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Abstract

This thesis is primarily concerned with saturated fusion systems over groups of shape

qr : q where q = pn for some odd prime p and some natural number n. We shall present

two results related to these fusion systems.

Our first result is a complete classification of saturated fusion systems over a Sylow

p-subgroup of SL3(q) (which has shape q3 : q). This extends a result of Albert Ruiz and

Antonio Viruel, who studied the case when q = p in [36]. As an immediate consequence

of this result we shall have a complete classification of p-local finite groups over Sylow

p-subgroups of SL3(q).

In the second half of this thesis we shall construct an infinite family of exotic fusion

systems over some groups of shape pr : p. This extends some work of Broto, Levi and

Oliver, who studied the case when r = 3 in [12].
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Introduction

In a finite group G, conjugate elements x and y have the same order. If π(|x|) = {p1, . . . pr}
(where for any n ∈ N, π(n) is the set of primes dividing n) then x = x1 . . . xr and

y = y1 . . . yr where xi, yi are uniquely determined pi-elements of 〈x〉 and 〈y〉 respectively.

This means that if x and y are conjugate in G, then so are xi and yi. This property,

together with Sylow’s Theorem, shows that many problems involving conjugacy in finite

groups can be reduced to problems about conjugacy of elements in Sylow p-subgroups of

finite groups. This is the concept of fusion; more formally, we say that elements x and y

of a Sylow p-subgroup S of a finite group G are fused if they are conjugate in G but not

necessarily in S.

A fusion system over a finite group S is a category whose objects are the subgroups

of S and whose morphisms consist of monomorphisms of groups, and which include all

the maps induced by conjugation in S. A natural example of a fusion system is obtained

by taking a subgroup S of a group G, and setting FS(G) to be the fusion system whose

morphisms are simply the maps induced by conjugation in G. The idea of encoding

information about fusion in a category is due to Puig [33], who used them to study p-

blocks of finite groups. This idea was subsequently picked up by Broto, Levi and Oliver

in [10] and used to study classifying spaces of finite groups. In [11] they studied a class of

topological spaces which behave similarly to classifying spaces of finite groups. This lead

them to define p-local finite groups, algebraic objects which admit a notion of a ‘classifying
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space’ which gives rise to such topological spaces. Part of this definition formalizes the

notion of a fusion system of a finite p-group, where p is a prime.

One of the most important properties of fusion in finite groups is explained by Alperin’s

Fusion Theorem (see [1]). This shows that all fusion in a finite group is local, i.e. that

any fusion in a finite group G takes place inside the normalizers of certain non-identity p-

subgroups of G. The concept of a saturated fusion system was first introduced by Puig in

[33] (who called them full Frobenius systems). A saturated fusion system has the property

that some form of Alperin’s Fusion Theorem holds, i.e. that the fusion is local in some

sense. In particular, a saturated fusion system is controlled by a subclass of subgroups

which we call Alperin subgroups. The definitions were later reformulated by Broto, Levi

and Oliver in [11], and more recently refined by Stancu in [38].

For a prime p, a p-local finite group consists of a triple (S,F ,L), where S is a finite

p-group, F is a saturated fusion system over S, and L is a category associated to F called

a centric linking system. The most natural examples of p-local finite groups are derived

from finite groups. However, there is considerable interest in finding p-local finite groups

that do not come from finite groups. Such objects are called exotic p-local finite groups.

Several examples have already been found, including the so-called Solomon 2-local finite

groups discovered by Levi and Oliver in [25]. These were based on some considerations of

Solomon in [37] on the Sylow 2-subgroups of Co3, and some later work of Benson in [4].

It was later shown by Aschbacher and Chermak in [3] that using amalgams an infinite

group can be constructed which gives rise to the saturated fusion system in some of the

Solomon 2-local finite groups.

Further examples of exotic p-local finite groups were discovered by Ruiz and Viruel in

[36]. In that paper, they classified the saturated fusion systems over the group p1+2
+ , the

extraspecial group of order p3 and of exponent p, and found several which did not come

from finite groups for p = 3, 5, 7 and 13. They then used a theorem of Broto, Levi and
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Oliver [11, Theorem E] to show that these fusion systems give rise to exotic p-local finite

groups.

In some sense, the goal of this thesis is to find some new exotic fusion systems. In

chapters 2-4, we investigate saturated fusion systems over Sylow p-subgroups of SL3(p
n)

for any n (note that p1+2
+ is a Sylow p-subgroup of SL3(p)). In fact this does not lead to

any new exotic fusion systems, but it does lead to and extension of the classification of

p-local finite groups over p1+2
+ given by Ruiz and Viruel to Sylow p-subgroups of SL3(p

n).

In chapters 5 and 6 we shall construct an infinite family of saturated fusion systems which

we shall be able to show are exotic.

In our investigation of saturated fusion systems over Sylow p-subgroups of SL3(p
n), we

are able to show that all of these fusion systems, apart from the exceptions found by Ruiz

and Viruel, come from finite groups. Let q = pn and S ∈ Sylp(SL3(q)). More specifically,

we show that a saturated fusion system F over S comes from one of:

• the semidirect product S : A where A is isomorphic to a p′-subgroup of ΓL2(q) :=

Aut(GL2(q));

• a group of the form q2 : B where SL2(q) ≤ B ≤ ΓL2(q) and B/SL2(q) has p′-order;

or

• a group G where PSL3(q) ≤ G ≤ Aut(PSL3(q)),

or it is one of the exceptional cases of Ruiz and Viruel, which includes fusion systems

coming from the Tits group, sporadic simple groups and extensions of sporadic simple

groups, as well as three exotic fusion systems.

The remaining chapters are devoted to the construction of an infinite family of exotic

fusion systems, similar to those constructed by Broto et al. in [12]. These arise by

considering the so-called basic modules for GL2(p) over finite fields.
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In the first chapter we introduce the basic theory of fusion systems, and we shall prove

a form of the Frattini Lemma for saturated fusion systems. This will help us determine

the structure of the fusion systems we shall be studying.

In chapter 2 we investigate the properties of the Sylow p-subgroups S of SL3(p
n). As

a result we shall be able to identify an important class of subgroups which contains the

Alperin subgroups for any saturated fusion system F over our group S.

The third chapter uses results of Timmesfeld to identify a subgroup isomorphic to

SL2(p
n) in the so-called F -normalizers of proper Alperin subgroups. This will be used in

later chapters to apply the Frattini Lemma for saturated fusion systems.

In the fourth chapter we complete the picture by analysing the F -normalizer of the

whole group S, and investigating how the F -normalizers of the proper Alperin subgroups

interact. We do this by proving a result about certain subgroups of PGL2(p
n), which also

sheds some light on how the exceptional fusion systems discovered by Ruiz and Viruel

come about.

In chapter 5 we shall construct a family of fusion systems (which we call E(n, p), where

2 ≤ n ≤ p− 1 and p is an odd prime), and show that they are saturated using a theorem

of Broto et al.. These will be fusion systems over Sylow p-subgroups of certain semidirect

products which arise naturally when considering the basic irreducible FpGL2(p)-modules.

We call these subgroups S(n, p). In fact, when n = 2 this is exactly the case considered

by Broto, Levi and Oliver in [12].

In the final chapter, we prove that the fusion systems studied in chapter 5 are in fact

exotic, whenever n ≥ 5 and p ≥ 13. We introduce these mild conditions on n and p in

order to minimize technical difficulties. It may in fact be possible to show that the fusion

systems E(n, p) are exotic for smaller values of n and p; indeed, Broto et al. proved that

they are exotic for n = 2 and p ≥ 3. To show that the systems E(n, p) are exotic we use

another theorem of Broto et al. to show that it suffices to check that no almost simple
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group gives rise to one of our fusion systems. We then go on to check all the almost simple

groups. For most almost simple groups G we are able to show that G does not contain a

Sylow p-subgroup isomorphic to any group of the form S(n, p). However, things are not

so easy when G is a classical group. In this case we directly show that there are subgroups

P of S(n, p) such that the E-normalizer of P is not the same as the FS(G)-normalizer of

P .
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Chapter 1

Preliminaries

In this chapter we shall introduce the basic theory of fusion systems.

1.1 Fusion Systems

We start by introducing some notation. Let G be a group and let g ∈ G. Denote by cg

the automorphism of G given by cg : x 7→ gxg−1 for any x ∈ G. If P and Q are subgroups

of G, then we define the transporter from P to Q to be the set NG(P,Q) of elements

which conjugate P to Q. Let Inj(P,Q) be the set of injective homomorphisms from P to

Q. Define HomG(P,Q) = {cg|P |P g ≤ Q}, i.e. HomG(P, Q) is just the set of elements of

Inj(P,Q) which are given by conjugation in G.

Note that if P is finite, then NG(P, P ) = {g ∈ G | gPg−1 = P} = NG(P ) and so

HomG(P, P ) = {cg ∈ Aut(P ) | g ∈ NG(P )} ∼= NG(P )/CG(P ).

Remark We can identify HomG(P, Q) in a natural way with the collection of right coset

in G of the form CG(P )g where g ∈ NG(P, Q).

Example A sensible way to encode all the fusion data about a subgroup S of a group G

is to put all the information into a category. We can do this by defining a category FS(G),
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whose objects are the subgroups of S, and where the morphisms are defined simply as

HomF(P, Q) := HomG(P,Q)

for any pair P, Q of subgroups of S. Note that, as we saw above, HomF(P, P ) is a group

isomorphic to NG(P )/CG(P ).

Before defining fusion systems, we shall introduce some terminology from category

theory. Let A and B be objects in the category C. Then an element of MorC(A,B) is

called a C-morphism. A C-isomorphism is an isomorphism in the category theoretic sense;

that is, a C-morphism φ ∈ MorC(A,B) such that there exists a morphism θ ∈ MorC(B,A)

such that φθ = 1A and θφ = 1B.

Definition 1.1.1 Let S be a group. A fusion system over S is a category F whose objects

are the subgroups of S and whose morphisms satisfy the following two properties:

(i) for any two subgroups P,Q of S,

HomS(P,Q) ⊆ HomF(P, Q) ⊆ Inj(P,Q),

(ii) any F-morphism can be factored as the composition of an F-isomorphism followed

by an inclusion.

(iii) The laws of composition in F are the same as the composition of injective homo-

morphisms.

Example The category FS(G) as defined above is a fusion system.

All the morphisms in F are injective group homomorphisms, so in the case that

S is finite (in the sequel we shall always assume that S is finite), every morphism in
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HomF(P, P ) is in fact an automorphism of P . For these reason we shall write HomF(P, P )

as AutF(P ). The second condition ensures that if α ∈ HomF(P, Q) then the isomorphism

P → Pα is an element of HomF(P, Pα).

Proposition 1.1.2 Let F be a fusion system over a group S. For any subgroup P ≤ S,

the set AutF(P ) is a group.

Proof: Note that AutF(P ) is a subset of Aut(P ) with the same multiplication defined

on it, so closure implies associativity. It remains to show closure and the existence of

inverses. Since F is a category, there is a law of composition

AutF(P )× AutF(P ) → AutF(P )

which ensures that AutF(P ) is closed. The existence of inverses is guaranteed by part

(ii) of the definition of a fusion system, which states that any morphism α ∈ AutF(P )

is an isomorphism. This means that α−1 ∈ AutF(P ). Hence AutF(P ) is a subgroup of

Aut(P ).

We write OutF(P ) for the group AutF(P )/Inn(S).

Two subgroups P, Q of S are called F -conjugate if there exists an F -isomorphism

between P and Q.

1.2 Equivalence of fusion systems

We now consider the problem of defining what it means for two fusion systems to be

the same. It would seem reasonable that we would require some kind of equivalence of

categories that respects the fact that the objects of our categories are groups. Recall that

an equivalence of categories C and D is a functor Φ : C → D with the property that there

exists a functor Ψ : D → C such that ΦΨ : C → C is naturally equivalent to the identity
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functor of C and ΨΦ : D → D is naturally equivalent to the identity functor on D (see,

for example, Hilton & Stammbach [23, Section II.4]). If Φ is an equivalence of categories

between the fusion systems F and G (over p-groups S and T respectively) we should also

require that for every subgroup P ≤ S there exist group isomorphisms tP : P → PΦ such

that for any Q ≤ S and any f ∈ HomF(P, Q), the following diagram commutes:

P
tP - PΦ

Q

f

?

tQ
- QΦ.

fΦ

?

This is what is called an isotypical equivalence by Martino and Priddy in [27], in the case

of fusion systems from finite groups.

Definition 1.2.1 Let F and G be fusion systems over p-groups S and T respectively. A

group isomorphism θ : S → T is said to preserve fusion from F to G if given subgroups

P,Q ≤ S and an isomorphism α : P → Q, then α ∈ HomF(P,Q) if and only if θ−1αθ ∈
HomG(P θ, Qθ).

Note that an isomorphism θ preserves fusion from F to G if and only if the map

HomF(P, Q) → HomG(P θ, Qθ)

f 7→ θ−1fθ

is a bijection for all subgroups P,Q ≤ S, and an isomorphism of groups if P = Q.

Example Let G be a finite group with S, T ∈ Sylp(G). By Sylow’s Theorem there exists

a g ∈ G such that Sg = T . It is easy to see that cg : S → T is a fusion preserving
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isomorphism from FS(G) to FT (G). This shows that the fusion system FS(G) does not

depend on the choice of S, up to fusion preserving isomorphism.

The following proposition is a generalisation to arbitrary fusion systems of a result of

Martino and Priddy [27, Corollary 1.2].

Proposition 1.2.2 Let F and G be fusion systems over p-groups S and T respectively.

Then F and G are isotypically equivalent if and only if there exists an isomorphism S → T

which preserves fusion from F to G. In fact, there is a natural one-to-one correspondence

between isotypical equivalences of fusion systems and fusion preserving isomorphisms.

Proof: Given a fusion preserving isomorphism θ : S → T , define a functor Θ : F → G as

follows: for any subgroup P ≤ S, set PΘ = P θ and for any morphism f ∈ HomF(P, Q)

set fΘ = θ−1fθ. It is easy to see that Θ is isotypical, and the functor Θ−1 induced by

the isomorphism θ−1 is clearly an inverse to Θ which is also isotypical. Hence Θ is an

isotypical equivalence of the fusion systems F and G.

Now suppose that Φ : F → G is an isotypical equivalence of fusion systems. For

each subgroup P ≤ S denote the inclusion map P ↪→ S by iP , and let (iP )Φ = fP ∈
HomG(PΦ, T ). We shall define a functor Θ : F → G which acts on objects by PΘ =

(PΦ)fP . Now let αP : PΦ → PΘ be the group isomorphism given by αP = fP . The action

of Θ on morphisms shall be:

(g : P → Q) 7→ (α−1
P gΦαQ : PΘ → QΘ).
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Note that the following diagram commutes, for any P,Q ≤ S and any g ∈ HomF(P, Q):

P
βP - PΦ αP - PΘ

Q

g

?

βQ

- QΦ

gΦ

?

αQ

- QΘ,

gΘ = α−1
P gΦαQ

?

where βP and βQ are group isomorphisms. This shows that Θ is naturally isomorphic to

Φ and that Θ is an isotypical equivalence of fusion systems which maps iP to iPΘ . For any

subgroup P , let θP = βP αP . By setting Q = S and g = iP in the diagram above, we see

that θP = θS|P . So the functor Θ is just the functor induced by the group isomorphism

θS. Thus for any subgroups P,Q ≤ S, the map

HomF(P, Q) → HomG(PΘ, QΘ)

f 7→ fΘ = θ−1
S fθS

is bijective. Thus by the remark above, the isomorphism θS is fusion preserving F → G.

Given α ∈ Aut(S) we can define a functor Θ by PΘ = Pα and for f ∈ HomF(P, Q),

define fΘ = α−1fα ∈ HomFΘ(Pα, Qα). By an abuse of notation, we denote FΘ by Fα.

The previous result shows that the fusion systems F and Fα are isotypically equivalent,

and that α is a fusion preserving isomorphism between F and Fα. Note that if α ∈
AutF(S) then Fα = F .

Corollary 1.2.3 Isotypically equivalent fusion systems are isomorphic as categories.

If F and G are isotypically equivalent fusion systems then we write F ∼= G.
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1.3 Generating fusion systems

The following ideas were first published by Aschbacher and Chermak in [3].

Definition 1.3.1 Let F1 and F2 be fusion systems over subgroups S1, S2 of a group S

respectively. We say that F1 is a fusion subsystem of F2, and write F1 ≤ F2 if F1 is a

subcategory of F2, i.e. if S1 ≤ S2 as groups, and for every pair P,Q ≤ S1, we have

HomF1(P, Q) ⊆ HomF2(P,Q).

Example Let S1, S2, G1 and G2 be groups with S1 ≤ S2 ∩ G1 and G1 ≤ G2. Then

FS1(G1) ≤ FS2(G2).

Note that there is always a unique largest fusion system U(S) and a unique smallest

fusion system FS(S) over a group S. These are defined as follows: for any P, Q ≤ S let

HomU(S)(P, Q) = Inj(P, Q) and let HomFS(S)(P, Q) = HomS(P, Q). Note that if F is any

fusion system over a group S then FS(S) ≤ F ≤ U(S).

Definition 1.3.2 Let F be a set of fusion systems over a group S. Then define FF =
⋂
F∈F F to be the category with objects as the subgroups of S and where morphisms are

defined by

HomFF
(P, Q) =

⋂
F∈F

HomF(P, Q).

We observe the following:

Proposition 1.3.3 [3, p10] Given a set F of fusion systems over a group S, the category

FF is a fusion system over S.

Given a set of fusion systems E, we define the fusion system generated by E to be the

fusion system FF where F is the set of all fusion systems containing every member of E;

we write 〈E〉 for the fusion system generated by E. We note the following:

12



Proposition 1.3.4 [3, Lemma 1.9] Let S be a group and let {Si}i∈I be a collection of

subgroups of S. For each i ∈ I, let Fi be a fusion system over Si and let F = {Fi}i∈I .

Suppose that there exists a j ∈ I such that Sj = S, and define a fusion system G whose

objects are the subgroups of S and where HomG(P,Q) consists of maps of the form α0 . . . αr

where for each 0 ≤ k ≤ r there exists an i ∈ I such that αk ∈ HomFi
(Pk, Pk+1), and where

P0 = P and Pr+1 = Q. Then 〈F 〉 = G.

Remark We may restate Proposition 1.3.4 as follows: if F is a collection of fusion systems

over subgroups of a finite group S, and at least one element of F is a fusion system over

S, then the 〈F 〉-morphisms are exactly the compositions of morphisms in fusion systems

in F .

The following are refinements of some ideas of Broto, Levi and Oliver [12, p20], where

we shall broaden the notion of generating fusion systems to the case when the data we

are given are just a collection of maps, and not a collection of fusion systems.

Let F0 be a fusion system over a finite p-group S and let ∆1, . . . , ∆n be groups such

that for each 1 ≤ i ≤ n, there exists a subgroup Qi ≤ S with AutF0(Qi) ≤ ∆i ≤ Aut(Qi).

Define a category F where for any two subgroups P, Q ≤ S, HomF(P, Q) is the set of all

composites

P = P0

φ1 - P1

φ2 - P2
- · · · - Pk−1

φk- Pk = Q

where for each 1 ≤ i ≤ k, either φi ∈ HomF0(Pi−1, Pi) or φi : Pi−1 → Pi is a group

isomorphism and there exists a j such that Pi−1, Pi ≤ Qj with φi the restriction of an

element of ∆j. It is routine to check that F is indeed a category.

Proposition 1.3.5 The category F as defined above is a fusion system. Furthermore,

it is the intersection of all fusion systems that contain F0 as a subsystem and all of the

maps in ∆1 ∪ . . . ∪∆n.
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Proof: We show that every F -morphism can be written as the composition of an F -

isomorphism and an inclusion. The other fusion system axioms are trivial to check.

We shall say an F -morphism φ : P → Q satisfies assumption (∗) if the restriction

of φ to any subgroup of P is an F -morphism that can be written as an F -isomorphism

composed with an inclusion.

Suppose we have two F -morphisms φ1 : A → B and φ2 : B → C, and both satisfy

assumption (∗). Since F is a category, the map φ1φ2 : A → C is an F -morphism. We

show that the map φ1φ2 : A → C can be written as an F -isomorphism composed with an

inclusion.

By assumption (∗) for φ1, φ1 induces an F -isomorphism φ′1 : A → Aφ1 . But Aφ1 ≤ B

and so by assumption (∗) for φ2, φ2 |Aφ1 : Aφ1 → C is an F -morphism that can be written

as an F -isomorphism composed with an inclusion. So φ2 |Aφ1 induces an F -isomorphism

φ′2 : Aφ1 → Aφ1φ2 . The composition of two F -isomorphisms is an F -isomorphism and

hence φ′1φ
′
2 : A → Aφ1φ2 is an F -isomorphism. It is now clear that φ1φ2 can be written

as the composition of φ′1φ
′
2 and the inclusion of Aφ1φ2 into C. Therefore by induction,

any finite composition of F -morphisms satisfying assumption (∗) can be written as an

F -isomorphism composed with an inclusion.

Now fix j. We show that every element of ∆j satisfies assumption (∗). If the iso-

morphism φ : P → P φ is the restriction of an element φ̂ of ∆j for some j, then φ is an

F -morphism. Note that φ−1 : P φ → P is the restriction of φ̂−1, which is also an element

of ∆j since ∆j is a group. Therefore for every element φ̂ ∈ ∆j and every subgroup Q of

Qj, there exists an F -isomorphism φQ ∈ HomF(Q,Q
bφ), and so every element of ∆j can

be written as an F -isomorphism followed by an inclusion.

Now, since F0 is a fusion system, any F0-morphism satisfies (∗), and we have shown

above that for every j, every element of ∆j also satisfies assumption (∗). Since every

F -morphism can, by definition, be written as a finite composition of restrictions of these
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maps, we have that every F -morphism can be written as an F -isomorphism composed

with an inclusion. Hence F is a fusion system.

It is clear that F must be a fusion subsystem of any fusion system which contains F0

and the maps in ∆1 ∪ . . . ∪∆n, and therefore F is the intersection of all of these fusion

systems.

We say that F is the fusion system generated by F0 and ∆1, . . . , ∆n, and write F =

〈F0, ∆1, . . . , ∆n〉.

1.4 Further properties of fusion systems

In this section, we prove some general properties of fusion systems.

Definition 1.4.1 Let F be a fusion system over a p-group S, and let P ≤ S.

• P is fully centralised in F if |CS(P )| ≥ |CS(Pα)| for all α ∈ HomF(P, S);

• P is fully normalised in F if |NS(P )| ≥ |NS(Pα)| for all α ∈ HomF(P, S);

• P is F -centric if CS(Pα) ≤ Pα for all α ∈ HomF(P, S);

• P is F -radical if Op(OutF(P )) = 1 where OutF(P ) := AutF(P )/Inn(P ).

Remark Note that if P ≤ S is F -centric then every subgroup of S which is F -conjugate

to P is F -centric. Furthermore, if P and Q are F -conjugate then AutF(P ) ∼= AutF(Q)

as groups. Hence if P is F -radical then so is Q.

We now state some general facts about fusion systems from finite groups, and give

their proofs for the convenience of the reader.

Lemma 1.4.2 [11, Proposition 1.3] Let G be a finite group, S ∈ Sylp(G), and F the

fusion system FS(G). Let P ≤ S.
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(i) P is fully normalised if and only if NS(P ) ∈ Sylp(NG(P ));

(ii) P is fully centralised if and only if CS(P ) ∈ Sylp(CG(P )); and

(iii) if P is fully normalised then P is fully centralised.

Proof: If NS(P ) ∈ Sylp(NG(P )) then |NS(P )| = |NG(P g)|p ≥ |NS(P g)| for any g ∈ G,

and therefore P is fully normalised. Similarly, if CS(P ) ∈ Sylp(CG(P )) then P is fully

centralised.

Suppose that P is fully normalised. Let R ∈ Sylp(NG(P )) such that NS(P ) ≤ R.

By Sylow’s Theorem there exists a g ∈ G such that Rg ≤ S, since S ∈ Sylp(G). Thus

Rg ∈ Sylp(NG(P g)) and Rg ≤ S ∩NG(P g) = NS(P g). Since P is fully normalised we have

|R| = |Rg| = |NS(P g)| ≤ |NS(P )| ≤ |R|.

Therefore R = NS(P ) ∈ Sylp(NG(P )), proving (i).

Now suppose that P is fully centralised. Again, let R ∈ Sylp(NG(P )) such that

NS(P ) ≤ R, and let g ∈ G such that Rg ≤ S. Since CG(P ) E NG(P ) we have that

R ∩ CG(P ) ∈ Sylp(CG(P )). Then Rg ∩ CG(P g) ∈ Sylp(CG(P g)), and so CS(P g) ∈
Sylp(CG(P g)), since Rg∩CG(P g) ≤ CS(P g). But CS(P ) = R∩CG(P ) therefore |CS(P )| ≤
|CS(P g)|. As P is fully centralised, this means that |CS(P )| = |CS(P g)| and so CS(P ) ∈
Sylp(CG(P )).

To prove (iii), suppose P ≤ S is fully normalised in F . By (i) and (ii), NS(P ) ∈
Sylp(NG(P )) and CG(P )ENG(P ) and so CS(P ) = NS(P )∩CG(P ) ∈ Sylp(CG(P )), hence

P is fully centralised.

Proposition 1.4.3 Let S be a finite p-group with |S| > p and let F be a fusion system

over S. Let P be an F-centric subgroup of S. Then |P | > p.
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Proof: Suppose |P | = p. Then by comparing orders, it is clear that P � S, and so

NS(P ) 	 P since S is a finite p-group. As |P | = p, we have that NS(P ) = CS(P ) since

NS(P )/CS(P ) is a p-subgroup of Aut(P ) ∼= p−1, and therefore trivial. Hence CS(P ) > P ,

so P cannot be F -centric.

1.5 Saturated fusion systems

The notion of saturation of fusion systems over finite p-groups arises naturally when

considering fusion systems of the form FS(G) where G is a finite group and S ∈ Sylp(G).

For any subgroup P ≤ S and any morphism φ ∈ HomF(P, S), set

Nφ = {g ∈ NS(P )|φ−1cgφ ∈ AutS(P φ)}.

Note that Nφ is a subgroup of NS(P ) which contains P . It is also useful to observe that

Nφ is the largest subgroup of S to which φ could possibly extend. This is because if

g ∈ Nφ and φ ∈ HomF(Nφ, S) is an extension of φ, then φ
−1

cgφ = cgφ .

The definition of saturation presented here is the one used by Broto, Levi and Oliver

in [11], and it is equivalent to the Puig’s definition of full Frobenius systems. Stancu has

produced a similar set of conditions which have been shown to be equivalent to the ones

presented here [38]. Throughout this thesis we shall use the definition of Broto, Levi and

Oliver.

Definition 1.5.1 Let S be a finite p-group and let F be a fusion system over S. Then

F is saturated if:

(I) Every fully normalized subgroup P in F is fully centralized in F , and AutS(P ) ∈
Sylp(AutF(P )).

(II) If P ≤ S and φ ∈ HomF(P, S) is a homomorphism such that P φ is fully centralized

then φ can be extended to a homomorphism φ̄ ∈ HomF(Nφ, S) with φ̄|P = φ.
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Throughout this thesis we shall denote the above conditions by (I) and (II) respec-

tively.

Lemma 1.5.2 Let F be a saturated fusion system over a finite p-group S. Then S is

fully normalised, fully centralised, F-centric and F-radical. In particular, OutF(S) is a

p′-group.

Proof: Since S is F -conjugate only to itself, S is fully normalised and fully centralised,

and it is easy to see that S is F -centric.

To show that S is F -radical, we need to show that Op(OutF(S)) = 1. But F is

saturated, and so AutS(S) ∈ Sylp(AutF(S)). Thus OutF(S) = AutF(S)/AutS(S) is a

p′-group and hence Op(OutF(S)) = 1.

The following proposition can be found in [11, Proposition 1.3]; we provide a slightly

different proof, based on some ideas of Chermak [14].

Proposition 1.5.3 Let G be a finite group with S ∈ Sylp(G). Then F = FS(G) is a

saturated fusion system.

Proof: First we prove (I). Lemma 1.4.2 shows that if P is fully normalised then P is

fully centralised. Lemma 1.4.2 also implies that

AutS(P ) ∼= NS(P )

CS(P )
∼= NS(P )CG(P )

CG(P )
∈ Sylp

(
NG(P )

CG(P )

)
= Sylp(AutG(P )),

proving (I).

To prove (II), let g ∈ NG(P, S) such that P g is fully centralised in F . Set M =

CG(P )NSg−1 (P ).

Claim 1: Ncg ≤ M .

Let x ∈ Ncg . Then cg−1xg = ch for some h ∈ NS(P g), so g−1xg ∈ CG(P g)NS(P g). Hence

x ∈ M as claimed.
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Claim 2: NSg−1 (P ) ∈ Sylp(M).

The group CS(P g) is a Sylow p-subgroup of CG(P g) because P g is fully centralised. Hence

|CG(P g)NS(P g)|
|CG(P g)| =

|NS(P g)|
|CS(P g)|

and therefore

|M |
|NSg−1 (P )| =

|CG(P g)NS(P g)|
|NS(P g)| =

|CG(P g)|
|CS(P g)|

is coprime to p. Since NSg−1 (P ) is a p-group, it must be the case that NSg−1 (P ) ∈ Sylp(M),

proving claim 2.

Now, Ncg is a p-subgroup of M so there exists an h ∈ CG(P ) such that Nh
cg
≤ NSg−1 (P ),

so we have Nhg
cg
≤ NS(P g) ≤ S. Hence hg ∈ NG(Ncg , S). Since h ∈ CG(P ), we have that

chg|P = cg|P , and so chg|P ∈ HomF(Ncg , S) which extends cg|P .

We now construct some useful fusion subsystems of a fusion system F .

Definition 1.5.4 Let F be a fusion system over a finite group S, let Q ≤ S and let

K ≤ Aut(Q). Define the K-normalizer fusion system of Q in F to be the fusion system

NK
F (Q) over NK

S (Q) = {g ∈ NS(Q)|cg ∈ K} with

HomNK
F (Q)(P, P ′) = {φ ∈ HomF(P, P ′)|∃ψ ∈ HomF(PQ, P ′Q), ψ|P = φ, ψ|Q ∈ K}.

In particular, we write NF(Q) = N
Aut(Q)
F (Q) and CF(Q) = N

{IdQ}
F (Q). These are

called the normalizer and centralizer fusion systems respectively.

Note in particular that NF(S) is the fusion system generated by the subcategory

consisting of just S and AutF(S), i.e. the fusion system all of whose morphisms are just

compositions of restrictions of morphisms in AutF(S).

A proof of the following proposition may be found in [11, Proposition A.6].

Proposition 1.5.5 Let F be a saturated fusion system over a group S and let Q ≤ S.
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(i) If Q is fully F-normalized then NF(Q) is a saturated fusion system over NS(Q).

(ii) If Q is fully F-centralized then CF(Q) is a saturated fusion system over CS(Q).

Lemma 1.5.6 Let F be a saturated fusion system over a finite p-group S, and let P E S

be a fully F-centralized normal subgroup of S. Then there is a canonical isomorphism

NAutF (S)(P )

CAutF (S)(P )
→ NAutF (P )(AutS(P )).

Proof: Firstly, note that, as P is normal, NAutF (P )(AutS(P )) is the set of F -automorphisms

φ of P such that Nφ = NS(P ) = S.

Also note that if α ∈ NAutF (S)(P ) then α|P ∈ NAutF (P )(AutS(P )). This is because, for

any x ∈ P and any g ∈ S,

xα−1cgα = (g−1xα−1

g)α = (g−1)αxgα = (gα)−1xgα = xcgα .

Thus we may define a map Θ : NAutF (S)(P ) → NAutF (P )(AutS(P )) by α 7→ α|P .

Now, since P is fully normalized saturation implies that Θ is surjective because any

φ ∈ NAutF (P )(AutS(P )) extends to a map φ ∈ AutF(S) such that φ|P = φ. Furthermore

Θ is a homomorphism of groups since if α, β ∈ NAutF (S)(P ) then αβ|P = α|P β|P . It is

also easy to see that the kernel of Θ is CAutF (S)(P ). Therefore there is an isomorphism

NAutF (S)(P )

CAutF (S)(P )
→ NAutF (P )(AutS(P )).

1.6 p-local finite groups

The notion of a p-local finite group was first developed by Broto, Levi and Oliver in

[11], as a way of trying to understand the p-completed classifying spaces of finite groups.
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A p-local finite group is an object which admits a notion of a classifying space. These

classifying spaces have many of the same properties as the classifying spaces of finite

groups.

Let G be a finite group and regard G as a category with one object, whose morphism

set is simply the set of elements of G, and where composition of morphisms is just given

by multiplication in the group G. Then the nerve NG of G is a simplicial set, where an

n-simplex consists of an ordered sequence of elements of G, together with a face map

si : (x0, . . . , xn) 7−→ (x0, . . . , xi, 1G, xi+1, . . . , xn),

and a degeneracy map

di : (x0, . . . , xn) 7−→ (x0, . . . , xi−1, xixi+1, xi+2, . . . , xn).

The classifying space BG of G is defined to be the topological realization |NG| of the

nerve of G. The space BG has the property that its fundamental group π1(BG) ∼= G,

and that all higher homotopy groups are trivial. For more details, see [5, Chapters 1,2].

The p-completion of BG is a space BG∧
p which encodes many properties of the group

G which depend on the prime p, such as the cohomology modulo p. For example, the

Martino-Priddy-Oliver Theorem (see [28] and [29]) states that given two finite groups G

and H, with Sylow p-subgroups S and T respectively, then BG∧
p is homotopy equivalent

to BH∧
p if and only if the fusion systems FS(G) and FT (H) are isotypically equivalent.

For a subgroup P of a finite group G, let θ(P ) = Op(CG(P )). That is, θ(P ) is the

smallest normal subgroup of CG(P ) with p-power index in CG(P ).

Definition 1.6.1 Let G be a finite group with S ∈ Sylp(G). Define a category L = LS(G),

whose objects consist of the F-centric subgroups of S and with MorL(P, Q) equal to the set

of right cosets in NG(P,Q) of the form θ(P )g where g ∈ NG(P,Q). Define composition
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in L as follows: let g ∈ NG(P, Q) and let h ∈ NG(Q,R). Then define

(θ(P )g)(θ(Q)h) = θ(P )gh.

The category L is called the centric linking category associated to G with respect to S.

Lemma 1.6.2 Composition in L is well-defined.

Proof: We prove that composition is well-defined by showing that (θ(P )g)(θ(Q)h) =

θ(P )gh as subsets of G. Let x ∈ θ(P ), y ∈ θ(Q), g ∈ NG(P,Q) and h ∈ NG(Q, R), so

that xgyh is a typical element of (θ(P )g)(θ(Q)h). Then y ∈ CG(Q) ≤ CG(P g) = CG(P )g,

and so y = zg for some z ∈ CG(P ). We now have

xgyh = xgg−1zgh = xzgh ∈ θ(P )gh,

since both y and z have order prime to p. Now let xgh ∈ θ(P )gh, for some x ∈ θ(P ).

Then clearly xgh = xg.1h ∈ (θ(P )g)(θ(Q)h). Hence (θ(P )g)(θ(Q)h) = θ(P )gh.

Now define a functor π : L → F which acts as the identity on objects, as natural

projection on morphisms i.e. π : MorL(P,Q) → MorF(P,Q) is given by θ(P )g 7→ CG(P )g

for any g ∈ NG(P, Q). Also define a homomorphism of groups δP : P → AutL(P ) given

by x 7→ θ(P )x. Note that δP is injective since if θ(P )x = θ(P ) then x ∈ θ(P ). But x ∈ P

and so has p power order. Since P is FS(G)-centric, we have that Z(P ) ∈ Sylp(CG(P ))

(for a proof of this, see [10, Lemma A5]). This implies that θ(P ) is a Hall p′-subgroup of

CG(P ) (that is, a p′-subgroup with p-power index in CG(P )). Hence x = 1, hence ker(δP )

is trivial.

Proposition 1.6.3 [11, p786] Let G be a finite group, let S ∈ Sylp(G) and write

F = FS(G). Let L = LS(G) be the centric linking system associated to F . Let π and δP

be as above. Then the following hold:
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(A) For each P,Q in L, Z(P ) acts freely on MorL(P,Q) (via δP , each element of Z(P )

induces an element of AutL(P ), and so Z(P )δP acts on MorL(P, Q) by composition)

and π induces a bijection from the collection of distinct orbits in the action of Z(P )δP

on MorL(P,Q) to HomF(P, Q).

(B) For each F-centric subgroup P of S and each g ∈ P , π sends gδP ∈ AutL(P ) to

cg ∈ AutF(P ).

(C) For each f ∈ MorL(P, Q) and each g ∈ P the following diagram commutes:

P
f - Q

P

gδP

? f - Q

(gfπ
)δQ

?

Definition 1.6.4 Let S be any finite p-group, and let F be a saturated fusion system

over S. A centric linking system associated to the fusion system F is a category L
whose objects are the F-centric subgroups of S together with a functor π : L → F which

acts as the identity on objects and is surjective on morphisms and a distinguished set of

monomorphisms δP : P → AutL(P ) for all P ∈ L satisfying the properties (A), (B) and

(C) above.

Definition 1.6.5 A p-local finite group is a triple (S,F ,L) where S is a finite p-group,

F is a saturated fusion system over S and L is a centric linking system associated to F .

The classifying space of a p-local finite group (S,F ,L) is the space |L|∧p .

There is a notion of an isomorphism between p-local finite groups, which consists of a

pair (α, β) where α is an isotypical equivalence of fusion systems and β is an isomorphism

of categories between two centric linking system. The maps α and β must also satisfy
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various compatability conditions which we shall not discuss here. For more details, see

[3, Definition 2.10].

Definition 1.6.6 A p-local finite group (S,F ,L) is called exotic if it is not isomorphic

to a p-local finite group of the form (S,FS(G),LS(G)), where G is a finite group with S

isomorphic to a Sylow p-subgroup of G. Similarly, a saturated fusion system F over a

p-group S is called exotic if there does not exist a finite group G such that F is isotypically

equivalent to the fusion system FS(G).

The following theorem is an immediate consequence of [28, Theorem 4.5] and [11,

Proposition 3.1].

Theorem 1.6.7 Let p be an odd prime and let S be a finite p-group. Let F be a saturated

fusion system over S, and suppose that F is not exotic, i.e. there exists a finite group G

with S ∈ Sylp(G) such that F ∼= FS(G). Then there exists a unique centric linking system

associated to F , namely LS(G).

It has been conjectured by Oliver [28, Conjecture 2.2] that this result holds for all

saturated fusion systems, and thus that a p-local finite group is uniquely determined (up

to an isomorphism of p-local finite groups, a notion which we shall not discuss here) by

its associated saturated fusion system.

There is a great deal of interest in finding examples of exotic p-local finite groups, as

the study of these objects may shed some light on what it really means for a space to

be the p-completed classifying space of a finite group. Examples may be found in [11],

[12], [18], [25], and [36]. Indeed, one of the aims of this thesis is to construct some exotic

p-local finite groups, which will be described in later chapters.

24



1.7 Subgroup families controlling fusion

In general it is very difficult to say much about fusion systems over a p-group S because

it is necessary to know all the subgroups of S and all the morphisms between them. This

makes the task of classifying fusion systems over a given group extremely hard in general.

Fortunately, saturated systems have a more rigid structure, and the following version of

a famous theorem of Alperin shows that a saturated fusion system is generated by its

centric and radical subgroups (in a way which we define later). A stronger version was

first proved by Puig [33, Corollory 3.9], but the version given here and the proof, which

we reproduce here for the convenience of the reader, are from [11, Theorem A10].

Theorem 1.7.1 (Alperin’s Fusion Theorem for Saturated Fusion Systems) Let F be a

saturated fusion system over a finite p-group S. Let P be a subgroup of S. Then for each

morphism φ ∈ HomF(P, S) there exist sequences of subgroups of S

P = P0, P1, . . . , Pk = P φ and Q1, Q2, . . . , Qk,

and elements φi ∈ AutF(Qi) such that

(i) Qi is fully normalized, F-centric and F-radical for 1 ≤ i ≤ k.

(ii) Pi−1, Pi ≤ Qi and P φi

i−1 = Pi.

(iii) φ = φ1|P φ2|P1 · · ·φk|Pk−1
.

Proof: We proceed by backwards induction on the order of P . The theorem is true for

P = S since S is fully normalised, F -centric and F -radical by Lemma 1.5.

Assume now that P � S, and that the theorem holds for all subgroups of greater

order. From the definition of fully normalized subgroups, it is clear that there exists a

fully normalized subgroup P ∗ < S which is F -conjugate to P . Let ψ ∈ HomF(P, P ∗).
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Now if the theorem holds for φ−1ψ ∈ HomF(P φ, P ∗) and ψ then it holds for φ. This

is a consequence of that fact that if ψ = ψ1ψ2 . . . ψk and φ−1ψ = φ1φ2 . . . φl then φ =

ψ(φ−1ψ)−1 = ψ1 . . . ψkφ
−1
l . . . φ−1

1 . Therefore, it suffices to prove the theorem in the case

when the image P φ is fully normalized.

Assume now that P φ is fully normalized. Note that φ−1AutS(P )φ is a p-subgroup of

AutF(P φ) (since φ−1cgφ = cgφ). From (II) we have that AutS(P φ) ∈ Sylp(AutF(P φ))

and so by Sylow’s Theorem, there exists an automorphism ψ ∈ AutF(P φ) such that

ψ−1φ−1AutS(P )φψ ≤ AutS(P φ).

So if we set χ = φψφ−1 ∈ AutF(P ) then we have

φ−1χ−1AutS(P )χφ ≤ AutS(P φ). (1.1)

Now, F is saturated and P φ is fully normalized, and so P φ is fully centralized. From

Definition 1.5.1 (II), χφ extends to a homomorphism χφ ∈ HomF(Nχφ, S). But if g ∈
NS(P ) then by (1.1) we have φ−1χ−1cgχφ ∈ AutS(P φ), and so Nχφ = NS(P ). Since P is

a proper subgroup of S, NS(P ) 	 P , and so by our inductive hypothesis the result holds

for χφ, and hence for χφ. Therefore the result holds for φ if and only if it holds for χ. It

now suffices to prove the result for P = P φ with P fully normalized and φ ∈ AutF(P ).

Assume now that this is the case. If P is F -centric and F -radical then the result holds

trivially. So assume that P is not F -centric. P is fully normalized and F is saturated,

so P is fully centralized. It is easy to see that CS(P )P ≤ Nφ, and so by saturation, we

have that φ extends to a homomorphism φ ∈ AutF(CS(P )P ). Since P is not F -centric,

CS(P )P � P and so the result holds by induction.

Finally, assume that P is not F -radical. Let K = Op(AutF(P )). Note that since

P is not F -radical, K 	 Inn(P ). Set NK
S (P ) = {g ∈ NS(P )| cg ∈ K}. Since P is
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fully normalized, AutS(P ) ∈ Sylp(AutF(P )), and so K ≤ AutS(P ). Now, if g ∈ NK
S (P ),

then φ−1cgφ ∈ K, since K is a normal subgroup of AutF(P ). But K ≤ AutS(P ) so

φ−1cgφ ∈ AutS(P ). Thus NK
S (P ) ≤ Nφ(P ). By saturation, φ extends to a homomorphism

φ ∈ HomF(NK
S (P ), S). But NK

S (P ) 	 P since K 	 Inn(P ), and so, by induction, the

result holds.

Definition 1.7.2 Let F be a saturated fusion system over a finite group S. We call

a subgroup P ≤ S an F -Alperin subgroup if P is fully F-normalised, F-centric and

F-radical.

Note that S is always an F -Alperin subgroup. We shall denote the set of all proper

Alperin subgroups in a fusion system F over a p-group S by Alp(F).

A form of converse to Alperin’s Fusion Theorem is proved in the joint work of Broto,

Castellana, Grodal, Levi and Oliver [8]. We give an outline of their main result.

Definition 1.7.3 Let F be a fusion system over a finite p-group S, and let H be a col-

lection of subgroups of S that is closed under F-conjugation.

(i) F is H-generated if every morphism in F is a composite of restrictions of morphisms

in F between subgroups in H;

(ii) F is H-saturated if the conditions (I) and (II) hold in F for all subgroups in H.

Thus we can restate Alperin’s Fusion Theorem as follows: if F is a saturated fusion

system over a finite p-group S, and H is the collection of F -Alperin subgroups and their

F -conjugates, then F is H-generated.

We note that the use of the term H-generated does not conflict with our previous use

of the term generated. This is because of the following observation:

Proposition 1.7.4 Let F be a fusion system over a finite p-group S, and let H be a

collection of subgroups of S that is closed under F-conjugation. If F is H-generated
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then F = 〈FS(S), AutF(H)|H ∈ H〉, and if F = 〈FS(S), AutF(H)|H ∈ H〉 then F is

H ∪ {S}-generated.

Proof: Follows immediately from the definitions.

We shall now state a theorem which simplifies the task of proving saturation in a given

fusion system. First we shall state a Lemma which makes statement 1.7.6 equivalent to

[8, Theorem 2.2].

Lemma 1.7.5 Suppose that F is a fusion system over a finite p-group S and that H is

a collection of subgroups of S which is closed under F-conjugation. Suppose that H has

the property that for each F-conjugacy class P of F-centric subgroups not contained in

H there exists a P ∈ P such that

OutS(P ) ∩Op(OutF(P )) 6= 1. (1.2)

Then H contains all the F-Alperin subgroups of S.

Proof: Let P be an F -Alperin subgroup of S, and suppose that P 6∈ H. In particular,

P is F -centric, and since H is closed under F -conjugation, the F -conjugacy class P of

P is not contained in H. Therefore there exists a subgroup Q ∈ P satisfying 1.2. In

particular, Op(OutF(Q)) 6= 1 and so Q is not F -radical. But P is F -conjugate to Q and

so P is not F -radical either, contrary to our assumption.

Theorem 1.7.6 [8, Theorem 2.2] Let F be a fusion system over a finite p-group S.

Let H be a collection of subgroups of S as in Lemma 1.7.5. If F is H-generated and

H-saturated then F is saturated.

The next result shows that if F is H-generated then F is determined up to isotypical

equivalence by H.
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Proposition 1.7.7 Let F and G be fusion systems over p-groups S and T respectively,

and suppose that θ : S → T is a group isomorphism. Suppose that H is a collection of

subgroups of S which is closed under F-conjugacy such that F is H-generated. Then the

map θ preserves fusion from F to G if and only if the following hold:

(i) G is Hθ-generated; and

(ii) for all subgroups H, H ′ ∈ H we have α ∈ HomF(H,H ′) if and only if (θ−1αθ)|Hθ ∈
HomG(Hθ, H ′θ).

Proof: Suppose that θ preserves fusion. Then (ii) holds by definition, and we need to

show that G is Hθ-generated. To see this, let P,Q ≤ S and let α ∈ HomG(P θ, Qθ).

Since θ is fusion preserving, we have θαθ−1 ∈ HomF(P, Q). But F is H-generated,

so there exist subgroups H1, . . . , Hn ∈ H and, for each 1 ≤ i ≤ n − 1 there ex-

ist morphisms φi ∈ HomF(Hi, Hi+1) such that θαθ−1 = (φ1 · · ·φn)|P . Therefore α =

((θ−1φ1θ) · · · (θ−1φnθ))|P θ . Since θ is fusion preserving, for each 1 ≤ i ≤ n − 1 we have

θ−1φiθ ∈ HomG(Hθ
i , H

θ
i+1). Thus we have shown that α is a composition of restrictions of

G-morphisms between subgroups of Hθ. Hence G is Hθ-generated.

Now suppose conversely that conditions (i) and (ii) hold. Let P, Q ≤ S and α ∈
HomF(P, Q). Since F is H-generated, there exist subgroups H1, . . . , Hn ∈ H and,

for each 1 ≤ i ≤ n − 1 there exist morphisms φi ∈ HomF(Hi, Hi+1) such that α =

(φ1 · · ·φn)|P . By (ii), we have, for each 1 ≤ i ≤ n− 1, θ−1φiθ ∈ HomG(Hθ
i , H

θ
i+1). Hence

θ−1αθ = ((θ−1φ1θ) · · · (θ−1φnθ))|P θ ∈ HomG(P θ, Qθ). A similar argument shows that if

β ∈ HomG(P θ, Qθ) then θβθ−1 ∈ HomF(P,Q). Hence θ is fusion preserving.

We can now say that an isomorphism θ : S → T is fusion preserving (with respect to

F and G) if and only if the following two conditions hold:

(i) a subgroup P is F -Alperin if and only if P θ is G-Alperin;
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(ii) for every F -Alperin subgroup P , the map

AutF(P ) → AutG(P θ)

f 7→ θ−1fθ

is an isomorphism of groups.

The proof of this fact is the same as the proof of Proposition 1.7.7, but we observe

that Alperin’s Theorem shows that every F -morphism is a composite of restrictions of

F -automorphisms of Alperin subgroups.

1.8 A Frattini lemma

Recall that if G is a finite group then Op′(G) := 〈Sylp(G)〉. Furthermore, if S ∈ Sylp(G)

then the Frattini Lemma says that

G = Op′(G)NG(S). (1.3)

We can prove a similar result for saturated fusion systems that will further reduce the

amount of data we must collect to classify a saturated fusion system. An alternative, and

independently discovered formulation of these results can be found in [9, Lemma 3.4].

First we need to define analogous notions of the subgroups Op′(G) and NG(S).

Given a fusion system F over a finite p-group S, the normalizer fusion system NF(S)

of S is simply the fusion subsystem of F which consists of all the F -morphisms which are

restrictions of elements of AutF(S). There is a more general definition of the normalizer

fusion system of an arbitrary subgroup of S, for details of which we refer the reader to

Definition 1.5.4. An important property of NF(S) is that if F is saturated then so is

NF(S). For a proof of this fact see [11, Proposition A.6].

Given a fusion system F over a finite group S, let Op′(F) be the fusion system

〈FS(S), Op′(AutF(Q))|Q ∈ Alp(F)〉.

30



Note that Op′(F) is a fusion subsystem of F . In fact it is a very important fusion

subsystem, as we shall see in the next proposition.

Recall that if F is a fusion system over S and α ∈ Aut(S) then α induces a new

category Fα. For details of this category, see Proposition 1.2.2.

Proposition 1.8.1 Let F be a saturated fusion system over a finite p-group S and let

α ∈ AutF(S). Then

Op′(F)α = Op′(F).

Proof: For each V ∈ Alp(F), the map α|V is a group isomorphism V → V α and we have

AutF(V )α = AutF(V α). Now, Op′(AutF(V )) is a characteristic subgroup of AutF(V ) so

Op′(AutF(V ))α = Op′(AutF(V )α) = Op′(AutF(V α)). Hence

Op′(F)α = 〈FS(S), Op′(AutF(V α))|V ∈ Alp(F)〉

= 〈FS(S), Op′(AutF(V ))|V ∈ Alp(F)〉

= Op′(F),

and so the proposition is proved.

Theorem 1.8.2 (Frattini Lemma for saturated fusion systems) If F is a saturated fusion

system over a finite p-group S, then every F-morphism φ can be written as a composite

of Op′(F)-morphisms and NF(S)-morphisms. In particular, F = 〈Op′(F), NF(S)〉 =

〈Op′(F), AutF(S)〉.

Proof: First we prove that every F -automorphism of an F -Alperin subgroup can be

written as the composition of an Op′(F)-morphism and an NF(S)-morphism. Let V ∈
Alp(F). We proceed by reverse induction on |V |. The result is clearly true for V = S.

So assume that V is a proper subgroup of S, and that the result holds for all Alperin

subgroups W with |W | > |V |.
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By Proposition 1.1.2, AutF(V ) is a finite group, and since F is saturated and V is

an F -Alperin subgroup, AutS(V ) is a Sylow p-subgroup of AutF(V ). Therefore by the

Frattini Lemma for finite groups, we have

AutF(V ) = Op′(AutF(V ))NAutF (V )(AutS(V ))

since Op′(AutF(V ))EAutF(V ). The group NAutF (V )(AutS(V )) is the set of φ ∈ AutF(V )

for which Nφ = NS(V ) 	 V . Thus any element φ ∈ NAutF (V )(AutS(V )) extends by

saturation to a map φ ∈ HomF(NS(V ), S).

Now let φ ∈ AutF(V ). Then φ = µθ where µ ∈ Op′(AutF(V )) and θ ∈ NAutF (V )(AutS(V )).

As explained above, θ extends to a map θ ∈ HomF(NS(V ), S). Since S is a p-group and

V � S, we have that NS(V ) 	 V . By Alperin’s Fusion Theorem, θ is a composite

of restrictions of F -automorphisms of Alperin subgroups with order at least as large as

|NS(V )|. By induction, all of these F -automorphisms are composites of NF(S)-morphisms

and Op′(F)-morphisms, and therefore θ and θ are composites of NF(S)-morphisms and

Op′(F)-morphisms. Hence so is φ. The theorem now holds by induction.

Proposition 1.8.3 Let G be a finite group with S a Sylow p-subgroup of G. Then

Op′(FS(G)) = FS(Op′(G)).

Proof: Let V ≤ S be fully FS(G)-normalized. Let x ∈ NS(V ) and g ∈ NG(V ) such that

cx ∈ AutS(V ) and cg, cg−1 ∈ AutG(V ). Then cg−1cxcg = cg−1xg ∈ AutSg(V ). Since FS(G)

is saturated, AutS(V ) is a Sylow p-subgroup of AutG(V ), and therefore Op′(AutG(V )) =

〈AutS(V )cg |g ∈ NG(V )〉 = 〈AutSg(V )|g ∈ NG(V )〉 = AutOp′ (G)(V ). In particular, this

shows that Op′(FS(G)) ≤ FS(Op′(G)).

Now suppose that V is FS(Op′(G))-Alperin. First we show that V is fully FS(G)-

normalized. Let g ∈ G such that cg ∈ HomF(V, S). By the Frattini Lemma for finite
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groups, G = Op′(G)NG(S) and so there exists an x ∈ Op′(G) and an n ∈ NG(S) such

that g = xn. We have |NS(V )| ≥ |NS(V x)| since V is fully FS(Op′(G))-normalized, and

|NS(V x)| = |NS(V xn)| = |NS(V g)| since n ∈ NG(S). Hence |NS(V )| ≥ |NS(V g)| for all

g ∈ NG(V, S) and so V is fully FS(G)-normalized. Also note that CS(V g) = CS(V xn) =

(CS(V x))n = Z(V x)n = Z(V g) since V is FS(Op′(G))-centric. Hence V is FS(G)-centric.

We have shown that V is fully FS(G)-normalized. This means that Op(AutG(V )) =

Op(O
p′(AutG(V ))) = Op(AutOp′ (G)(V )). But V is FS(Op′(G))-radical, so Op(AutOp′ (G)(V )) ≤

Inn(V ). Therefore Op(AutG(V )) ≤ Inn(V ) and so V is FS(G)-radical. Therefore

Alp(FS(Op′(G))) ⊆ Alp(FS(G)).

Now, by definition Op′(FS(G)) = 〈Op′(AutF(V ))|V ∈ Alp(F)∪{S}〉 and by Alperin’s

Theorem FS(Op′(G)) = 〈AutOp′ (G)(W )|W ∈ Alp(FS(Op′(G))) ∪ {S}〉. Since we have

shown that Op′(AutF(V )) = AutOp′ (G)(V ) whenever V is an FS(G)-Alperin subgroup,

and that Alp(FS(Op′(G))) ⊆ Alp(FS(G)), we have that FS(Op′(G)) ≤ Op′(FS(G)). Hence

FS(Op′(G)) = Op′(FS(G)) and the theorem is proved.
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Chapter 2

Sylow p-Subgroups of SL3(p
n)

Let p be an odd prime, and let q = pn for some n. Consider groups of the form S =
{(

1 0 0
a 1 0
b c 1

)
| a, b, c ∈ Fq

}
. These are Sylow p-subgroups of SL3(q) and in the case n = 1

they are exactly the groups considered by Ruiz and Viruel [36]. In the next few chapters,

S will always denote a group of this form. If the value of q is clear from the context, we

may omit this part of the notation.

There are the pn + 1 elementary abelian subgroups of S of order p2n; these subgroups

will prove to be very important in the study of saturated fusion systems over the groups

S. These are all of the form CS(x) for some x ∈ S \ Z(S). It turns out that for any

saturated fusion system over S, the proper Alperin subgroups of S are of this form, and

so we only need worry about these elementary abelian subgroups and S itself.

2.1 Basic facts

First we prove some well-known facts about the group S.

Lemma 2.1.1 The following hold for S:

(i) |S| = q3 and S has exponent p.

(ii) Φ(S) = [S, S] = Z(S) = [S, s] for any s ∈ S \ Z(S), and |Z(S)| = q.

34



(iii) For every s ∈ S \ Z(S), CS(s) is elementary abelian of order q2.

(iv) An elementary abelian p-subgroup of S of order q2 is one of








1 0 0
a 1 0
c 0 1


 |a, c ∈ Fq



,








1 0 0
0 1 0
c b 1


 |b, c ∈ Fq



 or








1 0 0
a 1 0
c aλ 1


 |a, c ∈ Fq





where λ ∈ Fq \ {0}. In particular, there are exactly q + 1 elementary abelian p-

subgroups of order q2 in S.

(v) If V1 and V2 are distinct elementary abelian p-subgroups of order q2 then V1 ∩ V2 =

Z(S).

Proof: (i) It is easy to see that |S| = q3 and so there exists an element of order p in

S. This shows that Exponent(S) ≥ p. Now, given any element s ∈ S with

s =




1 0 0
a 1 0
c b 1


 ,

we have, for 1 ≤ i ≤ p,

si =




1 0 0
ia 1 0

ic + abi(i−1)
2

ib 1


 .

This means that sp = 1 for all s ∈ S, and thus S has exponent p.

(ii) Suppose that r =
(

1 0 0
x 1 0
z y 1

)
∈ Z(S). We have

rs =




1 0 0
x 1 0
z y 1







1 0 0
a 1 0
c b 1


 =




1 0 0
x + a 1 0

z + c + ay y + b 1




and
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sr =




1 0 0
x + a 1 0

z + c + bx y + b 1


 .

So r commutes with every s ∈ S if and only if ay = bx for all a, b ∈ Fq. But this is

the case if and only if x = y = 0, and so

Z(S) =








1 0 0
0 1 0
∗ 0 1


 |∗ ∈ Fq



 ,

which is easily seen to have order q.

Now consider [S, S]. It is easy to see that s−1 =
(

1 0 0
−a 1 0

ab−c −b 1

)
and so commutators

have the form r−1s−1rs =
(

1 0 0
0 1 0

ay−bx 0 1

)
. Thus [S, S] = Z(S) = [S, s] for any s ∈ S.

Since S has exponent p, S/Z(S) is elementary abelian. Hence Φ(S) ≤ Z(S) = [S, S],

and so Φ(S) = Z(S) = [S, S].

(iii) Let r, s be as above. As in (i), r commutes with s if and only if ay = bx. This

equation shows that we can freely choose the entries x and z, and then y is uniquely

determined. Thus CS(s) has order q2. If either a or b is equal to 0 then it is

easy to check that CS(s) is abelian. If a, b 6= 0 then suppose that r =
(

1 0 0
x 1 0
z y 1

)
and

r′ =
(

1 0 0
x′ 1 0
z′ y′ 1

)
∈ CS(s). Then ay = bx and ay′ = bx′ and therefore abx′y = ay(ay′) =

bxay′ = abxy′, hence x′y = xy′. This shows that r and r′ commute. Hence CS(s)

is abelian. By (i), CS(s) has exponent p and therefore CS(s) must be elementary

abelian.

(iv) Let V be an elementary abelian p-subgroup of order q2, and let v ∈ V \Z(S). Since

V is abelian we have V ≤ CS(v), but by (iii), |CS(v)| = q2 and so V = CS(v).

A simple matrix calculation shows that the centralizer of an element of the form
(

1 0 0
1 1 0
0 λ 1

)
, where λ ∈ Fq, is

{(
1 0 0
a 1 0
c aλ 1

)
|a, c ∈ Fq

}
. Similarly, the centralizer of the
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element
(

1 0 0
0 1 0
0 1 1

)
is

{(
1 0 0
0 1 0
c b 1

)
|b, c ∈ Fq

}
. It is now easy to see that every element of

S \ Z(S) is contained in one of the q + 1 centralizers mentioned above, hence there

are no other subgroups of the form CS(s) where s ∈ S \ Z(S), i.e. there are no

other elementary abelian p-subgroups of order q2.

(v) Let V1 = CS(v1) and V2 = CS(v2) be distinct elementary abelian subgroups of order

q2. Clearly V1 ∩ V2 ≥ Z(S), and if w ∈ V1 ∩ V2 \ Z(S) then CS(w) = V1 = V2, a

contradiction. Hence V1 ∩ V2 = Z(S).

2.2 The automorphism group

Now let us calculate the automorphism group of S. For this purpose, we state a general

result from Parker and Rowley [32, Lemma 5.2].

Lemma 2.2.1 Let G be a finite group. Then

CAut(G)(G/(Z(G) ∩G′)) ∼= Hom(G,Z(G) ∩G′),

where G′ denotes the derived subgroup of G.

Remark In the statement of this result, note that by CAut(G)(G/(Z(G) ∩G′)) we mean

the set {α ∈ Aut(G)| ∀x ∈ G, the coset x(Z(G) ∩G′) is α-invariant }.

The automorphisms in CAut(G)(G/Z(G)∩G′) are called the central automorphisms of

G. In the group S, we have that every inner automorphism of S is a central automorphism.

To see this, let x, y ∈ S. Then x−1y−1xy ∈ S ′ = Z(S) and so the cosets xZ(S) and

(xZ(S))y are equal.

Lemma 2.2.2 The set of central automorphisms of S is a normal subgroup of Aut(S)

which is isomorphic to an elementary abelian p-group of order p2n. In particular, the set

of central automorphisms consists of automorphisms of the form:
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1 0 0
a 1 0
c b 1


 7−→




1 0 0
a 1 0

c + ψ(a, b) b 1




where ψ ∈ Hom((Fq, +)2, (Fq, +)).

Proof: It is easy to see that maps of the given form are indeed central automorphisms.

But the group S is generated by the set of matrices








1 0 0
a 1 0
0 0 1


 |a ∈ Fq



 ∪








1 0 0
0 1 0
0 b 1


 |b ∈ Fq



 .

Hence every central automorphism z is uniquely determined by its action on the ele-

ments of this set. Thus for each central automorphism z we can define a map ψz ∈
Hom((Fq, +)2, (Fq, +)) by the following equation:




1 0 0
a 1 0

ψz(a, b) b 1


 =




1 0 0
a 1 0
0 b 1




z

.

It is now easy to see that the map z is given by




1 0 0
a 1 0
c b 1


 7−→




1 0 0
a 1 0

c + ψz(a, b) b 1


 .

It is clear from the definition that the set of all central automorphisms is a normal

subgroup of Aut(S).

Recall that for any prime power q = pn, the group ΓL2(q) is the semidirect product of

GL2(q) with the cyclic group of order n generated by the automorphism σ : (aij) 7→ (ap
ij).

It is isomorphic to the semidirect product of GL2(q) with the group 〈σ〉.

Lemma 2.2.3 [32, p29] Aut(S) contains a subgroup isomorphic to ΓL2(q).

Proof: For each x =
(

α β
γ δ

) ∈ GL2(q), define an automorphism of S by
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1 0 0
a 1 0
c b 1


 7→




1 0 0
aα + bγ 1 0

1
2
a2αβ + 1

2
b2γδ + abβγ + det(x)c aβ + bδ 1


 .

It is easy to see that this defines an embedding of GL2(q) into Aut(S). Now, for each

σ ∈ Aut(Fq) define an automorphism of S by




1 0 0
a 1 0
c b 1


 7→




1 0 0
aσ 1 0
cσ bσ 1


 .

This gives a cyclic subgroup of Aut(S) of order n (where q = pn).

It is clear that these two subgroups generate a subgroup of Aut(S) isomorphic to

ΓL2(q) as claimed.

The following well-known result gives us the automorphism group of S. Proofs may

be found in [32, 5.3] or [19, 20.8].

Proposition 2.2.4 [32, 5.3] Aut(S) = CH where C is the normal elementary abelian

p-subgroup of central automorphisms of order p2n and H ∼= ΓL2(q).

We require the following well-known facts.

Lemma 2.2.5 Let V be a 2-dimensional Fq-space and let G = GL(V ). Let L denote the

collection of 1-dimensional subspaces of V . Then G acts by conjugation on Sylp(G) with

kernel Z(G), and the faithful action of G/Z(G) on Sylp(G) is equivalent to the natural

action of PGL(V ) on L.

Proof: Note that G acts naturally on L with kernel Z(G). This is, by definition, equiv-

alent to the natural action of PGL(V ) on L.

Fix an ordered basis of V and let R = {( 1 0
x 1 ) ∈ G|x ∈ Fq}. Then R is a Sylow p-

subgroup of G, with NG(R) = {( a 0
b c ) ∈ G|a, b, c ∈ Fq, a, c 6= 0} = StabG(l), where l ∈ L

is the subspace of V generated by the vector ( 0
1 ).
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By Sylow’s Theorem, every Sylow p-subgroup T of G can be written as T = Rg for

some g ∈ G. Therefore NG(T ) = NG(Rg) = NG(R)g = StabG(l)g = StabG(lg). Define a

map µ : Sylp(G) → L by T 7→ l′ where NG(T ) = StabG(l′). We show that µ is a bijective

map.

First we show that µ is well-defined. By transitivity of G on L, every element of L may

be written as lg for some g ∈ G. Suppose that StabG(lg) = StabG(lh) for some g, h ∈ G.

Then StabG(l)gh−1
= StabG(l), i.e. NG(R)gh−1

= NG(R). But NG(R) is self-normalizing

in G, and therefore gh−1 ∈ NG(R) = StabG(l). Hence lgh−1
= l, i.e. lg = lh. Thus µ is

well-defined.

To see that µ is injective, note that if lg = lh for some g, h ∈ G then gh−1 ∈ NG(R)

and therefore Rg = Rh. Also µ is surjective by the transitivity of G on L.

The group G acts on Sylp(G) by conjugation by Sylow’s Theorem. The kernel of this

action is equal to the set
⋂

g∈G NG(Rg). Note that {( 1 x
0 1 ) ∈ G|x ∈ Fq} is also a Sylow p-

subgroup of G, and the normalizer of this subgroup is given by {( a b
0 c ) ∈ G|a, b, c ∈ Fq, a, c 6= 0}.

Hence
⋂

g∈G NG(Rg) ≤ {( a 0
0 b ) ∈ G|a, c ∈ Fq \ {0}}. Consider the stabilizer of the subspace

of V spanned by the vector ( 1
1 ). The matrix ( a 0

0 b ) (where a, b ∈ Fq \ {0}) is contained

in this stabilizer if and only if ( a 0
0 b ) ( 1

1 ) = ( c
c ) for some c ∈ Fq. But ( a 0

0 b ) ( 1
1 ) = ( a

b ) and

therefore ( a 0
0 b ) is in the stabilizer if and only if a = b. In particular, ( a 0

0 b ) ∈ ⋂
g∈G NG(Rg)

if and only if a = b. Hence
⋂

g∈G NG(Rg) = Z(G). This means that G acts on Sylp(G)

with kernel Z(G), in particular, G/Z(G) acts faithfully on Sylp(G).

Thus we have a bijection µ : Sylp(G) → L and an isomorphism G/Z(G) → PGL(V )

which together show that the action of G/Z(G) on Sylp(G) is equivalent to the action of

PGL(V ) on L.

Lemma 2.2.6 The action by conjugation of GL2(q) on Sylp(GL2(q)) is 2-transitive.

Proof: Let L be the set of lower unitriangular matrices in GL2(q) and let U be the set of

upper unitriangular matrices. These are both Sylow p-subgroups of GL2(q), and L∩U = 1.
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But U is the unique Sylow p-subgroup of NGL2(q)(U), and so NL(U) = {g ∈ L|U g = U},
which is a p-group, must be contained in U . Hence NL(U) = 1.

The group L acts by conjugation on the set Sylp(GL2(q))\{L} of q Sylow p-subgroups

of GL2(q) distinct from L. We have that |OrbL(U)| = |L : NL(U)| = |L| = q, and so

L acts transitively on Sylp(GL2(q)) \ {L}. Sylow’s Theorem shows that a group acts

transitively on the set of all its Sylow subgroups, and so GL2(q) acts 2-transitively on its

Sylow p-subgroups.

Corollary 2.2.7 The group PGL2(q) acts 2-transitively on the q + 1 points of the pro-

jective line P.

Proof: The projective line P can be identified with the collection L of 1-dimensional

subspaces of F2
q.

By Lemma 2.2.5, the action of PGL2(q) on L is equivalent to the action of GL2(q) on

its Sylow p-subgroups. Thus the result is equivalent to Lemma 2.2.6.

We can now deduce the following:

Corollary 2.2.8 The automorphism group of S acts 2-transitively on the collection of

elementary abelian subgroups of S of order q2.

Proof: Consider S/Z(S) as a vector space of dimension 2 over Fq. By Proposition 2.2.4,

Aut(S) contains a subgroup G isomorphic to GL2(q), and the action of G on S/Z(S) is

equivalent to the natural action of GL2(q) on F2
q. By considering S/Z(S) as an Fq-space,

we see that the elementary abelian subgroups of order q2 are just the 1-dimensional

subspaces spanned by
(

1 0 0
1 1 0
0 b 1

)
Z(S) (for b ∈ Fq) and

(
1 0 0
0 1 0
0 1 1

)
Z(S). Thus we can identify

the collection of elementary abelian subgroups of S of order q2 with the collection L of

1-dimensional subspaces of F2
q. Lemma 2.2.7 now shows that G, and hence Aut(S), acts

2-transitively on the collection of elementary abelian subgroups of order q2.
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This result will allow us to map two of these subgroups to any other two of these

subgroups whilst preserving (up to isotypical equivalence) the properties of the fusion

system we are studying.

We need the next result in the following chapter.

Lemma 2.2.9 Let V be the subgroup of S consisting of matrices of the form
(

1 0 0
a 1 0
c 0 1

)

where a, c ∈ Fq, and let Z = Z(S). We regard V as a 2n-dimensional vector space over

Fp, and regard Z as a vector subspace of V . Then the group of central automorphisms of

S acts transitively on the collection of complementary subspaces to Z in V .

Proof: Let Y be the subspace of matrices of the form
(

1 0 0
a 1 0
0 0 1

)
. Clearly this is a comple-

mentary subspace to Z in V . Now define projections

π1 : V → Y

z + y 7→ y

and

π2 : V → Z

z + y 7→ z.

Now let K be any complementary subspace to Z. Observe that π1|K is an isomorphism,

so θK := (π1|K)−1π2 is a well-defined map Y → Z.

Suppose θK = θK′ for some complementary subspace K ′. Then for every y ∈ Y ,

y(π1|K)−1π2 = y(π1|K′ )−1π2 . (2.1)

But if y(π1|K)−1
= z + y and y(π1|K′)−1 = z′ + y then the equation above gives z = z′.

Hence (π1|K)−1 = (π1|K′)−1, and so K = K ′.

We now show that K = {y + yθK ∈ Y ⊕ Z|y ∈ Y } =: A. To see this, first note that if

y, y′ ∈ Y and λ ∈ Fp then (y + yθK ) + λ(y′ + y′θK ) = (y + λy′) + (yθK + λy′θK ) ∈ A. So A
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is a vector subspace of V . But (y + yθK ) ∈ Z if and only if y = 0, and therefore yθK = 0.

Hence A∩Z = 0. Finally, we show that A⊕Z = V . To do this we show that Y ⊆ A⊕Z.

If y ∈ Y then yθK ∈ Z and so y = (y + yθK )− yθK ∈ A⊕ Z. Thus A is a complementary

subspace to Z in V .

Now, given any y ∈ Y , y(π1|A)−1π2 = yθK and so θA = θK . Hence K = A. To complete

the proof, define a homomorphism ψK ∈ Hom((Fq, +)2, (Fq, +)) by ψK(a, b) = aθK . We

now have that the map




1 0 0
a 1 0
c b 1


 7−→




1 0 0
a 1 0

c + ψK(a, b) b 1




is a central automorphism of S mapping Y to K.

2.3 Potentially radical subgroups

By Alperin’s Fusion Theorem, a saturated fusion system is completely determined by the

F -Alperin subgroups and their F -automorphisms. So to classify all the saturated fusion

systems over S we need to consider which subgroups can be F -centric and F -radical. To

this end, we make the following definition:

Definition 2.3.1 A subgroup Q of any finite p-group P is called potentially radical if

there exists a subgroup H ≤ Aut(Q) such that

(i) AutP (Q) ∈ Sylp(H); and

(ii) Op(H) = Q/Z(Q) = Inn(Q).

Remark Note that if F is a saturated fusion system over P and Q ≤ P is fully normalized

and F -radical then Q is potentially radical since H = AutF(Q) ≤ Aut(Q) satisfies the

definition above.
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Definition 2.3.2 We shall say that a subgroup V of S is self-centralizing if CS(V ) =

Z(V ). Denote by C the collection of all subgroups V of S which are both self-centralizing

and potentially radical.

Lemma 2.3.3 If Q ∈ C and Q 6= S then Z(S) < Q and Q E S.

Proof: Firstly, note that Q 6= Z(S) since CS(Z(S)) = S 6= Z(S). It is also clear

that Z(S) ≤ CS(Q). But Q is self-centralizing and so Z(S) ≤ CS(Q) ≤ Q. Since

[S, S] = Z(S) ≤ Q, we have that Q is normal in S.

We now prove a sharper version of a result from Gorenstein [20, 5.3.2].

Proposition 2.3.4 Let P be a finite p-group and let

P = P0 ≥ P1 ≥ · · · ≥ Pk−1 ≥ Pk = 1

be a series of characteristic subgroups of P . Then

k⋂
i=0

CAut(P )(Pi/Pi+1) ≤ Op(Aut(P )).

Proof: Let Ci := CAut(P )(Pi/Pi+1). Applying Gorenstein’s result [20, 5.3.3] gives that
⋂k

i=1 Ci is a p-subgroup of Aut(P ), so it remains to show that
⋂k

i=1 Ci E Aut(P ). Let

α ∈ Ci, β ∈ Aut(P ) and let xPi+1 ∈ Pi/Pi+1. Then β−1αβ(xPi+1) = β−1α(β(x)Pi+1) =

β−1(β(x)Pi+1) = xPi+1 since Pi and Pi+1 are characteristic in P . Hence for every i,

Ci E Aut(P ), and therefore
⋂k

i=1 Ci E Aut(P ). Thus
⋂k

i=1 Ci ≤ Op(Aut(P )).

We shall introduce some convenient terminology from Gorenstein [20, p178].

Definition 2.3.5 Let G be a finite group and let A be a subgroup of Aut(G). We say

that A stabilizes the series

G = G0 ≥ G1 ≥ · · · ≥ Gk−1 ≥ Gk = 1
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if each Gi is A-invariant and A acts trivially on each factor Gi/Gi+1 for 1 ≤ i ≤ k.

Corollary 2.3.6 Let P be a finite p-group. Suppose that Q � P and that AutP (Q)

stabilizes some series of characteristic subgroups of Q. Then Q is not potentially radical.

Proof: Suppose that Q ∈ C and that AutP (Q) stabilizes the series

Q = Q0 ≥ Q1 ≥ · · · ≥ Qk−1 ≥ Qk = 1

of characteristic subgroups of Q. Then AutP (Q) ≤ ⋂k
i=0 CAut(Q)(Qi/Qi+1) and so by

Proposition 2.3.4 AutP (Q) ≤ Op(Aut(Q)). Now suppose that H ≤ Aut(Q) satisfies

Definition 2.3.1 for Q. We have AutP (Q) ∈ Sylp(H), and so AutP (Q) = H∩Op(Aut(Q))E

H. Therefore AutP (Q) = P/Z(Q) ≤ Op(H) = Q/Z(Q), which contradicts the fact that

Q is a proper subgroup of P .

Proposition 2.3.7 No self-centralizing non-abelian proper subgroup of S is potentially

radical.

Proof: Let Q be a self-centralizing non-abelian proper subgroup of S. Note that since Q

is self-centralizing, [S, S] = Z(S) < Q. Thus Q is normal in S. We consider two cases.

Case 1: Z(Q) = Z(S). In this case [Q,S] ≤ [S, S] = Z(S) = Z(Q) and it is easy to see

that AutS(Q) centralizes Z(Q) and Q/Z(Q). This means that AutS(Q) stabilizes the

characteristic series Q ≥ Z(Q) ≥ 1, and so by Corollary 2.3.6, Q is not potentially

radical.

Case 2: Z(Q) 	 Z(S). If x ∈ Z(Q) \ Z(S) then Q ≤ CS(x). But CS(x) is abelian by

Lemma 2.1.1(iii), which contradicts the assumption that Q is non-abelian.

This completes the proof.
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Proposition 2.3.8 Let Q ∈ C be a proper abelian subgroup of S. Then there exists a

y ∈ Q \ Z(S) such that Q = CS(y).

Proof: By Lemma 2.3.3, we have Z(S) < Q. Let y ∈ Q \ Z(S). Since Q is abelian,

Q ≤ CS(y). But Lemma 2.1.1(iii) shows that CS(y) is abelian, and so CS(y) centralizes

Q. Since Q is self-centralizing, we therefore have Q = CS(y).

Putting together Propositions 2.1.1(iii), 2.3.7 and 2.3.8, we see that the set C of poten-

tially radical subgroups contains just S and elementary abelian groups of order q2. This

means that the set Alp(F) is contained in the set of all elementary abelian subgroups of S

of order q2. Let us collect some facts about the elementary abelian elements of C. Recall

from Lemma 2.2.2 that if z is a central automorphism then there exists a homomorphism

ψz : F2
q → Fq associated to z.

Lemma 2.3.9 Let V be an elementary abelian subgroup in C. Then the following hold:

(i) V is a normal subgroup of S;

(ii) AutS(V ) ∼= S/V is elementary abelian of order q;

(iii) Aut(V ) ∼= GL2n(p);

(iv) CAut(S)(V ) = {z ∈ CAut(S)(S/Z(S))|ψz(x, 0) = 0 for all x ∈ Fq}.

(v) Aut(V ) contains a subgroup isomorphic to GL2(q).

Proof: We have S ′ = Z(S) ≤ V and so (i) and (ii) now follow immediately. To see (iii),

we note that V may be considered as a 2n-dimensional vector space over GF(p), from

which it is clear that Aut(V ) ∼= GL2n(p).

We now prove (iv). By Corollary 2.2.8 we may assume that V is the subgroup
{(

1 0 0
x 1 0
y 0 1

)
|x, y ∈ Fq

}
. Let z

(
α β
γ δ

)
σt ∈ CAut(S)(V ), where z is a central automorphism

and σ is the automorphism induced by the Frobenius automorphism of Fq. Then

46






1 0 0
x 1 0
y 0 1




z
�

α β
γ δ

�
σt

=




1 0 0

(xα)pt
1 0

(1
2
x2αβ + (αδ − βγ)(y + ψz))

pt
(xβ)pt

1




for all x, y ∈ Fq. First, note that we have (xβ)pt
= 0 and so β = 0. By setting x = 1 we see

that αpt
= 1 and if ω is a primitive element of Fq then setting x = ω gives αpt

ωpt−1 = 1.

Thus ωpt−1 = 1 and therefore pt = q or 1. By setting x = 0 we see that (αδ)y = y, and

so αδ = 1. Therefore for any x we have y + ψz(x, 0) = y, which means that ψz(x, 0) = 0

for all x.

To see (v), we show that the elementary abelian groups of order q2 may be regarded

as a vector space over Fq. Suppose that V =
{(

1 0 0
a 1 0
c aλ 1

)
|a, cFq

}
where λ ∈ Fq. Let ω ∈ Fq

be a primitive element of Fq. Let e1 =
(

1 0 0
0 1 0
1 0 1

)
, e2 =

(
1 0 0
0 1 0
ω 0 1

)
, . . . , en =

(
1 0 0
0 1 0

ωn−1 0 1

)
, f1 =

(
1 0 0
1 1 0
0 λ 1

)
, . . . , fn =

(
1 0 0

ωn−1 1 0
0 ωn−1λ 1

)
. Since V is elementary abelian, it is clear that V can

be regarded as a 2n-dimensional Fp-space, with ordered Fp-basis {e1, . . . , en, f1, . . . , fn}.
We can define an action of Fq on V as follows: for every µ ∈ Fq, with µ = µ1 + µ2ω +

· · ·+ µnω
n−1 where µi ∈ Fp define a matrix

M =




µ1 µ2 · · · µn

µn µ1 · · · µn−1
...

...
. . .

...
µ2 µ3 · · · µ1


 .

Then for every element v ∈ V (considered as a 2n-dimensional Fp-space), define µ.v =

( M 0
0 M ) v. This multiplication makes V into a 2-dimensional Fq-space with basis {e1, f1}.

A similar argument works for the case when V =
{(

1 0 0
0 1 0
c b 1

)
|b, c ∈ Fq

}
. This shows that

Aut(V ) has a subgroup isomorphic to GL2(q), namely the collection of automorphisms of

V which preserve this Fq-structure.

Corollary 2.3.10 Let x ∈ S \Z(S) and let V = CS(x). Then V is potentially radical in

S.
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Proof: The group V is elementary abelian of order q2 by 2.1.1. In the proof of 2.3.9(v),

we constructed a subgroup of Aut(V ) isomorphic to GL2(q); denote this subgroup by H.

If we can show that AutS(V ) ∈ Sylp(H) then we will have shown that V is potentially

radical since Op(H) = 1.

The Sylow p-subgroups of H have order q, and so it remains to show that AutS(V ) ≤
H since AutS(V ) also has order q. Recall that if s =

(
1 0 0
a 1 0
c b 1

)
and v =

(
1 0 0
x 1 0
z y 1

)
then

s−1vs =
(

1 0 0
x 1 0

z+ay−bx y 1

)
. To see that AutS(V ) is contained in H, we shall write the elements

of AutS(V ) as 2n-dimensional matrices over Fp and show that they commute with the

matrices representing scalar multiplication of elements of V by elements of Fq.

We observe that with respect to the ordered Fp-basis {e1, . . . , en, f1, . . . , fn} described

in 2.3.9, elements of AutS(V ) have the form ( I A
0 I ) where A is an n×n matrix over Fp and

I is the n × n identity matrix. But matrices of this form commute with matrices of the

form ( M 0
0 M ). In particular, elements of AutS(V ) commute with scalar multiplication of

elements of V by elements of Fq, as required. This completes the proof that AutS(V ) ≤ H,

thereby showing that V is potentially radical.

Corollary 2.3.11 If F is a saturated fusion system over S then Alp(F) is closed under

F-conjugation.

Proof: Lemma 2.3.9 shows that C = {S, CS(x)|x ∈ S \ Z(S)}, and therefore Alp(F) ⊆
{CS(x)|x ∈ S \ Z(S)}. So let V be an elementary abelian Alperin subgroup of S; then

|V | = q2. Since every elementary abelian subgroup of S which has order q2 is in C, we

have that every F -conjugate of V is an elementary abelian member of C. So by 2.3.9, V

is normal in S, and is therefore fully F -normalized.

Now, every F -conjugate of an F -radical subgroup of S is F -radical and every F -

conjugate of an F -centric subgroup is F -centric. Therefore every F -conjugate of V is

F -radical, F -centric, and fully F -normalized. Hence every F -conjugate of V is an Alperin

subgroup, and so Alp(F) is closed under F -conjugation.
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Corollary 2.3.12 If F is a saturated fusion system over S then F is Alp(F) ∪ {S}-
generated.

Proof: This follows immediately from 2.3.11 and Alperin’s Fusion Theorem.
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Chapter 3

Determining Op′(AutF(V ))

In this chapter, as before, S continues to be a Sylow p-subgroup of SL3(q), where q = pn

for some n and some prime p. It turns out that for any saturated fusion system F over

our group S, there is a lot we can say about Op′(F). Specifically, we shall be able to

prove that whenever V is an elementary abelian F -Alperin subgroup of S of order q2, the

group Op′(AutF(V )) satisfies the hypothesis of a theorem of Timmesfeld [40, Theorem

3.2], thereby proving that it is isomorphic to SL2(q). Using Theorem 1.8.2, the fusion

system shall then be determined by AutF(S).

The paper of Ruiz and Viruel [36] deals with the case n = 1 (i.e. q = p). They proved

that AutF(V ) contains a normal subgroup isomorphic to SL2(p). Of course, in their

case Aut(V ) ∼= GL2(p), whereas our situation is rather more complicated as Aut(V ) ∼=
GL2n(p). The result proved in this chapter includes that of Ruiz and Viruel as a special

case.

3.1 A sufficient condition for F-radical subgroups

First we observe that V is F -radical if AutF(V ) contains a subgroup isomorphic to SL2(q).

Proposition 3.1.1 Let F be a saturated fusion system over S, and let V be an elementary

abelian subgroup of S of order q2. If AutF(V ) contains a subgroup isomorphic to SL2(q)
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then V is F-radical.

Proof: Suppose L ≤ AutF(V ) is isomorphic to SL2(q). The group V is abelian so

OutF(V ) = AutF(V )/Inn(V ) ∼= AutF(V ). Since F is saturated and V is fully normalised,

we know from Lemma 2.3.9 that AutF(V ) has elementary abelian Sylow p-subgroups of

order q. But SL2(q) also has elementary abelian Sylow p-subgroups of order q and so

Sylp(L) ⊆ Sylp(AutF(V )). Therefore Op(AutF(V )) ≤ Op(L) = 1 and so V is F -radical.

3.2 Rank one groups

In this section we shall introduce the notions of a rank one group and quadratic action.

We shall show that these notions apply to Op′(AutF(V )).

Definition 3.2.1 A group X is called a rank one group if it is generated by two distinct

nilpotent subgroups A and B with the property that for each a ∈ A \ {1} there exists

b ∈ B \ {1} such that Ab = Ba, and vice versa.

The conjugates of A and B are called the unipotent subgroups of X. To say that

X is a rank 1 group is simply a shorthand way of saying that X is a group with a split

(B, N)-pair of rank 1, as noted in [40, p.3]. We shall not discuss groups with a (B, N)-pair

explicitly here; for more details about groups with a (B, N)-pair see [6, Chapter IV, §2].

Definition 3.2.2 Let X be a rank one group with unipotent subgroup A. The abelian

group V is called a quadratic X-module if X acts faithfully on V and [V,A, A] = 0.

Let F be a saturated fusion system over S and V an elementary abelian p-subgroup

in C. Let G = AutF(V ). Then we may regard V as a 2n-dimensional FpG-module.

We have the following lemma:
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Lemma 3.2.3 Let V be an elementary abelian p-subgroup of S in C. By regarding V as

a FpG-module, we have that for all s ∈ S \ V ,

CV (AutS(V )) = [V, AutS(V )] = [V, cs] = CV (cs) = Z(S).

Proof: Firstly, note that

CV (AutS(V )) = {x ∈ V |s−1xs = x ∀ s ∈ S} = V ∩ Z(S) = Z(S).

Now

CV (cs) = {x ∈ V |s−1xs = x} = CS(s) ∩ V ≥ Z(S).

If s ∈ V then cs acts trivially on V because V is abelian. So by Lemma 2.1.1(iii) CS(s)

is an elementary abelian p-group of order q2 distinct from V . Hence by part (v) of that

lemma, CV (s) = Z(S).

It is easy to see that [V, AutS(V )] = [V, S] and [V, cs] = [V, s]. Let s =
(

1 0 0
u 1 0
w v 1

)
and

let x =
(

1 0 0
a 1 0
c b 1

)
∈ V . Then [x, s] =

(
1 0 0
0 1 0

ub−va 0 1

)
and so [V, s] = [V, S] = Z(S) since a and

b range over all of GF(q). This completes the proof.

The lemma above implies that with V ∈ C \ {S}, G = AutF(V ) and R = AutS(V )

the hypotheses of the following result are satisfied.

Lemma 3.2.4 [32, Lemma 4.16] Suppose that p is a prime, G is a finite group, R ∈
Sylp(G) has order pn and V is a faithful FpG-module of dimension 2n. If, for all non-

identity r ∈ R,

CV (R) = [V, R] = [V, r] = CV (r)

has Fp-dimension n, then either |Sylp(G)| = 1 or pn + 1. Furthermore, if |Sylp(G)| =
pn + 1 then the following hold:

(i) for any pair P 6= P ′ ∈ Sylp(G) we have P ∩ P ′ = 1 and CV (P ) ∩ CV (P ′) = 0, and
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(ii) G acts 2-transitively on Sylp(G).

Proof: Suppose that |Sylp(G)| > 1, and let R, T ∈ Sylp(G). Note that if v + [V, R] ∈
V/[V, R] and r ∈ R then

(v + [V, R])r = vr + [V,R] = vr + (−v)r − (−v) + [V,R] = v + [V, R].

This means that if CV (T ) = CV (R) = [V, R] = [V, T ] then 〈R, T 〉 centralizes the series

V B [V, R] B 0. Thus by Proposition 2.3.4, we have that 〈R, T 〉 is a p-group. But R ∈
Sylp(G) and hence R = T . We conclude that for distinct R, T ∈ Sylp(G), CV (R) 6= CV (T ).

This in turn means that R ∩ T = 1, since if x is a non-trivial element of R ∩ T then

CV (R) = CV (x) = CV (T ), which is a contradiction. This proves the first part of (i).

From among all the distinct pairs of members of Sylp(G), choose R, T such that

the dimension of CV (R) ∩ CV (T ) is maximal. Set U = CV (R) ∩ CV (T ) and W =

CV (R) + CV (T ). Since R is conjugate to T we have dim(CV (R)) = dim(CV (T )). Hence

dim(CV (R) + CV (T )) = dim(CV (R)) + dim(CV (T )) − dim(CV (R) ∩ CV (T )). Therefore

dim(W/U) = dim(CV (R)) + dim(CV (T )) − 2dim(CV (R) ∩ CV (T )). This means that

dim(W/U) is even, i.e. W/U has dimension 2b for some 0 < b ≤ n. Let L = 〈R, T 〉 and

let P,Q ∈ Sylp(L) with P 6= Q. Then the subspaces CV (P )/U and CV (Q)/U of W/U

both have dimension b, and by the maximality of dim(U), they intersect trivially. Now,

R acts on Sylp(L) by conjugation, and so NS(T ) is a p-subgroup of NL(T ). But T is the

unique Sylow p-subgroup of NL(T ) and so NR(T ) ≤ T . But R ∩ T = 1 so NR(T ) = 1

and thus |OrbR(T )| = |R : NR(T )| = |R| = pn by the Orbit-Stabilizer Theorem. Hence

|Sylp(L)| ≥ pn +1 and so W/U has at least (pn +1)(pb− 1) non-trivial elements. Thus we

have p2b − 1 ≥ (pn + 1)(pb − 1), which means that b = n. This allows us to conclude that

CV (R) ∩ CV (T ) = 0 for all pairs of distinct members R and T of Sylp(G), proving (i).

We now have that |Sylp(G)| ≥ pn + 1 and so
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p2n = |V | ≥ (pn + 1)(pn − 1) + 1 = p2n.

From this we can conclude that |Sylp(G)| = pn + 1. Finally, we note that any R ∈
Sylp(G) acts on Sylp(G)\{R}. If T ∈ Sylp(G)\{R} then |OrbR(T )| = pn, and thus R acts

regularly on Sylp(G) \ {R}. In addition, Sylow’s Theorem shows that G acts transitively

on Sylp(G) and so it follows that G is 2-transitive on Sylp(G). This proves (ii).

Proposition 3.2.5 Let G be a finite group, and suppose that R ∈ Sylp(G) has order pn.

Let V be a faithful FpG-module of dimension 2n. Suppose that for all non-identity r ∈ R,

CV (R) = [V, R] = [V, r] = CV (r)

has Fp-dimension n, and that |Sylp(G)| = q + 1. Let X = Op′(G). Then

(i) X is a rank 1 group with unipotent subgroup R,

(ii) V is a quadratic X-module.

Proof: Let R, T ∈ Sylp(G). As we saw in the proof of Lemma 3.2.4, R acts regularly on

Sylp(G) \ {R} and T acts regularly on Sylp(G) \ {T}. Hence 〈R, T 〉 contains every Sylow

p-subgroup of G, i.e. Op′(G) = 〈R, T 〉.
Now, if r ∈ R then (by regularity of R) T r ∈ Sylp(G) \ {R, T}. By the transitivity of

T on Sylp(G) \ {T}, there exists a t ∈ T such that Rt = T r. This completes the proof

that X = Op′(G) is a rank one group.

To prove (ii), note that by hypothesis, [V,R,R] = [CV (R), R] = 0.

Corollary 3.2.6 Let F be a saturated fusion system over S and let V be an elementary

abelian F-Alperin subgroup of S. Let X = Op′(AutF(V )) and let A = AutS(V ). Then X

is a rank one group with unipotent subgroup A, and V is a quadratic X-module.
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Proof: Let G = AutF(V ). Then V is a faithful 2n-dimensional FpG-module, and by

3.2.3 we have that CV (S) = [V, S] = [V, s] = CV (s) for all non-identity s ∈ S. Hence by

3.2.4, |Sylp(G)| = 1 or |Sylp(G)| = q + 1. But if |Sylp(G)| = 1 then AutS(V ) would be a

non-trivial normal p-subgroup of AutF(V ) ∼= OutF(V ), contradicting the fact that V is

F -radical. Hence |Sylp(G)| = q + 1. The result now follows from 3.2.5.

Lemma 3.2.7 Under the conditions of Lemma 3.2.4, we have

V =
⋃

T∈Sylp(G)

CV (T ).

Proof: By hypothesis, dim(CV (T )) = n, and therefore |CV (T )| = pn for all T ∈ Sylp(G).

By Theorem 3.2.4 (i), for any two distinct Sylow subgroups P,Q we have CV (P )∩CV (Q) =

0, thus ∣∣∣∣∣∣
⋃

T∈Sylp(G)

CV (T )

∣∣∣∣∣∣
= (pn + 1)(pn − 1) + 1 = p2n.

This means that

V =
⋃

T∈Sylp(G)

CV (T )

as required.

Definition 3.2.8 Let D be a set with two operations; an addition (a, b) 7→ a + b and a

multiplication (a, b) 7→ ab. We say that D is an alternative division ring if the following

hold:

(i) D is an abelian group with respect to the operation +;

(ii) there exists a multiplicative unit element 1 ∈ D;

(iii) every non-zero element x ∈ D has a two-sided inverse x−1 such that x−1(xy) = y =

(yx)x−1 for all y ∈ D \ {0};
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(iv) the operations on D satisfy the distributive laws.

Remark Note that we do not assume that the multiplication in D is associative.

Lemma 3.2.9 A finite alternative division ring is a field.

Proof: Let D be a finite alternative division ring. A basic property of alternative division

rings is that any two elements generate an (associative) subring (see [41, Theorem ADR1,

p439]). By the uniqueness of inverses in D, we have that any such subring R is an

(associative) division ring. But D, and therefore R, is finite, and so by Wedderburn’s

Theorem (see [15, p178]) R is a field. In particular, R is commutative. Since this holds

for any two elements of D, we have that every two elements of D commute. Hence D

is commutative. Now by [41, Lemma 1, p439], a commutative alternative division ring

is associative, and therefore D is associative. But then D is a commutative associative

division ring; i.e. D is a field.

The following theorem from Timmesfeld will us give the generalization of the Ruiz-

Viruel result we want.

Theorem 3.2.10 [40, Theorem 3.2] Let X be a rank 1 group with unipotent subgroup

A. Suppose that V is a quadratic X-module with the following properties:

(i) V = [V, X] and CV (X) = 0,

(ii) [V,A] = [v, A] for every v ∈ V − [V, A].

Then there exists an alternative division ring K whose additive group is isomorphic to A

such that X ∼= SL2(K), and V is the natural ZX-module.

Proposition 3.2.11 Let V be an elementary abelian p-subgroup of S in C, let X =

Op′(AutF(V )). Then X ∼= SL2(q) and acts on V as the natural FqSL2(q)-module.
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Proof: Let A = AutS(V ). We showed in 3.2.6 that X is a rank 1 group with unipotent

subgroup A and that V is a quadratic X-module. It remains to prove conditions (i) and

(ii) from Theorem 3.2.10.

Now, since [V,A] = CV (A), we have that for any x ∈ X, [V, Ax] = [V, A]x = CV (A)x =

CV (Ax). Let v ∈ V . Then by Lemma 3.2.7, there exists a T ∈ Sylp(AutF(V )) such that

v ∈ CV (T ) = [V, T ] ⊆ [V, X]. Hence V = [V, X]. Also CV (X) ⊆ ⋂
T∈Sylp(AutF (V )) CV (T ) =

0 by Lemma 3.2.4, proving condition (i).

To prove (ii), let v ∈ V \Z(S). By Lemma 3.2.3, it suffices to show that [v, S] = Z(S).

Using Lemma 2.1.1, this is easily seen to be true. Hence by Theorem 3.2.10, X ∼= SL2(K)

where K is an alternative division ring whose additive group is isomorphic to AutS(V ).

In particular, K is finite and has order q. Hence by 3.2.9, and the fact that finite fields

are determined by order, K = Fq. Therefore X ∼= SL2(q) as claimed, and we also have

that X acts on V as a natural SL2(q)-module.

We now show that Op′(AutF(V )) is the only subgroup of AutF(V ) containing AutS(V )

which is isomorphic to SL2(q).

Lemma 3.2.12 Suppose that V is a 2n-dimensional vector space over Fp. Let Z be an

n-dimensional subspace of V and Y a complementary subspace to Z in V . Assume that

X = 〈A,B〉 and X ′ = 〈A, B′〉 (where A,B ∈ Sylp(X) and B′ ∈ Sylp(X
′)) are groups

isomorphic to SL2(q) whose actions on V are equivalent to the action of SL2(q) on its

natural module. Suppose additionally that Z = CV (A) = [V, A], Y = CV (B) = CV (B′).

Then B = B′ and X = X ′.

Proof: The group X permutes the set P = {CV (R)|R ∈ Sylp(X)}. But X and A satisfy

the hypotheses of Lemma 3.2.4, and so A acts transitively on Sylp(X)\{A}. Thus we have

that P = Y A∪{Z}. Similarly we set P ′ = {CV (R′)|R′ ∈ Sylp(X
′)} and get P ′ = Y A∪{Z}.

Hence P = P ′.
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The actions of X and X ′ on P are equivalent to the natural action of PSL2(q) on q +1

points. Note that [V,B] = [V,B′] = Y = CV (B) = CV (B′) and so [V, B, B′] = [V, B′, B] =

0. By considering V , B and B′ as subgroups of the semidirect product V n 〈B, B′〉 the

Three Subgroup Lemma (see, for example, [20, Theorem 2.2.3]) implies that [B,B′] = 1,

since the actions of B and B′ on V are faithful.

Now let N be the kernel of the action of H := 〈X,X ′〉 on P (note that Z(X) ≤ N).

Then H/N can be embedded in Sym(q + 1). Now, since [B,B′] = 1 we have that BN/N

and B′N/N commute. Furthermore, Lemma 3.2.4 shows that both these groups act

regularly on the set P \ {Y }. But B and B′ are isomorphic to Sylow p-subgroups of

SL2(q), and so are abelian. This means that BN/N and B′N/N are abelian, and since a

regular abelian permutation group is its own centralizer (see, for example, Wielandt [43,

Proposition 4.4]), we deduce that BN/N = B′N/N . Therefore XN = X ′N .

Let B1 = 〈B, B′〉. Then we have that B1N = BN = B′N . Thus |B1N | = |B1||N |/|B1∩
N | = |B||N |/|B ∩ N | and so |B1|/|B| = |B1 ∩ N |/|B ∩ N |. Hence if B1 > B then

|B1 ∩ N | > 1. Let B0 := B1 ∩ N . Note that since [V,B, B′] = [V, B′, B] = 0, we have

[V, B1] = Y . This means that [V, B0] ≤ [V,B1] = Y . But B0 ≤ N normalizes Z, and so

[V,B0] = [Z + Y,B0] = [Z,B0] + [Y, B0] = [Z, B0] ≤ Z.

Thus [V, B0] ≤ Y ∩ Z = 0. Hence B0 = 1 and so B = B′, therefore X = X ′.

Corollary 3.2.13 A saturated fusion system F over S is uniquely determined by AutF(S)

and the set Alp(F).

Proof: Theorem 1.8.2 tells us that a saturated fusion system is determined by the

groups Op′(AutF(V )) for V ∈ Alp(F) and AutF(S), and Proposition 3.2.11 shows that

Op′(AutF(V )) ∼= SL2(q) with the natural action on V whenever V ∈ Alp(F).
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Chapter 4

The Classification

Throughout this section, let F be a saturated fusion system over S. The results proved in

the previous chapter put us well on the way to being able to apply the Frattini Lemma for

saturated fusion systems, by determining the structure of Op′(V ) for Alperin subgroups

V . It remains to determine the possibilities for AutF(S). In this chapter we shall classify

the possibilities for AutF(S). Mostly we shall be able to do this by using saturation to

lift F -automorphisms of the proper Alperin subgroups to S. However, this lifting process

depends on the number of proper Alperin subgroups, and we shall prove a result that

shows that there are (usually) no more than 2.

4.1 The structure of AutF(S)

Let V be a 2-dimensional Fq-vector space. We may consider V as a 2n-dimensional vector

space over the prime subfield Fp. It is clear that any Fq-linear map of V is also Fp-linear;

denote this set of maps by A. Since a field automorphism of Fq fixes the prime subfield, a

map of V induced by a field automorphism of Fq is Fp-linear. This means that the natural

action of ΓL2(q) on V is Fp-linear. Since this action is faithful, it defines an embedding of

ΓL2(q) into GL2n(p) as a group of endomorphisms of V . We denote the image of ΓL2(q)

in GL2n(p) by H.
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Now let V be an elementary abelian F -Alperin subgroup of S of order q2. We may

consider V as a 2n-dimensional vector space over Fp, and so AutF(V ) ≤ Aut(V ) ∼=
GL2n(p). Let L = Op′(AutF(V )). By Proposition 3.2.11, L is isomorphic to SL2(q) and

V is a natural FqL-module. We can extend L to subgroups A and H of GL2n(p) with

L ≤ A ≤ H, A ∼= GL2(q) and H ∼= ΓL2(q).

Lemma 4.1.1 Let V ≤ S be an element of Alp(F), and let H be the image of ΓL2(q) in

G := GL2n(p) as described above. Then AutF(V ) ≤ H ∼= ΓL2(q).

Proof: By Proposition 3.2.4, we have that V is an irreducible FpL-module of dimension

2n. By Schur’s Lemma, EndL(V ) is a field containing Fp. Now if M := M(V ) denotes the

set of Fp-linear maps V → V , then by definition EndL(V ) = CM(L). Since Fp ⊆ CM(L),

we have that V is a CM(L)-vector space. Now, CM(L) is a field of characteristic p so

CM(L) is a Fp space of dimension b for some positive integer b. Thus |V | = p2n = pmb

where m = dimCM (L)(V ).

We have G ≥ H ≥ A ≥ L and therefore CM(L) ⊇ CG(L) ⊇ CA(L) ∼= Z(GL2(q)) ∼=
F∗q = Fq \ {0}. This means that dimFp(CM(L)) ≥ n, and

dimFp(V ) = dimFp(CM(L)).dimCM (L)(V )

hence 2n ≥ nm, giving us that m = 1 or 2. Note that there exists an embedding

L → GLm(CM(L)) (since V is an m-dimensional CM(L)L-module) and so if m = 1

then we have an embedding L → GL1(CM(L)) ∼= CM(L)∗ = CM(L) \ {0}. This is a

contradiction since the multiplicative group of CM(L) is abelian. This means that m = 2,

therefore dimFp(CM(L)) = n and |CM(L)| = pn, thus |CG(L)| = pn − 1. But CH(L) ∼= F∗q
and so |CH(L)| = pn − 1, hence CG(L) = CH(L) ≤ H.

Now consider NG(L). It is clear that H ≤ NG(L), and we claim that H = NG(L).
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Note that

HCG(L)

CG(L)
∼= H

CH(L)
∼= Aut(L).

But HCG(L)/CG(L) ≤ NG(L)/CG(L), and NG(L)/CG(L) is isomorphic to a subgroup of

Aut(L), therefore NG(L) = HCG(L). But CG(L) ≤ H so NG(L) = H as claimed.

Now, since L E AutF(V ), we must have that AutF(V ) ≤ NG(L) = H.

Lemma 4.1.2 Let V ∈ Alp(F) and let φ ∈ Op′(AutF(V )) be the element which acts

as
(

ω 0
0 ω−1

)
on V , where ω is a primitive element in Fq. Then any extension φ of φ in

AutF(S) is of the form zA, where z is a central automorphism and A ∈ GL2(q) is a matrix

conjugate to
(

ω 0
γ ω−2

)
for some γ ∈ Fq.

Proof: By Corollary 2.2.8, we may assume that V is the subgroup of matrices of the

form
(

1 0 0
a 1 0
c 0 1

)
where a, c ∈ Fq. An easy matrix calculation shows that Nφ = S: if x =

(
1 0 0
λ 1 0
ν µ 1

)
∈ S then the map φ−1cxφ is given by




1 0 0
a 1 0
c b 1




φ−1cxφ

=




1 0 0
aω−1 1 0
cω 0 1




cxφ

=




1 0 0
aω−1 1 0

cω − µaω−1 0 1




φ

=




1 0 0
a 1 0

c− µaω−2 0 1


 ,

which is clearly a central automorphism, and hence in AutS(V ). Thus Nφ = S.

Now, by saturation φ extends to a map in AutF(S). Fix some extension φ in AutF(S).

From Proposition 2.2.4 we see that φ is of the form z.
(

α β
γ δ

)
.σt, where z is a central

automorphism,
(

α β
γ δ

)
acts as in Lemma 2.2.3, and σ is the map induced by the Frobenius

automorphism of the field Fq. Since we already know the action of φ on V , we can perform

some simple calculations to determine φ. Suppose that z is given by

z :




1 0 0
x 1 0
z y 1


 →




1 0 0
x 1 0

z + ψ(x, y) y 1




where ψ ∈ Hom(q2, q). Then we have
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1 0 0
1 1 0
0 0 1


 →




1 0 0
1 1 0

ψ(1, 0) 0 1


 →




1 0 0
α 1 0

1
2
αβ + (αδ − βγ)ψ(1, 0) β 1




→



1 0 0

αpt
1 0

(1
2
αβ + (αδ − βγ)ψ(1, 0))pt

βpt
1


 .

But

φ :




1 0 0
1 1 0
0 0 1


 −→




1 0 0
ω 1 0
0 0 1




so we have that αpt
= ω and βpt

= 0 from which we can deduce that β = 0 and that

ψ(1, 0) = 0.

Now we consider:




1 0 0
0 1 0
1 0 1


 →




1 0 0
0 1 0
1 0 1


 7−→




1 0 0
0 1 0
αδ 0 1


 7−→




1 0 0
0 1 0

(αδ)pt
0 1


 ,

from which we deduce that (αδ)pt
= ω−1, and hence that δ = ω−2. But also




1 0 0
0 1 0
ω 0 1


 7−→




1 0 0
0 1 0
ω 0 1


 7−→




1 0 0
0 1 0

ωαδ 0 1




7−→



1 0 0
0 1 0

(ωαδ)pt
0 1




and so ωpt
= ω. But ω is a primitive element of GF(pn) and so we must have ωpn

= ω.

Therefore pt = pn gives the trivial map. Finally,
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1 0 0
ω 1 0
0 0 1


 7−→




1 0 0
ω 1 0

ψ(ω, 0) 0 1


 7−→




1 0 0
αω 1 0

αδψ(ω, 0) 0 1


 ,

which shows that α = ω and ψ(ω, 0) = 0.

Putting this all together we can see that φ is an automorphism of the form z.
(

ω 0
γ ω−2

)

where z is a central automorphism with ψz(a, 0) = 0 for all a ∈ Fq.

Lemma 4.1.3 Let ω ∈ Fq be a primitive element and let φ denote the automorphism of

S which acts as the matrix
(

ω 0
0 ω−2

)
. Then CAut(S)(φ) = {( λ 0

0 µ

) ∈ Aut(S)|λ, µ ∈ Fq}.

Proof: A routine calculation in Aut(S) shows that

CAut(S)(φ) = {z (
λ 0
0 µ

) ∈ Aut(S)|ψz(a, b) = ωψz(aω, bω−2) for all a, b ∈ Fq}.

Let ψ be a homomorphism (Fq, +)2 → (Fq, +) such that ψ(a, b) = ωψ(aω, bω−2). Since

ψ is an additive homomorphism, we have that ψ(a, b) = ψ(a, 0) + ψ(0, b) for all a, b ∈
Fq. Let ψ1(a) = ψ(a, 0) and ψ2(b) = ψ(0, b). Note that these are also additive group

homomorphisms.

Suppose that ψ1 is not the trivial map. We show that ψ1 is an isomorphism of additive

groups by showing that ker(ψ1) = 0. To do this, let a ∈ ker(ψ1) with a 6= 0. Then

0 = ψ1(a) = ωψ1(aω), so ψ1(aω) = 0 since ω 6= 0. Now, if ψ1(aωk) = 0 then ψ1(aωk) =

ωψ1(aωk+1) = 0. Hence by induction, ψ1(aωk) = 0 for all 1 ≤ k ≤ q − 1. Since we

assumed that ψ1 is non-trivial, this means that a = 0. Hence ker(ψ1) = 0, and therefore

ψ1 is an automorphism of the additive group of Fq.

In particular, ψ1 is surjective, and so there exists an integer k such that ψ1(ω
k) = 1.
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Note that for any l we have

ψ1(ω
l) = ψ1(ω

kωl−k)

= ωk−lψ1(ω
k)

= ωk−l.

By additivity, we also have ψ1(2ω
k) = 2. Now, since ω is primitive in Fq, there exists an

integer f such that ωf = 2. Therefore ψ1(ω
f+k) = ωf . But ψ1(ω

f+k) = ω(k−k−f) = ω−f ,

and so ωf = ψ1(ω
f+k) = ω−f . This means that 2 ≡ −1 mod p, and therefore that p = 3.

So assume that p = 3. Then ωf is the unique involution in the multiplicative group Fq.

Hence f = (q− 1)/2. As ωk = 1, we also have that ψ1(ω
f ) = ωk−f = ωkω−f = ω−f = ωf .

Therefore k− f ≡ f mod q− 1, hence k ≡ 0 mod q− 1. Thus k = 0 and so ψ1(ω
l) = ω−l

for all l, i.e. ψ1(a) = a−1 for all non-zero a ∈ Fq. In particular, ψ1(1 + ω) = (1 + ω)−1.

But by the linearity of ψ1, ψ1(1 + ω) = ψ1(1) + ψ1(ω) = 1 + ω−1. This means that

1 = (1 + ω−1)(1 + ω)

= 1 + ω + ω−1 + 1

and hence that ω2 + ω + 1 ≡ 0 mod 3. But the polynomial x2 + x + 1 ≡ (x− 1)2 mod 3,

and so over fields of characteristic 3, 1 is the only root of the polynomial x2 +x+1. But 1

is not a primitive element of Fq. Hence ω2 + ω + 1 6= 0 in any finite field of characteristic

3. Therefore ψ1 is trivial.

Now suppose that ψ2 is non-trivial. Let b ∈ ker(ψ2) with b 6= 0 so that ψ2(b) = 0.

Then ωψ2(ω
−2b) = 0 and hence ψ2(ω

−2b) = 0. If ψ2(ω
−2kb) = 0 then 0 = ψ2(ω

−2kb) =

ωψ2(ω
−2(k+1)b) and so ψ2(ω

−2(k+1)b) = 0. Hence ψ2(ω
−2kb) = 0 for all 1 ≤ k ≤ q−1. This

shows that ker(ψ2) has index 2 in (Fq, +). Since p is odd, this means that ker(ψ2) = 0.

64



Hence ψ2 is an automorphism of the additive group (Fq, +). So there exists an integer k

with ψ2(ω
k) = 1. Now, ψ2(ω

k) = ω−1ψ2(ω
k+2), and an easy induction argument (similar

to the one above) shows that 1 = ψ2(ω
k) = ω−lψ2(ω

k+2l) for all integers l. But this means

that ωl = ψ2(ω
k+2l) for all l. Since ω is primitive, we have that every element of Fq can

be written as ψ2(ω
k+2l). But ψ2 is injective and {ωk+2l|0 ≤ l ≤ q − 1} is a coset of the

subgroup of all square elements in Fq, which has index 2. This is a contradiction. Thus

ψ2 is trivial. This shows that ψ is trivial.

We now proceed to classify all the possibilities for OutF(S) and Alp(F).

Lemma 4.1.4 The group OutF(S) is isomorphic to a subgroup of ΓL2(q).

Proof: Note that by Lemma 2.2.2, every element of Inn(S) ∼= S/Z(S) is a central au-

tomorphism. However, every central automorphism has p-power order and OutF(S) is a

p′-group by saturation. Hence by Lemma 2.2.4, OutF(S) is contained in a subgroup of

Aut(S) which is isomorphic to a subgroup of ΓL2(q).

4.2 The case |Alp(F)| < 2

We are now ready to use the full power of the Frattini Lemma for Saturated Fusion

Systems (Theorem 1.8.2). In this section we consider which saturated fusion systems can

occur when there are less than two Alperin subgroups.

Lemma 4.2.1 Let G be a saturated fusion system over S. Then S contains no proper

G-Alperin subgroups if and only if G ∼= FS(S oW ) where W is a p′-subgroup of ΓL2(q)

Proof: Suppose that there are no G-Alperin subgroups. Then by 1.8.2, G = 〈AutG(S)〉.
We know from 4.1.4 and condition (I) of saturation that OutG(S) must be isomorphic to a

p′-subgroup W of ΓL2(q). In this case we have that AutG(S) ∼= Inn(S)oW ∼= AutSoW (S).

Hence FS(S oW ) contains G as a fusion subsystem.
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Now fix a p′-subgroup W ≤ ΓL2(q) and consider the fusion system FS(S o W ).

We claim that Alp(FS(S o W )) = ∅. Suppose that V ∈ Alp(FS(S o W )). Then

Op′(AutSoW (V )) is isomorphic to SL2(q) by 3.2.11, and acts on V as the natural module.

So there exist elements of Op′(AutSoW (V )) which do not normalize Z(S). But Z(S) is

invariant under conjugation in the group S o W , so every FS(S o W )-morphism nor-

malizes Z(S). This is a contradiction. Hence Alp(FS(S o W )) = ∅. Thus by 1.8.2,

FS(S oW ) = 〈AutSoW (S)〉 = 〈AutG(S)〉 = G.

Proposition 4.2.2 Let F1, F2 be saturated fusion systems over S with Alp(F1) = Alp(F2) =

{V } for some V ≤ S. Suppose that AutF1(V ) = AutF2(V ). Then F1
∼= F2.

Remark Firstly, note that the assumption that AutF1(V ) = AutF2(V ) is stronger than

the assumption that the groups AutF1(V ) and AutF2(V ) are isomorphic; the assumption

in the proposition is that the F1- and F2-morphisms of V are exactly the same maps.

Proof: Let A1 = AutF1(S) and A2 = AutF2(S). We know that V is a normal subgroup

of S by 2.3.9. Since V is the only F -Alperin subgroup, we also have that every element

of A1 and A2 normalizes V .

Let J = CAut(S)(V )Inn(S). Now, A1, A2 and J are all contained in NAut(S)(V ) and J

is a normal subgroup of NAut(S)(V ), so we may consider the groups A1J and A2J .

Let φ ∈ A1. Then φ|V ∈ AutF1(V ) = AutF2(V ). Since φ|V lifts to φ1 in F1, we

have that φ|V ∈ NAutF1
(V )(AutS(V )) = NAutF2

(V )(AutS(V )). Hence φ|V lifts to some

φ′ ∈ AutF2(S). This means that φ′ = φθ where θ ∈ CAut(S)(V ) and so φJ = φ′J . From

this we deduce that A1J ≤ A2J . By symmetry we also have that A2J ≤ A1J , thus

A1J = A2J .

Now, J is a p-group by Lemma 2.3.9(iv), therefore so is J/Inn(S). By saturation,

A1/Inn(S) is a p′-group. Hence (|A1J/Inn(S)|, |A1/Inn(S)|) = 1, and therefore by the

Schur-Zassenhaus Theorem (see, for example, [2, 18.1]), there exists a g ∈ A1J/Inn(S)
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such that (A1/Inn(S))g = A2/Inn(S). Thus we can find an α ∈ CAut(S)(V ) such that

αInn(S) = g. Hence Aα
1 = A2. Since α centralizes V , we have AutF1(V )α = AutF1(V ).

Now Proposition 1.7.7 shows that α is an automorphism of S which preserves fusion from

F1 to F2. Hence F1 and F2 are isotypically equivalent.

Proposition 4.2.3 Let F be a saturated fusion system over S. Then |Alp(F)| = 1 if

and only if F ∼= FS(q2 : W ) where SL2(q) ≤ W ≤ ΓL2(q) and W/SL2(q) has p′ order.

Proof: By 3.2.11, AutF(V ) contains a normal subgroup isomorphic to SL2(q). Therefore

AutF(V ) is isomorphic to a group W where SL2(q) ≤ W ≤ ΓL2(q) by Lemma 4.1.1. But

AutS(V ) ∈ Sylp(AutF(V )) has order q, and so W must have the same Sylow p-subgroups

as SL2(q). This is equivalent to the condition that W/SL2(q) is a p′-group.

Now let W ′ ∼= W be a group of automorphisms of V . Then the group V oW contains

a Sylow p-subgroup isomorphic to S and the fusion system FS(V oW ) has exactly one

Alperin subgroup. Hence by 4.2.2, F ∼= FS(V oW ).

To see the converse, we simply note that given any group W with SL2(q) ≤ W ≤
ΓL2(q) and W/SL2(q) a p′-group, we have that the group q2oW has a Sylow p-subgroup

isomorphic to S, and that the saturated fusion system FS(q2oW ) has exactly one Alperin

subgroup.

4.3 Subgroups of PGL2(q)

In this section we prove an important lemma concerning certain subgroups of PGL2(q),

which we use in the proof of Theorem 4.4.1. Denote by P the projective line over Fq. As

a set, this space has q + 1 points.

The following is a well-known fact about projective linear groups:

Lemma 4.3.1 Let q = pn for some prime p. Then PGL2(q) acts 2-transitively on P and

an element of PGL2(q) which fixes three points in the natural action on P is trivial.

67



Proof: By assigning coordinates to the elements of P in the usual way, so that each point

in P corresponds to an element of Fq or the symbol ∞, we can identify PGL2(q) with the

set of projective transformations

z 7→ az + b

cz + d

where a, b, c, d ∈ Fq and ad− bc 6= 0. To see that PGL2(q) is 2-transitive, we note that if

x, y ∈ P with x 6= y then the transformation z 7→ yz+x
z+1

maps 0 to x and ∞ to y.

We also observe that the stabilizer of the points 0 and ∞ consists of transformations

of the form z 7→ az, with a ∈ Fq. But such a transformation does not fix another point

unless a = 1, i.e. unless it is the identity transformation. Therefore, by 2-transitivity, the

only element which fixes three points in P is the identity.

Lemma 4.3.2 The order of a point stabilizer in PGL2(q) with respect to the action on

P is q(q − 1) and every p′-subgroup of a point stabilizer in PGL2(q) is cyclic.

Proof: Let V be a 2-dimensional Fq-space. Note that the stabilizer in GL2(q) of the 1-

dimensional subspace of V spanned by the vector (1, 0) is A := {( a 0
c b ) |a, b, c ∈ Fq, a, b 6= 0}.

For any vector v ∈ V , there exists an element x ∈ GL2(q) such that vx = (1, 0). Hence

StabGL2(q)(〈v〉) = Ax.

Note that the stabilizer of a projective point in PGL2(q) is the projection of a line

stabilizer in GL2(q). Since every line stabilizer in GL2(q) is conjugate to A, the stabilizer

of every projective point in PGL2(q) is conjugate to the projection A of the group A in

PGL2(q). The order of A is q(q − 1)2, thus each projective point stabilizer has order

q(q − 1).

It is easy to see that in GL2(q), the p-subgroup P := {( 1 0
d 1 ) |d ∈ Fq} is normal in A,

and so is the unique Sylow p-subgroup of A. Note that if A and P are the projections

of A and P respectively in PGL2(q), then P is the unique Sylow p-subgroup of A. Also

note that A/P is cyclic, and generated by the image of the matrix ( 1 0
0 ω ), where ω is a
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primitive element of Fq.

Now, if H is a p′-subgroup of A then H ∩ P = 1 and so by the Parallelogram Law

H ∼= H P/P ≤ A/P , and so H is cyclic.

In the next lemma, the primes at which Ruiz and Viruel’s exceptional fusion systems

occur make their first appearance.

Lemma 4.3.3 Suppose q = pn for some odd prime p. Let X be a p′-subgroup of PGL2(q).

Suppose that there exist α, β ∈ P such that |StabX(α)| and |StabX(β)| are divisible by

(q−1)/(3, q−1), and that X = 〈StabX(α), StabX(β)〉. Then either StabX(α) = StabX(β)

or q = 3, 5, 7 or 13.

Remark It is possible to prove this theorem using Dickson’s Theorem (see Suzuki [39,

Theorem 3.6.25]) which lists the subgroups of PSL2(q). However, we have chosen to prove

it directly, because it illustrates more clearly how the exceptional fusion systems (i.e.

those with more than two Alperin subgroups) found by Ruiz and Viruel arise.

Proof: We regard X as a group of permutations on the set P . For any θ ∈ P , let

Xθ = StabX(θ). Fix α ∈ P and suppose that there is a β ∈ P such that Xα 6= Xβ.

Since we assumed |X| is coprime to p, we have that any subgroup of X corresponds

to a p′-subgroup Y of GL2(q). By Maschke’s Theorem (see, for example, Gorenstein [20,

Theorem 3.3.1]), the representation of Y on F2
q is completely reducible. Thus if Y nor-

malizes a 1-dimensional subspace, it must also normalize a complementary 1-dimensional

subspace. This means that if a subgroup of X fixes a point then it must, in fact, fix two

points. Hence Xα fixes some other point α′ ∈ P , Xβ fixes another point β′ ∈ P . This

implies that {α, α′} ∩ {β, β′} = ∅.
By 4.3.2, a point stabilizer in PGL2(q) has order q(q − 1). This means that point

stabilizers in X have order dividing (q − 1) (since |X| is coprime to p). We also have, by
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4.3.2, that point stabilizers in X are cyclic, thus Xα and Xβ are cyclic. Assume without

loss of generality that |Xα| ≥ |Xβ|. Since |Xβ| is divisible by (q− 1)/(3, q− 1), we are left

with two cases: |Xα| = q − 1 or |Xα| = |Xβ| = (q − 1)/3.

Case 1: |Xα| = q − 1. It was shown above that Xα fixes the two points α, α′. By

4.3.1, no non-identity element of Xα can fix any other points in P , and so the stabilizer

in Xα of any point in P \ {α, α′} is trivial. By the Orbit-Stabilizer Theorem, this means

that Xα has an orbit of length q − 1. Hence Xα has two orbits on P of length 1 (namely

{α} and {α′}) and an orbit of length q − 1 (namely P \ {α, α′}).
Now consider the orbits of X. Since Xβ ≤ X fixes neither α nor α′, we have that

either X is transitive on P or has an orbit {α, α′} of length 2. Suppose the latter case

holds. Then Xβ stabilizes {α, α′}, and if x ∈ Xβ is non-trivial, then x swaps α and α′,

and so x2 = 1 by 4.3.1, since x2 fixes α, α′, β and β′. Since Xβ is cyclic this means that

|Xβ| = 2. This means that either (q − 1)/3 divides 2 or q − 1 divides 2; i.e. either q = 7

or q = 3.

Now assume that X is transitive on P . This means that |X| = |Xα||OrbX(α)| =

(q− 1)(q + 1), by the Orbit-Stabilizer Theorem. Let B = {{θ, θ′} ⊆ P|θ 6= θ′, Xθ = Xθ′}.
Then B is an X-invariant block system. To see it is a block system, note that if {γ, γ′}
and {δ, δ′} ∈ B with {γ, γ′} ∩ {δ, δ′} 6= ∅ then 1 6= Xγ = Xγ′ = Xδ = Xδ′ . Therefore by

Lemma 4.3.1 {γ, γ′} = {δ, δ′}. Also note that B is X-invariant because by transitivity all

point stabilizers are conjugate in X and Xα = Xα′ .

Consider the action of the group Xα on B. The group Xα fixes the block {α, α′}, and

so it must act on the remaining (q− 1)/2 blocks. Consider the stabilizer in Xα of a block

{γ, γ′}. We have that |Xα|/|StabXα({γ, γ′})| ≤ (q−1)/2, and so StabXα({γ, γ′}) 6= 1. Let

x ∈ StabXα({γ, γ′}), x 6= 1. Then x must swap γ and γ′ because otherwise |Fix(x)| ≥ 3

(where Fix(x) = {θ ∈ P|θx = θ}). But then x2 must fix γ and γ′, and therefore x2 = 1.

Since this is true for every block, we can deduce that there must be an involution in the
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kernel of the action of Xα on the blocks. But Xα is cyclic, and so it contains only one

involution, z1 say. This element must act trivially on B, but not fix any point other than

α and α′ (otherwise it will fix 3 points). Therefore it must swap the two points of any

block which is not {α, α′}. Similarly, there is an involution z2 ∈ Xβ which swaps the

points of any block which is not {β, β′}. Now, the product z1z2 ∈ X fixes every point

except the four points α, α′, β and β′, i.e. q + 1 − 4 = q − 3 points. Since z1z2 6= 1, it

must be the case that q − 3 < 3, that is, q = 3 or 5.

Case 2: |Xα| = |Xβ| = (q− 1)/3. Consider the action of X on P . The group Xα has

two fixed points α and α′ and three orbits Ω1, Ω2 and Ω3, each of length (q − 1)/3. Let

us consider the possibilities for the X-orbit of α.

We shall say that subsets A, B ⊆ P are fused by X if A∪B is contained in the X-orbit

of some point in P .

The group Xβ also has two fixed points β and β′ (distinct from both α and α′) and

three orbits each of length (q − 1)/3. Since Xβ does not fix α, we have that the Xβ-

orbit of α has length (q − 1)/3. Therefore if (q − 1)/3 > 2 then α is fused to (without

loss of generality) Ω1 by X. If (q − 1)/3 ≤ 2 then there is also the possibility that

OrbXβ
(α) = {α, α′}. But (q − 1)/3 ≤ 2 if and only if q ≤ 7, so this case only arises when

q = 7.

Thus we may assume without loss of generality that α is fused to Ω1 by X, and that

α′ is fused to one of Ω1 and Ω2. We have the following possibilities; up to a permutation

of the labelling of Ω1, Ω2 and Ω3:

(i) α′ is fused to Ω2, and Ω1 is fused to neither Ω2 nor Ω3; thus |OrbX(α)| = 1+(q−1)/3;

(ii) α′ is fused to Ω2, and Ω1 is fused to Ω3; thus |OrbX(α)| = 1 + 2(q − 1)/3;

(iii) α′ is fused to Ω2, and Ω1 is fused to Ω2; thus |OrbX(α)| = 2 + 2(q − 1)/3;

(iv) α′ is fused to Ω1, and Ω1 is fused to neither Ω2 nor Ω3; thus |OrbX(α)| = 2+(q−1)/3;
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(v) α′ is fused to Ω1, and Ω1 is fused to Ω2; thus |OrbX(α)| = 2 + 2(q − 1)/3;

(vi) Ω1, Ω2 and Ω3 are all fused; thus |OrbX(α)| = |P| = q + 1;

In case (i), we have an orbit of length 1 + (q − 1)/3 = (q + 2)/3. Since X is a p′-

subgroup of PGL2(q), we have that each divisor of (q + 2)/3 divides either (q + 1) or

(q − 1). Suppose a|(q + 2)/3. If a|(q − 1) then a|(q + 2− (q − 1)) = 3 and a = 3, and if

a|(q + 1) then a|(q + 2− (q + 1)) = 1. Hence (q + 2)/3 = 3 and so q = 7.

In case (ii), we have an orbit of length 1 + 2(q − 1)/3 = (2q + 1)/3. Suppose that

a|(2q+1)/3. Then by the same reasoning as above, either a|(q−1) or a|(q+1). If a|(q−1)

then a|2q−2 and a|2q +1 and so a|2q +1−2q +2 = 3, hence a = 3 and q = 4. If a|(q +1)

then a|2q + 2 and so a|2q + 2 − 2q − 1 = 1 and hence a = 1 and q = 1. Both of these

outcomes contradict our assumptions about q.

In case (iii), we have an orbit of length 2+2(q−1)/3 = 2(q+2)/3. Suppose a|2(q+2)/3.

If a|(q − 1) then a|6, and if a|(q + 1) then a|2. Therefore 2(q + 2)/3|12 and so (q + 2)|18.

From this we can deduce that the only possibility is that q = 7.

In case (iv), we have an orbit of length 2 + (q − 1)/3 = (q + 5)/3. Consider the

action of X on O = OrbX(α). It acts transitively on O and Xα has two fixed points. Let

B′ = {{θ, θ′} ⊆ O|θ 6= θ′, Xθ = Xθ′}. It is easy to see that B′ forms an X-invariant block

system. The subgroup Xα fixes one of these blocks, and so acts on the remaining (q−1)/6

blocks. This means that if B is one of the remaining blocks, then (q− 1)/3|StabXα(B)| ≤
(q− 1)/6 and so StabXα(B) 6= 1. Now, using the same argument as in case 1, we see that

the involution in Xα acts by swapping the points in each block except for the points it

fixes. Now take an element y ∈ Xγ for some γ ∈ O \ {α, α′}. Again, it can be shown that

the involution in Xγ acts by swapping the points in each block except for the points it fixes.

The product xy ∈ X is non-trivial and fixes (q − 7)/3 points. Therefore (q − 7)/3 < 3,

i.e. q < 16. This leaves only the possibilities q = 7 or 13.
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In case (iv), we must have that (q − 1)/3 = 2 since the smallest possible orbit length

is (q − 1)/3. Hence this case only occurs for q = 7.

Now suppose that X is transitive. This means that (q + 1)||X|. Thus we can deduce

that |X| = (q + 1)(q − 1)/3. By transitivity all point stabilizers are conjugate, and so

have order (q− 1)/3. By a similar argument to that in case 1, the set B defined earlier is

an X-invariant block system.

Consider the action of the group Xα on B \ {α, α′}. Let x ∈ StabXα({γ, γ′}), where

{γ, γ′} is a block not equal to {α, α′}, and suppose x 6= 1. Then x cannot fix γ otherwise

it will fix 4 points in its action on P . Therefore x must swap γ and γ′. But then x2 fixes

γ and γ′, and so x2 = 1. So if all the block stabilizers are non-trivial then we can use a

similar argument to that in case 1 to show that q− 3 < 3, which is impossible if 3|(q− 1).

We may now assume that there exists a block with a trivial stabilizer. This means that

there is an orbit of length (q − 1)/3 on B. The blocks outside this orbit have non-trivial

stabilizers, and as we have seen before, non-trivial block stabilizers have order 2. But this

means that there is only one other orbit of blocks, of length (q − 1)/6. Let Bα denote

this smaller orbit under the action of Xα. Since all the point stabilizers are conjugate, we

can similarly define Bθ for any point θ as being the orbit of length (q− 1)/6 in the action

of Xθ on B. Now, suppose that {λ, λ′}, {µ, µ′} ∈ Bθ ∩ Bφ. Let zθ and zφ be the unique

involutions in Xθ and Xφ respectively. The kernel of the action of Xθ on the (q − 1)/6

blocks in Bθ contains zθ, and similarly for zφ. This means that zθ acts by swapping the

two elements in each block in Bθ (and similary for zφ). Thus zθ and zφ both swap λ to λ′

and µ to µ′. This means that zθzφ fixes 4 points and so zθzφ = 1. Therefore zθ = zφ and

so Bθ = Bφ. This shows that if Bθ and Bφ are distinct then they intersect in at most one

block.

We now prove that
⋂
{θ,θ′}∈Bα

Bθ = {α, α′}. To see this, let {θ, θ′} ∈ Bα. Then zα

swaps θ and θ′, and so zα normalizes Xθ. Since there is only one involution in Xθ, we have
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that zα and zθ commute. But then (αzθ)zα = αzαzθ = αzθ and so αzθ ∈ Fix(zα) = {α, α′}.
Similarly α′zθ ∈ Fix(zα). Thus zθ must stabilize the block {α, α′}, which means that

Stab〈zθ〉({α, α′}) is non-trivial, and so {α, α′} ∈ Bθ. This proves our claim.

By counting the elements in each of the Bθ for θ ∈ Bα, we can obtain a bound for q.

We have:

q + 1

2
≥

∣∣∣∣∣∣
⋃

{θ,θ′}∈Bα

Bθ

∣∣∣∣∣∣
= (|Bθ| − 1)|Bα|+ 1

=

(
q − 1

6
− 1

)(
q − 1

6

)
+ 1,

which implies that

q2 − 26q + 25 = (q − 1)(q − 25) ≤ 0,

and hence that q ≤ 25. The prime powers r ≤ 25 for which 3|(r − 1)/3 are just 7, 13,

19 and 25. Therefore q is one of 7, 13, 19 and 25. We have assumed that X is transitive

and therefore that |X| = (q − 1)(q + 1)/3. But by consulting the Atlas [16], we see

that PGL2(25) has no subgroup of order 208 = (25 − 1)(25 + 1)/3, PGL2(19) has no

subgroup of order 120 = (19 − 1)(19 + 1)/3 and PGL2(13) has no subgroup of order

56 = (13 − 1)(13 + 1)/3. Thus the only possibility in this case is q = 7. This completes

the proof.

4.4 The case |Alp(F)| ≥ 2

Now we are ready to tackle the case |Alp(F)| ≥ 2.

Theorem 4.4.1 Let F be a saturated fusion system over S, and suppose that |Alp(F)| >
2. Then q = 3, 5, 7 or 13.

Proof: Let V, W ∈ Alp(F) with V 6= W . By Corollary 2.2.8, we may assume that

V = {
(

1 0 0
a 1 0
c 0 1

)
|a, c ∈ Fq } and W = {

(
1 0 0
0 1 0
c b 1

)
|b, c ∈ Fq }. We know that AutF(V )

74



contains an element φV which acts as
(

ω 0
0 ω−1

)
when V is considered as a 2-dimensional Fq-

space, which by Lemma 4.1.2 extends to an element of the form φV ∈ AutF(S) = z
(

ω 0
γ ω−2

)

where z is a central automorphism of S. Considering φV as a linear map on S/Z(S),

we see that one eigenvector generates V/Z(S) and the other eigenvector must generate

another one-dimensional subspace of the form V ′/Z(S), where V ′ is an elementary abelian

subgroup of order q2. Thus we have that φV (acting on S) normalizes V and V ′. Also

note that φV has order q − 1. Similarly we get an element φW ∈ AutF(S) of order q − 1

whose GL2(q)-part is an upper triangular matrix.

We have that GV := 〈φV 〉Inn(S)/Inn(S) and GW := 〈φW 〉Inn(S)/Inn(S) are sub-

groups of OutF(S) (of order q − 1), and so are isomorphic to subgroups of GL2(q) (see

Lemma 4.1.4). Let F1 denote the subgroup of OutF(S) isomorphic to Z(GL2(q)). Note

that the groups GV F1/F1 and GW F1/F1 have order (q − 1)/(3, q − 1). By saturation

p - |〈GV , GW 〉|, and so the group X := 〈GV , GW 〉F1/F1 is isomorphic to a subgroup of

PGL2(q) which satisfies the conditions of Lemma 4.3.3. Now, since |Alp(F)| > 2, there

must exist a pair V,W such that {V, V ′} 6= {W,W ′}. Thus not every element of X has

the same two fixed points. Hence by Lemma 4.3.3, q = 3, 5, 7 or 13.

We recall the following fact from group theory:

Lemma 4.4.2 Let G be a finite group with Z ≤ Z(G) a subgroup contained in the centre

of G. If G/Z is cyclic then G is abelian.

Proof: Let aZ ∈ G/Z be a generator of G/Z and let x, y ∈ G. Then x = anz1 for some

z1 ∈ Z and some n and y = amz2 for some z2 ∈ Z and some m. So

x−1y−1xy = z−1
1 a−nz−1

2 a−manz1a
mz2

= 1

since z1, z2 ∈ Z. Hence G is abelian.
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Proposition 4.4.3 Suppose that F is a saturated fusion system over S with |Alp(F)| =
2. Then, after possibly adjusting F by an isotypical equivalence, AutF(S) ≥ Inn(S)W

where W is the group of automorphisms which act as an element of the set {( λ 0
0 µ

) |λ, µ ∈
Fq} if 3 - (q− 1), and W is the group of automorphisms of shape (q− 1)× (q−1)

3
generated

by the automorphisms which act as
(

ω 0
0 ω−2

)
and

(
ω−2 0
0 ω

)
if 3|(q − 1).

Proof: Let Alp(F) = {V, V ′}. By Lemma 2.2.7, we may assume that

V =
{(

1 0 0
a 1 0
c 0 1

)
|a, c ∈ Fq

}
and V ′ =

{(
1 0 0
0 1 0
d b 1

)
|b, d ∈ Fq

}
. We know that AutF(V ) contains

an element φV which acts as
(

ω 0
0 ω−1

)
where ω is a primitive element of Fq. As above,

we see that this element lifts to an element φV ∈ AutF(S) of the form z
(

ω 0
γ ω−2

)
where

γ ∈ Fq. Since φV normalizes V , it must also normalize V ′, and so γ = 0. Note that the

map
(

ω 0
0 ω−2

) ∈ Aut(S) agrees with φV on V . Hence they must differ by an element of

CAut(S)(V ).

Let ψ be the element of Aut(S) which acts as the matrix
(

ω 0
0 ω−2

)
. Let A1 = 〈φV 〉Inn(S).

Since F is saturated, AutF(S)/Inn(S) is a p′-group, therefore so is A1/Inn(S). Now, since

φV |V = ψ|V , we have that φV CAut(S)(V ) = ψCAut(S)(V ). Let A2 = 〈ψ〉Inn(S) and let

J = CAut(S)(V )Inn(S). Then A1J = A2J .

Now consider the group A1J/Inn(S) = A2J/Inn(S). We have that J/Inn(S) is a

normal subgroup, and A1/Inn(S) and A2/Inn(S) are both complements to J/Inn(S) in

A1J/Inn(S). By 2.3.9, J is a p-group and so (|A1J/Inn(S)|, |A1/Inn(S)|) = 1. Hence by

the Schur-Zassenhaus Theorem, there exists a g ∈ A1J/Inn(S) such that (A1/Inn(S))g =

A2/Inn(S). Thus there exists an α ∈ CAut(S)(V ) such that Aα
1 = A2. Therefore we have

that the fusion system Fα has AutFα(V ) = AutF(V ) and AutFα(S) contains ψ. By an

abuse of notation, we shall assume that F contains ψ as an F -morphism. By another

abuse of notation we shall set φV = ψ.

Using the notation of Theorem 4.4.1, we have that X = 〈GV , GW 〉F1/F1 is cyclic by

4.3.3. Let G = 〈GV , GW 〉. Then G ≤ OutF(S) ≤ GL2(q) and so F1 ∩ G ≤ Z(G). But
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X = GF1/F1
∼= G/(F1 ∩G) is cyclic and hence by Lemma 4.4.2, G is abelian. Therefore

〈φV ′〉 ≤ Inn(S)CAut(S)(φV ).

By 4.1.2 we have that φV ′ is of the form z
(

ω−2 0
0 ω

)
where z is a central automorphism.

But φV ′ ∈ Inn(S)CAut(S)(φV ) and so by 4.1.3 we have that z ∈ Inn(S). Since Inn(S) ≤
AutF(S), the morphism z

(
ω−2 0
0 ω

) ∈ AutF(S) if and only if the morphism
(

ω−2 0
0 ω

) ∈
AutF(S). Hence we may assume, without loss of generality, that

(
ω−2 0
0 ω

) ∈ AutF(S). By

an abuse of notation we shall say that φV ′ =
(

ω−2 0
0 ω

) ∈ AutF(S).

Now consider 〈φV , φV ′〉. Note that
(

λ 0
0 λ−2

)
=

(
µ−2 0
0 µ

)
if and only if λ = µ−2 and

µ = λ−2 i.e. only if λ3 = µ3 = 1 and λ = µ. Therefore 〈φV , φV ′〉 ∼= (q − 1)2 unless

3|(q − 1). So suppose 3|(q − 1). The only elements of order 3 in Fq are ω(q−1)/3 and

ω2(q−1)/3. Therefore 〈φV 〉 ∩ 〈φV ′〉 has order 3, and so 〈φV , φV ′〉 has order (q − 1)2/3.

But the element θ :=
(

1 0
0 ω3

)
=

(
ω−2 0
0 ω4

) (
ω2 0
0 ω−1

) ∈ 〈φV , φV ′〉 has order (q − 1)/3, and

〈θ〉 ∩ 〈φV 〉 = 1. Hence 〈φV , φV ′〉 ∼= (q − 1)× (q−1)
3

.

We have shown that AutF(S) contains Inn(S) and a group of diagonal matrices of

shape (q − 1)× (q−1)
(3,q−1)

, as claimed.

Proposition 4.4.4 The fusion system FS(PSL3(q)) has exactly two Alperin subgroups

and AutF(S) is of the form Inn(S)W where W is a subgroup of the collection of auto-

morphisms generated by 〈( ω 0
0 ω−2

)
,
(

ω−2 0
0 ω

)〉 of order (q − 1)2/(3, q − 1).

Proof: Let G := PSL3(q) and let F = FS(G). Note that the action by conjugation of the

matrix
(

a 0 0
0 b 0
0 0 (ab)−1

)
on S induces the automorphism

(
α 0
0 αβ3

)
in AutF(S) where α = ab−1

and β = b, in the sense of Lemma 2.2.3. The set of all such matrices forms a group of the

required shape.

Now we show that the subgroups V and V ′ defined in the previous proposition are the

F -Alperin subgroups. Matrix calculations show that V and V ′ are self-centralizing. We

now show that the F -conjugacy classes of V and V ′ have size 1. To see this, consider the

natural action of SL3(q) on a 3-dimensional Fq-space W . Then
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1 0 0
a 1 0
c 0 1







x
y
z


 =




x
ax + y
cx + z




and




1 0 0
0 1 0
c b 1







x
y
z


 =




x
y

cx + by + z


 .

So if V and V ′ are the subgroups of SL3(q) corresponding to V and V ′ respectively,

then CW (V ) is 2-dimensional and [W, V ] is 1-dimensional, and CW (V ′) and [W, V ′] are

1-dimensional. But we also have




1 0 0
a 1 0
c b 1







x
y
z


 =




x
ax + y

cx + by + z


 ,

and so if U is any other elementary abelian subgroup of S of order q2 then CW (U) and

[W, U ] are both 2-dimensional. Hence V , V ′ and U are mutually not conjugate in PSL3(q).

Since V and V ′ are also self-centralizing, this means that V and V ′ are F -centric.

Regard V as a 2-dimensional vector space over Fq with basis
{(

1 0 0
1 1 0
0 0 1

)
,
(

1 0 0
0 1 0
1 0 1

)}
.

Then the elements of PSL3(q) which correspond to the matrices
(

1 0 0
0 1 0
0 λ 1

)
and

(
1 0 0
0 1 µ
0 0 1

)
act

on V as the automorphisms ( 1 0
−λ 1 ) and

(
1 −µ
0 1

)
respectively. These generate a subgroup

of AutG(V ) isomorphic to SL2(q). Hence by Lemma 3.1.1, V is F -radical. Similarly V ′ is

F -radical. This shows that V and V ′ are F -Alperin subgroups of S. By Proposition 4.4.1,

there cannot be any more F -Alperin subgroups unless q = 3, 5, 7 or 13. The theorem for

these cases has already been proved by Ruiz and Viruel in [36, Lemma 4.9]. Hence the

theorem is proved.

The previous two results combine to give the following theorem:

Theorem 4.4.5 If F is a saturated fusion system over S with |Alp(F)| = 2 then F
contains a fusion system isotypically equivalent to the fusion system FS(PSL3(q)).
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4.5 Statement of the classification

Let us summarise what has been proved so far in these first few chapters.

Theorem 4.5.1 If F is a saturated fusion system over S then one of the following holds:

(i) F has no proper Alperin subgroups and F ∼= FS(S : W ) where W is isomorphic to

any p′-subgroup of ΓL2(q);

(ii) F has exactly one proper Alperin subgroup and F ∼= FS(q2 : W ) where SL2(q) ≤
W ≤ ΓL2(q) and W/SL2(q) has p′ order;

(iii) F has exactly two Alperin subgroups and F ∼= FS(PSL3(q).W ) where W ≤ Out(PSL3(q))

and p - |W |;

(iv) F has |Alp(F)| > 2 and is one of the exceptional cases of Ruiz and Viruel.

In particular, F is not exotic in cases (i), (ii) and (iii).

Note that if F is a non-exotic saturated fusion system over a finite p-group, with p

odd, then F has a unique associated linking system. This fact follows from [28, Theorem

4.5] and [11, Proposition 3.1]. Hence the theorem above comprises a classification not just

of saturated fusion systems over S, but of p-local finite groups over S.
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Chapter 5

Construction of a Saturated

Fusion System

In this chapter we shall construct some saturated fusion systems over certain p-groups

of shape pr : p where r ∈ N. In fact the p-groups we shall be considering are Sylow p-

subgroups of semidirect products that arise naturally from considering the so-called basic

irreducible FpGL2(p)-modules as described by Brauer and Nesbitt in [7].

It turns out that by extending the action of GL2(p) on these p-groups, we can generate

a saturated fusion system using a theorem of Broto, Levi and Oliver from [12]. In fact, in

the case when the dimension of the modules is 3, these turn out to be exactly the fusion

systems considered by Broto, Levi and Oliver [12, Example 5.5].

In a later chapter we shall show that these fusion systems are exotic, extending the

result of Broto et al., op cit..

5.1 Construction of the p-group

The fusion system we create will contain the fusion system from a semidirect product of

a certain modular GL2(p)-module, where p is an odd prime. The irreducible FpGL2(p)-

modules were originally described by Brauer and Nesbitt [7], although our exposition shall
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follow that of Parker and Rowley [30].

Let Fp be the field with p elements (p an odd prime) and consider the ring A = Fp[x, y]

of polynomials in two commuting indeterminates x, y with coefficients in the field Fp. Note

that we can make A into an FpGL2(p)-module as follows: let X =
(

α β
γ δ

) ∈ GL2(p) and

define an action of X on A by setting x 7→ (αx + βy) and y 7→ (γx + δy), and then

extending linearly to all of A. The kernel of this action is clearly trivial, and so this

makes A into a faithful FpGL2(p)-module.

Now consider the subspaces A(n, p) = {f ∈ A|deg(f) = n} of A consisting of all

homogeneous polynomials of degree n. Then, as proved in [7, p588], for each 0 ≤ n ≤ p−1

the subspace A(n, p) is an irreducible FpGL2(p)-module of dimension n + 1. Throughout

the remainder of this chapter and the next, we shall exclusively use the notation A(n, p)

to denote this subspace, although we shall normally consider A(n, p) as an abelian group.

If the values of n and p are clear from the context then we may drop this part of the

notation. We shall always assume that n ≥ 2.

We can also define an action of the multiplicative group F∗p on A(n, p) as follows: let

λ ∈ F∗p and let f ∈ A. Then define fλ = λf . Now set Γ = GL2(p)× F∗p and make A into

a FpΓ-module by setting f (X,λ) = λ(fX).

Fix n ∈ N and an odd prime p. Let G(n, p) be the semidirect product of the elementary

abelian group A(n, p) with the group Γ with the action as described above i.e. G = AoΓ.

The group G has order |A||GL2(p)||F∗p| = pn+2(p − 1)3(p + 1). Let S(n, p) = A(n, p) o

〈(( 1 0
1 1 ) , 1)〉. It is easy to see that S(n, p) has order pn+2, and so S(n, p) is a Sylow p-

subgroup of G(n, p). Throughout the remainder of this chapter and the next, we shall

reserve the notation S(n, p) to denote this group, although if the values of n and p are

clear from the context then we may drop this part of the notation. We shall always assume

that n ≥ 2.

Also, let R be the subgroup of S generated by the polynomial xn and the element of
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S corresponding to the element (( 1 0
1 1 ) , 1) ∈ Γ, which acts on A as x 7→ x and y 7→ x + y.

For a general element f ∈ A, define the weight of f =
∑n

i=0 aix
n−iyi by

wt(f) = max{i|ai 6= 0}

and define wt(0) = −1. Now for −1 ≤ i ≤ n define

Ci = {f ∈ A|wt(f) ≤ i}.

Note that for each −1 ≤ i ≤ n, the set Ci is a subgroup of A(n, p), and Cn = A(n, p).

In what follows we shall make use of the following general formula for conjugation in

semidirect products. Let H, K be finite groups where K acts on H. Let (h, k), (r, g) be

elements of the semidirect product H oK. Then

(h, k)(r,g) = (r, g)−1(h, k)(r, g)

= ((−r)g−1

, g−1)(hg + r, kg)

= ((−r)g−1kg + hg + r, g−1kg).

(5.1)

Lemma 5.1.1 We have the following:

(i) Z(S(n, p)) = C0 = 〈xn〉;

(ii) for 0 ≤ i ≤ n, [Ci, S(n, p)] = Ci−1. In particular, for i ≤ n− 1, Ci is the (n− i)th

term of the lower central series of S(n, p);

(iii) for 0 ≤ i ≤ n, Ci is a characteristic subgroup of S(n, p);

(iv) R is elementary abelian of rank 2.

Proof: First, we let H = A and K = 〈(( 1 0
1 1 ) , 1)〉 and consider S as the semidirect

product H oK. Suppose that (r, g) ∈ Z(S). Then (r, g) commutes with every element
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of the form (0, k) where k ∈ K. Referring to 5.1 we see that (0, k)(r,g) = ((−r)kg
+ r, kg).

By considering the second coordinate, it is clear that kg = k for all k ∈ K, and therefore

(0, k)(r,g) = ((−r)k + r, k). Hence (r, g) centralizes (0, k) for all k ∈ K if and only if

rk − r = 0 for all k ∈ K. Suppose that r =
∑n

i=0 aix
n−iyi where each ai ∈ Fp and that

k = (( 1 0
1 1 ) , 1). Then

rk =
n∑

i=0

aix
n−i(x + y)i

=
n∑

i=0

i∑
j=0

ai

(
i

j

)
xn−jyj,

so that

rk − r =
n∑

i=0

i∑
j=0

ai

(
i

j

)
xn−jyj −

n∑

l=0

alx
n−lyl

= a0x
n +

n∑
i=1

i∑
j=0

ai

(
i

j

)
xn−jyj − a0x

n −
n∑

l=1

alx
n−lyl

=
n∑

i=1

i−1∑
j=0

ai

(
i

j

)
xn−jyj

= a1x
n +

n∑
i=2

i−1∑
j=0

ai

(
i

j

)
xn−jyj.

(5.2)

Thus rk − r = 0 if and only if ai = 0 for all i ≥ 1, i.e. r ∈ 〈xn〉.
We also have that (r, g) must commute with every element of the form (h, 1) where

h ∈ H. Again referring to 5.1 we see that (h, 1)(r,g) = (−r+r+hg, 1) = (hg, 1). Thus (r, g)

centralizes (h, 1) for all h ∈ H if and only if hg = h for all h ∈ H. In particular, we must

have (yn)g = yn, but the only element of K for which this holds is the identity. Hence

g = (( 1 0
0 1 ) , 1), and so Z(S) ⊆ 〈xn〉. It is easy to see that 〈xn〉 ⊆ Z(S), and therefore

Z(S) = 〈xn〉, proving (i).

The first part of (ii) is simply a special case of [31, Proposition 1]. For the second
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part, we shall show that [S, S] = Cn−1. The statement then follows by induction, the

inductive step being the first part of the statement. By consulting 5.1, we see that for

any elements (h, k), (r, g) ∈ S = H oK, the commutator [(h, k), (r, g)] is given by

[(h, k), (r, g)] = (hg − h + r − rk, 1).

The calculations in the proof of (i) show that hg − h and r − rk are both elements of

Cn−1, and therefore so is (hg − h + r − rk, 1). Hence [S, S] ≤ Cn−1. But [S, S] ≥ [A, S] =

[Cn, S] = Cn−1, and therefore [S, S] = Cn−1. This shows that for 0 ≤ i ≤ n − 1, Ci

is the (n − i)th term of the lower central series. This also means that these Ci are all

characteristic subgroups of S. It remains to show that Cn = A is characteristic.

Suppose that C ′ ≤ S is Aut(S)-conjugate to Cn. Since Cn−1 is characteristic in S,

Cn−1 ≤ C ∩ C ′. Let (r, g) ∈ C ′ with r ∈ A and g ∈ K. Since C ′ is abelian, (r, g)

must commute with elements of the form (h, 1) where h ∈ Cn−1. Since n ≥ 2, we have

that Cn−1 	 Z(S). In particular, Cn−1 contains the element xn−1y and so by using the

conjugation formula 5.1 we see that (r, g) commutes with every (xn−1y, 1) only if g = 1.

Hence C ′ = Cn, and therefore Cn is characteristic in S, proving (iii).

To see that R is elementary abelian, note that the generators xn and (( 1 0
1 1 ) , 1) com-

mute, and so by the properties of semidirect products, R = 〈xn〉o 〈(( 1 0
1 1 ) , 1)〉 is just the

direct product R = 〈xn〉 × 〈(( 1 0
1 1 ) , 1)〉, which is clearly elementary abelian.

Now we prove a general lemma from which we can deduce that S(n, p) has exponent

p for 2 ≤ n ≤ p− 2 and p2 for n = p− 1.

Lemma 5.1.2 Let T be a finite p-group with exponent p and let V be a finite dimensional

FpT -module. There exists an 0 < n < ∞ such that [V, T ; n] = 1; let m be the smallest

such n ∈ N. If m ≤ p− 1 then the exponent of the semidirect product V o T is p.
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Proof: Let X = V o T . Then we may write any element of X as ta where t ∈ T and

a ∈ V . Note that at = ta[a, t] and hence

(ta)2 = tata = t2a[a, t]a

= t2a2[a, t],

since [a, t] ∈ V , and V is an abelian group. We shall now use induction to show that

(ta)n = tnan

n−2∏
i=0

[
a(n

i), t; n− 1− i
]
.

Suppose that (ta)k − 1 = tk−1ak−1
∏k−3

i=0

[
a(k−1

i ), t; k − 2− i
]
. Then

(ta)k = tk−1ak−1

k−3∏
i=0

[
a(k−1

i ), t; k − 2− i
]
ta

= tkak

k−3∏
i=0

[
a(k−1

i ), t; k − 2− i
] [

ak−1

k−3∏
j=0

[
a(k−1

j ), t; n− 2− j
]
, t

]
.

(5.3)

Note that if x, y ∈ V and z ∈ T then [xy, z] = [x, z]y[y, z] = [x, z][y, z] (see, for example,

[20, Theorem 2.2.1(i)]). Hence

[
ak−1

k−3∏
j=0

[
a(k−1

j ), t; n− 2− j
]
, t

]
=

[
ak−1, t

] k−3∏
j=0

[
a(k−1

j ), t; k − 1− j
]

=
k−2∏
j=0

[
a(k−1

j ), t; k − 1− j
]
.
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By substituting this back into 5.3 we see that

(ta)k = tkak

k−3∏
i=0

[
a(k−1

i ), t; k − 2− i
] k−2∏

j=0

[
a(k−1

j ), t; k − 1− j
]

=
k−2∏
i=1

[
a(k−1

i−1), t; k − 1− i
] k−2∏

j=0

[
a(k−1

j ), t; k − 1− j
]

=
k−2∏
i=1

[
a(k−1

i−1)+(k−1
i ), t; k − 1− i

]
[a, t; k − 1]

(5.4)

Recall that
(

k−1
i−1

)
+

(
k−1

i

)
=

(
k
i

)
, and so

(ta)k = tkak

k−2∏
i=0

[
a(k

i), t; k − 1− i
]
.

Now, T and V have exponent p, and p divides
(

p
i

)
for all 1 ≤ i ≤ p − 2, so tp = ap =

[
a(p

i), t; p− 1− i
]

= 1 for all 1 ≤ i ≤ p− 2. Therefore

(ta)p = tpap

p−2∏
i=0

[
a(p

i), t; p− 1− i
]

= [a, t; p− 1] .

But m ≤ p − 1 and therefore [a, t; p− 1] = 1. Thus ta has order dividing p; since p is

prime, we have that the order of ta is p. We have now shown that every element of X

has order p, and so the exponent of X is p.

Corollary 5.1.3 The group S(n, p) has exponent p if 2 ≤ n ≤ p− 2 and has exponent p2

if n = p− 1.

Proof: The case when n ≤ p− 2 follows directly from 5.1.1 and 5.1.2. If n = p− 1 then

the proof of 5.1.2 shows that for any element s ∈ S, sp ∈ [A, S; p − 1] = C0 = Z(S).

Consider the element Y = (yn, ( 1 0
1 1 )). When n = p− 1 it is routine to check that Y p 6= 1.
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Since Z(S) is a cyclic group of order p, we have that Y p2
= 1. Hence S has exponent p2.

5.2 Construction of a saturated fusion system

Before constructing the fusion system, we shall describe a theorem of Broto, Levi and

Oliver which provides a sufficient condition for a fusion system to be saturated. We shall

use this theorem to show that the fusion system we construct is saturated.

First we need a few definitions.

Definition 5.2.1 Let G be a finite group with T a Sylow p-subgroup of G.

(i) A subgroup P of T is p-centric in G if Z(P ) ∈ Sylp(CG(P )).

(ii) A proper subgroup H of G is strongly p-embedded if p | |H| but p - |H ∩Hg| for all

g ∈ G \H.

(iii) A subgroup P of T is essential if either P = T or P is p-centric in G and OutG(P )

has a strongly p-embedded subgroup.

Lemma 5.2.2 Let G be a finite group with a strongly p-embedded subgroup. Then Op(G) =

1.

Proof: Let H be a strongly p-embedded subgroup of G, let T ∈ Sylp(H) and let R ∈
Sylp(G) with R ≥ T . Suppose that R 	 T ; then NR(T ) 	 T and so there exists a

g ∈ NR(T ) \ T such that H ∩Hg ⊇ T . But NR(T ) ∩H = T since T ∈ Sylp(H), and so

g 6∈ H. This contradicts the assumption that H is strongly p-embedded.

Therefore T ∈ Sylp(G) and so Op(G) ≤ H. But then Op(G) ≤ H ∩Hg for all g ∈ G.

Since H is strongly p-embedded, we have that p - |H∩Hg| for all g ∈ G, and so Op(G) = 1

as claimed.
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The following is an immediate corollary of the previous result:

Corollary 5.2.3 If P is essential in G then P is also p-radical in G, i.e. Op(OutG(P )) =

1.

We are now ready to state the theorem.

Proposition 5.2.4 [12, Proposition 5.1] Fix a finite group G, a Sylow p-subgroup T

of G and subgroups Q1, . . . , Qm ≤ T such that no Qi is G-conjugate to a subgroup of Qj

for i 6= j. For each i set Ki = AutG(Qi) and fix subgroups ∆i ≤ Aut(Qi) which contain

Ki. Set F = 〈FT (G), ∆1, . . . , ∆m〉 and assume for each i that

(i) p - |∆i : Ki|;

(ii) Qi is p-centric, but no proper subgroup of Qi is F-centric or an essential p-subgroup

of G; and

(iii) for all α ∈ ∆i \Ki, we have Op(Ki ∩Kα
i ) = Inn(Qi).

Then F is a saturated fusion system over T .

Let p be prime. As in § 5.1, set G(n, p) = A(n, p) o Γ and let S(n, p) be the Sylow

p-subgroup of G given by S = A o 〈(( 1 0
1 1 ) , 1)〉, and let R be the elementary abelian

subgroup of S described in 5.1.1.

Now let E(n, p) be the fusion system 〈FS(G), AutE(R) := Aut(R) ∼= GL2(p)〉. Note

that AutE(A) = Γ/CΓ(A) with the action stated above. We have the following:

Lemma 5.2.5 The set of elements of Γ which act trivially on A(n, p) is given by

CΓ(A) =
{(

( a 0
0 a ) , a−n

) |a ∈ F×p
}
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Proof: Let X = ( a b
c d ) ∈ GL2(p) and suppose that (X,λ) ∈ CΓ(A). Then in particular,

xn = (xn)(X,λ) = λ(ax + by)n, therefore b = 0. Similarly, yn = (yn)(X,λ) = λ(cx + dy)n,

so c = 0 and λ = d−n. Furthermore, xyn−1 = (xyn−1)(X,λ) = λadn−1xyn−1, and so

λadn−1 = 1. Hence λadn = d and therefore a = d since λ = d−n. We have shown that

CΓ(A) contains the set
{
(( a 0

0 a ) , a−n) |a ∈ F×p
}
.

To see that the reverse inclusion holds, let X = ( a 0
0 a ) ∈ GL2(p). Then (xiyn−i)(X,a−n) =

a−n(ax)i(ay)n−i = a(n−i)+i−nxiyn−i = xiyn−i, hence (X, a−n) ∈ CΓ(A).

Let Ω = Γ/CΓ(A) = AutG(A). Note that |Ω| = |GL2(p)|.
We show that the fusion systems E(n, p) satisfy the hypotheses of Proposition 5.2.4

with m = 1 and Q1 = R, and are therefore saturated.

Lemma 5.2.6 Let G = G(n, p) as before. Then the following hold:

(i) NG(R) = 〈{λxn + µxn−1y|λ, µ ∈ Fp},
{
(
(

α 0
β γ

)
, ζ)|α, γ, ζ ∈ F×p , β ∈ Fp

}〉;

(ii) CG(R) = 〈R, (
(

α 0
β α

)
, 1)〉.

In particular, R is p-centric in G, AutG(R) has order p(p− 1)2 and is isomorphic to the

set of lower triangular matrices in GL2(p).

Proof: Consider G = AoΓ as the set A×Γ with multiplication given by (r1, g1)(r2, g2) =

(rg1

1 + r2, g1g2).

Let H = 〈xn〉 = R ∩ A and let K = {(( 1 0
α 1 ) , 1) |α ∈ Fp}. It is clear that R = H oK.

Let (r, g) ∈ G and let (h, k) ∈ R. Suppose that r =
∑n

i=0 aix
n−iyi where each ai ∈

Fp. By consulting formula 5.1, we see that if (r, g) normalizes R then g ∈ NΓ(K), and

(−r)g−1kg + hg + r ∈ H for all h ∈ H. In particular, we must have that (−r)k + r ∈ H,

for all k ∈ K. But this holds if and only if rk − r ∈ H for all k ∈ K. But H =

{λxn ∈ A|λ ∈ Fp} and so by consulting formula 5.2 we see that rk − r ∈ H if and only

if ai = 0 for all i > 1, i.e. if and only if r ∈ {λxn + µxn−1y|λ, µ ∈ Fp}. Thus we

89



have shown that NG(R) = {λxn + µxn−1y|λ, µ ∈ Fp} o NΓ(K). It is easy to see that

NΓ(K) =
{((

α 0
β γ

)
, ζ

) |α, β, γ, ζ ∈ Fp

}
and so (i) follows.

To see (ii), note that if (r, g) centralizes (h, k) then rk − r = 0, and so ai = 0 for all

i 6= 0 (by formula 5.2 again), i.e. r ∈ H. We also require that g ∈ CΓ ((( 1 0
1 1 ) , 1)); but

this is easily seen to be equal to
{((

α 0
β α

)
, λ

) | α ∈ F×p , β ∈ Fp

}
. It is now clear that R is

p-centric in G
In particular, we have shown that AutG(R) is generated by the automorphisms c(xn−1y)

and c ((( 1 0
0 α ) , λ)) where c(g) denotes conjugation by the element g. If we consider R as a

2-dimensional vector space over Fp with basis B = {xn, (( 1 0
0 α ) , λ)}, then we may produce

an explicit embedding of AutG(R) into GL2(p) ∼= Aut(R) by considering the action of the

generating automorphisms on the Fp-basis.

Since xn and xn−1y are both elements of the abelian group A, we have that c(xn−1y)

acts trivially on xn, and so with respect to the basis B, c(xn−1y) maps the vector (1, 0) to

(1, 0). Considering the conjugation formula 5.1, we see that c(xn−1y) maps (( 1 0
1 1 ) , 1) ∈

H oK to (−xn, (( 1 0
1 1 ) , 1)) ∈ H oK, i.e. with respect to the basis B, c(xn−1y) maps the

vector (0, 1) to (−1, 1). Hence c(xn−1y) corresponds (with respect to B) to the matrix

( 1 0
−1 1 ). Similarly it can easily be shown that c ((( 1 0

0 α ) , λ)) corresponds to the matrix
(

λ 0
0 α−1

)
. But the matrices ( 1 0

−1 1 ) and
(

λ 0
0 α−1

) ∈ GL2(p) generate the subgroup of lower

triangular matrices. Hence AutG(R) is isomorphic to the set of lower triangular matrices

in GL2(p) and has order p(p− 1)2.

Lemma 5.2.7 Let K = AutG(R) and ∆ = AutE(R) = Aut(R). Then

(i) p - |∆ : K|;

(ii) R is p-centric in G but no proper subgroup P � R is E-centric or an essential

p-subgroup of G; and

(iii) for all α ∈ ∆ \K, we have Op(K ∩Kα) = 1.
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Proof: By Lemma 5.2.6, K has order p(p−1)2 and so clearly p - |∆ : K|. It was also shown

in Lemma 5.2.6 that R is p-centric in G, and since R is abelian, any proper subgroup of R

must contain R in its centralizer, and therefore is not E-centric or an essential p-subgroup

of G. This proves (i) and (ii). To prove (iii), note that AutG(R) is the normalizer of

a Sylow p-subgroup of GL2(p), and so every GL2(p)-conjugate of K = AutG(R) is also

the normalizer of a Sylow p-subgroup. Sylow p-subgroups of GL2(p) have order p, hence

any two distinct Sylow p-subgroups intersect trivially. Now, K = N∆(K) and so for all

α ∈ ∆\K we have K 6= Kα. Let α ∈ ∆\K such that K 6= Kα. Let T1, T2 ∈ Sylp(GL2(p))

be such that K = NGL2(p)(T1) and Kα = NGL2(p)(T2). Then 1 = T1 ∩ T2 ∈ Sylp(K ∩Kα).

Hence |K ∩Kα|p = 1 and so Op(K ∩Kα) = 1.

Since any two Sylow p-subgroups generate all of GL2(p), your conjugate is either

equal to AutG(R) or intersects it with trivial p-part. By observing that AutG(R) is self-

normalizing in GL2(p), statement (iii) follows.

Corollary 5.2.8 Let n ≥ 2 and p be an odd prime. Then the fusion systems E(n, p) over

S(n, p) are saturated.

Proof: This now follows from Proposition 5.2.4 and Lemma 5.2.7.

5.3 Properties of E(n, p)

In this section we collect some result about the properties of the fusion systems E(n, p)

which we shall use in the next chapter to prove that most of the fusion systems are exotic.

Recall that Ω = AutE(A(n, p)) ∼= (GL2(p)× F∗p)/ {(( u 0
0 u ) , u−n)}. We shall require the

following lemma about Ω in the next chapter.

Lemma 5.3.1 [Ω, Ω] ∼=





PSL2(p) n even;

SL2(p) n odd.
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Proof:

[Ω, Ω] ∼= ([GL2(p), GL2(p)]× [Fp,Fp]) CΓ(A)

CΓ(A)

∼= SL2(p)× 1

(SL2(p)× 1) ∩ CΓ(A)
.

Now, (SL2(p) × 1) ∩ CΓ(A) = {(( u 0
0 u ) , u−n) |u = ±1, u−n = 1}. But (−1)−n = 1 if and

only if n is even, otherwise (−1)−n = −1. Hence if n is even we have

[Ω, Ω] ∼= SL2(p)× 1{
(I, 1),

(( −1 0
0 −1

)
, 1

)}
∼= PSL2(p),

and if n is odd then we have

[Ω, Ω] ∼= SL2(p)× 1

(I, 1)

∼= SL2(p).

Now let P ≤ S(n, p). We shall now show that AutE(P ) does not contain a subgroup

isomorphic to Sym(m) for any m ≥ 6.

Proposition 5.3.2 Let P ≤ S(n, p) with |P | > p2 and suppose that P is not contained in

A(n, p). Then AutE(P ) does not contain a subgroup isomorphic to Alt(m) for any m ≥ 4.

Proof: The only E-Alperin subgroup of S that contains P is S itself. Hence by Alperin’s

Fusion Theorem, AutE(P ) just contains restrictions of elements of AutE(S) which normal-

ize P . Therefore AutE(P ) is isomorphic to a quotient of a subgroup of AutE(S), namely

NAutE(S)(P )/CAutE(S)(P ). But AutE(S) ∼= Cp−1 × Cp−1 is abelian, and so every quotient
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of every subgroup of AutE(S) is also abelian. In particular, no quotient of any subgroup

of AutE(S) contains a subgroup isomorphic to a alternating group of degree greater than

or equal to 4, since such alternating groups are non-abelian.

Recall that a group K is called a section of a group G if K is isomorphic to a homo-

morphic image of a subgroup of G.

Lemma 5.3.3 Let X be a section of a group G.

(i) Let Y ≤ X. Then Y is a section of G.

(ii) [X, X] is a section of [G, G].

(iii) Suppose further that L is a section of X. Then L is a section of G.

Proof: (i) Since X is a section of G, there exists a subgroup H ≤ G and a surjective

homomorphism θ : H → X. Denote by θ̂ the induced isomorphism H/ker θ → X. By

the Correspondence Theorem, there exists a subgroup K ≤ H with ker θ ≤ K such that

K/ker θ = θ̂−1(Y ). Now θ |K is a surjective homomorphism K → Y , and so Y is a section

of G.

(ii) Let H ≤ G and θ : H → X be a surjective homomorphism. For all h1, h2 ∈ H,

θ(h−1
1 h−1

2 h1h2) ∈ [X, X], and so θ([H, H]) ≤ [X, X]. Conversely, if x1, x2 ∈ X then

there exist elements h1, h2 ∈ H such that θ(h1) = x1 and θ(h2) = x2. Therefore

every commutator x−1
1 x−1

2 x1x2 ∈ [X, X] has a preimage h−1
1 h−1

2 h1h2 ∈ [H,H]. There-

fore [X, X] ≤ θ([H, H]). Thus θ |[H,H] is a surjective homomorphism [H, H] → [X,X],

and so [X, X] is a section of [G,G].

(iii) Since L is a section of X, there exists a subgroup Y ≤ X and a surjective

homomorphism φ : Y → L. Now by (i), Y is a section of G and so there exists a

subgroup H ≤ G and a surjective homomorphism θ : H → Y . Hence θφ : H → L is a

surjective homomorphism, and so L is a section of G.
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Lemma 5.3.4 The Sylow 3-subgroups of SL2(p) are cyclic for p 6= 3.

Proof: Note that the order of SL2(p) is (p− 1)p(p + 1). Since p 6= 3, we have that either

3 | (p− 1) or 3 | (p + 1) (not both). Now, by [39, 6.23], SL2(p) contains cyclic subgroups

of order p− 1 and of order p + 1. Hence every Sylow 3-subgroup of SL2(p) is contained in

a cyclic subgroup, and is therefore cyclic.

Corollary 5.3.5 The alternating group Alt(m) is not a section of SL2(p), for any m ≥ 6

and any prime p 6= 3.

Proof: By Lemma 5.3.4, the Sylow 3-subgroups of SL2(p) are cyclic. Every section of

a cyclic group is cyclic, therefore every section of SL2(p) has cyclic Sylow 3-subgroups.

However, Alt(m) does not have cyclic Sylow 3-subgroups since it contains the elementary

abelian group generated by the 3-cycles (1 2 3) and (4 5 6). Therefore Alt(m) is not a

section of SL2(p).

Remark Note that the alternating group Alt(5) is a subgroup of PSL2(p) whenever

p(p2 − 1) ≡ 0 mod 5 (see [39, Theorem 6.26]). This means that in general, we cannot

prove that Alt(m) is not a section of SL2(p) for m ≤ 5.

Proposition 5.3.6 Let Q ≤ S(n, p) (where p > 3) with |Q| > p2 and suppose that

Q ≤ A(n, p). Then AutE(Q) does not contain a subgroup isomorphic to Alt(m) for any

m ≥ 6.

Proof: The only E-Alperin subgroups of S containing Q are S itself and A. By Alperin’s

Fusion Theorem, this means that every morphism in AutE(Q) can be written as a com-

position of restrictions of E-morphisms of S and A. But A is a characteristic subgroup of

S, so every morphism in AutE(S) restricts to a morphism in AutE(A). Therefore every

E-morphism of Q is the restriction of an E-morphism of A. Hence AutE(Q) is a section

of AutE(A), namely NAutE(A)(Q)/CAutE(A)(Q).
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Now suppose that AutE(Q) has a subgroup K ∼= Alt(m). Then K is a section of Ω ∼=
AutE(A), and so [K, K] ∼= Alt(m) is a section of [Ω, Ω] by 5.3.3. Now, [Ω, Ω] = PSL2(p)

or SL2(p) by Lemma 5.3.1; in particular, (by Lemma 5.3.3) every section of [Ω, Ω] is a

section of SL2(p).

Since we have shown that [K, K] ∼= Alt(m) is a section of [Ω, Ω], we have that Alt(m)

is a section of SL2(p). Therefore by 5.3.5, m ≤ 5.
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Chapter 6

The proof that E is exotic

In this chapter we shall prove that the fusion systems E(n, p) do not come from finite

groups when p ≥ 13 and n ≥ 5. In particular, this gives us an infinite family of exotic

fusion systems. Indeed, it may be possible to show that the fusion systems E(n, p) are

exotic for smaller values of p and n, but our main goal in this thesis is to produce an infinite

family of exotic fusion systems. As such, we have introduced these minor restrictions on

the values of n and p in order to minimize technical difficulties.

It would seem, a priori, that in order to do show that E(n, p) is exotic we shall

need to check that every finite group which contains a Sylow p-subgroup isomorphic to

S(n, p), and show that it does not give rise to the fusion system E(n, p). This would be

an impossible task. However, we can significantly reduce the problem by appealing to

another important result of Broto, Levi and Oliver. This will show that we only need to

check the almost simple groups. The Classification of Finite Simple Groups then allows

us to prove exoticness.

6.1 Reducing the problem

We shall start by stating the theorem of Broto et al. that allows us to make this reduction.

First we need a few definitions.
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Definition 6.1.1 Let F be a fusion system over a finite p-group T and let P be a subgroup

of T . Then

(i) P is strongly closed in F if no element of P is F-conjugate to an element of T \P ;

(ii) P is normal in F if NF(P ) = F .

Recall that a finite group G is almost simple (with respect to K) if G has a normal

non-abelian simple subgroup K with CG(K) = 1, i.e. G is a group of automorphisms of

a non-abelian simple group K such that G contains all of the inner automorphisms of K.

Theorem 6.1.2 [12, Lemma 5.2] Let F be a fusion system over a nonabelian p-group

T . For each subgroup 1 6= P ≤ T which is strongly closed in F , assume that

(i) P is p-centric in T ;

(ii) P is not normal in F ; and

(iii) P does not factorize as a direct product of two or more distinct subgroups which are

permuted transitively by AutF(P ).

If F is the fusion system of a finite group, then there exists a finite group G, which

is almost simple with respect to a non-abelian simple group K, such that F ∼= FT (G).

Furthermore p | |K|.

Remark The statement given here differs very slightly from that given in [12]. Here we

emphasise that P is assumed not to factorize as a direct product. We reproduce the proof

here for the convenience of the reader.

Proof: Suppose that F ∼= FT (G) where G is a group of minimal order with this property.

Since FT (G) ∼= FT (G/Op′(G)), we have that Op′(G) = 1. Let N be a minimal normal
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subgroup of G. Then by [20, Theorem 2.1.5], N is either an elementary abelian p-group

or a direct product of isomorphic non-abelian simple groups.

Let P = T ∩N . If x ∈ P and xg ∈ T for some g ∈ G then xg ∈ P since N EG. Hence

P is strongly closed in F .

If N is an elementary abelian p-group then P = N and so P is normal in G, and hence

normal in F . This contradicts (ii). Therefore N = X1 × . . . × Xm, a direct product of

m isomorphic non-abelian simple groups. Note that the factors in the direct product are

permuted transitively by the conjugation action of G (if the action were not transitive

then N would have a proper normal subgroup consisting of a direct product of the factors

in a G-orbit). But G = KNG(P ) by the Frattini Lemma, and so the Xi (for 1 ≤ i ≤ m)

are permuted transitively by NG(P ). Furthermore, P = (X1 ∩ P ) × . . . × (Xm ∩ P ) and

the factors in this direct product are permuted transitively by AutG(P ) = AutF(P ). By

assumption, strongly closed subgroup cannot be written as such a direct product where

m > 1; hence m = 1 and so N is a simple group.

Now let N0 = CG(N); note that N0 E G. If N0 > 1 then p | |N0| since Op′(G) = 1.

But [T ∩N0, P ] ≤ [T ∩N0, N ] = 1. Now, P is p-centric and so Z(P ) ∈ Sylp(CG(P )). The

group T ∩ N0 is a p-subgroup of CG(P ) and therefore T ∩ N0 ≤ P . But 1 6= T ∩ N0 ≤
N0∩P ≤ N0∩N ≤ Z(N) = 1, which is a contradiction. This shows that CG(N) = 1 and

so G is almost simple. In particular, p | |N | since Op′(G) = 1.

We now set about showing that the fusion system E(n, p) satisfies the hypothesis of

Theorem 6.1.2.

Lemma 6.1.3 Let E = E(n, p). Then S itself is the only non-trivial subgroup of S which

is strongly closed in E.

Proof: Let 1 6= P C S(n, p) be strongly closed in E . Since S is a p-group, P intersects

non-trivially with Z(S) (see, for example, [35, 5.8]). But Z(S) is a cyclic group of order
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p, and is therefore simple, so P contains Z(S). Note that AutE(A) = AutG(A) = Ω, and

so we may regard A as an FpΩ-module. In fact, A is irreducible as an FpΩ-module (see [7,

p588]) and so the Γ-submodule of A generated by Z(S) ≤ A is just A. But P is strongly

closed in E , so it must contain every E-conjugate of Z(S), and therefore P contains the

submodule generated by Z(S), namely A. Also, since AutE(R) = Aut(R), we have that

the element xn ∈ A is E-conjugate to (( 1 0
1 1 ) , 1) ∈ S, and therefore P contains the group

〈A, (( 1 0
1 1 ) , 1)〉 = S. Hence P = S.

Lemma 6.1.4 Let E = E(n, p). Then

(i) S is not normal in E; and

(ii) S does not factorize as a direct product of two or more distinct subgroups which are

permuted transitively by AutE(S).

Proof: First we show that S is not normal in E . Note that xn ∈ Z(S) and (( 1 0
1 1 ) , 1) ∈ S\

Z(S) are generators of the elementary abelian group R, and so there is an automorphism

in Aut(R) = AutE(R) such that xn 7→ (( 1 0
1 1 ) , 1). This morphism cannot extend to a

morphism of S because Z(S) is a characteristic subgroup of S. Therefore S is not normal

in E .

Now suppose that S = Q1× . . .×Qm for distinct isomorphic subgroups Qi ≤ S. Then

Z(S) = Z(Q1) × . . . × Z(Q2). Therefore p = |Z(S)| = |Z(Q1)|m. But p is prime and so

m = 1.

Corollary 6.1.5 Let E be the fusion system over S(n, p) described above. If E is the

fusion system of a finite group then it is the fusion system of a finite almost simple group.

Proof: It is clear that S is p-centric in S, so we can apply Lemma 6.1.2 to E . This gives

the desired conclusion.
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In fact we can reduce our problem still further. We show that if G is an almost simple

group such that FS(G) ∼= E(n, p) then S(n, p) is a Sylow p-subgroup of a simple subgroup

of G.

Proposition 6.1.6 Let G be an almost simple group with Inn(K) ≤ G ≤ Aut(K) where

K is a non-abelian finite simple group. Suppose that G contains S(n, p) as a Sylow p-

subgroup and that FS(G) ∼= E(n, p). Then S(n, p) is a Sylow p-subgroup of K.

Proof: If x ∈ S ∩K and xg ∈ S for some g ∈ G then xg ∈ S ∩K since K E G. Hence

S ∩ K is strongly closed in FS(G) ∼= E(n, p). Therefore, by Lemma 6.1.3, S ∩ K = S.

Thus S ≤ K.

In the sections which follow, we consider every finite almost simple group G in turn

and show that if G has a Sylow p-subgroup isomorphic to S(n, p) for p ≥ 13 and n ≥ 5

then FS(G) 6∼= E(n, p). In particular, we will have an infinite family of exotic fusion

systems.

By the Classification of Finite Simple Groups, the almost simple groups fall into three

classes: those which are groups of automorphisms of an abelian groups, those which are

groups of automorphisms of an alternating group, those which are groups of automor-

phisms of a Lie type group, and those which are groups of automorphisms of a sporadic

group. We shall refer to these as almost simple groups of abelian, alternating, Lie, or

sporadic type respectively.

Note that we do not need to consider the simple groups of abelian type since S is not

abelian.

6.2 Alternating type groups

In this section, let us suppose that G is an almost simple group with a simple normal

subgroup N isomorphic to Alt(m) (m ≥ 5) and with CG(N) = 1. Then G is isomorphic to
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a subgroup of Aut(Alt(m)). It is well-known that for m ≥ 5 and m 6= 6, Aut(Alt(m)) ∼=
Sym(n), and that Aut(Alt(6)) contains a subgroup of index 2 isomorphic to Sym(6) (see,

for example, [39, 3.2.17, 3.2.19(iii)]). Since we only consider the case when p is odd, we

have that the Sylow p-subgroups of G are isomorphic to those of Alt(m).

The following is a well-known result about symmetric groups. See, for example, [17],

[24] or [34].

Proposition 6.2.1 The order of a Sylow p-subgroup of Sym(m) is pα, where α = [m/p]+

[m/p2] + · · · = ∑∞
i=1[m/pi].

Proof: The order of a Sylow p-subgroup of Sym(m) is the highest power of p dividing

m!. The number of positive integers divisible by p is [m/p], by p2 is [m/p2], and by pi is

[m/pi]. Therefore the highest power of p dividing m! is

([
m

p

]
−

[
m

p2

])
+ 2

([
m

p2

]
−

[
m

p3

])
+ · · · =

∞∑
i=1

i

([
m

pi

]
−

[
m

pi+1

])

=

[
m

p

]
+

[
m

p2

]
+ · · ·

=
∞∑
i=1

[
m

pi

]
.

We shall also require the following fact about alternating groups. For a proof, we refer

the reader to [22, 5.2.10].

Proposition 6.2.2 [22, 5.2.10] If p is an odd prime, then the symmetric group Sym(m)

has p-rank equal to [m/p].

Proposition 6.2.3 Let T be a Sylow p-subgroup of Sym(m), and suppose that T is non-

abelian and has an elementary abelian subgroup of index p. Then |T | ≥ pp+1.
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Proof: Suppose that X is an elementary abelian subgroup of T of index p. Then 1 =

logp|T : X| = logp|T | − logp|X| = (
∑∞

i=1[m/pi]) − [m/p] =
∑∞

i=2[m/pi]. Therefore

[m/p2] = 1 since [m/pi] = 0 implies that [m/pj] = 0 for all j ≥ i. But this means that

[m/p] ≥ p, and so logp|T | = [m/p] + [m/p2] ≥ p + 1, as required.

Corollary 6.2.4 If G is an almost simple group which is isomorphic to a subgroup of

Aut(Alt(m)), and G contains a Sylow p-subgroup isomorphic to S(n, p) for some n, then

n = p and |S| = pp+1.

Proof: Every Sylow p-subgroup of G is isomorphic to a Sylow p-subgroup of Sym(m).

So if S(n, p) ∈ Sylp(G) then S(n, p) ∈ Sylp(Sym(m)). The group S(n, p) is non-abelian

and contains an elementary abelian p-subgroup of index p, namely A(n, p). Hence Propo-

sition 6.2.3 applies and we have the desired conclusion.

Lemma 6.2.5 Let G = Sym(m) for some p2 ≤ m ≤ p2+p−1 and let X be an elementary

abelian p-subgroup of G of maximal rank. Then rankp(X) = p and |AutG(X)| = p!(p−1)p.

Proof: The fact that rankp(X) = p follows immediately from 6.2.2. We may assume,

without loss of generality, that X = 〈(1 2 . . . p), (p + 1 . . . 2p), . . . , (p2 − p + 1 . . . p2)〉.
Consider CG(〈(1 2 . . . p)〉). It is easy to see that this is equal to the direct product

〈(1 2 . . . p)〉 × Sym({p + 1, . . . , m}), and similarly for the other p-cycles. Therefore

CG(X) = CG(〈(1 2 . . . p)〉) ∩ . . . ∩ CG(〈(p2 − p + 1 . . . p2)〉)

= 〈(1 2 . . . p)〉 × . . .× 〈(p2 − p + 1 . . . p2)〉 × Sym({p2 + 1, . . . , m}).

Hence |CG(X)| = pp|Sym({p2 + 1, . . . , m})|.
Now let us consider NG(X). Let G = Sym({1, . . . , p2}) ≤ Sym(m). Then NG(X) =

NG(X)× Sym({p2 + 1, . . . , m}). Note that NG(X) is imprimitive with system of imprim-
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itivity given by
{{1, . . . , p}, . . . , {p2 − p + 1, . . . , p2}} .

Hence NG(X) is a wreath product where the base group is a direct product of normalizers

of p-cycles.

Consider the normalizer N in G of the p-cycle (1 . . . p). If g ∈ N then 1g = a where

1 ≤ a ≤ p, and 2g ≡ a + b(mod p), where 1 ≤ b ≤ p− 1. The images of 1 and 2 uniquely

determine g. This means that |N | = p(p− 1).

We have that NG(X) ∼= N o Sym(p) and so |NG(X)| = |N ||Sym(p)| = pp(p − 1)pp!.

Hence |NG(X)| = pp(p−1)pp!|Sym({1, . . . , p2})|. Thus |AutG(X)| = |NG(X)|/|CG(X)| =
p! (p− 1)p.

Proposition 6.2.6 Let G be an almost simple group which is isomorphic to a subgroup

of Aut(Alt(m)), and suppose that G has a Sylow p-subgroup isomorphic to S(n, p), where

p ≥ 13. Then FS(G) is not isomorphic to E.

Proof: Note that either G ∼= Alt(m), G ∼= Sym(m) or m = 6 and G ∼= Aut(Alt(m))

contains a subgroup of index 2 isomorphic to Sym(m). Now, since S(n, p) ∈ Sylp(G), we

have that A(n, p) is an elementary abelian p-subgroup of G of maximal rank. Therefore by

6.2.5, |AutSym(m)(A)| = p! (p− 1)p. Note that AutG(A) ≥ AutAlt(m)(A). Hence |AutG(A)|
is divisible by 1

2
p! (p− 1)p. We have that |AutE(A)| = |GL2(p)| = (p− 1)2p(p + 1).

Note that, since p ≥ 13,

(p− 1)! (p− 1)p−2 − 2(p + 1) ≥ 2(p− 1)2 − 2(p + 1) = 2p(p− 3) > 0;

a routine argument now shows that 1
2
p! (p−1)p > (p−1)2p(p+1) for p ≥ 13. In particular

we have that (p−1)2p(p+1) is not divisible by 1
2
p!(p−1)p. Hence E(n, p) is not isomorphic

to FS(G).
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Corollary 6.2.7 The fusion system E(n, p) does not appear as a fusion system in any

almost simple group of alternating type for p ≥ 13 and for any n.

6.3 Lie type groups in defining characteristic

Let G be a finite simple Chevalley group or a finite simple twisted Lie type group defined

over a field of characteristic p, where p is an odd prime. We shall show that G does not

contain a Sylow p-subgroup isomorphic to S(n, p) for any n ≥ 5. It will then follow by

Theorem 6.1.6 that no almost simple group of Lie type which is defined over a field of

characteristic p gives rise to a fusion system isomorphic to E(n, p).

Proposition 6.3.1 Let p be an odd prime, and let q = pa for some a. Let G be a finite

simple Chevalley group or a finite simple twisted Lie type group defined over a field of

order q and let U be a Sylow p-subgroup of G. Suppose that U is non-abelian and let X be

an elementary abelian subgroup of U with maximal possible rank in U . Then rank(X) > 3

implies that |U : X| > p.

Proof: The orders of the Sylow p-subgroups and the p-ranks of the finite simple Lie type

groups are well-known and can be found in [22, Tables 2.2 and 3.3.1] or [30, Table 13.17,

13.19]. For convenience, we reproduce Tables 13.17 and 13.19 from [30].
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Type of G logq|U | logq|X| logq|U | − logq|X|

Al(q) l ≥ 1, odd

(
l + 1

2

)
(l + 1)2/4 1

4
(l2 − 1)

l ≥ 1, even

(
l + 1

2

)
l(l + 2)/4 1

4
l2

Bl(q) l ≥ 4, q odd l2 1 + l(l − 1)/2 1
2
l(l − 1)− 1

l ≤ 3, q odd l2 2l − 1 l2 − 2l + 1
Cl(q) l ≥ 3 l2 l(l + 1)/2 1

2
l(l − 1)

Dl(q) l ≥ 4 l(l − 1) l(l − 1)/2 1
2
l(l − 1)

E6(q) 36 16 20
E7(q) 63 27 36
E8(q) 120 36 84
F4(q) q odd 24 9 15
G2(q) p ≤ 3 6 3 3

p = 3 6 4 2

2Al(q) l odd

(
l + 1

2

)
(l + 1)2/4 1

4
(l2 − 1)

l even

(
l + 1

2

)
l2/4 + 1 1

4
l2 + l − 1

2Dl(q) l ≥ 4 l(l − 1) (l − 1)(l − 2)/2 + 2 1
2
l(l + 1)− 3

2E6(q) 36 12 24
3D4(q) 12 5 7

2G2(3
2m+1) 3 2 1

Let us suppose that rank(X) > 3 and that |U : X| > p. By considering each of

the cases listed in the above table in turn, we shall show that either logp|U : X| =

logp|U | − logp|X| > 1 or that rankp(X) = logp|X| ≤ 3. If the former conclusion holds,

then we have contradicted the assumption that |U : X| > p, and if the latter holds then

we have contradicted the assumption that rank(X) > 3.

If G ∼= Al(q) where l = 1 then logq|U | − logq|X| = 1
4
(1 − 1) = 0 and so U is abelian,

in contradiction to our assumptions. If l = 2 and q = p then logq|X| = logp|X| = 2 ≤ 3.

If l = 2 and q = pa for a > 1 then logq|U | − logq|X| = 1 and so logp|U | − logp|X| > 1 as

required. If l is odd and l ≥ 3 then logq|U | − logq|X| ≥ 2 > 1, as required. If l is even

and l ≥ 4 then logq|U | − logq|X| ≥ 4 > 1.
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Suppose G ∼= Bl(q), and let l ≥ 4. Then logq|U | − logq|X| ≥ 5 > 1 and if l = 3 then

logq|U |− logq|X| = 4 > 1 as required. If l ≤ 2 and q = p then logq|X| = logp|X| ≤ 3, and

if l ≤ 2 and q = pa where a > 1 then logq|U | − logq|X| = 1 and so logp|U | − logp|X| > 1.

Now assume that G ∼= Cl(q). Since l ≥ 3 we have that logq|U | − logq|X| ≥ 3 > 1, and

so logp|U | − logp|X| > 1 as required.

So suppose that G ∼= Dl(q). Since l ≥ 4 we have that logq|U | − logq|X| ≥ 3 > 1 as

required.

Now suppose that G ∼=2 Al(q). If l = 1 then logq|U |− logq|X| = 0 and so U is abelian,

in contradiction to our assumptions. If l is odd and l ≥ 3 then logq|U | − logq|X| ≥ 2 and

so logp|U |− logp|X| > 1. If l is even then logq|U |− logq|X| = 1
4
l2 + l−1 ≥ 1

4
22 +2−1 = 2

(since 1
4
l2 + l − 1 is an increasing function of l for l ≥ 2).

Now let G ∼=2 Dl(q). Since l ≥ 4 we have logq|U | − logq|X| ≥ 7.

Consider the case when G ∼=2 G2(3
2m+1). If q = p then logq|X| = logp|X| = 2 ≤ 3,

and if q = pa where a > 1 then logq|U | − logq|X| = 1 and so logp|U | − logp|X| > 1.

It is clear from the table that the finite simple Chevalley groups of exceptional types

and the simple groups of twisted Lie types 2E6(q) and 3D4(q) satisfy the conclusion.

Theorem 6.3.2 No almost simple group of Lie type which is defined over a field of char-

acteristic p gives rise to a fusion system isomorphic to E(n, p) for n ≥ 5 and p ≥ 13.

Proof: Let G be an almost simple group of Lie type, with G a group of automorphisms

of the group K, where K is a finite simple Chevalley group or a simple twisted group

of Lie type defined over a finite field of characteristic p. Suppose that G has a Sylow

p-subgroup isomorphic to S(n, p) and that FS(G) ∼= E(n, p). Then by Theorem 6.1.6,

K has a Sylow p-subgroup isomorphic to S(n, p). However, S(n, p) is non-abelian and

contains an elementary abelian subgroup A, of rank n + 1 ≥ 6, at index p. But by

Proposition 6.3.1, K has no such Sylow p-subgroup; this is a contradiction.
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6.4 Exceptional groups in non-defining characteristic

We now turn our attention to the case when G is an almost simple group of Lie type

defined over a field of characteristic r 6= p; we aim to show that if G contains a Sylow

p-subgroup isomorphic to S(n, p) then FS(G) 6∼= E(n, p).

In this section we shall consider the subcase when the almost simple group G is a

subgroup of Aut(K), where K is a finite Chevalley group of exceptional type (i.e. of type

E6, E7, E8, F4 or G2), or a twisted simple group of type 2B2,
3D4,

2E6,
2F4 or 2G2 defined

over a finite field of characteristic r 6= p. We refer to all these groups K as simple groups

of exceptional Lie type. We shall show that none of these groups has a Sylow p-subgroup

isomorphic to S(n, p). First we require the following well-known fact from number theory:

Lemma 6.4.1 [26, Lemma 5] Let p be an odd prime, let r 6= p be a prime and let q be

a power of r. Let k be the multiplicative order of q modulo p, that is, k is the smallest

integer m such that qm ≡ 1 mod p. Then p divides the cyclotomic polynomial Φn(q) if

and only if n = kpi for some i ≥ 0.

Now fix a finite simple group K of exceptional Lie type, whose associated Dynkin

diagram has m nodes and where the root system of K has N positive roots. By [22,

Theorem 2.2.9], the order of the universal central extension of K can be written as

qN

m∏
i=0

Φi(q)
ri ,

where the ri are non-negative integers. The values of the ri are given explicitly in [21,

Tables 10.1, 10.2]; we reproduce Table 10.2 here, for convenience. It shows the cyclotomic

polynomial factors of the orders of the groups of exceptional Lie type:
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Type of K
∏

i Φ
ri
i

2B2 Φ1Φ4
3D4 Φ2

1Φ
2
2Φ

2
3Φ

2
6Φ12

G2 Φ2
1Φ

2
2Φ3Φ6

2G2 Φ1Φ2Φ6

F4 Φ4
1Φ

4
2Φ

2
3Φ

2
4Φ

2
6Φ8Φ12

2F4 Φ2
1Φ

2
2Φ

2
4Φ6Φ12

E6 Φ6
1Φ

4
2Φ

3
3Φ

2
4Φ5Φ

2
6Φ8Φ9Φ12

2E6 Φ4
1Φ

6
2Φ

2
3Φ

2
4Φ

3
6Φ8Φ10Φ12Φ18

E7 Φ7
1Φ

2
2Φ

3
3Φ

2
4Φ5Φ

3
6Φ7Φ8Φ9Φ10Φ12Φ14Φ18

E8 Φ8
1Φ

8
2Φ

4
3Φ

4
4Φ

2
5Φ

4
6Φ7Φ

2
8Φ9Φ

2
10Φ

2
12Φ14Φ15Φ18Φ20Φ24Φ30

Theorem 6.4.2 [22, Theorem 4.10.2] Let G be a finite group of Lie type, defined over

Fq, and let p ≥ 13 be a prime with p - q. Denote by k the multiplicative order of q modulo

p. Let P be a Sylow p-subgroup of G. Then there exists a subgroup PT of P such that PT

has the following properties:

(i) PT is an abelian normal subgroup of P ;

(ii) PT is homocyclic of exponent |Φk(q)|p and rank rk;

(iii) PT has index pb in P , where b = rpk + rp2k + · · · .

Since the p-rank of K is rk by [22, Theorem 4.10.3], we have that the subgroup PT

described above contains an elementary abelian subgroup of K of maximal rank.

Proposition 6.4.3 Let K be a simple group of exceptional Lie type defined over Fq. Let

p ≥ 11 with p - q. Then K has abelian Sylow p-subgroups. In particular, K does not

contain a Sylow p-subgroup isomorphic to S(n, p) for any n ≥ 2.

Proof: Let P ∈ Sylp(K). Then by 6.4.2, P contains an abelian subgroup PT with

logp|P : PT | = rpk + rp2k + · · · . But by consulting Table 6.4 we see that every group of
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exceptional Lie type has rpik = 0 for all i > 0 and all p ≥ 11. Hence logp|P : PT | = 0 and

so P = PT . In particular, P is abelian and therefore not isomorphic to S(n, p).

Theorem 6.4.4 No almost simple group of exceptional Lie type which is defined over a

field of characteristic q 6= p gives rise to a fusion system isomorphic to E(n, p) for n ≥ 2

and p ≥ 11.

Proof: Let G be an almost simple group of exceptional Lie type which is a group of

automorphisms of the group K, where K is a simple group of exceptional Lie type.

Suppose that G has a Sylow p-subgroup isomorphic to S(n, p) for some n ≥ 2 and p ≥
11. Then by Theorem 6.1.6, K has a Sylow p-subgroup isomorphic to S(n, p). But

this is impossible by Proposition 6.4.3. Therefore G cannot give rise to a fusion system

isomorphic to E(n, p).

Note that in particular, the theorem holds for n ≥ 5 and p ≥ 13.

6.5 Classical groups in non-defining characteristic

In this section we shall consider the case that G is an almost simple group of Lie type

which is a group of automorphisms of a simple classical group defined over a field of

characteristic q 6= p.

We start by recalling some facts from the theory of spaces with forms. As a general

reference, see [2, Chapter 7].

Lemma 6.5.1 [Witt’s Lemma] Let V be a linear, orthogonal, symplectic or unitary

space, and let U,W be subspaces of V . Then any isometry φ : U → W extends to an

isometry φ̂ : V → V .

Proof: See [2, Section 20].
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Let V be a 2-dimensional orthogonal, symplectic or unitary Fq-space. Recall that V

is called a hyperbolic plane if V has a basis {e, f} such that (e, e) = (f, f) = 0 (and if V

is an orthogonal space with quadratic form Q then Q(e) = Q(f) = 0) and (e, f) = 1. By

[2, 19.13], there is, up to isometry, a unique hyperbolic plane for each type of space. The

space V is called definite if there are no non-trivial singular vectors; that is, no vectors

v ∈ V such that (v, v) = 0 and Q(v) = 0 when V is an orthogonal space. As a consequence

of Witt’s Lemma we have the following.

Lemma 6.5.2 [2, 20.8.2] Let V be an orthogonal, symplectic or unitary space. Then V

is the orthogonal direct sum of hyperbolic planes and at most one definite plane. Moreover,

this decomposition is unique up to an isometry of V .

The plan in this section is to use Witt’s Lemma to show that classical groups contain

elementary abelian p-groups which contain a group isomorphic to an alternating group

in their automizer. We then show that this does not occur in the fusion systems E(n, p),

and hence that the classical groups cannot give rise to these fusion systems.

Firstly we consider the linear and unitary groups.

Lemma 6.5.3 Let (V, f) be a linear or unitary space of dimension l over Fq where l ≥ k.

Let Gk denote the isomorphism type of the isometry group of a k-dimensional linear

(respectively unitary) space over Fq. Then Isom(V ) contains a subgroup isomorphic to a

wreath product Gk o Sym([l/k]).

Proof: By [2, 21.6], V admits an orthonormal basis {v1, . . . , vl}. Now define subspaces

U1 = {v1, . . . , vk}, U2 = {vk+1, . . . , v2k}, . . ., U[l/k] = {v[l/k]k−(k−1), . . . , v[l/k]k}. Each Ui is

a k-dimensional non-degenerate subspace of V , for every 1 ≤ i ≤ [l/k]. The Ui are clearly

all isometric spaces and so Isom(Ui) ∼= Gk for every i.

Given an isometry φ ∈ Isom(Ui) for some i, define a linear map φ̂ of V by setting

φ̂(vj) = vj for j /∈ {(i− 1)k + 1, . . . , ik}, and φ̂(vj) = φ(vj) for j ∈ {(i− 1)k + 1, . . . , ik}.
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Then φ̂ is an isometry since {v1, . . . , vl} is an orthonormal basis. It is also easy to see

that for i 6= j, isometries of Ui and Uj extended in this way will commute as isometries

of V . Hence Isom(V ) contains a subgroup isomorphic to a direct product Gk × . . .×Gk

of [l/k] copies of Gk.

By Witt’s Lemma, there is a subgroup of Isom(V ) isomorphic to Sym([l/k]) which per-

mutes the [l/k] subspaces Ui. Thus Isom(V ) contains the wreath product Gk oSym([l/k]).

Next we consider the symplectic groups.

Lemma 6.5.4 Let (V, f) be a 2l-dimensional symplectic space over Fq, where l ≥ k. Let

Gk denote the isomorphism type of the isometry group of a 2k-dimensional symplectic

space over Fq. Then Isom(V ) contains a subgroup isomorphic to a wreath product Gk o
Sym([l/k]).

Proof: By [2, 19.16], V admits a hyperbolic basis {e1, . . . , el, f1, . . . , fl}. Now define

subspaces U1 = {e1, . . . , ek, f1, . . . , fk}, U2 = {ek+1, . . . , e2k, fk+1, . . . , f2k}, . . ., U[l/k] =

{e([l/k]−1)k+1, . . . , e[l/k]k, f([l/k]−1)+1, . . . , f[l/k]k}. Each of the Ui is a 2k-dimensional non-

degenerate hyperbolic subspace of V . The Ui are clearly all isometric and so Isom(Ui) ∼=
Gk for each 1 ≤ i ≤ [l/k].

Given an isometry φ ∈ Isom(Ui) for some i, define a linear map φ̂ by setting φ̂(ej) = ej

and φ̂(fj) = fj for j /∈ {(i − 1)k + 1, . . . , ik}, and φ̂(ej) = φ(ej) and φ̂(fj) = φ(fj) for

j ∈ {(i−1)k+1, . . . , ik}. Then φ̂ is an isometry since {e1, . . . , el, f1, . . . , fl} is a hyperbolic

basis of V . It is also easy to see that for i 6= j, isometries of Ui and Uj extended in this

way will commute as isometries of V . Hence Isom(V ) contains a subgroup isomorphic to

a direct product Gk × . . .×Gk of [l/k] copies of Gk.

By Witt’s Lemma, there is a subgroup of Isom(V ) isomorphic to Sym([l/k]) which per-

mutes the [l/k] subspaces Ui. Thus Isom(V ) contains the wreath product Gk oSym([l/k]).
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Before tackling the orthogonal groups, we recall some more facts about orthogonal

spaces.

Lemma 6.5.5 [2, 21.1] There is, up to isometry, a unique 2-dimensional orthogonal

definite space over Fq.

Let us define some notation. Given subspaces A and B of an orthogonal space, write

A ⊥ B for the orthogonal direct sum of A and B. We also write Ai for the orthogonal

direct sum of i isometric copies of the space A. In this section we shall also write A ∼= B

to mean that A and B are isometric as orthogonal spaces. It should be clear from the

context whether this symbol denotes an isometry of orthogonal spaces or an isomorphism

of groups.

Lemma 6.5.6 [2, 21.6] Let H denote the isometry type of the orthogonal hyperbolic

plane and let D denote the isometry type of the unique 2-dimensional orthogonal definite

space. Let V be an l-dimensional orthogonal space over Fq.

(i) If l is odd then q is odd and V is uniquely determined up to isometry.

(ii) If l is even then V is isometric to exactly one of H(n/2) or H(n/2)−1 ⊥ D.

If l is even, then if V ∼= H(n/2) we say that V is of +-type and if V ∼= H(n/2)−1 ⊥ D

then we say that V is of −-type. If l is odd we say that V is of 0-type.

Lemma 6.5.7 Let V + be a +-type space and let V − be a −-type space. Then

(i) V + ⊥ V + is of +-type;

(ii) V + ⊥ V − is of −-type;
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(iii) V − ⊥ V − is of +-type.

Proof: This is clear from the definitions of +- and −-type, and the fact that D2 ∼= H2

(for a proof of this fact see [2, 21.2]).

Proposition 6.5.8 Let V be an l-dimensional orthogonal space over Fq of ε-type, where

ε ∈ {−, 0, +}. Let W be a subspace of V of dimension k ≤ l/2. Then Isom(V ) contains

a subgroup of the form Isom(W ) o Sym([l/k]− 1).

Proof: By Witt’s Lemma, the theorem follows if we can show that V contains a subspace

isometric to the orthogonal direct sum of [l/k]− 1 isometric copies of W .

Let η ∈ {−, 0, +} denote the type of W . There are 9 possible combinations of the

types ε and η; we shall label each of these possibilities by the ordered pair (η, ε). Thus

case (+,−) shall refer to the case when W is of +-type and V is of −-type.

First we consider the cases when W is of +-type; that is, the cases (+, ∗). Note that

k is even and k ≥ 2. We have W ∼= Hk/2 and so Y := W [l/k]−1 ∼= H(k/2)([l/k]−1). But

(k/2)([l/k] − 1) ≤ l/2 − k/2 ≤ l/2 − 1. Now, in case (+, +) V ∼= H l/2, in case (+,−)

V ∼= H l/2−1 ⊥ D and in case (+, 0) V ∼= H(l−1)/2 ⊥ L where L is a 1-dimensional space.

It is therefore clear that in all of these cases, V contains a subspace isometric to Y .

Now consider the cases when W is of −-type; that is, the cases (−, ∗). Again we have

that k is even. We have that W ∼= Hk/2−1 ⊥ D and so Y := W [l/k]−1 ∼= H(k/2−1)([l/k]−1) ⊥
D[l/k]−1. Since D2 ∼= H2, we have another bifurcation of cases; depending on whether

[l/k] is odd or even. If [l/k] is odd then D[l/k]−1 ∼= H(1/2)([l/k]−1) and if [l/k] is even

then D[l/k]−1 ∼= H(1/2)([l/k]−2) ⊥ D. We label these extra cases as (−, ∗, +) and (−, ∗,−)

respectively. This notation refers to the fact that if [l/k] is odd then Y is a +-type space,

and if [l/k] is even then Y is a −-type space. Let us count the total number of isometric
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copies of H and D there are in Y . If [l/k] is odd we have

(
k

2
− 1

)([
l

k

]
− 1

)
+

1

2

([
l

k

]
− 1

)
=

(
k − 1

2

)([
l

k

]
− 1

)

copies of H and no copies of D. If [l/k] is even then we have

(
k

2
− 1

)([
l

k

]
− 1

)
+

1

2

([
l

k

]
− 2

)
=

(
k − 1

2

)([
l

k

]
− 1

)
− 1

2

copies of H and 1 copy of D. Now let us check that V contains enough copies of H to

contain Y . In each of the cases (−, +), (−,−) and (−, 0), V contains at least l/2 − 1

copies of H. But

(
k − 1

2

)([
l

k

]
− 1

)
≤

(
k − 1

2

)(
l

k
− 1

)
=

l

2
− k

2
− 1

2

(
l

k
− 1

)

≤ l

2
− k

2

≤ l

2
− 1,

(since l/k − 1 ≥ 2− 1 = 1) and so V does indeed contain enough copies of H to contain

Y . In particular, in the cases (−, ∗, +) and (−,−,−), we have that V contains Y . So

suppose that [l/k] is even and that we are in one of the cases (−, +,−) or (−, 0,−). Thus

Y is a −-type space and so contains a term isometric to D. We have that V = Y ⊥ Y ⊥.

Note that

dim(V )− dim(Y ) = l − (k − 1)([l/k]− 1)

≥ l − (k − 1)(l/k − 1) = k + l/k − 1

≥ k ≥ 2.

Thus Y ⊥ D is a +-type space of dimension less than or equal to l. Hence in case
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(−, +,−), V contains a subspace isometric to Y . Also note that in case (−, 0,−), dim(V )

is odd, and so dim(V ) − dim(Y ) is odd. So in this case we have dim(V ) − dim(Y ) ≥ 3.

Thus Y ⊥ D ⊥ L (where L is a 1-dimensional space) is a 0-type space of dimension less

than or equal to l. Hence in case (−, 0,−), V contains a subspace isometric to Y .

Now we consider the cases when W is odd-dimensional; that is, the cases (0, ∗). We

have W ∼= H(k−1)/2 ⊥ L where L is a 1-dimensional space, and so Y := W [l/k]−1 ∼=
H( k−1

2 )([ l
k ]−1) ⊥ L[l/k]−1. We have a further splitting of cases: Y can be either of +-type,

of −-type, or odd dimensional. We shall label these extra cases as (0, ∗, +), (0, ∗,−) and

(0, ∗, 0) respectively. In all of these cases, the maximum number of mutually orthogonal

copies of H in Y is given by:

(
k − 1

2

)([
l

k

]
− 1

)
+

1

2

([
l

k

]
− 1

)
≤ k

2

(
l

k
− 1

)

=
l

2
− k

2

≤ l

2
− 1.

Hence in the cases (0, ∗, +), (0,−,−) and (0, 0, 0) we are done. The remaining cases are

(0, +,−), (0, 0,−), (0, +, 0) and (0,−, 0). In all of these cases, note that

dim(V )− dim(Y ) = l − (k − 1)([l/k]− 1)− ([l/k]− 1)

= l − k([l/k]− 1)

≥ l − (l − k) = k ≥ 1.

Consider the case (0, +,−). Then dim(V )−dim(Y ) is even and so dim(V )−dim(Y ) ≥ 2,

therefore Y ⊥ D is a +-type space of dimension less than or equal to l, and so we are

done. In the case (0, 0,−) we have that dim(V ) − dim(Y ) ≥ 1 and so Y ⊥ L (where L

is some 1-dimensional space) is an odd dimensional space of dimension less than or equal
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to l, and so again we are done. It is easy to see in the cases (0, +, 0) and (0,−, 0) that V

contains a subspace isometric to Y .

We have thus shown that every orthogonal space V of dimension l with a subspace W

of dimension k < l/2 contains a subspace isometric to W [l/k]−1. As noted, the proposition

now follows from Witt’s Lemma.

Lemma 6.5.9 Let p be an odd prime and q any prime power with p - q. Let k = ordp(q).

Let G be a simple classical group of dimension l defined over Fq. We have the following:

(i) if G is a linear group, then p | |G| if and only if k ≤ l;

(ii) if G is symplectic, unitary or orthogonal then p | |G| if and only if k ≤ l/2.

Proof: This follows fairly easily after looking at the formulas for the orders of the classical

groups, as may be found in [13, Chapter 1].

Lemma 6.5.10 Let p ≥ 13 and q be any prime power with p - q. Let k = ordp(q). Let G

be the isometry group of an l-dimensional linear, orthogonal or unitary space V over Fq,

or the isometry group of a 2l-dimensional symplectic space U over Fq. If p | |G| then G

contains an elementary abelian p-group T , with rankp(T ) = [l/k]−1, such that G contains

a subgroup of the form T o Sym([l/k]− 1).

Proof: Let Gk denote the isomorphism type of the isometry group of a k-dimensional

subspace of V , or of the isometry group of a 2k-dimensional subspace of U . Since p | |G|
and p > 11, Lemma 6.5.9 shows that k ≤ l if V is a linear space and k ≤ l/2 otherwise.

Hence by 6.5.3, 6.5.4 and 6.5.8, G contains a subgroup X ∼= Gk o Sym([l/k] − 1). Now

by [42], Gk has a non-trivial cyclic Sylow p-subgroup. Hence the base group of X has a

Sylow p-subgroup U which is a direct product of [l/k] − 1 cyclic p-groups. Now by the

Frattini Lemma, NX(U) contains a subgroup isomorphic to Sym([l/k] − 1) which acts

on U . Now, in each direct summand of U there is a unique subgroup of order p. Let
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T be the elementary abelian group obtained by taking the direct product of all of these.

Since subgroups of cyclic groups are uniquely determined by their order, the subgroup

isomorphic to Sym([l/k] − 1) must permute the direct summands of T . Hence NX(T )

contains a subgroup isomorphic to Sym([l/k]− 1) and therefore G contains a subgroup of

the form T o Sym([l/k]− 1).

In the following lemma, let T ≤ G be the elementary abelian subgroup described in

Lemma 6.5.10. Let m = [l/k]− 1. We shall consider T as an FqSym(m)-module.

Lemma 6.5.11 Suppose that m ≥ 4, and let T be the Sym(m)-module described above.

Choose a basis {t1, . . . , tm} for T . Then:

(i) CT (Sym(m)) = 〈t1 + · · ·+ tm〉;

(ii) [T, Sym(m)] = 〈ti − tj|i, j ∈ {1, . . . , m}〉.

(iii) CT (Alt(m)) = CT (Sym(m)).

In particular, dim(CT (Sym(m))) = 1 and dim([T, Sym(m)]) = m− 1.

Proof: Suppose that t = λ1t1 + · · ·+λmtm ∈ CT (Sym(m)). Fix i, j,∈ {1, . . . , m} and let

σ = (i j) ∈ Sym(m). Then t = tσ = λ1t1+ · · ·+λjti+· · ·+λitj +· · ·+λmtm. In particular,

we have that λi = λj. Since this holds for all choices of i, j, we have λ1 = . . . = λm.

This shows that CT (Sym(m)) = 〈t1 + · · · + tm〉; it is therefore 1-dimensional. This

proves (i).

Now let i ∈ {1, . . . , m} and let σ ∈ Sym(m). Suppose that iσ = j Then [tj, σ] =

tσj − tj = ti − tj. Hence 〈ti − tj|i, j ∈ {1, . . . , m}〉 = [T, Sym(m)].

Note that {t1−tm, t2−tm, . . . , tm−1−tm} is a basis for [T, Sym(m)]; hence dim([T, Sym(m)]) =

m− 1.

To see that CT (Alt(m)) = CT (Sym(m)), simply note that the proof given for (i) still

holds when σ = (i j)(i′ j′) where {i′, j′} ∩ {i, j} = ∅.
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Proposition 6.5.12 Let G be the isometry group of an l-dimensional orthogonal or uni-

tary space over Fq, or the isometry group of a 2l-dimensional symplectic space over

Fq. Suppose that G contains a Sylow p-subgroup isomorphic S(n, p) where n ≥ 5. Let

k = ordp(q). Then l/k ≥ p/2.

Proof: By Lemma 6.4.2, the Sylow p-subgroups of G are abelian (and therefore not

isomorphic to S(n, p)) unless rpk + rp2k + . . . 6= 0. The specific values of rm are given in

[21, Table 10.1], which we partially reproduce here for convenience:

Lie type of G rm

Aj [(j + 1)/m] for m > 1;
Bj, Cj [2j/lcm(2,m)] for m ≥ 1

Dj [2j/lcm(2,m)] unless m|2j and m - j
(2j/m)− 1 if m|2j and m - j

2Aj [(j + 1)/lcm(2,m)] if m 6≡ 2 mod 4;
[2(j + 1)/m] if m ≡ 2 mod 4, m > 2;

2Dj [2j/lcm(2,m)] unless m|j
[2j/lcm(2,m)]− 1 if m|j.

It is clear from this table that if rpk = 0 then rpik = 0 for all i ≥ 1. Therefore

rpk ≥ 1. Recall that the Chevalley groups of the types in Table 6.5 are in one-to-one

correspondence with the simple classical groups, as given by the following table. The

information in the table, and the proofs, can be found in [13, Theorems 11.3.2, 14.5.1,

14.5.2].

Aj(q) ∼= PSLj+1(q) Dj(q) ∼= PΩ+
2j(q)

Bj(q) ∼= PΩ2j+1(q)
2Aj(q) ∼= PSUj+1(q)

Cj(q) ∼= PSp2j(q)
2Dj(q) ∼= PΩ−

2j(q)

Thus if G has type Al−1(q) then rpk = [l/pk] ≥ 1, and so l/k ≥ p. If G has type

B(2l−1)/2(q) then rpk = [(l − 1)/lcm(2, pk)] ≥ 1, and so l/k ≥ p + 1/k ≥ p. If G has

type Cl/2(q) then rpk = [l/lcm(2, pk)] ≥ 1 and so l/k ≥ p. If G has type Dl/2(q) then

either rpk = [l/lcm(2, pk)] ≥ 1 or rpk = (l/pk) − 1 ≥ 1. In the former case, l/k ≥ p as
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before, and in the latter case l/pk ≥ 2 and so l/k ≥ 2p ≥ p. If G has type 2Al−1(q)

then either rpk = [l/lcm(2, pk)] ≥ 1 or rpk = [2l/pk] ≥ 1. In the former case, l/k ≥ p

as before, and in the latter case 2l ≥ pk and so l/k ≥ p/2. If G has type 2Dl/2(q) then

either rpk = [l/lcm(2, pk)] ≥ 1 or rpk = [l/lcm(2, pk)]− 1 ≥ 1. In the former case l/k ≥ p

as before, and in the latter case l ≥ 2lcm(2, pk) and so l/k ≥ 2p ≥ p. This completes the

proof.

For any group G, let G′ = [G,G] denote the commutator subgroup of G. We note the

following fact about classical groups:

Lemma 6.5.13 Every simple classical group is of the form G′/Z(G′), where G is the

isometry group of an linear, orthogonal, symplectic or unitary space.

Proof: See, for example, [2, 43.12].

Proposition 6.5.14 Let G be the isometry group of an l-dimensional orthogonal or uni-

tary space over Fq, or the isometry group of a 2l-dimensional symplectic space over Fq.

Suppose that G contains a Sylow p-subgroup isomorphic to S(n, p) for some n. Then

G = G′/Z(G′) contains a subgroup of the form W oX where W is an elementary abelian

group with rankp(W ) = [l/k]− 2 and X ∼= Alt([l/k]− 1) acts faithfully on W .

Proof: Let m = [l/k] − 1. By Lemma 6.5.10, G contains a subgroup isomorphic to

T o Sym(m). Thus we may regard CT (Sym(m)) and [T, Sym(m)] as subgroups of G.

Note that

[T, Sym(m)]Z(G′)
Z(G′)

∼= [T, Sym(m)]

[T, Sym(m)] ∩ Z(G′)
.

But if t ∈ [T, Sym(m)]∩Z(G′) then t ∈ CT (Alt(m)) = CT (Sym(m)). Therefore dim([T, Sym(m)]∩
Z(G′)) ≤ 1, hence dim([T, Sym(m)]Z(G′)/Z(G′)) ≥ m−2. Let W = [T, Sym(m)]Z(G′)/Z(G′).
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Since G contains a subgroup isomorphic to Sym(m) which normalizes T (by Lemma 6.5.10),

we have that G′ contains a subgroup X ∼= Alt(m) which normalizes [T,G]. Now,

XZ(G′)
Z(G′)

∼= X

X ∩ Z(G′)
.

But m + 1 ≥ p/2 by Lemma 6.5.12, and since we assumed that p ≥ 13, we have that

m ≥ 5. Therefore X is a simple group, and so X ∩Z(G′) = 1. Hence XZ(G′)/Z(G′) ∼= X

acts on W . Thus G contains the group W oX, which is of the form required. Since X is

a simple group, the action of X on W is either faithful or trivial. Since the action is not

trivial, it must be faithful.

Theorem 6.5.15 Let p be a prime with p ≥ 13 and let q 6= p be prime. Let G be a simple

classical group defined over Fq. Suppose that G contains a Sylow p-subgroup isomorphic

to S(n, p) where n ≥ 5. Then FS(G) � E.

Proof: Suppose the theorem is false. Let the dimension of G be l if G is linear, orthogonal

or unitary and 2l if G is symplectic. By Proposition 6.5.14 G contains a p-subgroup W

such that AutG(W ) contains a subgroup isomorphic to Alt([l/k] − 1). Since we have

assumed that FS(G) ∼= E , this means that [l/k] ≤ 6 by Propositions 5.3.2 and 5.3.6. But

[l/k] ≥ p/2 by Proposition 6.5.12, so p/2 ≤ 6, therefore p ≤ 12. But we assumed that

p > 11, i.e. p ≥ 13, and so we have a contradiction.

Corollary 6.5.16 Let p be a prime with p > 11 and let q 6= p be prime. Let G be an

almost simple group of Lie type, which is a group of automorphisms of a simple classical

group defined over Fq. Suppose that G contains a Sylow p-subgroup isomorphic to S(n, p)

where n ≥ 5. Then FS(G) � E.

Proof: This follows from the fact that P ≤ H ≤ G then AutH(P ) ≤ AutG(P ).
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6.6 Final remarks

Finally, it remains to consider the case that G is an almost simple group with a normal

subgroup N isomorphic to a sporadic group, with CG(N) = 1. By consulting [22, Table

5.6.1] we see that no such group G has an elementary abelian p-subgroup of rank greater

than 3 for p ≥ 13. This means that G does not contains a Sylow p-subgroup isomorphic

to S(n, p) for n ≥ 5 and p ≥ 13. In particular, no such group G gives rise to a fusion

system isomorphic to E(n, p).

We are now ready to state the conclusion of the last two chapters.

Theorem 6.6.1 The fusion system E over S(n, p) is exotic for all n ≥ 5 and p ≥ 13.

Proof: In this chapter we have shown that E is not the fusion system of any alternat-

ing, Lie type, or sporadic almost simple group. Hence by the Classification of Finite

Simple Groups, E is not the fusion system of any almost simple group. Therefore by

Theorem 6.1.2, E is not the fusion system of any finite group. Hence E is exotic.

Thus we have constructed an infinite family of exotic fusion systems.
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