the MCMV genome. The b/g PCR product of 1,950bp indicates the 
presence of the BAC in the MCMV genome. The Size of markers (M) from the 1kb 
ladder (Fermentas) are shown on the right and the left margins in bp. 
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The BAC was excised from the kn29, kn29.1, Rc29, Rc29.1 and Rv29.1 viral 

genomes after one, two, four, two and four passages respectively. The BAC 

had previously been excised from the wt MCMV BAC genome by Dr. Melissa 

Kirby. 

 

3.5 RT-PCR analysis of MCMV gene expression in mutant virus 
infected cells 

 

3.5.1 Detection of m29 and m29.1 gene expression in Rc29, Rc29.1 
and Rv29.1 infected NIH 3T3 cells 
 

To determine whether, as expected, ORFs m29 and m29.1 were expressed in 

mutant virus infected cells, total RNA was isolated from Rc29, Rc29.1, Rv29.1 

and mock infected NIH 3T3 cells  24 hours post-infection and analysed by RT-

PCR. Figures 3.20.A and B show expression of the m29 and m29.1 transcripts 

respectively in Rc29, Rc29.1 and Rv29.1 virus infected NIH 3T3 cells. Thus, 

the stop codon mutation in mutants Rc29 and Rc29.1 appeared not to disrupt 

transcript expression from either m29 or m29.1 ORFs. 
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Figure 3.20 RT-PCR for m29 and m29.1 gene expression in Rc29, Rc29.1 and Rv29.1 virus 
infected NIH 3T3 cells 
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Figure 3.20 RT-PCR for m29 (A) and m29.1 (B) gene expression in Rc29, Rc29.1 
and Rv29.1 virus infected NIH 3T3 cells. Total RNA was isolated from Rc29, 
Rc29.1, Rv29.1 and mock infected NIH 3T3 cells at 24 hours post-infection. A 
product of 708bp (A) or 596bp (B) in lanes 2 indicate expression of the m29 or m29.1 
transcripts. MCMV genomic DNA was used as a positive control (lane 1) and reverse 
transcriptase was omitted from the RT reaction in the negative control (lane 3). The 
size of the markers (M) from the 1kb ladder (Fermentas) are shown on the right and 
the left margins in bp. 
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3.5.2 Detection of m29 and m29.1 gene expression in Kn29 and 
Kn29.1 infected NIH 3T3 cells 
 

Because of the position of the kanamycin cassette at the 5’ end of the m29 

ORF in kn29 and the m29.1 ORF in kn29.1, it was anticipated that transcription 

would be disrupted. To examine this, total RNA was isolated from Kn29, 

Kn29.1 and mock infected NIH 3T3 cells 24 hours post-infection and subjected 

to RT-PCR analysis. 

 

The m29 gene specific transcript was detected in kn29.1 virus infected cells 

and a minor transcript producing a product approximately similar to this size 

was also detected in kn29 virus infected cells (Figure 3.21.A). Two additional 

and more abundant products of approximately 1.5 and 2.0kb were also 

detected in kn29 virus infected cells (Figure 3.21.A) suggesting that the 

transcripts contained part or all of the kanamycin cassette. Similarly, the m29.1 

gene specific transcript was detected in kn29 virus infected cells and a very 

low abundant product of a similar size was detected at kn29.1 virus infected 

cells (Figure 3.21.B). However, the most abundant product was approximately 

2.0kb again suggesting the transcript contained some of the kanamycin 

cassette. Thus, normal transcripts do not appear to be expressed in either 

kn29 or kn29.1 virus infected cells but they do produce aberrant transcripts 

which could produce truncated protein products. For this reason, these mutant 

viruses were not studied further. 
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Figure 3.21 RT-PCR for m29 (A) and m29.1 (B) gene expression in Kn29 and Kn29.1 mutant virus 
infected NIH 3T3 cells 
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Figure 3.21 RT-PCR for m29 (A) and m29.1 (B) gene expression in Kn29 and 
Kn29.1 mutant virus infected NIH 3T3 cells. Total RNA was isolated from 
Kn29, Kn29.1 and mock infected NIH 3T3 cells at 24 hours post-infection. A 
product of 708bp (A) or 596bp (B) in lanes 2 indicate expression of the m29 or 
m29.1 transcripts. MCMV genomic DNA was used as a positive control (lane 1) 
and reverse transcriptase was omitted from RT reaction in the negative control 
(lane 3). The Sizes of the markers (M) from the 1kb ladder (Fermentas) are 
shown on the right and the left margins in bp.
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3.6 Northern blot 
 

The RT-PCR experiment confirmed the presence of m29 and m29.1 gene 

specific transcripts in wt and mutant virus infected cells (Section 3.2 and 3.5.1). 

To examine the size of these transcripts, northern blots were performed. Total 

RNA isolated from the wt, Rc29, Rc29.1 and Rv29.1 was hybridised to 

radiolabelled DNA probes, generated previously either by random priming 

(Section 2.13.6.1) or linear PCR (Section 2.13.6.2). Despite several attempts, no 

RNA species was detected in the wt or mutant virus infected cells. 

 

3.7 Detection of MCMV protein in virus infected NIH 3T3 cells 
 

To detect MCMV protein in infected cells, polyclonal antibodies were 

developed against bacterially expressed purified protein or synthetic peptide 

and finally the antibodies were used in a western blot experiment. 

 

3.7.1 Expression of m29 and m29.1 protein in bacterial cells 
 

The m29 and m29.1 protein encoding region was amplified by PCR using 

primer sets P29F/P29R and P29.1F/P29.1R (Table 2.3) from MCMV genomic 

DNA. Each product was purified and cloned into plasmid pET28a between 

XhoI and NcoI restriction sites (Section 2.12.1). The resulting constructs were 

designated pET28a-m29 and pET28a-m29.1. The expression vectors, 

pET28a-m29 and pET28a-m29.1 were transformed into Escherichia coli C41 

(DE3) to produce m29 and m29.1 protein. Protein expression was induced by 
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isopropyl-1-thio-β-D-galactopyranoside. The expression of proteins was 

confirmed by SDS-PAGE. The bacterial expression of pET28a-m29.1 resulted 

in the production of m29.1 protein as shown in Figure 3.22. Despite several 

attempts, no protein was found to be expressed by bacteria containing 

pET28a-m29. The m29.1 protein was purified using Ni2+  -loaded His-Trap

affinity column and supplied to Biogenes (Berlin, Germany) to raise polyclonal 

antibodies by immunising two rabbits using an undisclosed protocol. 

Figure 3.22 SDS-PAGE followed by coomassie blue gel staining showing the results of the pET28a-
m29.1 expression 
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 Figure 3.22 SDS-PAGE followed by coomassie blue gel 
staining showing the results of the pET28a-m29.1 
expression. Lane 1, broad range molecular weight protein 
marker; lane 2, sample before IPTG induction; lane 3, m29.1 
protein after IPTG induction; lane 4, soluble fraction; m29.1 
protein is indicated by the black arrow. 
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3.7.2 Production of synthetic peptide from m29 
 

To try to raise an antiserum to the m29 protein an alternative approach was 

used. Using the published Smith MCMV sequence several synthetic peptides 

with likely antigenic potential were designed by Biogenes (Berlin, Germany). 

One of these was selected (CDRDTPHEQRSGVSG) as it was encompassed 

in both the predicted amino acid sequence of the published Smith MCMV and 

the new ORF depicted by the new sequence as shown in Figure 3.4. The 

peptide was synthesised by Biogenes and used to immunise two rabbits using 

the protocol described in Section 2.14.6. 

 

3.7.3 Western blot 
 

To determine whether translation from the m29 and m29.1 transcripts was 

disrupted due to the incorporation of a stop codon at the 5’ end of the ORFs, 

proteins were isolated from wt, Rc29, Rc29.1, Rv29.1 and mock virus infected 

NIH 3T3 cells 24 hours post-infection and separated on SDS-PAGE. Western 

blot analysis was carried out using polyclonal antibodies raised in rabbits. The 

anti-m29.1 antibodies detected a protein of approximately 28 to 30 kDa in wt 

and Rc29 virus infected cells whereas no protein was detected in Rc29.1 virus 

or mock infected cells (Figure 3.23). Thus, the mutation in Rc29.1 appeared to 

stop translation from the m29.1 transcript, whereas the m29.1 translation was 

restored in Rv29.1. The antibodies raised to the synthetic peptide failed to 

detect any protein in wt virus infected cells (data not shown). Thus it was not 
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possible to determine whether the m29 protein was expressed in Rc29 virus 

infected cells. 

 

Figure 3.23 Western blot analysis of m29.1 protein 
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Figure 3.23 Western blot analysis of m29.1 protein. Proteins 
were isolated from wt (lane 2), Rc29.1 (lane 3), Rv29.1 (lane 4), 
mock (lane5) and Rc29 (lane 6) infected cells. Lane 1 shows broad 
range molecular weight protein marker. 
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3.8 Growth of mutant viruses in tissue culture 
 

To determine whether the mutant viruses had any growth defects in vitro, the 

growth rates of the mutant viruses were studied in MEF cells. MEF cells were 

infected with mutant viruses at both low and high MOIs. Supernatants from the 

infected cells were collected at different times post-infection and titrated on 

MEF cells (Section 2.2.6).  The experiments were repeated twice and each 

experiment was carried out with three replicates. 

 

3.8.1 Replication of Rc29 virus in tissue culture 
 

At an MOI of 5.0, no significance differences were found in growth rates 

between Rc29 and wt virus (Figure 3.24). At 2 days post-infection, viral yields 

in Rc29 virus infected cells were significantly decreased compared to wt virus 

(p<0.05) but not at any other time point (Figure 3.24). At an MOI of 0.05, Rc29 

and wt virus grew similarly on MEF cells at 1 and 2 days post-infection, but 

from 3 to 7 days post-infection, Rc29 virus produced a significantly (p<0.05) 

lower yield that wt virus although these differences were small (~ 1 

log PFU/ml) (Figure 3.24). 10
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Figure 3.24 Replication of Rc29 virus in tissue culture 
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Figure 3.24 Replication of Rc29 virus in tissue culture. MEF cells were infected 
with Rc29 and wt viruses at a MOI of either 5.0 PFU or 0.05 PFU per cell. At 1, 2, 3, 
4, 5, 6 and 7 days post-infection, cells and culture media were collected. Values 
represent the means of three replicates ± standard deviation. wt, wild type 

140 



Results 

3.8.2 Replication of Rc29.1 and Rv29.1 in tissue culture 
 

At the high MOI (5.0) virus yields of Rc29.1 were initially reduced by 2-3 

log10PFU/ml at days 1-4 post-infection (Figure 3.25). These differences were 

smaller at later time points but at all times Rc29.1 virus yields were significantly 

(P<0.05) lower than those of wt virus. In contrast, virus yields of wt and 

revertant Rv29.1 viruses were not significantly different at any time point 

(Figure 3.25). Similar, but smaller differences were evident at the low MOI 

(0.05) (Figure 3.25). Interestingly, Rc29.1 virus produced smaller plaques 

(Figure 3.26) suggesting that this virus had a defect in release or produced 

fewer particles per cell. 

 

3.9 RACE analysis of the m29.1 transcript 
 

The MCMV immediate early region produces two alternative spliced transcripts 

that encode the ie1 protein pp89 and the 88 kDa ie3 protein (101). MCMV ie1 

mutant virus showed slower growth and formed smaller plaques than the 

parental virus in MEF cells (102). The m29.1 gene belongs to the IE class of 

genes (Section 3.2.3) and Rc29.1 virus showed a phenotype similar to MCMV 

ie1 mutant virus. Thus, it was possible that m29.1 ORF might produce a 

spliced transcript. To examine this, a 5' and 3' RACE analysis (as an 

alternative approach to northern blot) of mRNA extracted from wt virus infected 

cells was performed.  
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Figure 3.25 Replication of Rc29.1 virus in tissue culture 
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Figure 3.25 Replication of Rc29.1 virus in tissue culture. MEF cells were infected 
with Rc29.1, Rv29.1 and wt viruses at a MOI of either 5.0 PFU or 0.05 PFU per cell. 
At 1, 2, 3, 4, 5, 6 and 7 days post-infection, cells and culture media were collected. 
Values represent the means of three replicates ± standard deviation. wt, wild type 
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Figure 3.26 Plaque size of wt (A), Rv29.1 (B) and Rc29.1 viruses 
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Figure 3.26 Plaque size of wt (A), Rv29.1 (B) and Rc29.1 viruses (C). The viruses 
were grown and titrated on MEF cells. The images were taken using an inverted 
microscope attached to a digital camera at 60x magnification. 

 

 A RNA Oligo ligated cDNA library was generated by oligo(dT) priming of  total 

RNA isolated from NIH 3T3 cells 24 hours post-infection. Specific PCR 

amplification TMof the 5' end of m29.1 cDNA was carried out with GeneRacer 5` 

primer homologous to the RNA oligo in combination with an m29.1 specific 

 primer (GSP29.1F) (Table 2.3). Analysis of the PCR products by agarose gel 

electrophoresis revealed one major band of approximately 500bp, which was 

cloned into plasmids. Sequencing of six independent clones revealed that the 

start site for transcription initiation was at nt 36,752, 92bp upstream from the 

previously predicted initiator methionine (128) (Figure 3.27). Sequencing of a 
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seventh clone revealed that the transcription start site could, with low 

frequency, be also at nt 36,754, 94bp upstream from the previously predicted 

initiator methionine. Both transcription start sites were preceded by an 

appropriate TATA sequence at position 36,784 (Figure 3.27). 

 

 Specific PCR amplification of the 3' end of m29.1 cDNA was carried out with 

GeneRacerTM  3` primer homologous to oligo(dT) in combination with an m29.1 

specific primer (GSP29.1R) (Table 2.3). Analysis of the PCR products by 

agarose gel electrophoresis revealed one major band of approximately 

2000bp, which was cloned. Sequencing of eight independent clones confirmed 

an AAUAAA polyadenylation signal at nt 34359, followed by a poly(A) tag at nt 

34342 (Figure 3.27). 

 

Analysis of the MCMV genomic sequence (128) down stream of the m29.1 

ORF suggests that the next ORF, designated M28, may be contained within 

the m29.1 mRNA, since the first AAUAAA polyadenylation signal is located 3` 

to the M28 ORF (Figure 3.27). Comparison of the sequence of eight 

independent clones with the MCMV genomic sequence revealed that only one 

cDNA clone lacked an 123-nt genomic sequence located between M28 and 

m29.1 ORFs. Inspection of the MCMV genomic sequence reveals splice donor 

and acceptor sites flanking the 123-nt intron, which are predicted in Figure 

3.27. Thus, RACE analysis suggests that the m29.1 ORF produces an ~2.4kb 

transcript and a low abundance spliced transcript from which a 123bp intron 

had been removed. 
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Figure 3.27 RACE analysis of the m29.1 transcript 

 
 
TAAATGACACCGTCGTCTTTTTCCTCACACGACTTTATTGAAAATAATCGCCCCGCCCCT
TACCTACACAGCAAGCACGCCACCCTCCGCCGCTCGGCTGCCGGGAGGCGAGGCGAAACT
GGCGGGATAACTGCAAGAGAGGGGAAAAGCGGTCGATCCCAGCCGTCACCCGAGCGTGG
GCACGCAGGTCTCGGCTATCCCGGACGGAGCCCGCAACGCCAACCACTTGGCGAAGT
CGGCACCGCCGGGCACGACGTAGTCGATCTCGCAGTAGAAATTCACGACCTGTCCGA
CGCAGACCGTGCGCTCCGCGACGCCGTTCCTGGCGAACACCCTCCGGTAGGGCTGCA
GGTTGATCCTGAGCCGGTCCCGGAGGAATCCCGCTATCGTGTTGGCCACCTTCAAGA
CGCGGGCGCCGCCCAGGAGCACGAAGACCTCGAGCTTCTCGTTACACAGCACGATGA
ACTGCATCTCGGAGCGTCCGATGACGCGATAGCCCGCCCGGCGAAGATAGAAGAACA
CCCGTCCGGGCACCACCTGGCCCAATCTCAAACTCTCTTCATCACCGACCATGAAATA
GCCGAAGAACTCGCCCATAAACCTGAGGTTACTGGCCTGGCGGAAAGTAGACAGCCC
GGTGCGGTCGCGGACGAAGCATTCTATCGATTCGAGATCCCGGAGCTCGGTCAGGGG
CAGTAAACAGGAAGGCACCTCGACGTCGTCGCCCGTCGTTGGCGGCGCGTCGAACAT
CTCATATATGTGCCGGTGTCCCTCTCTCGACAGAAGATCCACCAGACCCCGTTCGGAG
ACGATATAGAGCAGATCGGTGTCCTGGCTGTGCACGTAGCAACGATCTCCGCCGGTG
TACACCGCGATCAGATCGCCGTGACTCCTGGCACCGAAAACGATCCGACCGACGACG
GTCATCTCGGAGGACCGCTCGCTACAGCGGTAGCCAAGCAGCTTTTCTACGTCGAAC
GTGGGACAGATGTTATCGGCATCTCCGATCCGCAACGTGATATCCGCCATGTGGTCCA
GCCCGAAACGCCGTCCGGTGTTTCTCTTGACGAAAGCCTTCACCTCGTCGAAGGAGCT
GCCATTGCACGCCCTGGCGCAGCGCAACAGCTCCCCCCTCGCGTGGAAGTTGTCGAC
GCTGGTACCGCGACTGCCGGAATCCAAGTCGACGCGCTGCGCGGTGCCCGTGACGAC
GTTCACGGGCACGACCGGCGTCTTGGAGGCGACGGAGGTGGGGACGGGCACGGTCG
GTTGGATAACCATCTCCGAGAAGGCGGCCACAGGCGGAATCGGTGGCGTCGGCGGTG
TCGGTGCGGGATCCACGGCGGCGGCGGCGGCGGGGATGTCATCGGCGACAGGGTCC
CCCTGTTCATCGTCGCGAAGGAACACCTCATCGAGGTCGTCGTCGCTGATGATCCGCA
TACCGACAGCTTCCAGGCTCATATCGACTGATTTTTATctgggatcggcagaaaagacaaaagagatagaa
atgcacacggaaaaaaagcttttacccgaatggctttatgccattgcccgaaatagaaacgcccactactcatacgatcgcacgacgaacCTC
CTCTACGATCTGAGCTGGCAAATGGCGAAACCTCCCGCATGGCGACCGTTCGGTGCTCTGT
CGCGGCCGCAGGTCGTCGGACTCGCGCCGCTGCTCCTGCCTCACTTACTAGATGGTGGTGT
TTCTCCTGCTCGATTTTCTGATCGGGACAGGAGGTGGTTGTCTCTTCTCGCCGATAGG
GACACTCCTCACGAACAGAGGAGCGGCGTTAGTGGAAACAACCGTGGCGGCAACGGG
GCCGCTGCCGGCGGCGGTTGTGGTGGTTGTGTTGGTGGATGCGGCGGGAGTCGCCG
CGGACGAAGCGACGGCAGCAGGAATGGTGGCGGTTACAGCCGCACCGTGGTCGCCCT
TTCTTTTGCGCTTGGCCTTCCGCTCGGAGCGGCGCTTTTCGCTGGAGCACGCGAGCAT
TTTATTCATAAGGAGGTTCATCCTCTCGATATCTTCGAAGGTTGCGACGAAGTCATTC
ATGTCCGAGCCACGACAGGCGAGTGCGTCGCTATCGTCGCTCTCGCTGCCGCCGCCA
CTTTCGCTTTCATCCTCTTCACTAGACGCTAGTATGGAATGGTATCTAGCGTGCACCT
CGTCCGCGACCTCCTTATCGAAGCGAGCCTCTTCTTCCTTAGTCAACATCGTAGCCAG
CCGCGACACGACCTTCATGTCGCTAACGGGCATCCGTCCGGCGCCCGCGAAGTTGAC
CATGAGATCAAAGGCTTTACCCCACAACTCTTCTTTAGTTTCCATAACCGTACGCGAA
ACACGCCCCCCAGATCAACGTCGGCGATCGCGCATATATAGACACAAGCCCCGGTGAGAA
GATACCTGTCGCAGAGTCTGAAGCGCAACTCTCGCAGAGACCTATTTTATACGCGAGCG
TGGAGGACGGCG 
 
 

Figure 3.27 RACE analysis of the m29.1 transcript. The location and genome 
coordinate of the 5` end of the m29.1 mRNA is shown by arrows and the TATA box is 
shown in bold and underlined. The location of the AATAAA polyadenylation signal and 
of the poly(A) of the 3` end of the m29.1 mRNA are shown by a box and broken 
arrow, respectively. The nucleotide sequence is shown with the location of 123-nt 
intron identified by RACE analysis indicated in lowercase letters. The stop codon is 
shown in grey highlights. The region of MCMV genomic DNA containing the m29.1 
and M28 is presented by bold and grey letters respectively. 
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3.10 RT-PCR for M28 and m29.2 gene expression in Rc29.1 
infected cells 
 

The m29.2 ORF is encoded on the complementary strand of the MCMV 

genome just prior to m29.1 (20) and has been shown to be expressed in wt 

virus infected NIH 3T3 cells (Section 3.2.2). The above RACE results 

suggested that the M28 ORF may be contained within the m29.1 mRNA 

(Section 3.11). Thus, it is possible that the introduction of a point mutation into 

the m29.1 ORF of Rc29.1 might affect the expression of these two ORFs. In 

addition, it is important to check that construction of mutant viruses does not 

affect ORFs downstream and upstream of the modification. To examine this, 

total RNA was isolated from Rc29.1 and mock infected NIH 3T3 cells 24 hours 

post-infection and analysed by RT-PCR. The GSP 35195F (Table 2.3) was 

used to generate cDNA and primers 35195F and 35722R were used to amplify 

a 559bp RT-PCR product from the M28 gene. The m29.2 expression was 

examined as described in Section 3.2.2.  

 

The whole MCMV genomic DNA template was used as a positive control and 

the reverse transcriptase was omitted in the negative control to confirm that the 

isolated RNA was free of DNA contamination. Amplification of a 559bp and a 

121bp (Figure 3.28) product confirmed the expression of M28 and m29.2 gene 

respectively in Rc29.1 infected NIH 3T3 cells. Thus, the point mutation in the 

m29.1 region of Rc29.1 virus appeared not to disrupt expression of the M28 or 

m29.2 gene. 
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Figure 3.28 RT-PCR for M28 (A) and m29.2 (B) gene expression in Rc29.1 infected NIH 3T3 cells 
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 Figure 3.28 RT-PCR for M28 (A) and m29.2 (B) gene expression in 
Rc29.1 infected NIH 3T3 cells. Total RNA was isolated from Rc29.1 
virus and mock infected NIH 3T3 cells 24 hours post-infection and 
analysed by RT-PCR. Products of 559bp or 121bp (lane 2) indicate the 
presence of the M28 or m29.2 gene specific transcript, respectively. 
MCMV genomic DNA was used as the positive control (lane 1) and 
reverse transcriptase was omitted from the negative control (lane 3). 
The size of the markers (M) from the 1kb ladder (Fermentas) are shown 
on the right and the left margins in bp. 
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3.11 Replication of mutant viruses in immunocompetent 
animals 
 

To determine whether disruption of translation of the m29 and m29.1 ORFs 

significantly affects viral replication in vivo, BALB/c mice were injected 

intraperitoneally with 104 PFU of Rc29, Rc29.1, Rv29.1 and wt viruses. 

Salivary glands, lungs, spleens, hearts, livers and kidneys were harvested 3, 7, 

10, 14, 21, 28, 35 and 42 days post-infection. In Rc29, Rc29.1, Rv29.1 and wt 

infected mice, no virus was detected in lungs, spleens, hearts, livers or kidneys 

at any time post-infection. In Rc29 infected mice, virus was first detected 7 

days post-infection in salivary glands and the peak titre was found at 21 days 

post-infection (Figure 3.29). No significance difference was found in virus titres 

between Rc29 and wt virus in this tissue except at days 7 and 10 post-

infection, when Rc29 virus titres were significantly higher than those of wt virus 

(p<0.05) (Figure 3.29). In contrast, in Rc29.1 infected mice virus was not  

detected until 10 days post-infection in salivary glands and yields peaked at 21 

days post-infection (Figure 3.30). These yields were lower (~1 log10 

PFU/tissue) and significantly different (p<0.05) from wt. Unlike wt virus, titres 

decreased significantly at 28 days post-infection and no virus was detected  35 

and 42 days post-infection (Figure 3.30). The titres of revertant virus Rv29.1 

were similar to those of the wt virus (Figure 3.30). Thus, these results provide 

evidence to suggest that m29 and m29.1 ORFs are dispensable for viral 

replication in vivo but the m29.1 ORF is important for optimal viral growth. 
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Figure 3.29 Virus titres in salivary glands of wt and Rc29 virus infected BALB/c mice 
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Figure 3.29 Virus titres in salivary glands of wt and Rc29 virus infected 
BALB/c mice. BALB/c mice were inoculated intraperitoneally with 104 PFU of virus. 
At 7, 10, 14, 21, 28, 35 and 42 days post-infection, animals were sacrificed, the 
salivary glands collected, homogenised and titrated for virus. The limit of detection 
was 100 PFU/tissue. The viral titres represent the mean of four animals ± standard 
deviation. Error bars that are not evident indicate that the standard deviation was 
less than or equal to the height of the symbols.  
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Figure 3.30 Virus titres in salivary glands of Rc29.1, Rv29.1 and wt virus infected BALB/c mice 
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Figure 3.30 Virus titres in salivary glands of Rc29.1, Rv29.1 and wt virus 
infected BALB/c mice. BALB/c mice were inoculated intraperitoneally with 104 PFU 
of virus. At 7, 10, 14, 21, 28, 35 and 42 days post-infection, animals were sacrificed; 
the salivary glands collected, homogenised and titrated for the virus. The limit of 
detection was 100 PFU/tissue. The viral titres represent the mean of four animals ± 
standard deviation. Error bars that are not evident indicate that the standard 
deviation was less than or equal to the height of the symbols.  
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3.12 Replication of mutant viruses in immunodeficient animals 
 

Immunodeficient animals, e.g. CB17 SCID mice, are extremely sensitive to 

MCMV infection (53, 115, 124, 133). To study the pathogenesis of mutant virus 

in these immunodeficient animals, the replication of Rc29.1 in different organs 

of the animals was examined at different times post-infection. CB17 SCID mice 

were injected intraperitoneally with 104 PFU of Rc29.1 and wt viruses. At 3, 7, 

10, 14, 21, 23, 28 and 31 days post-infection, four mice from each virus group 

were sacrificed and the salivary glands, livers, hearts, lungs, kidneys and 

spleens were harvested. Mice injected with wt and Rc29.1 viruses became sick 

at 23 and 31 days post-infection respectively. Animals were monitored 

regularly for body weight, mobility, clinical illness etc and when animals 

exhibited substantial symptoms, defined according to the FELASA Working 

Group on Pain and Distress (44) and thus would probably die, Home Office 

regulations required the animals to be humanely euthanised (Figure 3.31). 

Virus was detected in all organs of mice infected with wt or Rc29.1 viruses. In 

wt infected mice, virus was first detected at days 3 (spleen and kidney), 7 

(salivary glands and lung), 21 (liver) or 23 (heart) post-infection and yields in all 

organs were maximal at the time of death (Figure 3.32 & 3.33). In contrast, in 

Rc29.1 virus infected mice, virus was first detected at 10 (salivary glands, 

spleen, lung and kidney) or 28 (liver and heart) days post-infection and, in all 

organs, peak titres were again observed 31 days post-infection at the time of 

death (Figure 3.32 & 3.33). Virus yields were significantly lower in salivary 

glands at day 10, in spleen at days 14 & 21 and in kidneys at day 21 post-

infection (p<0.05) (Figure 3.32) when compared to wt virus. In all organs, the 
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Rc29.1 virus showed delayed replication compared to wt virus (Figure 3.32 & 

3.33). Thus, these results suggest that the delayed replication of Rc29.1 in 

these organs is due to disruption of m29.1 protein expression and that m29.1 

ORF is important for optimal viral growth in immunodeficient hosts. 

 
Figure 3.31 Survival rates of SCID mice inoculated with wt and Rc29.1 viruses 
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Figure 3.31 Survival rates of SCID mice inoculated with wt and Rc29.1 viruses. 
CB17 SCID (32 animals per group) mice were inoculated intraperitoneally with 104 
PFU of each virus. The sickness of the animals was monitored every day for five 
weeks. 
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Figure 3.32 Virus titres in salivary glands, spleen, lung and kidneys of CB17 SCID mice infected 
with wt or Rc29.1 viruses 
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Figure 3.32 Virus titres in salivary glands, spleen, lung and kidneys of 
CB17 SCID mice infected with wt or Rc29.1 viruses. Mice were inoculated 
intraperitoneally with 104 PFU of virus. At different time points, animals were 
sacrificed. Their salivary glands, spleen, lung and kidneys collected, 
homogenised and titrated for virus. The limit of detection was 100 PFU/tissue 
for salivary glands, lung and kidneys; 50 PFU/tissue for spleen only. The viral 
titres represent the means of four animals ± standard deviation. 
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Figure 3.33 Virus titres in liver and heart of CB17 SCID mice infected with wt or Rc29.1 viruses 
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Figure 3.33 Virus titres in liver and heart of CB17 
SCID mice infected with wt or Rc29.1 viruses. Mice 
were infected intraperitoneally with 10

 
4 PFU of virus. At 

different time points, animals were sacrificed. Their 
salivary glands, spleen, lung and kidneys collected, 
homogenised and titrated for virus. The limit of detection 
was 100 PFU/tissue. The viral titres represent the means 
of four animals ± standard deviation. 
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3.13 Point mutation is stable during viral growth in mice 
 

MCMV mutants with point mutations could revert to wild type. Indeed, a point 

mutation identified in the M98 region (165) of mutant tsm5 (136) has been 

shown to revert to wild type after several passages in tissue-cultured cells 

(Timoshenko and Sweet, unpublished). Although the in vitro and in vivo 

phenotype of Rc29 and Rc29.1 viruses did not suggest that this had occurred it 

was important to confirm that virus replicating in mice was still mutant. Thus, 

salivary glands of Rc29 and Rc29.1 inoculated BALB/c mice were harvested 

21 days post-infection, homogenised and inoculated onto NIH 3T3 cells. Viral 

DNA was purified from the infected cells and sequenced over m29 and m29.1 

region. A point mutation in the m29 gene of Rc29 virus and in the m29.1 gene 

of Rc29.1 virus was confirmed to be at nt positions 35,896 and 36,484 

respectively (data not shown). Thus, the point mutation in Rc29 and Rc29.1 

appeared to be stable. 
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4. DISCUSSION 
 

4.1 Sequence discrepancy to the published genome 
 

The MCMV genome was predicted to encode more than 170 ORFs, 78 of 

which have extensive homology to those of HCMV (128). Brocchieri and 

colleagues (20) re-annotated the whole MCMV genome sequence based on 

the previously published MCMV sequence data (128) and predicted a total of 

126 ORFs which were not noticeable in prior annotation efforts. However, few 

of these were examined to see if they are expressed. They also suggested that 

CMV genomes are likely to encode a greater number of overlapping genes 

than previously appreciated. A newly annotated ORF, m28.2 (20) overlapped 

with the published m29 ORF (128). Another re-analysis of the MCMV 

sequence identified 14 additional ORFs (170), some of which were shown to 

be expressed. 

 

A sequence discrepancy to the published MCMV genome (128) was identified 

in the m29 and m29.1 ORFs region in this study. An extra nucleotide, a 

guanine residue, at nucleotide position 36,198 was found, altering the 

predicted ORFs of m29 and m29.1. To examine whether this mutation is 

distinctive of MCMV strains, this region in other MCMV isolates was 

sequenced. This difference was also found in MCMV strain K181 and Smith 

(Birmingham) (136) and natural MCMV wild type isolates (N1, K17A and G4) 

(89). Insertion of this G shortened the C terminus of m29 from position 35,747 
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to 36,471 and extended that of m29.1 from position 36,660 to 36,032. A further 

cytosine insertion at nt position 37263 was identified in our Smith strain MCMV 

BAC in the m30 ORF and confirmed through sequencing the MCMV Smith 

strain (Birmingham) and natural wild type isolates (N1, K17A and G4). Insertion 

of this cytosine residue alters the ORF such that the stop codon in m30 no 

longer exists and the predicted protein continues into the published M31 ORF. 

It would be useful to sequence the M31 ORF to determine the stop codon for 

m30. This is because both ORFs are coded on same strand and M31 overlaps 

m30. Further sequencing studies were not followed-up due to time constraints. 

Such types of sequence discrepancies were also reported by several other 

groups. Indeed, an incorrect G insertion into the m20 ORF at position 20,958 of 

the MCMV genome was reported by Kattenhorn and colleagues (70). Removal 

of this G extended the C terminus of m20 from position 20,805 to position 

20,579. Therefore, further annotation efforts should be carried out to resolve 

the anomalies in these studies. 

 

4.2 Organization of m29 and m29.1 ORFs and location of 
mutation 
 

The functional analysis of a gene needs manipulation at the DNA level. 

Insertional or deletion mutations are routinely used to characterize the function 

of the MCMV encoded genes (169, 170, 191). Genetic analysis of DNA viruses 

is difficult due to the compactness of the genomes, which results in overlapping 

ORFs. The m29 and m29.1 ORFs are overlapping and coded on opposite 

strands of the viral double stranded DNA (128). The newly predicted ORF 

m28.2 also overlaps m29 and is coded on the same strand. The ORF m29.2 
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overlaps m30 but is encoded on the complementary strand just upstream of 

the m29.1 ORF (Figure 4.1). Thus, to generate mutants in this region care was 

needed not to affect neighbouring genes. In this study, point mutations that 

introduced premature stop codons into the m29 and m29.1 ORFs near to 5’-

end of each ORF were constructed using BAC mutagenesis. 

Figure 4.1 A probable map of m29 and m29.1 ORFs with neighbouring ORFs 
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Figure 4.1 A probable map of m29 and m29.1 ORFs with neighbouring ORFs. 
The position of the point mutations in m29 and m29.1 is indicated by the arrow 
heads. The direction of transcription is indicated by the sharp end to the boxes, m29 
and m28.2 being encoded on the top DNA strand, the others on the bottom strand. 

4.3 m29, and m29.1 ORFs are detectable in NIH 3T3 cells 

 

RT-PCR is generally used to detect MCMV gene expression in infected cells, 

this has an increased sensitivity over that of microarray assay (170). 

Transcription from the m29 and m29.1 region was first detected in NIH 3T3 

cells at 3 and 2 hours post-infection, respectively using RT-PCR and 

expression was detected at all time points up to 24 hours. These observations 

were consistent with those of Tang and colleagues (170) who showed 

expression of the m29 and m29.1 ORFs in MCMV infected NIH 3T3 cells 24 
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hours post-infection using microarray assays. Attempts were made to 

characterise the number and size of the m29 and m29.1 transcripts in infected 

cells using northern blotting. Unfortunately, no RNA species were detected 

from either ORF in infected cells using probes derived from either randomly 

primed DNA or single stranded PCR products. An antisense RNA probe from 

the m29 or m29.1 ORFs would need to be synthesised by in vitro transcription 

as it has increased sensitivity over DNA or PCR probes. Due to time 

constraints no further northern blotting experiments were performed. 

 

The kinetic class expression pattern of IE, E and L genes was confirmed using 

protein and DNA synthesis inhibitors. Expression of the m123(ie1/3) ORF and 

lack of expression of M112/113(e1) in infected cells at IE times post-infection 

clearly showed that the dose of cycloheximide used was adequate to inhibit 

protein synthesis. The M75 gene has been classified to be an E-L gene. The 

intensity of RT-PCR products produced from the M75 transcript in the 

presence and absence of phosphonoacetic acid confirmed that inhibition of 

DNA synthesis occurred which agreed with the findings of Chambers and 

colleagues (28). In this study, it has been shown that m29 expression was 

inhibited in the presence of cycloheximide but not phosphonoacetic acid and 

thus belongs to the E gene family whereas m29.1 expression occurred in the 

presence of cycloheximide and thus was classed as a member of the IE gene 

family. 
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4.4 The MCMV genes m29 and m29.1 are dispensable 
 

The majority of MCMV genes (60%) are found to be non-essential for virus 

replication in cell culture (24). Indeed, a mutant with a deletion of the entire 

M27 to M31 region has recently been reported to be viable in tissue culture 

(24). Previous work in our laboratory with Kn29 and Kn29.1 viruses, with an 

insertional mutation in the m29 and m29.1 ORFs, showed that m29 and m29.1 

ORFs are dispensable (Kirby, personal communication). The Rc29 and Rc29.1 

BAC DNAs with a point mutation in the m29 and m29.1 ORFs respectively 

were transfected into NIH 3T3 cells to reconstitute infectious viruses. Infectious 

virus was readily obtained upon transfection, further suggesting that m29 and 

m29.1 ORFs are dispensable for replication in fibroblast cultures. 

 

4.5 Stop codon mutation should not affect transcription but 
should affect translation 
 

Due to insertion of a premature stop codon mutation at the 5’ end of the m29 

and m29.1 ORFs in Rc29 and Rc29.1 viruses respectively, transcripts from the 

both ORFs region should be expressed in each mutant. RT-PCR results 

strongly showed that this was the case (Figure 3.20). Similarly, expression of 

overlapping ORFs m29.2 and M28 was unaffected (Figure 3.28). However, no 

functional m29 or m29.1 proteins should be produced. Western blot analysis of 

the m29.1 protein provided direct evidence to show that the m29.1 protein was 

not expressed in Rc29.1 virus infected cells but it was in Rc29 and Rv29.1 

virus infected cells (Figure 3.23). On the other hand, no m29 protein product 
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was detected in wt, Rc29.1 or Rc29 virus infected cells. Antibody to the m29.1 

protein was raised in rabbits to purified protein expressed in E. coli cells and 

thus was monospecific and polyclonal. However, several attempts to express 

m29 protein in bacterial cells were unsuccessful. Likely epitopes in this protein 

were identified from its sequence and one of these was synthesised and used 

to immunise rabbits. Unfortunately, this antibody failed to detect m29 protein in 

western blots possibly because this epitope is part of a conformational epitope 

not present on the denatured protein run on gels or indeed is not antigenic at 

all.  Thus, the premature stop codon mutation in the m29.1 ORF of Rc29.1 has 

prevented the expression of functional protein. 

 

4.6 Properties of Rc29 and Rc29.1 viruses 
 

The Rc29 and Rc29.1 viruses were investigated for their growth phenotype in 

vitro. MEF cells were infected at low (0.05) and high (5.0) MOI with Rc29 and 

Rc29.1 viruses and their growth characteristics compared to wt virus.  At high 

MOI, no significant growth difference was found between Rc29 and wt virus. At 

low MOI, Rc29 virus grew to slightly lower titres when compared to the wt 

virus, suggesting a defect in virus release. Therefore, in this study, it has been 

concluded that m29 ORF is likely to play a role in virus release during 

replication but it seems to have a minor effect. 

 

On the other hand, at both high and low MOI, Rc29.1 showed a significantly 

slower growth than wt virus. Thus, although m29.1 is not an essential ORF its 

product augments virus replication and appears to be required for maximal 
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growth. Another interesting feature is that Rc29.1 virus formed smaller plaques 

than the parental virus in MEF cells (Figure 3.26). As m29.1 belongs to IE gene 

family and as the MCMV ie1 mutant virus also showed slower growth and 

formed smaller plaques than the parental virus in MEF cells (102) it is 

interesting to speculate that m29.1 may have a similar function to ie1. 

 

To study the replication of Rc29 and Rc29.1 in immunocompetent and 

immunodeficient hosts, an in vivo experiment was carried out with adult 

BALB/c and SCID mice. In immunocompetent mice, e.g. BALB/c, innate and 

adaptive immunity are able to combat viral replication. The experiment with 

these mice was expected to show, whether or not, the mutation in m29 or 

m29.1 ORFs had a growth defect in vivo. Therefore, to study the viral 

replication in vivo, BALB/c mice are routinely injected intraperitoneally with 104 

PFU and examined over a short period of time (82, 169, 191). In contrast, 

immunodeficient animals, e.g. CB17 SCID mice, are extremely sensitive to 

MCMV infection (53, 115, 124, 133). A low dose of 10 PFU is capable of killing 

half of the infected animals (124). The experiment with these mice was 

expected to show, whether or not, the Rc29 or Rc29.1 viruses were capable of 

replication or causing death as the mice have no adaptive immune response. 

Therefore, SCID mice are routinely injected intraperitoneally with 104 PFU and 

examined over a short period of time to study the viral replication, virulence 

and pathogenicity in vivo (82, 169, 191). 

 

In BALB/c mice, no significant difference was observed between wt and Rc29 

viruses in salivary glands. On the other hand, Rc29.1 was delayed in 
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replication in the salivary glands.  For example, the wt virus was first detected 

with titres ~200 PFU/tissue at 7 days post-infection and was detectable with 

titres ~4.0x104 PFU/tissue at 42 days post-infection in salivary glands. But 

Rc29.1 virus was first detected with titres ~2.2x102 PFU/tissue at 10 days post-

infection and was detectable with titres ~1.5x103 PFU/tissue at 28 days post-

infection in the same organs (Figure 3.30). No viruses were recovered from the 

lung, spleen, kidneys, liver and heart of BALB/c mice that were 

intraperitoneally infected with either wt or Rc29 or Rc29.1 viruses. As Rc29 

virus showed no growth difference in BALB/c mice, it was assumed that the 

same results would be observed in SCID mice. Therefore, Rc29 virus was not 

injected into SCID mice. In SCID mice, Rc29.1 was also delayed in replication 

in the salivary glands, lungs, spleens, kidneys, livers and hearts. For example, 

the Rc29.1 virus was first detected in spleen, lung and kidneys at 10 days post-

infection with titres 75, 1.0x103 2, 1.3x10  PFU/tissue respectively, whereas wt 

virus was first detected in these organs at 3, 7 and 3 days post-infection 

respectively. In salivary glands, both viruses (wt and Rc29.1) were first 

detected at 7 days post-infection. Rc29.1 showed slightly reduced growth but 

the difference was not significant (Figure 3.32). In liver and heart, wt virus was 

first detectable at 21 and 23 days post-infection, respectively and in the same 

organs Rc19.1 was first detectable at 28 days post-infection (Figure 3.33). 

Moreover, all SCID mice infected with wt were found sick at 23 days post-

infection, whereas those infected with Rc29.1 were not sick until 31 days post-

infection (Figure 3.31). All sick mice were sacrificed due to Home Office license 

agreement. The Rc29.1 virus exhibited a delayed level of virulence in killing 

SCID mice as compared to that of the wt virus. From the above discussion, it 
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strongly suggests that m29 and m29.1 ORFs are not essential for viral 

replication in vivo, but m29.1 ORF improves the growth of MCMV significantly 

both in immunocompetent and immunodeficient hosts. 

 

It is possible that the observed change in the level of growth of the Rc29.1 is 

due to other adventitious mutations introduced during the construction and 

growth of mutant virus in tissue culture cells. However, several lines of 

evidence suggest that this is unlikely. First, the revertant virus Rv29.1 (the 

mutation in m29.1 ORF was restored to wt sequence) grew similarly in infected 

cultured cells (Figure 3.25) and in salivary glands of the infected BALB/c mice 

(Figure 3.30) to wt virus. As Rv29.1 and wt viruses grew equally in BALB/c, it 

was assumed that the same phenotype would be observed in SCID mice. 

Thus, the revertant virus Rv29.1 was not injected into SCID mice. Second, 

restoration of the wt phenotype in Rv29.1 occurred together with the 

restoration of m29.1 protein expression (Figure 3.23). Third, Rc29.1 virus 

produced smaller plaques than wt virus on MEF cell monolayers. The Rv29.1 

virus produced similar sized plaques to wt virus (Figure 3.26). Fourth, the 

mutation in the m29.1 ORFs were stable during replication in animals (Section 

3.12). Thus, these results suggest that the observed change in the level of 

growth of the Rc29.1 is due to disruption of m29.1 protein expression as a 

consequence of a stop codon insertion at the 5’ end. 
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4.7 RACE analysis of m29.1 transcript 
 

The MCMV immediate early region produces two alternative spliced transcripts 

that encode the ie1 protein pp89 and the 88 kDa ie3 protein (101). Indeed, an 

MCMV ie1 mutant virus showed slower growth and formed smaller plaques 

than the parental virus in MEF cells (102). In this study, it has been concluded 

that the m29.1 gene belongs to the IE class of genes (Section 3.2.3) and the 

phenotypes observed for the Rc29.1 virus were similar to those of the MCMV 

ie1 mutant virus (102). Therefore, it was possible that the m29.1 ORF might 

produce a spliced transcript(s). To examine this, a 5' and 3' RACE analysis of 

mRNA extracted from wt virus infected cells was performed. RACE analysis 

has been routinely used to examine mRNA species in CMV infected cells (4, 

90, 175). 5’-RACE revealed two transcription start sites at nt 36,752 and 

36,754, 92bp and 94bp upstream from the previously predicted initiator 

methionine (128) and an appropriate TATA sequence at position 36,784. 3’-

RACE analysis identified an AAUAAA polyadenylation signal at nt 34,359, 

followed by a poly(A) tag at nt 34,342 (Figure 3.27). Therefore, the transcript 

from the m29.1 ORF was about 2.4kb in length. However, two other interesting 

observations were made from analysis of the RACE results. First, analysis of 

the MCMV genomic sequence revealed that ORF M28 may be contained 

within the m29.1 mRNA because the first AAUAAA polyadenylation signal is 

located 3` to the M28 ORF. Second, a low abundance spliced transcript (1 out 

of 8 clones) was found to be expressed from the m29.1 ORF in which a 123bp 

intron had been removed. However, further northern blot analyses with more 
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suitable probes will need to be carried out to confirm the unspliced and spliced 

transcripts expressed from the m29.1 ORF. 

 

Several possibilities may explain how the m29.1 and M28 ORFs are expressed 

from one mRNA. These include: leaky scanning, re-initiation, ribosomal 

frameshifting, suppression of termination, splicing and an internal ribosome 

entry site (IRES). Leaky scannning usually occurs when the ribosome binds at 

the next AUG codon and is unlikely to operate in this case. Suppression of 

termination occurs relatively frequently with viruses e.g. the alphavirus nsP4 

(85) and retrovirus gag-Pol genes (180) but read-through of the m29.1 stop 

codon would produce an m29.1/M28 fusion protein. Western blotting showed 

only a single protein indicative of the size expected for the m29.1 product. 

Ribosomal frameshift is unlikely for the same reason. 

 

Re-initiation is a possibility as this has been observed for the HCMV gpUL4 

(gp48) gene (26). However, the upstream ORF (uORF2) is short, only 22 

codons in length, and represses expression from the down stream ORF as 

ribosomes stall on the uORF2 termination codon (26). Clearly m29.1 is an 

independent ORF and this mechanism is unlikely to explain how the M28 

protein is produced. The most likely explanation is that an IRES may be 

located in between the m29.1 and M28 gene producing a bi-cistronic mRNA. 

All eukaryotic mRNAs possess a cap structure at the 5’ end that plays a central 

role to promote ribosome binding to the mRNA and to control the rate of 

translation initiation (49, 143). Ribosomes may also access eukaryotic mRNA 

by binding to an IRES. Thus, the m29.1 protein is synthesized by the cap-
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dependent initiation approach. Translation initiation of the M28 protein could be 

directed by the IRES segment which is predicted to be located upstream from 

the M28 initiation codon. IRESs were first discovered in picornavirus RNA, 

which have no 5’ cap structure (64, 119) and the presence of IRESs have also 

been reported in herpesvirus mRNA (10). 

 

IRES sequences are not conserved. Thus, it was not possible to identify an 

IRES sequence by a DNA database search. In future, a bicistronic luciferase 

reporter system (10) could be utilised to investigate whether the M28 protein is 

expressed from the 2.4kb bicistronic message utilising an IRES sequence. In 

this system, a bicistronic luciferase reporter plasmid could be constructed 

(pdLUC) (Figure 4.2), in which the genes for Renilla and firefly luciferases 

(which utilize different substrates) has been cloned in tandem downstream 

from a T7 RNA polymerase promoter (10). In this plasmid, ribosomes would 

have inefficient access to the downstream cistron (firefly luciferase), but would 

express the upstream cistron (Renilla luciferase). However, if an IRES 

sequence is inserted before the downstream ORF (firefly luciferase), 

translation should be considerably enhanced (up to 100-fold). Thus, DNA 

fragments immediately upstream from the M28 start codon could be cloned 

into plasmid pdLUC. The ratio of firefly luciferase activity to Renilla luciferase 

activity, one directed by putative IRES sequences and the other by cap-

dependant ribosome scanning, could be used to compare the activities of the 

different DNA fragments. The above system has been used to detect an IRES 

in Kaposi's sarcoma- associated herpes virus (KSHV) (10). 
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Figure 4.2 Map of the plasmid pdLUC 
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Figure 4.2 Map of the plasmid pdLUC. The plasmid has the coding sequence for 
the Renilla and firefly luciferase enzymes cloned downstream of a T7 RNA 
polymerase promoter. IRES sequences could be cloned between SmaI and NcoI 
restriction site.  

 

4.8 The m29.1 ORF could be a transcription factor 
 

CMV genes are transcribed in three sequential phases which are temporally 

regulated at IE, E or L times post infection. IE genes are the first viral genes 

which are transcribed upon infection without the need for prior viral protein 

synthesis. IE proteins have regulatory functions that are required for the 

expression of E and L genes. Three IE genes have been identified within the 

MCMV IE region. The most abundantly transcribed IE gene of MCMV, ie1, is 

an activator of transcription (75). The ie3 is a strong transcriptional activator of 

the MCMV e1 promoter and also shows an autoregulatory function by 

repression of the MCMV ei1/ie3 promoter (101). The ie2 is transcribed in the 

opposite direction to ie-1 and ie-3 and found to be non-essential for virus 

replication in vitro or in vivo (27). In this study, the m29.1 ORF has been 

classified as an IE gene. It is likely that the m29.1 ORF might have regulatory 

functions that are required for the expression of E and L genes. Indeed, the 
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Rc29.1 mutant virus showed a similar phenotype to that of the MCMV ie1 

mutant virus. Thus, it is possible to speculate that the m29.1 ORF product 

could be an activator of transcription. 

 

A global-DNA microarray has been developed to detect MCMV gene 

expression in infected cells (170). It would be useful to do a microarray 

experiment on mRNA extracted from Rc29.1 virus infected cells to observe 

whether the mutation in the m29.1 ORF down-regulates or up-regulates any 

other genes in the genome as the products of the MCMV ie-1(m123) and ie-

3(M122) genes had been proved as transactivators and repressors 

respectively (75, 101). Similarly, the MCMV enhancer has five or more binding 

sites for cellular factors including NF-κB and AP-1 to regulate transcription. 

Thus, it was interesting to speculate that upstream of the m29.1 ORF there 

may be similar DNA binding motifs for cellular transcription factors. At least 

1000bp nucleotide sequences upstream from the m29.1 ORF were checked 

but no DNA binding motifs were found. 

 

4.9 Conclusion 
 

The function of m29 and m29.1 ORF is unknown. Neither transcripts nor the 

protein products coded by these ORFs had been reported previously. This 

study indicates that m29 belongs to the early class gene family and is 

dispensable for virus replication both in tissue culture in vitro and in animals in 

vivo. However, it seems that m29 ORF has a minor effect on virus release 

during replication. In contrast, the m29.1 ORF is reported as an immediate 
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early gene in this study. It has been proposed that m29.1 ORF could be a 

transcription factor. However, apart from the kinetic experiments, no further 

evidence has been shown to support this assumption. A transcript of about 

2.4kb is expressed from the m29.1 ORF which produces a protein product of 

about 28-30 kDa. The m29.1 ORF is also dispensable for virus replication both 

in tissue culture in vitro and in animals in vivo, but the virus grew to significantly 

lower yields and showed delayed replication due to lack of the m29.1 protein 

which suggests that  m29.1 ORF is required for optimum viral growth. 
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