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 ABSTRACT 

 
The practical feasibility and generic applicability of the direct integration in the same 

time frame of cell disruption by bead milling with the capture of intracellular products by 

fluidised bed adsorption has been demonstrated. Pilot-scale purification of the enzyme L-

asparaginase from unclarified Erwinia chrysanthemi disruptates exploiting this novel 

approach yielded an interim product which rivalled or bettered that produced by the current 

commercial process employing discrete operations of alkaline lysis, centrifugal clarification 

and batch adsorption. In addition to improved yield and quality of product, the process time 

during primary stages of purification was greatly diminished.  

Two cation exchange adsorbents, CM HyperD LS (Biosepra/Life Technologies) and SP 

UpFront (custom made SP form of a prototype stainless steel/agarose matrix, UpFront 

Chromatography) were physically and biochemically evaluated for such direct product 

sequestration. Differences in performance with regard to product capacity and 

adsorption/desorption kinetics were demonstrated and are discussed with respect to the design 

of adsorbents for specific applications.   

In any purification of L-asparaginase (pI=8.6),  product-debris interactions commonly 

diminish the recovery of available product. It was demonstrated herein, that immediate 

disruptate exposure to a fluidised bed adsorbent promoted concomitant reduction of product 

in the liquid phase, which clearly counter-acted the product-debris interactions to the benefit 

of overall product yield. 



 

”Anyone who has never made a mistake has never tried anything new.” 
ALBERT EINSTEIN  
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Bo Bodenstein number 
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buffer A Erwinia experiments: citric acid / tri-sodium citrate, 20 mM (pH 5.5 if not stated 

otherwise) 

yeast experiments: 10 mM Tris/HCl, pH 7.5 containing 1 mM EDTA 

buffer B citric acid / tri-sodium citrate, 20 mM containing 1 M NaCl (pH 5.5 if not stated 
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d internal diameter of a contactor (fixed or fluidised bed) 

DEAE diethyl aminoethyl, weak anion exchange ligand 
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DSP downstream processing 
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FBA Fluidised Bed Adsorption 
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H height of a fluidised bed 

H0 settled bed height of an adsorbent bed (= SBH) 
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HIC hydrophobic interaction chromatography 
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i.d. internal diameter 
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1 INTRODUCTION 

1.1 Downstream processing in biotechnology 

In recent decades, advances in biotechnology have increased the potential usage of 

protein products and the emergence of new and promising research activities in molecular 

biology and immunology is continuously expanding the number of proteins that need to be 

purified and characterized. A wide variety of proteins is used as pharmaceuticals and 

diagnostic reagents such as vaccines, monoclonal antibodies, enzymes, and regulatory factors. 

In addition, protein products are also found in industrial and domestic applications (Bristow, 

1990; Harris, 1989). Traditionally, the source would have been extracted animal tissue, serum 

or other natural materials. However, with the advent of recombinant DNA techniques, sources 

now include cultured microorganisms (both prokaryotic and eukaryotic expression systems) 

and mammalian cells.  

The unit operations employed for the purification of protein products can be collectively 

described by the term “downstream processing”, commonly abbreviated to DSP 

(Wheelwright, 1987). The objective is to find a sequence of operations that will transfer the 

starting material to a state defined by the specification of the desired end-product. Individual 

steps should be based on molecular-based knowledge of how the individual target molecule, 

as well as impurities such as proteins, lipids, DNA, and lipopolysaccharides, will behave 

during purification in order to establish an efficient and economic process which achieves the 

purity and specification of the end product required.  

Processes suitable for the purification of proteins differ from conventional methods of 

DSP generally employed in chemical technology owing to their sensitivity to temperature, 

interfacial contact and any agent affecting their three-dimensional structure and dynamic 
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conformation. Although individual steps during a purification process are product specific and 

selected in order to exploit specific molecular properties of the target molecule, a general 

approach has evolved which is depicted in Figure 1.1.  

In the case of an intracellular product, cell disruption is the first step in the sequence 

following the harvest of the cells (e.g. by centrifugation or tangential flow filtration, TFF). 

Here, the envelope of the cell is permeabilised, punctured or disintegrated in order to release 

the product into the surrounding medium. Cell disruption can be achieved by mechanical 

methods, e.g. homogenisation and bead milling, or non-mechanical methods such as chemical 

or enzymatic treatments (Harrison, 1991; Kula and Schütte, 1987; Middelberg, 1995; Asenjo 

and Patrick, 1990). A review of different cell disruption methods is given in Chapter 2. The 

disruptate, or the supernatant of a clarified fermentation, contains a large variety of dissolved 

compounds characterised by a variety of molecular characters and the target molecule is often 

only a minor component in this mixture. Subsequent purification is commonly achieved by 

chromatographic adsorption based upon selected molecular characteristics (Harris, 1989). Ion 

exchange (IEXC) and hydrophobic interaction chromatography (HIC) are effective tools for 

product capture and primary purification. For a subsequent final purification, unit operations 

of affinity adsorption and/or gel filtration are often exploited. A survey conducted by 

Bonnerjea et al. (1986) revealed that IEXC was used in 75% and affinity adsorption in 60% of 

the reviewed purification schemes. Since chromatographic processes are conventionally 

performed in packed beds, preliminary clarification by solid-liquid separation of the feedstock 

is required. If this is not undertaken, particulate material becomes trapped in the voids of the 

bed leading to the formation of a plug which distorts or obstructs the liquid flow through the 

bed.  Similar constraints apply to the operation of batch adsorption / desorption processes. 
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Figure 1.1. Conventional downstream processing for protein purification.  
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1.2 General problems involved with conventional downstream 

processing procedures 

From an economic point of view, the number of sequential operations necessary to 

achieve the desired purity of a protein product contributes significantly to the overall cost of 

the downstream process. This is due to the capital investment and amount of consumables 

needed for each step as well as the individual time required for each operation. Additionally, 

the overall yield of the purification is reduced with each additional process step as a result of 

inherent handling losses of product and/or product activity. It has been estimated that in the 

production of recombinant proteins, 45% of the equipment costs are associated with product 

recovery while only 14% can be attributed to the fermentation process (Fish and Lilly, 1984). 

The overall downstream process may account for more than 80% of the total production costs 

(Datar et al., 1993) which clearly reflects the necessity for process optimisation (Spalding, 

1991).  

 Traditional techniques employed both for harvesting biomass and feedstock 

clarification are centrifugation and filtration (Kroner et al., 1984; Lee, 1989; van Reis et al., 

1991). The expense and the effectiveness of such methods are highly dependent on the 

physical nature of the particulate material to be removed, e.g. particle size, density difference 

between particulates and the bulk fluid, and the compressibility of the sedimented solids 

(Asenjo and Patrick, 1990). Particles of submicron size, when suspended in a viscous liquid 

(as when cells are disrupted by mechanical procedures) are particularly difficult to remove. 

Although centrifugation and filtration are regarded as standard unit operations in the 

biotechnology industry, they suffer from some drawbacks particularly at a large scale. For 

example, the degree of clarification in industrial centrifuges is usually in the range of 99 – 
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99.9% in terms of cell clearance (Datar and Rosen, 1996). Thus, centrifugation is commonly 

operated in tandem with a depth or microfiltration step to ensure a particle free solution which 

can be fractionised by conventional packed bed chromatography (Berthold and Kempken, 

1994). Although microfiltration yields cell-free solutions, in many cases the flux rate of liquid 

per unit membrane area is dramatically decreased during the filtration process due to fouling 

of the membranes, e.g. by small particles, lipids, nucleic acids (Gilbert et al., 1986; Göklen et 

al., 1994). In addition, combined centrifugation and filtration operations often result in long 

processing times. A rapid method of product capture of the target protein is therefore 

preferred since the time taken to remove particulates can promote denaturation due to process 

conditions detrimental to structural integrity, e.g. the action of proteases, carbohydrases, or 

oxidising conditions. Thus, novel solutions for the rapid clarification of biological feedstocks 

and isolation of products are highly desirable.  

1.3 Integrative protein recovery 

As a consequence of the problems associated with conventional downstream processing, 

integrative operations, which on the one hand simplify solid-liquid separation and on the other 

hand combine originally independent steps to formulate new unit operations, now promise to 

streamline and condense protein production schemes. Such operations should tolerate particle-

containing suspensions as initial feedstocks and deliver a clarified product concentrate 

compatible with subsequent purification steps. Ideally, a preliminary sequestration of the 

target protein from bulk impurities should be achieved simultaneously, combining 

clarification, concentration and capture in a single process step operated in a common time 

frame.  

The criteria mentioned above are met by three approaches reported in the literature. 

Firstly, liquid-liquid extraction based on aqueous two-phase systems allows processing of 
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biomass-containing feedstocks at high biomass loads. Here, the solid-liquid separation in a 

centrifugal separator is replaced by a thermodynamically controlled partitioning of particulate 

material and dissolved protein product between two different aqueous phases (Huddleston et 

al., 1992; Kula, 1990). In addition, an initial fractionation of protein mixtures may be 

achieved by choosing suitable phase compositions. Another approach is the introduction of 

protein binding ligands to crossflow microfiltration membranes which allows the combination 

of filtration and protein adsorption (for example see Langlotz and Kroner, 1992). The third 

approach is based on the adsorption of proteins to particulate adsorbents in the presence of 

biomass which can be achieved by different modes of operation. Batch adsorption is 

performed by contacting adsorbent particles with unclarified suspension in stirred tanks 

(Thiele et al., 1985; Roe, 1987). After product capture, the adsorbent is separated from the 

broth by decantation washing and thereupon the product is eluted. Batch adsorption is a 

process which is characterised by a single equilibrium stage and thus lacks high resolution in 

comparison with classical frontal chromatography. In addition, the problem of separating the 

protein-loaded adsorbent from the biomass has to be solved. A recently reported approach to 

facilitate the recovery of the loaded adsorbent exploited magnetic supports which are captured 

from the suspending fluid by a magnetic field in a custom designed filter chamber (Hubbuch 

et al., 2000). The most common method of whole broth adsorption with particulate matrices is 

by fluidising the matrix particles to form an expanded bed, i.e. a bed of adsorbent particles 

with a reduced local mobility. In such stable fluidised beds, which are exploited for 

chromatographic separations, a minimisation of particle movement is anticipated in order to 

mimic the flow characteristics and the resolution achieved by packed bed chromatographic 

processes. By way of contrast, in conventional gas-fluidised beds a high degree of mixing is 
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desirable for maximum heat and/or mass transfer rates (Levenspiel, 1972). The fundamentals 

and characteristics of liquid fluidised beds will be discussed in more detail in the next section.  

1.4 Fluidised bed adsorption 

Fluidised bed adsorption (FBA) has emerged as an efficient recovery method proven to 

have significant advantages over conventional procedural sequences, e.g. discrete feedstock 

clarification followed by fixed bed adsorption of the product. In fluidised beds, liquid is 

pumped upwards through a bed of adsorbent beads which, in contrast to a packed bed, is not 

constrained by an upper flow adapter. Thus, the bed can expand and spaces open up between 

the adsorbent beads. The increased voidage of the bed allows particulates in the feed to pass 

freely through the spaces without entrapment (see Figure 1.2). Thus, the need for prior 

removal of cells and/or debris is eliminated. After the adsorption stage, the remaining 

feedstock and particulates are washed from the adsorbent bed and product is subsequently 

eluted either in fluidised or packed bed mode. As a consequence, clarification, concentration 

and initial fractionation is combined in one unit operation and thus fluidised beds exhibit great 

potential for simplifying downstream processes with concomitant savings in capital and 

operating costs.  

Fluidised beds have been used previously for the industrial scale recovery of the 

antibiotics streptomycin (Barthels et al., 1958) and novobiocin (Belter et al., 1973). However, 

more recently, considerably interest has been shown in the use of fluidised beds for the direct 

extraction of proteins from whole fermentation broths (Chase, 1994; Gailliot et al., 1990; 

Wells and Lyddiatt, 1987; Gibson and Lyddiatt, 1990).  
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Figure 1.2. Adsorbent particles in a packed and a fluidised bed 

In a packed bed, the adsorbent particles are packed between the lower and upper adapter. 
The voidage, i.e. the inter-particle space, is minimal and thus, feedstock clarification is 
mandatory to avoid clogging of the bed. In a fluidised / expanded bed, the adsorbent bed is 
allowed to expand by irrigation with feedstock. Bed voidage is increased allowing the 
passage of particulates in the feed. The diameters of the adsorbent beads are exaggerated for 
illustrative clarity.  
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1.4.1 Mixing behaviour in fluidised / expanded beds 

The conventional chemical-engineering view of a fluidised bed is one in which there is 

a significant degree of mixing, both of the solid and the fluid phase, e.g. in gas-fluidised 

systems (Levenspiel, 1972). In many applications, mixing of the solid phase is desirable, for 

example in order to obtain high rates of heat transfer and a uniform temperature within the 

bed. Gas fluidised beds are characterised by an 'aggregative' behaviour in which bubbles of 

gas pass through a bed of particles which are just fluidised resulting in considerable mixing of 

the solid phase as well as distinct bypassing of the gas phase. In general, mixing in liquid 

fluidised systems is not as severe as in gas fluidised systems. Here, the density difference 

between the solid and the fluid phase are comparatively small and, thus, the bed shows a 

'particulate' behaviour in which the bed retains a uniform character (Chase, 1994).  

In a packed bed, the adsorbent beads are stationary and liquid flow through the bed 

approximates plug flow. Thus, the number of theoretical equilibrium stages (referred to as 

plates) is maximised which results in good adsorption and chromatographic performance. As 

a consequence of the absence of plug flow in the liquid phase, compounded by the mixing of 

the adsorbent, a well-mixed fluidised bed would be expected to show an inferior adsorption 

performance compared with that of a packed bed. Thus, for protein recovery in liquid 

fluidised beds, it is highly desirable to minimise the degree of mixing in order to mimic the 

adsorption characteristics found in a packed bed contactor with respect to capacity and 

resolution.  

Several strategies have been reported in order to limit the mixing of adsorbent particles 

within liquid fluidised beds. One approach is to divide the bed into sections by the 

introduction of baffles into the contactor (Bujis and Wesselingh, 1980). Other approaches 

seek to keep the adsorbent beads in a fixed position or at least localise their movement in 
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order to achieve a stable fluidised bed which subsequently behaves like a packed bed, but 

with a greater voidage. For example, by using magnetically susceptible adsorbent particles a 

fluidised bed can be stabilised by subjecting it to a magnetic field. Such beds are claimed to 

exhibit little or no backmixing and can be operated continuously (Burns and Graves, 1985). 

The practical benefit of this approach, i.e. restricted movement of adsorbent particles and 

associated uncoupling of the bed expansion from fluidisation velocity, has subsequently been 

demonstrated by Zhang (1998). In this work, magnetically stabilised fluidised beds (MSFB) 

were exploited for (i) the direct recovery of the intracellular enzyme glyceraldehyde 3-

phosphate dehydrogenase (G3PDH) from unclarified yeast disruptates and (ii) for the 

recovery of antibody fragments from E. coli fermentation broths. However, this technique 

requires complicated and relatively expensive equipment, particularly at large scale.  

A simpler approach has been to design the physical properties of the solid phases in 

such a way that they generate an inherently stable fluidised bed. If the adsorbent beads have 

an appropriate distribution of sizes and/or densities, grading or classification of the adsorbent 

occurs within the bed with the larger/denser particles being located near the bottom of the bed 

and the smaller/lighter particles nearer the top. The segregation behaviour restricts the local 

mobility of the fluidised particles. Such a bed exhibits dispersion characteristics similar to a 

packed bed (Chase, 1994; Thömmes, 1997; Barnfield-Frej et al., 1997; Thömmes et al., 

1995a). Thus, the hydrodynamic properties of a fluidised bed are combined with the 

chromatographic properties of a packed bed. The degree of classification is dependent on the 

ratio of the size of the largest and smallest particle within the bed. This ratio has been claimed 

to be at least 2.2 (Al-Dibouni and Garside, 1979; Karau et al., 1997).  

In order to account for the difference in the dispersion characteristics of the classified, 

stable fluidised bed and the conventional, well-mixed fluidised bed, the term 'expanded bed' 
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has been coined by several authors together with the leading manufacture of chromatography 

media and equipment (Amersham Pharmacia Biotech AB, 1997; Chase, 1994; Hjorth, 1997). 

In the work presented here, the term 'fluidised bed' will be used synonymously with 'expanded 

bed' to refer to adsorbents fluidised under conditions which seek to minimise particle mixing. 

1.4.2 Design and operation of liquid fluidised beds 

1.4.2.1 Matrices for fluidised bed adsorption 

Particle fluidisation is achieved by pumping liquid upwards through a settled bed of 

adsorbent particles. At low fluidisation velocities, liquid merely percolates through the voids 

between the adsorbent beads as in a packed bed. Increasing the flow rate leads to point at 

which the settled beads start to move apart. If the velocity is further increased, the particles 

become suspended in the liquid. This point is defined as the minimum fluidisation velocity 

Umf (see Figure 1.3). If the fluidisation velocity is increased above Umf, the bed expands as the 

adsorbent particles move further apart. This results in a smooth, progressive bed expansion 

referred to as steady state fluidisation (Kunii and Levenspiel, 1969). A critical velocity is 

reached with further increase of fluidisation at which the bed destabilises as adsorbent 

particles begin to entrain from the bed. The flow velocity at this point is called the maximum 

fluidisation velocity or terminal velocity Ut. This velocity can be approximated using Stokes 

law (Equation 1.1) which describes the settling velocity of a single particle at infinite dilution.  

( )
η

ρρ
⋅

⋅⋅−
=
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t  
Equation 1.1

Since particles in a fluidised bed interact due to adhesion forces, particularly when 

fluidised at higher viscosities, they cannot be regarded as individual particles and hence  



 12

 

 

 

Figure 1.3. Operational window of fluidisation velocities. 
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Equation 1.1 only yields an estimation of the terminal velocity. However, Equation 1.1 clearly 

reflects the parameters which influence the terminal velocity of a particle and thus determine 

the operational window with regard to fluidisation velocity. The terminal velocity is 

proportional to the density difference between the particle (ρp) and the fluidising liquid (ρl), 

proportional to the square of the particle diameter (dp), and inversely proportional to the fluid 

viscosity (η).  

Early work exploiting extensively cross-linked agarose adsorbents originally designed 

for conventional, packed bed processes demonstrated the principal of operation and the 

potential of fluidised bed adsorption for processing particulate feedstocks (Chase and 

Draeger, 1992a; Draeger and Chase, 1991; Chase and Draeger, 1992b). However, it was 

found that these materials were not optimally suited since the combination of particle 

diameter and density allowed only low flow rates (e.g. 10-30 cm h-1) which resulted in low 

overall productivities. Denser particles such as silica were more appropriate in this respect 

(Finette et al., 1996; Dasari et al., 1993). However, a drawback of silica-containing material is 

the limited stability at high pH values which makes it less suitable for biopharmaceutical 

production where alkaline conditions are commonly used for cleaning-in-place and 

sanitisation-in-place procedures.  

The development of denser adsorbents enabled the use of higher flow rates and 

improved the stability of operation of expanded beds. Tailor-made adsorbents were produced 

using hydrophilic natural polymers such as cellulose, agarose or synthetic trisacrylate-based 

materials. In order to enhance the particle density, heavy, inert filler materials have been 

incorporated during assembly. The resulting composite materials included cellulose-titanium 

dioxide (Gilchrist et al., 1994; Gibson and Lyddiatt, 1993) and dextran-silica (Morton and 

Lyddiatt, 1992). Other materials reported for the fabrication of denser adsorbents were glass 
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and zirconia. For example, Thömmes et al. (1995b) exploited custom-derivatised controlled 

pore glass particles for the purification of monoclonal antibodies. Zirconia-based materials 

exhibit a significantly higher density than silica (Zhu et al., 1997). It has been demonstrated 

that even small particles (e.g. less than 50 µm in diameter) may be fluidised at linear flow 

rates similar to those used for silica or density-enhanced agarose particles having a greater 

diameter (Griffith et al., 1997; Morris et al., 1994). In another approach, McCreath and 

colleagues developed perfluoropolymer particles which were derivatised with dye ligands for 

the affinity purification of dehydrogenases from disrupted bakers’ yeast (McCreath et al., 

1995; McCreath et al., 1994). The increased density of the support (2.20 g ml-1) also allowed 

the use of comparatively small particles (50-80 µm) at an acceptable linear flow velocity of 

120 cm h-1.  

Agarose based materials have been commercialised specifically for fluidised bed 

adsorption by increasing their specific weight with incorporated quartz or steel particles 

(STREAMLINETM, Amersham Pharmacia Biotech AB, 1997; Hjorth, 1997). The densities so 

achieved have been quoted as 1.15 g ml-1 for agarose-quartz and 1.3 g ml-1 for agarose-steel 

composites. There are many studies published concerning the fluidisation behaviour of the 

STREAMLINE range of materials (Chang and Chase, 1996a; Chang et al., 1995; Hansson et 

al., 1994; Hjorth et al., 1995; Thömmes et al., 1995c). These materials are available with a 

range of ligand functionalities such as anion exchange (DEAE, Q), cation exchange (SP), 

chelating ligand (iminodiacetic acid for immobilised metal affinity chromatography, IMAC), 

protein A (affinity purification of antibodies) and phenyl groups (hydrophobic interaction 

chromatography, HIC; Färenmark et al., 1999; Hjorth, 1997; Amersham Pharmacia Biotech 

AB, 1997). More recently, so-called pellicular adsorbents were defined as suitable for 

fluidised bed adsorption (Gibson and Lyddiatt, 1993). These adsorbents are characterised by a 
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dense core such as glass (Lihme et al., 1998) or stainless steel (Palsson et al., 2000a; Palsson 

et al., 2000b) coated with a layer of porous material, e.g. agarose. Such matrices promise high 

rates of adsorption/desorption due to the absence of deep convective pores and the short 

diffusion distances within the thin porous layer which comprises the pellicle.  

1.4.2.2 Column design for fluidised bed adsorption 

In order to achieve a stable fluidised bed, the column has to fulfil some simple but 

important demands. A suitable liquid distribution is crucial to accomplish plug flow 

conditions within the bed and thus minimise particle dispersion. A prerequisite for the 

generation of an even velocity profile across the cross section of a column is an evenly 

distributed pressure drop across the distributor at the column inlet. Pressure drop fluctuations 

lead to the development of channels which are the most important influence upon 

inhomogeneity in an adsorption process (Bascoul et al., 1993). Flow distribution can be 

achieved by using sieve plates, meshes, or a bed of glass ballotini (De Luca et al., 1994; Lan 

et al., 1999; Thömmes et al., 1995c). Bascoul et al. (1988) investigated bed stability as a 

function of the distributor design showing that channelling in the lower part of a fluidised bed 

due to uneven flow distribution is reduced with increasing column length. This has led to the 

conclusion that the fluidised bed itself serves as an effective flow distribution system. More 

recently, a novel distributor design was introduced which uses a stirrer in the bottom of the 

contactor to distribute the incoming feedstock. This configuration divides the fluidised bed in 

a limited, well mixed zone at the bottom and a stable fluidised bed above it (Zafirakos and 

Lihme, 1999). Such contactors were included in the study presented here (see Chapter 3 and 

Chapter 4). Besides the demand for an even flow distribution, the distributor has to enable the 

unhindered passage of particulates without becoming blocked or damaging shear sensitive 

cells. Partial blockage of a distributor will cause channelling in the fluidised bed. Cell 
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breakage in the flow distributor can lead to the unwanted release of intracellular compounds 

which may impair the purification process of an extracellular product for whole broths.  

Another important factor which bears upon bed stability is the column verticality. Van 

der Meer et al. (1984) have demonstrated that even small deviations from vertical alignment 

lead to significant inhomogeneity of liquid flow. These findings were confirmed by Bruce et 

al. (1998) who found that this effect is more pronounced in small-diameter contactors. In their 

work, the dynamic capacity of a 1 cm column, used for the capture of glucose-6-phosphate 

dehydrogenase (G6PDH) from unclarified yeast homogenate, was reduced by approximately 

30% when misaligned by 0.185°. However, a 5 cm contactor operated under similar 

conditions appeared to be unaffected.  

1.4.2.3 Experimental procedure 

In principle, the experimental protocol of fluidised bed adsorption does not deviate from 

packed bed operations, but the main difference is the direction of the liquid flow. The 

sequence of steps of equilibration, sample application, wash, elution and cleaning (CIP) is 

performed in an upward direction although the last two might be undertaken in fixed bed 

mode. During equilibration, the matrix is fluidised and a stabilised fluidised bed is developed. 

Here, the classification within the bed with regard to particle size of the adsorbent particles 

may be detected by visual observation. At the same time, the matrix is primed for adsorption 

by the selection of a suitable buffer with respect to product-adsorbent interactions. 

Subsequently, the feedstock is applied to the fluidised bed. Target proteins are adsorbed while 

cells, debris and other particulates and contaminants pass through the bed. After sample 

application, residual biomass and unbound proteins are removed from the bed in a washing 

procedure. Elution may be performed either in packed bed or in fluidised bed mode. A 

common procedure has been to allow the adsorbent to settle and then to reverse the flow for 
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elution. Here, the upper adapter is lowered to the top of the settled bed. On the other hand, 

maintaining a fluidised bed during elution prevents particle aggregation and thus facilitates 

subsequent cleaning of the adsorbent (Lihme et al., 1998; Hjorth, 1999). However, due to the 

greater interstitial volume of the fluidised bed, the elution volume is increased in comparison 

to fixed bed elution (Hjorth et al., 1995). Following elution, the adsorbent is subjected to 

cleaning-in-place (CIP) procedures. These are important since the application of whole broth 

increases the contact of the adsorbent with nucleic acids, lipids, and cellular compounds 

which are commonly removed or reduced in conventional primary recovery steps prior to 

fixed bed column chromatography. Commonly used agents in CIP protocols are NaCl, NaOH, 

ethanol, acetic acid, urea and guanidine hydrochloride (Amersham Pharmacia Biotech AB, 

1997; Chang et al., 1995; Hjorth, 1997).  

1.5 Aim of the study – primary purification of L-asparaginase from 

Erwinia chrysanthemi by fluidised bed adsorption 

The aim of the study presented here was to develop a novel process for the primary 

purification of the intracellular enzyme L-asparaginase produced in Erwinia chrysanthemi. It 

was envisaged that the novel process would integrate discrete operations of cell disruption by 

bead milling with product capture by fluidised bed adsorption in order to minimise the 

processing time. L-asparaginase is known to be proteolytically sensitive (Lee et al., 1989), 

and thus the rapid processing achieved by such an approach should benefit the overall yield 

and molecular fidelity of the end-product.  

1.5.1 The clinical relevance of L-asparaginase 

L-asparaginase catalyses the deamidation of L-asparaginase to produce L-aspartic acid 

and ammonia. The enzyme has been noted in a range of bacteria, fungi, plants, and mammals 
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and its presence in Gram-negative bacteria has been widely recorded (Wriston, 1985). The 

interest in L-asparaginases arises because some of these enzymes, particularly those from 

Escherichia coli and Erwinia, have proven to provide an effective treatment for acute 

lymphoblastic leukaemia (Wade and Rutter, 1970). The enzymes from E. coli and Erwinia are 

immunologically distinct, allowing an alternative therapy for a patient hypersensitive to one 

of these enzymes (Cammack et al., 1972). The Erwinia L-asparaginase is a tetrameric 

molecule of relative high molecular mass 140,000, consisting of four identical subunits with 

an isoelectric point (pI) of 8.6.  

1.5.2 Conventional purification of L-asparaginase from Erwinia 

chrysanthemi 

Figure 1.4 depicts a comparison between the current commercial process and a 

proposed revision for L-asparaginase release from Erwinia cell paste and its primary 

purification. The long established current process exploits alkaline lysis of the cells and an 

adsorption step performed in batch mode following centrifugal clarification (Goward et al., 

1989). Cell lysis is achieved by adjustment of the pH of a cell suspension to 11.4. The pH is 

then incrementally lowered to 6.5 and then 4.8. At both pH values the broth is clarified by 

centrifugation. The pH of chemically lysed biomass is not directly adjusted to 4.8 in a single 

step in order to minimise loss of enzyme due to adsorption to cell debris (Goward et al., 

1992). Batch adsorption of the product is then performed in a stirred tank using a cation 

exchange CM cellulose matrix. The matrix is separated from the broth by centrifugation and 

eluted in batch mode with added salts. Commonly, the total process time to yield the primary 

extract amounts to approximately 20 h (batch size: 60 kg biomass). 

In the proposed integrated process of bead milling and fluidised bed adsorption (see 

Figures 1.4 and 1.5) the disruptate would be directly fed from the mill into the fluidised bed  



 19

Figure 1.4. Comparative approaches to the purification of L-asparaginase from Erwinia 
chrysanthemi. 
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Figure 1.5. Experimental configuration for integrated bead milling and fluidised bed 
adsorption 
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Cell suspension is fed to the bead mill and disruptate is directly introduced from the mill into 
the fluidised bed contactor. After loading of the disruptate, the fluidised bed is washed and 
subsequently eluted in fluidised bed mode. 
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contactor. Temporary storage of the disruptate is thus eliminated and exposure of the product 

to potential antagonists (debris adsorption, degrading enzymes, etc) is minimised. In 

addition, no clarification steps are required to process the broth which (i) reduces the number 

of unit operations, (ii) shortens the overall process time and (iii) reduces the capital costs. 

1.5.3 Thesis outline 

The study presented in Chapter 2 investigated the disruption of Erwinia chrysanthemi 

by bead milling. The aim was to establish an effective method for the release of the 

intracellular enzyme L-asparaginase and to identify potential process limitations. Raw 

material was supplied in the form of cell paste (CAMR, Porton Down, Salisbury) harvested 

by centrifugation after fermentation and frozen for storage and shipment. Feedstocks for bead 

milling were therefore prepared by thawing and re-suspending frozen cells. The feedstock 

conditions for cell disruption, in particular pH and ionic strength, were chosen with the aim to 

produce a disruptate suitable for immediate processing by exploiting cation exchange 

adsorbents. The back mixing characteristic of the bead mill was investigated by tracer 

analysis. Product release was tested both under feedstock re-circulation from a reservoir and 

single pass operation at various feed rates.  

Chapter 3 summarises the establishment of a protocol for the primary purification of L-

asparaginase from unclarified Erwinia disruptates by fluidised bed adsorption. Fluidisation 

characteristics and axial dispersion of candidate adsorbents were compared. Suitable 

adsorbents were chosen for further experimentation and their biochemical performance was 

assessed. Here, CM HyperD LS (Biosepra), a hyper-diffusive cation exchange adsorbent, and 

SP UpFront, a custom derivatised, pellicular stainless steel/agarose solid phase were 

employed. Product uptake rates were compared by batch adsorption studies and the influence 
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of fluidisation velocity and settled bed height on the adsorbent dynamic capacity was assessed 

by frontal analysis.  

Chapter 4 summarises experiments which seek to demonstrate the feasibility of the 

integration of cell disruption by bead milling and product capture by fluidised bed adsorption 

(see Figure 1.4). At first a study concerning the primary purification of the enzyme G3PDH 

from brewers’ yeast is presented. The aim was to review the practical feasibility of coupling 

the two unit operations whilst preserving precious stocks of Erwinia cell paste. Then, the 

integrated primary purification of L-asparaginase from Erwinia disruptates was investigated. 

Here, experimental conditions, established for the fluidised bed capture of L-asparaginase (see 

Chapter 3), were applied in larger scale contactors. The study included the comparison of the 

custom built BRG contactor (4.5 cm i.d.) with the commercially available UpFront contactor 

(5.0 cm i.d.) featuring a novel flow distribution system. Flow distributor designs were 

assessed by residence time distribution (RTD) analysis and the biochemical performance of 

the contactors was compared by frontal analysis online with cell disruption by bead milling. 

The purity of partially purified L-asparaginase recovered by fluidised bed adsorption was 

finally compared with samples derived from a conventional production process by SDS 

PAGE analysis in tandem with activity and total protein assays.  
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2  MECHANICAL CELL DISRUPTION OF ERWINIA 

CHRYSANTHEMI 

2.1 Introduction 

For the production of recombinant or native proteins and other bioproducts, a variety of 

common hosts are available such as Escherichia coli and Saccharomyces cerevisiae. For 

simple, unglycosylated proteins, the Gram-negative bacterium E. coli remains the 

recombinant host of first choice. There are several reasons for this, as discussed by Shuler and 

Kargi (1992). For example, it has been intensively studied and cloning techniques are well 

established for which strongly-inducible gene promotors are readily available. High growth 

rates can be achieved on simple media, and validated methods for endotoxin removal 

facilitate regulatory approval for new products. The yeast S. cerevisiae has the advantage of 

performing simple glycosylations. Its genetic system is also well understood and it is also 

capable of achieving relatively high growth rates.  

Unfortunately, E. coli and S. cerevisiae both have a disadvantage as hosts for protein 

production in that they do not excrete high levels of proteins to the medium (Shuler and 

Kargi, 1992). Consequently, process methods for releasing macromolecular products from 

cells following fermentation are required. This involves breaking apart the cell envelope (i.e. 

cell wall and membrane) which isolates the intracellular content from the suspending medium 

and provides physical stability for the cell. A wide variety of disruption methods based on 

different mechanisms have been developed (see Table 2.1). Section 2.1.1 gives a brief review 

of the cell wall structure of bacteria and yeast. This information is important if the mechanism 
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Table 2.1 Classification of cell disruption techniques 

MECHANICAL METHODS 
Bead mill 
 

Homogeniser 
 

Microfluidiser 

Agitators impart kinetic energy to beads in the cell suspension. Collisions of beads and 
shear forces cause cell disruption. 

A cell suspension is forced under high pressure through a discharge valve and impinges 
on an impact ring. The discharge pressure is regulated by a spring loaded valve rod. 

Two streams of cell suspension are impacted on each other or a stream is impinged on 
a solid surface which causes disruption by liquid shear forces 

NON-MECHANICAL METHODS 
Physical decompression 

 

osmotic shock 
 
 

thermolysis 

Cell suspension is mixed with pressurised subcritical gas which 
enters the cell and expands on release of the applied pressure 

Cell suspension equilibrated at high osmotic pressure is suddenly 
diluted. No disruption of strength-providing components. Release 
of proteins secreted to the periplasm. 

Heat treatment to release periplasmic or cytoplasmic proteins, 
results dependent on the type of the organism and its growth 
phase. 

Chemical antibiotics 
 
 

chelating 
agents 
 

chaotropes 
 
 

detergents 
 
 

solvents 
 

hydroxide 

Lysis caused by a particular mechanism, e.g. cell wall synthesis (β-
lactam antibiotics). Effectiveness depends on the state of the 
culture, less effective for stationary cells. 

Disruption of the outer membrane of gram-negative bacteria 
caused by binding of divalent cations (Mg2+ and Ca2+) releases 
periplasmic proteins, no release of cytoplasmic proteins. 

Chaotropes such as urea or guanidine disorganise the structure of 
water and thus weaken solute-solute interactions resulting in a 
solubilisation of hydrophobic membrane proteins.  

Due to their amphipathic nature, detergents (SDS, tetra alkyl 
ammonium salts, Triton X) interact both with water and lipid 
resulting in a solubilisation of membrane components. 

Non-polar solvents (e.g. toluene, chloroform) dissolve hydrophobic 
components of the cell wall (phospholipids)  

Alkaline lysis works by saponification of the lipids in the cell wall, 
extremely harsh, product must be stable at high pH.  

Enzymatic lytic enzymes 
 

autolysis 

cloned-phage 
lysis 

Foreign enzymes degrade the cell wall leading to lysis (e.g. 
glucanase and protease for yeasts, lysozyme for bacteria) 

Host organism produces an enzyme which degrades the cell wall 

Lysis of bacteria after incubation with bacteriophages, e.g. T4, or 
cloned phage φX174 gene.  
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of disruption is to be understood. Section 2.1.2 gives a classification of different disruption 

techniques and 2.1.3 focuses on the bead mill as a mechanical method of cell disruption. 

2.1.1 The cell envelope of bacteria and yeast 

The cell wall structure of E. coli will be described as being representative of other 

Gram-negative organisms such as Erwinia. Basic structures of cell envelopes of E. coli and 

yeasts have been summarised by Middelberg (1995). The cell envelope of Gram-negative 

bacteria, such as E. coli and Erwinia, consists of a semi-permeable cytoplasmic membrane 

(innermost), an inter-membrane periplasmic space, a thin rigid wall layer comprised of 

peptidoglycan and a lipid-protein outer membrane bilayer (see Figure 2.1). The cytoplasmic 

membrane provides the major interactive barrier between the internal cell environment and 

the bulk medium which houses transport systems and actively maintains concentration 

gradients. It does not provide any significant structural strength and is readily disrupted by 

osmotic shock in the absence of the structural component layers. The mechanical strength is 

provided by the peptidoglycan layer which forms the basic framework of the cell envelope. It 

accounts for 10 to 20% of the cell envelope in terms of dry mass and consists of a series of 

glycan chains composed of N-acetylglucosamine (NAG) and N-actetylmuramic acid (NAM) 

linked by β(1-4)-glycosidic bonds. These chains are crosslinked together by peptide bonds 

formed between amino acid side chains (Höltje and Glauner, 1990). The strength of this 

structure is governed by the frequency of occurrence of peptide chains and their crosslinking 

(Engler, 1985). The outer membrane specific to Gram-negative bacteria consists of a lipid 

bilayer containing transmembrane proteins, phospholipids and lipopolysaccharids (LPS). 

Divalent cations play an essential role in stabilisation (Nikaido, 1973; Engler, 1985). The 

anisotropic nature of its bilayer configuration distinguishes it from the cytoplasmic 

membrane. Gram-positive bacteria, such as Bacillus lack the outer membrane component, but  
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Figure 2.1. Simplified structure of the wall of Gram-negative bacteria 
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The cell wall structure of E. coli is depicted here schematically representative for other 
Gram-negative organisms such as Erwinia (redrawn from Middelberg, 1995). Common 
features of the cell envelope of Gram-negative organisms are the innermost, semi-permeable 
cytoplasmic membrane, an inter-membrane periplasmic space, a thin rigid wall layer 
comprised of peptidoglycan and a lipid-protein outer membrane bilayer.  
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in turn possess a more dominant peptidoglycan structure (Nikaido, 1973; Engler, 1985). 

The cell cytoplasm of the yeast S. cerevisiae is encased in a lipid bilayer as in E. coli. 

This plasma membrane is separated from the cell wall by the periplasm. The wall is composed 

primarily of glucan, mannoprotein and chitin which form a crosslinked polysaccharide-protein 

structure which is considerably more complex than that of E. coli (Fleet, 1991). It accounts 

for approximately 15-25% of the dry cell weight.  

2.1.2 Classification of disruption techniques 

Different methods of cell disruption have been reviewed by several researchers 

(Harrison, 1991; Hughes et al., 1971) partly focussing on larger scale operations (Middelberg, 

1995; Kula and Schütte, 1987). Table 2.1 summarises methods used for cell disruption 

together with their principles of operation. Complete destruction of the cell wall in a non-

specific manner is usually achieved by mechanical means exploiting solid shear (bead mill) 

and liquid shear forces (high-pressure homogeniser, microfluidiser). Non-mechanical methods 

are gentler and often only perforate or permeabilise cells rather than tearing them entirely 

apart. For example, chemical and enzymatic methods rely on selective interaction of a 

substance, or an enzyme respectively, with components of the cell wall or the membrane 

which allow product to seep out. However, chemical or enzymatic treatment at large scale 

may be costly and waste disposal of process additives may also cause problems. As a result, 

mechanical methods such as high-pressure homogenisers (HPH) or bead mills are preferred 

for large-scale applications (Agerkvist and Enfors, 1990; Kula and Schütte, 1987).  

High-pressure homogenisers and bead mills were originally designed for different 

industrial applications but have recently been adapted for microbial cell disruption (Harrison, 

1991; Middelberg, 1995). The former originated in food technology for the homogenisation of 

milk and milk products. Bead mills are also employed for the comminution of pigments in the 
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paint and lacquer industry and will be reviewed more closely in Section 2.1.3. Important 

operating parameters of the HPH with regard to the disruption of microorganisms, i.e. 

operating pressure, cell concentration, and design of the valve unit have been reviewed by 

several researchers (Chisti and Moo-Young, 1986; Kula and Schütte, 1987).  

In order to maximise the disruption efficiency, combinations of disruption methods 

have been synergistically employed. Dean and Ward (1992) reported a combined treatment of 

E. coli with EDTA and lysozyme. Here, EDTA destabilised the outer membrane of the 

bacteria which enabled lysozyme to penetrate and hydrolyse the peptidoglycan layer leading 

to disruption of cells that are not osmotically stabilised. Vogels and Kula (1991) used a short 

treatment with a lytic enzyme or heat before mechanically disrupting Bacillus cereus in a 

bead mill or a HPH. The pre-treatment resulted in 98% disruption after a single homogeniser 

pass whereas untreated cells exhibited only 40% disruption.  

Regardless of the mode of disintegration, cell disruption cannot be considered as an 

isolated process. It must interact and interface with both upstream and downstream 

operations. For example, considerable changes in peptidoglycan structure of bacteria occur 

during the transition from exponential to stationary phase, particularly with respect to the 

degree of crosslinkage (Pisabarro et al., 1985) which increases resistance to cell disruption. 

Such findings agree with those by Engler and Robinson (1981) who reported that yeast cells 

growing at a higher growth rate were easier to disrupt. In addition, Gray et al. (1972) found 

that E. coli cells grown on complex media are more robust than cells grown on a simple 

synthetic medium. On the downstream side, the size of cell debris, generated by cell 

disruption, significantly influences solid-liquid separations (Clarkson et al., 1993; Agerkvist 

and Enfors, 1990). Also, chemical/biological lytic agents (see Table 2.1) may complicate 

purification procedures. Moreover, the protein of interest will be the target of proteolytic 
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enzymes liberated from the same cell which limits process conditions and time and makes 

rapid processing of the disruptate essential (Kaufmann, 1997; Grodberg and Dunn, 1988; 

Kaufmann and Stierhoff, 1993). Consequently, a product capture step integrated with cell 

disruption would be expected to benefit the yield and molecular fidelity of most protein 

products. The optimal process in this respect would be a continuously operated cell 

disruption, e.g. achieved by bead milling, and a product capture step capable of handling 

particulate feedstocks such as fluidised bed adsorption (see Figure 1.5). Thus, holding periods 

due to the accumulation of disruptate as well as time consuming clarification steps are 

omitted. Such an integrated process was proposed earlier (Bierau et al., 1999) for the 

purification of the intracellular enzyme glyceraldehyde 3-phosphate dehydrogenase (G3PDH) 

from unclarified yeast disruptates.  

2.1.3 The bead mill 

Mechanical cell disruption in a bead-mill has many attractive process characteristics 

including high disruption efficiency, high throughput and biomass loading, good temperature 

control and mills are commercially available from laboratory to industrial scale (Chisti and 

Moo-Young, 1986; Limon-Lason et al., 1979; Schütte et al., 1983; Zhang, 1998). In addition, 

the operational characteristic of single-pass and continuous operation recommends the bead 

mill as the ideal feedstock generator for direct sequestration of released products in a fluidised 

bed (Bierau et al., 1999).  

Bead mills consist of a mostly horizontally positioned, closed grinding chamber. On the 

motor-driven agitator shaft different impellers can be employed in the form of discs, rings or 

pins (Figure 2.2). These can be mounted centrically or eccentrically and impart kinetic energy 

from the rotating parts to the grinding elements which are suspended in the cell suspension. 

Cells are disrupted by shear forces generated by the radial acceleration of the beads as well as 
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Figure 2.2. The Dyno Mill KDL 
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The volume of the disruption chamber is 600 ml. Four centrically mounted rotating discs 
impart kinetic energy to the grinding elements which are suspended in the cell suspension. 
The feed inlet and outlets are above tank level. Grinding beads are retained by the gap 
separator. Cooling of the processed liquid is provided via a jacket.  
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by bead collisions. Virtually all of the energy input is dissipated as heat, necessitating cooling 

of the chamber which is achieved by a cooling jacket. The continuous separation of the 

grinding elements from the suspension is accomplished using either dynamic sieves or coaxial 

ring slots integrated into the bearing housing. Commercially available mills differ in the ratio 

of diameter to length of the grinding chamber which is considered to be optimal between 

1:2.5 to 1:3.5 (Kula and Schütte, 1987). Mills with grinding chambers between 50 ml and 275 

litres are available for laboratory, pilot and production scale. The largest available bead mills 

can handle throughputs of up to 2000 l h-1 (White and Marcus, 1988; Asenjo and Patrick, 

1990). Typical biomass loads were reported between 30 – 50% ww/v (Middelberg, 1995; 

Schütte et al., 1983; Zhang, 1998).  

Disruption of microorganisms by bead milling has been reviewed by a number of 

researchers (Middelberg, 1995; Harrison, 1991; Chisti and Moo-Young, 1986). The most 

important operational parameters with regard to cell disintegration were identified as the 

agitator speed (a normalised peripheral tip speed of the agitating elements is used for the 

comparison of different mills), the feed rate of the suspension, size and density of the beads, 

and cell size in the feed. Generally, by increasing tip speed the shear forces generated will 

increase, as does the collision frequency, both contributing to a higher disruption efficiency. 

However, at the same time this increases the temperature of the disruptate, the energy 

required to drive the agitator, and the erosion of the grinding beads. Kula and Schütte (1987) 

found an optimal peripheral tip speed in a Netzsch LME 4 mill of 8 m s-1 for yeast and 10 m s-

1 for bacteria. Similar results had been reported by Limon-Lason et al., (1979) who 

established an optimal tip speed of 10 m s-1 for the disruption of yeast in a Dyno Mill KD5. 

An optimal bead load of 80-85% chamber volume has been reported by several researchers 

(Schütte et al., 1983; Rehácek and Schaefer, 1977). The optimum bead size was found to be 
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dependent on the size of the microorganism to be disrupted. Smaller bead diameters (< 0.5 

mm) were found to be more suitable for the disruption of bacteria whereas larger beads (0.5 –

1 mm) seemed to be optimal for yeast (Kula and Schütte, 1987). The same study revealed also 

that cell size has a considerable impact on disruption efficiency. It was demonstrated that 

lower feed rates or even multiple passes were required for the disruption of bacteria (B. 

cereus, Brevibacterium ammoniagenes, E. coli, Lactobacillus confusus) in order to achieve an 

equivalent release of protein obtained for yeasts in single-pass operation (S. carlsbergensis, S. 

cerevisiae). As a result, biomass throughput for yeast was 4 to 10 times greater in comparison 

with bacteria.  

It has been demonstrated that the protein release in bead mills in batch operation 

follows first-order kinetics. However, in continuous operation back mixing has to be taken 

into account which is a function of the feed rate and the stirrer geometry. Thus, the degree of 

disintegration, or the protein release respectively, is not inversely proportional to the feed rate 

(Kula and Schütte, 1987; Limon-Lason et al., 1979).  

Side-by-side comparison of disruption by bead milling with high pressure 

homogenisation, conducted by different researchers, revealed some process advantages for the 

bead mill such as a relatively high disruption efficiency in single pass operation as well as 

larger debris size distributions. The latter is favourable if a subsequent centrifugation or 

filtration of the disruptate is envisaged. Agerkvist and Enfors (1990) disrupted E. coli cells in 

a bead mill (Dyno Mill KDL, 0.6 l disruption chamber) and in a HPH (Manton Gaulin 15M-

8TA). A single pass through the bead mill at a flow rate of 4.5 l h-1 (equivalent to 4 min mean 

residence time in the disruption chamber) yielded a release of 79 % of the cytoplasmic 

enzyme β-galactosidase. In order to achieve an equivalent degree of disruption in the HPH, 

three passes were required. The mean debris size generated was 217 nm for the HPH and 529 
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nm for the bead mill. It should be noted that in this study the operational flow rate in the HPH 

(approximately 200 l h-1 at a pressure of 60 MPa) was much greater than in the bead mill 

owing to the relatively small scale of the mill (0.6 l chamber volume). However, experiments 

by Schütte et al. (1983) (Bacillus sphaericus) employing a bead mill at a larger scale (Netzsch 

LME 20, 20 l chamber volume, 93 l h-1) bettered the disruption efficiency achieved in a HPH 

(Manton Gaulin, 59 MPa, 54 l h-1).  

The bead mill used for the work presented here is a Dyno Mill KDL (see Section 2.2.1) 

which has been extensively characterised by Zhang (1998) for the disruption of waste 

brewers’ yeast. Here, the feed rates employed (5-25 l h-1) exhibited little influence upon the 

disruption efficiency (i.e. release of total protein and the enzyme G3PDH) which was 

routinely high. The amount of total protein and enzyme released increased at higher feedstock 

concentrations (e.g. 40 – 50% ww/v). A similar effect has been reported in other studies 

(Limon-Lason et al., 1979). A comparison of two different bead materials (glass, 0.2-0.5 mm, 

2.5 g ml-1 and zirconia, 0.3 mm, 6.0 g ml-1) yielded only a slight increase in disruption 

efficiency (6 % higher release of G3PDH and 2 % higher release of total protein, (Zhang, 

1998).  

2.2 Materials and Methods 

2.2.1 Bead milling of Erwinia chrysanthemi 

Cell disruption was performed by bead milling in a Dyno Mill KDL-I (Willi A. 

Bachofen AG, Switzerland) consisting of a silicon-carbide lined stainless steel chamber (0.6 

ml) cooled by re-circulating iced water (0°C), for configuration see Figure 2.2. The chamber 

was loaded with zirconia beads (0.3 mm, density 6 g ml-1) to 83% settled volume occupancy 

(500 ml beads, packed volume). This corresponded to a free volume within the chamber of 
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approximately 250 ml. The agitator speed was 3200 rpm corresponding to a peripheral tip 

speed of the agitating discs of 10.5 m s-1. Frozen cell paste was thawed and resuspended in 

buffer A (20 mM citric acid / tri-sodium citrate, pH 5.0) at 30 % wet weight per volume 

(ww/v). Due to medium contamination of the paste voidage, cell leakage and undefined buffer 

effects the pH commonly shifted to approx. 5.8 - 6.0 The cell suspension was adjusted to the 

desired pH (pH 5.5 if not stated otherwise) by the addition of 20 mM citric acid and diluted to 

the desired biomass concentration.  

For single pass experiments, chilled cell suspension was fed from a well-mixed 

reservoir into the mill and the disruptate was collected in a holding vessel. For re-circulation 

experiments, both the inlet and outlet of the mill was connected to the same vessel containing 

500 ml of a Erwinia suspension (30% ww/v). Before milling was commenced, the free 

volume of the chamber was filled with cell suspension which reduced the volume of cell 

suspension in the re-circulation reservoir to 250 ml during an experiment.  

2.2.2 Residence time distribution in the disruption chamber as a function 

of the feed rate 

An acetone solution (1% v/v) in distilled water was used as a tracer and a step-input was 

introduced into the bead mill while the UV absorbance at the outlet was recorded (single path 

monitor UV-1 and chart recorder, Pharmacia, Sweden) and interpreted in terms of 

concentration of the tracer. After reaching a steady reading (100% value) the input feed was 

switched back to water. From the curve obtained for decreasing UV absorbance the data 

characterising the residence time distribution were calculated. The time interval from 

switching the feed to water until the signal reached 50% of the full deflection was taken as the 

mean residence time, the time interval of the signal between 84.15% and 15.85% yielded the 

spread of the distribution, 2σ, (refer to Figure 3.2).  
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2.2.3 Alkaline lysis of Erwinia chrysanthemi 

Cell paste was thawed and resuspended in buffer A (15% ww/v). The pH of the 

suspension was adjusted to 11.4 by the addition of 0.5 M NaOH. After 30 min of stirring the 

pH was re-adjusted to pH 5.5.  

2.2.4 Total protein determination 

A commercially available reagent (Pierce Chemical) was used for the routinely 

performed determination of total protein in various samples. The assay is based on a method 

reported by Bradford (1976). An acidic solution of the dye Coomassie Brilliant Blue G-250 

exhibits an absorbance shift between 465 and 595 nm when binding with proteins. The dye 

primarily binds to arginine residues in proteins and interacts with other basic and aromatic 

residues. The reagent is compatible with a wide range of commonly used buffer substances 

and the sensitivity of the method allows the detection of protein concentrations as low as 1 µg 

ml-1. Due to the different composition of analytes, the response of the assay varies with the 

protein measured. Thus, the assay yields results which represent equivalents to the standard 

protein used.  

A standard curve was generated using bovine serum albumin (BSA) in concentrations 

of 0 – 30 µg ml-1 in buffer A (Erwinia experiments: citric acid / tri-sodium citrate, 20 mM, pH 

5.5; yeast experiments: 10 mM Tris/HCl, pH 7.5 containing 1 mM EDTA). The standards 

were incubated with an equal volume of Coomassie reagent for 3 minutes at room 

temperature (e.g. 600 µl sample + 600 µl reagent). Then the absorbance at 595 nm was 

recorded against a blank (buffer + reagent). The standard curve (valid for a particular batch of 

reagent) was stored electronically using commercial software (Viglen Ltd., Middlesex, UK). 

Appropriately clarified and diluted experimental samples were treated in the same manner as 
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the standards (measured in duplicates) and the average total protein concentration was 

automatically estimated from the standard curve using the software. 

2.2.5 L-asparaginase activity assay 

The assay is based on the measurement of ammonium released by the action of L-

asparaginase on asparagine. 

Asparagine →  Aspartate + NH4
+ 

The assay procedure comprises two stages. In the first stage the enzyme present in the 

sample is incubated with its substrate and liberates ammonium from asparagine. In the second 

stage the amount of ammonium so formed is quantified by converting it into ammonia (NH3) 

by the alkaline hypochlorite solution which then reacts with the phenol-nitroprusside to give a 

blue coloured complex. 

Reagents required for the L-asparaginase activity assay are listed in Table 2.2 The 

solutions for the determination of ammonia are stable for extended periods (storage at 4 °C). 

The assay buffer was prepared on the day of use by adding an appropriate quantity of L-

asparagine and BSA to stocks of 50 mM borate buffer (pH 8.5). Enzyme samples may be in 

the form of washed, whole cells or of cell free extracts, both in 50 mM borate buffer (pH 8.5). 

Disruptate samples or fractions collected from chromatography experiments were routinely 

clarified by centrifugation (7600 g, 10 min). Sample (e.g. clarified supernatant, 150 µl) was 

placed into reaction tubes (1.5 ml volume) which were placed in a water bath (37 °C). Pre-

warmed assay buffer was added (750 µl) and the mixture was incubated for exactly 5 minutes 

at 37 °C. After incubation the enzyme reaction was terminated by the addition of 375 µl of 

TCA solution. The tubes were removed from the water bath and mixed on a vortex mixer. 30 

µl from each tube was removed and placed into another 1.5 ml reaction tube. Then 735 µl of 

alkaline hypochlorite and 735 µl of phenol nitroprusside solution were added. The solution 
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was mixed on a vortex mixer and incubated for 30 min. After incubation the absorbance of the 

sample was measured in a spectrophotometer (Pharmacia Ultraspec III) at 625 nm against the 

blank (borate buffer, 50 mM, pH 8.5, containing no asparaginase). The background level of 

ammonium present in the sample can be accounted for by including a sample in the assay in 

which the TCA solution is added before the assay buffer. The enzyme activity was estimated 

using a standard curve. The standards (0.2 / 0.5 / 1.0 / 5.0 / 10.0 U ml-1) were included with 

each set of samples to be measured. They were treated in the same manner as the samples and 

produced a linear curve. Both, standards and samples were measured in duplicates.  

 

Table 2.2. Reagents for the L-asparaginase assay 

Reagent Ingredients 

Assay buffer 50 

10 

0.05 

mM 

mM 

mg ml-1 

Borate (tri-sodium tetraborate), pH adjusted to 8.5 (HCl, 1 M) 

L-asparagine (Sigma Chemicals, Poole, UK) 

Bovine serum albumin (BSA) 

Alkaline -

hypochlorite 

5 

0.42 

g l-1 

g l-1 

NaOH 

available chlorine hypochlorite (35 ml l-1 BDH-SPECTROSOL 

sodium hypochlorite, 12% available chlorine) 

Phenol -

nitroprusside 

10 

0.05 

g l-1 

g l-1 

Phenol 

Sodium nitroprusside 

TCA 70 g l-1 Tri-chloro acetic acid (7%) 

 

2.2.6 Exposure of purified L-asparaginase to milling conditions 

The chamber of the mill was packed to 67% with glass beads (400 ml) while the 

remaining volume was filled with a solution of purified L-asparaginase (supplied by CAMR, 

Porton Down, Salisbury), dissolved in buffer A (~ 300 U ml-1, 850 U mg-1). Milling intervals 

of one minute were alternated with cooling intervals of one minute. Samples were taken after 

each milling interval and assayed for protein concentration and asparaginase activity.  
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2.2.7 Protein adsorption studies to grinding beads. 

Grinding beads (glass, 0.2-0.5 mm and zirconia, 0.3 mm) at a settled volume of 2 ml 

were incubated with 4 ml of protein solution (L-asparaginase, BSA, lysozyme, 1 mg ml-1 in 

each case in buffer A, pH 5.0). During the experiment the test tubes were placed on a roller 

incubator to provide mixing. L-asparaginase activity or the protein concentration, 

respectively, were monitored over a time course of 20 min. Binding capacities of the beads 

were calculated from a material balance conducted after 20 min incubation time.  

2.2.8 Protein adsorption studies to cell debris. 

a) An Erwinia disruptate was prepared by bead milling as described in Section 2.2.1 

(bead mill feed rate 5 l h-1, 30% biomass ww/v, pH 5.0). A fraction of the disruptate was 

adjusted to pH 6.0 by addition of a small volume of NaOH. The following samples were 

prepared using disruptate both at pH 5.0 and pH 6.0 (buffer A at the respective pH): (i) blank, 

disruptate + buffer A (600 µl + 600 µl), (ii) disruptate + buffer A containing 2 M NaCl (600 

µl + 600 µl), (iii) disruptate + buffer A containing 500 U ml-1 of purified L-asparaginase (850 

U mg-1), 600 µl + 600 µl, total addition of enzyme activity: 250 U/ml.  

After incubation for 30 minutes on a roller mixer, the samples were clarified by 

centrifugation (7600g, 10 min) and the supernatant was assayed for L-asparaginase activity. 

b) Samples from Erwinia disruptates (30 % ww/v, pH 5.5), generated at different bead 

mill feed rates, were mixed at equal volumes with buffer A containing 2 M NaCl and borate 

buffer (100 mM di-sodium tetraborate, pH 8.5), respectively. The latter shifted the pH of the 

sample towards basic conditions which facilitated the desorption of L-asparaginase from cell 

debris. After 30 min of incubation time the samples were clarified by centrifugation (7600g, 

10 min) and the supernatant was assayed for L-asparaginase activity. The amount of desorbed 
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enzyme was quantified by the increase in enzyme activity in comparison with the blank (1:2 

dilution in buffer A). 

2.3 Results and discussion 

2.3.1 Residence time distribution as a function of the feed rate 

Due to the varied back mixing of feedstock within the grinding chamber there is no 

linear relationship between the feed rate and the mean residence time (MRT) of a fluid 

element introduced with the feedstock (Kula and Schütte, 1987). Residence time distribution 

measurements were performed in order to characterise different feed rates with regard to 

residence time in the milling chamber. The technique applied is generally used for the 

measurement of plate numbers in chromatography columns (see Section 2.2.1 and Figure 3.2, 

also described by Barnfield-Frej et al. (1997). Results of these measurements are depicted in 

Figure 2.3. It can be seen in the graph that both curves follow a similar trend and two distinct 

regions can be identified. At feed rates above 8 l h-1, the change in MRT and the spread of the 

distribution (2σ) with feed rate was much reduced in comparison to lower feed rates. As a 

result, the MRT at low feed rates increased as a composite function of flow rate and increased 

back mixing as indicated by the steep increase in the spread. Relatively low values for the 

spread at higher feed rates (> 10 l h-1) indicated reduced back mixing and an approach to plug 

flow behaviour. This confirmed the results of Kula and Schütte, (1987) who found that back 

mixing was reduced with increasing feed rates and therefore a tighter MRT distribution was 

generated. Results presented in Figure 2.3 were also in good agreement with Agerkvist and 

Enfors (1990) who reported similar MRTs obtained in a Dyno Mill KDL for feed rates 

between 4.5 and 9.0 l h-1.  
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Figure 2.3. Mean residence time of a unit volume in the disruption chamber as a 
function of the feed rate.  
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Dyno mill KDL, agitator speed 3200 rpm (tip speed 10.5 m s-1), zirconia beads (0.3 mm), 
bead load 83%). An acetone solution in water (1% v/v) was used as a tracer. UV absorbance 
was measured at the outlet of the mill and interpreted in terms of concentration of the tracer. 
The mean residence was calculated as the time interval in which the tracer concentration 
decreases from 100% to 50%. The spread of the distribution is equivalent to the time interval 
in which the signal decreased from 84.15% to 15.85% (see Section 2.2.2 and Figure 3.2). 
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2.3.2 Re-circulation and single pass experiments 

Scouting experimentation for the establishment of optimal milling conditions in single 

pass operation requires large quantities of experimental material (i.e. biomass suspension). It 

was therefore decided to employ re-circulation procedures for such experiments with Erwinia 

chrysanthemi to conserve precious stocks of cell paste. It was assumed that a combination of 

MRT data and that from the disruption of re-circulated feedstocks would indicate the range of 

flow rates best suited for single pass disruption of Erwinia. A cell suspension was prepared as 

described in Section 2.2.1 and re-circulated from a well mixed reservoir (500 ml) at a feed 

rate of 25 l h-1. Samples were taken at intervals to monitor total protein concentration and L-

asparaginase activity. The degree of cell disruption was assumed to be directly correlated to 

protein release and L-asparaginase activity in the processed suspension and the results of this 

experiments are depicted in Figure 2.4. The curve for total protein reached a plateau after 

about 4 min of re-circulation which indicted that the total achievable disruption of the cells 

was established. However, the data was less clear for the release of L-asparaginase which 

indicated a maximum value after 3 minutes which thereafter decreased continuously. Using 

the data depicted in Figures 2.3 and 2.4 a feed rate was estimated which was expected to yield 

a maximum enzyme release in single pass operation. With the given flow rate of 25 l h-1 (416 

ml min-1) a time of 1.2 minutes was required for one discrete pass of the feedstock volume 

(500 ml) through the disruption chamber (here, mixing in the reservoir was neglected and 

plug flow assumed). The maximum enzyme release was achieved after 3 min of re-circulation 

(see Figure 2.3). Such a period of re-circulation was judged equivalent to 2.5 discrete passes 

of the reservoir content through the disruption chamber at 25 l h-1. For this feed rate, Figure 

2.3 indicated a mean residence time within the disruption chamber of 54 s. After 2.5 passes 

the total residence time of the feedstock within the mill was thus 135 s which was expected to 
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Figure 2.4. Re-circulation of Erwinia cell suspension through the bead mill. 
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An Erwinia cell suspension (30% ww/v) was re-circulated from a reservoir (500 ml) through 
the bead mill operated at an agitator speed of 3200 rpm (tip speed 10.5 m s-1) and a feed rate 
of 25 l h-1. At given time intervals, samples were taken from the reservoir and subsequently 
assayed for total protein and L-asparaginase activity. 
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be equivalent to the mean residence time measured at a feed rate of 8 l h-1 (see Figure 2.3).  

In order to verify this estimated optimum feed rate, single pass experiments were 

performed. Here, a cell suspension was prepared as described in Section 2.2.1 and passed 

through the mill at various feed rates covering the established optimum range (approximately 

8 l h-1). Figure 2.5 depicts the results obtained for two different batches of cell paste (obtained 

from different fermentations) and Table 2.3 summarises the maximum release of L-

asparaginase in a side-by-side comparison with disruption of the respective Erwinia batches 

by alkaline lysis (see Section 2.2.3). Maximum enzyme release by bead milling was achieved 

at feed rates of 8 l h-1 (batch 1) and 10 l h-1 (batch 2), respectively. These results were in good 

agreement with the optimum feed rate estimated from re-circulation and MRT data (see 

Figure 2.3 and Figure 2.4). 

 

Table 2.3. Comparison of L-asparaginase release from Erwinia chrysanthemi by bead 
milling and alkaline lysis. 

Batch of cell paste Bead mill Alkaline lysis 

 Release(1) 

MU kg-1 

Protein 

mg ml-1 

Specific activity

U mg-1 

Release(1)

MU kg-1 

Protein 

mg ml-1 

Specific activity 

U mg-1 

1 3.4 5.5 96 4.5 4.3 158 

2 3.8 5.4 105 4.6 4.0 174 
(1) Release at optimum feed rate, batch 1: 8 l h-1, batch 2: 10 l h-1 (see Figure 2.5) 

 

The enzyme release by bead milling for Batch 1 and Batch 2 corresponded to 75% and 

83% of the release achieved by alkaline lysis whereas the concentration of total protein 

released by bead milling was higher (Table 2.3). This might be explained by the precipitation 

of proteins during alkaline lysis which resulted in a lower total protein content of the lysate. A 

lower release of enzyme by bead milling in comparison with the alkaline lysis might be 

attributed to a combination of factors such as (i) incomplete disruption in the mill due to back  
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Figure 2.5. Single pass disruption of Erwinia chrysanthemi 

Feed rate (l h-1)

4 6 8 10 12 15 20

R
el

ea
se

d 
L-

as
pa

ra
gi

na
se

 a
ct

iv
ity

 
(M

U
 k

g-1
bi

om
as

s)

0

1

2

3

4

Batch 1
Batch 2

 

Release of L-asparaginase as a function of the bead mill feed rate for two batches of Erwinia 
chrysanthemi. Frozen cell paste was thawed and resuspended in buffer A (15% biomass 
ww/v) and exposed to bead milling at various feed rates. The initial enzyme activity of the cell 
suspension was 1.9 MU kg-1 for Batch 1 and 2.1 MU kg-1 for Batch 2 (batches of cell paste 
came from different fermentations).  
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mixing in the chamber, (ii) shear damage of the enzyme, or (ii) adsorption of the enzyme to 

grinding beads and/or oppositely charged cell debris or (see Section 2.3.3).  

However, the disruption efficiency achieved here is in good agreement with results 

reported by Agerkvist and Enfors (1990) for the disruption of E. coli which is similar to 

Erwinia with regard to size and wall structure. In that study, a release of 72% of total protein 

and 74% of the cytoplasmic enzyme β-galactosidase was achieved in a single pass operation 

exploiting an equivalent Dyno Mill model (0.6 l chamber, 6 l h-1, 80 % glass beads, 4500 rpm, 

results expressed relative to the release attained by 10 passes through a microfluidiser). In 

general, Erwinia cell suspensions were characterised by a relatively high initial L-

asparaginase activity (before cell disruption, batch 1: 1.9 MU kg-1, batch 2: 2.1 MU kg-1). 

This observation appeared to be common in the processing of frozen cell paste and has been 

reported previously (Agerkvist and Enfors, 1990; Johnson and Hecht, 1994). For example 

Milburn and Dunnill, (1994) reported the leaching of the intracellular enzyme alcohol 

dehydrogenase (ADH) from freeze/thaw damaged Saccharomyces cerevisiae cells which 

appeared intact by light microscopy inspection. However, virus-like particles, expressed in the 

recombinant cells were retained which was attributed to their comparatively large size (> 20 

nm).  

As can be seen from Figure 2.5, higher feed rates than 10 l h-1 resulted in a decrease in 

released enzyme activity which suggested incomplete disruption. However, feed rates less 

than 8 l h-1 were also characterised by a decrease in measurable enzyme activity. Here, MRTs 

were longer than required for optimum enzyme release and therefore, this effect is 

comparable to the decline of enzyme activity depicted in Figure 2.4 at re-circulation times 

greater than 3 min. This phenomenon could be variously explained by (i) adsorption of L-

asparaginase to cell debris and/or the grinding beads or (ii) enzyme inactivation due to 
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susceptibility to shear forces. Such effects are discussed in the following Section 2.3.3. The 

temperature of the disruptate routinely did not exceed 25 °C during the milling processes. 

Previous experiments did not indicate a loss of enzyme activity in samples stored at room 

temperature (20 – 22°C) over this period of time and thus, it was judged likely that damage 

due to temperature-induced stresses could be excluded.  

2.3.3 Loss of L-asparaginase activity during bead milling 

2.3.3.1 Susceptibility of L-asparaginase to shear forces 

In order to investigate the possibility that the loss of L-asparaginase activity during the 

milling experiments mentioned above might be caused by susceptibility of the enzyme to 

shear forces, a solution of purified enzyme in buffer was exposed to similar experimental 

conditions to those used during previous experiments (see Section 2.2.6). Due to the absence 

of cell material in the system, adsorptive losses to cell debris could be excluded. Here, glass 

beads (diameter 0.2-0.5 mm) were used instead of zirconia beads because this experiment was 

performed in a Dyno Mill type fitted with a glass chamber which was not designed for the use 

with the zirconia material. Due to limited material availability, a packing of only 400 ml of 

glass beads was employed. The settled volume occupied 67% of the chamber compared with 

83% in the re-circulation and single pass experiments. The use of a lower bead loading 

reduced the number of bead collisions and would therefore result in a lower efficiency of 

disintegration (Kula and Schütte, 1987). However, this difference was not judged critical with 

respect to the general purpose of this experiment (shear sensitivity of enzyme products). 

Results of this experiment are depicted in Figure 2.6. Enzyme activity exhibited a 

considerable loss of about 90% within one minute of initiating the treatment. Thereafter, the 

activity was judged to remain at a constant level. The protein concentration declined  
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Figure 2.6. Purified L-asparaginase exposed to milling conditions.  
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Purified L-asparaginase (300 U ml-1, in buffer A, pH 5.0) was exposed batch-wise to 
conditions similar to those during the milling experiments (glass beads, bead occupancy 67%, 
settled volume 400 ml, agitator speed: 3200 rpm, see Section 2.2.1). Samples were taken after 
each milling interval of 1 minute and assayed for protein concentration and L-asparaginase 
activity. Between each milling interval the chamber was allowed to cool. The temperature of 
the solution did not exceed 25°C.  
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proportionally to the enzyme activity which suggested that protein was sequestered out of 

solution, presumably due to adsorption to the glass grinding beads. From the data depicted in 

Figure 2.6 an effective binding capacity of 0.29 mg of L-asparaginase per ml of settled 

volume of glass beads could be calculated. However, it could not be excluded from such 

experimental data that enzyme was partially inactivated by shear forces. 

2.3.3.2 Adsorption of L-asparaginase to grinding beads 

To analyse the adsorption characteristics of the glass and zirconia grinding beads, a 

batch binding experiment was performed (see Section 2.2.7). The time course of the 

experiment for glass beads is depicted as an example in Figure 2.7 and binding capacities of 

the grinding beads are summarised in Table 2.4. 

 

Table 2.4. Binding capacities of grinding beads for various proteins 

Capacity (mg ml-1) L-asparaginase BSA Lysozyme 

Glass beads 0.27 0.16 0.24 

Zirconia beads 0.46 0.35 0.04 

Glass and zirconia grinding beads were incubated with various protein solutions to study 
their adsorption characteristics. Protein adsorption was estimated by a mass balance for a 20 
min incubation time. 

The respective proteins used in the experiment were purified L-asparaginase (pI = 8.6), 

BSA (pI = 4.8) and lysozyme (pI = 10.5) chosen on the basis of different isoelectric points. 

However, with regard to their pI, a simple cation exchange mechanism for the observed 

adsorption is not evident from the results. The two basic proteins, L-asparaginase and 

lysozyme, exhibit quite disparate capacities on zirconia whereas on glass they are very 

similar. The binding capacity of glass for L-asparaginase in this experiment (0.27 mg ml-1) 

approximates the value of 0.29 mg ml-1 estimated in Section 2.3.3.1. From the time course of  
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Figure 2.7. Protein adsorption to glass beads.  
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2 ml of glass beads (A) and zirconia beads (B) were incubated for 20 minutes with solutions 
of purified L-asparaginase, BSA and lysozyme (1 mg ml-1). Binding was investigated by 
difference analysis and expressed as mg protein per ml of beads (20 min incubation time).  
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the experiment for glass beads (depicted in Figure 2.6) it is apparent that the decline in L-

asparaginase activity is proportional to the measured total protein values. Both observations 

imply that the enzyme loss discussed in Section 2.3.3.1 should largely be attributed to product 

adsorption to the grinding beads. However, it would be expected that the grinding beads 

would be rapidly saturated in an extended cell disruption process and that such interactions 

are thus negligible 

2.3.3.3 Adsorption of L-asparaginase to cell debris 

To examine adsorptive interactions between L-asparaginase and the cell debris generated by 

bead milling, batch binding experiments were performed in which cell debris (in a disruptate) 

was evaluated in a fashion analogous to the performance of an ion exchange matrix (see 

Section 2.2.8, a). The aim was to establish whether debris-bound L-asparaginase could be 

desorbed/eluted by an elevated salt concentration. A second objective was to investigate 

whether the addition of a defined amount of pure L-asparaginase to cell debris was reflected 

in a decrease in activity of the sample which would be indicative of adsorption. As can be 

seen from Figure 2.8, a similar disruptate sample showed a significantly higher enzyme 

activity in the blank at pH 6.0 as compared to pH 5.0. This indicated that a fraction of the 

available L-asparaginase (pI = 8.6) in the disruptate was adsorbed to the cell debris and 

further, that such adsorptive interactions decreased with increasing pH. In addition, the 

sample containing 1 M NaCl at pH 5.0 exhibited a higher activity than its corresponding 

blank (disruptate in buffer A), which demonstrated that debris bound enzyme could be 

desorbed by the elevated salt concentration. The same observation could not be found at pH 

6.0. Here, both the blank and the sample containing 1 M NaCl exhibited corresponding 

enzyme activities which, however, matched the elevated activity of the sample at pH 5.0  



 51

 

 

 

 

Figure 2.8. Adsorptive interactions of L-asparaginase with cell debris in Erwinia 
disruptates. 
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Erwinia disruptate from a milling experiment (containing debris) was mixed at equal volumes 
with (i) buffer A (blank), (ii) buffer A containing 2 M NaCl, and (iii) buffer A containing a 
charge of purified L-asparaginase (total addition 250 U ml-1 L-asparaginase), see Section 
2.2.8. After incubation for 30 min the samples were clarified by centrifugation and assayed 
for asparaginase activity. 
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containing 1 M NaCl. This suggested that enzyme/debris interactions at pH 6.0 were minimal 

and that desorption of debris bound enzyme could also be achieved by shifting the pH 

towards the pI of L-asparaginase. At both pH values, the experimental addition of L-

asparaginase at 250 U ml-1 could be fully accounted for in system supernatants indicating that 

no additional enzyme was adsorbed by the debris. This would imply that debris was already 

saturated with enzyme under the circumstance of the experiment. 

Figure 2.9 depicts the influence of the bead mill feed rate, i.e. the mean residence time 

within the grinding chamber, upon the adsorption of L-asparaginase on cell debris. Here, 

disruptates generated at different feed rates were exposed to an elevated salt concentration (1 

M NaCl) and a pH shift (from 5.5 to 8.2) in order to stimulate the desorption of debris bound 

enzyme (see Section 2.2.8, b). The chart (Figure 2.9) illustrates the increase in enzyme 

activity following this treatment compared with the blank (disruptate diluted with buffer A). 

Under the given milling conditions (see Section 2.2.1), the amount of L-asparaginase which 

could be desorbed from cell debris increased considerably with decreasing feed rates. This 

suggested that the comminution of cell fragments, a process enhanced at lower feed rates (i.e. 

prolonged MRT in the grinding chamber), resulted in increased adsorption of L-asparaginase 

presumably due to the increase in specific surface area available for interaction. In addition, 

the pH shift which approached values close to the pI of L-asparaginase desorbed considerably 

more enzyme than the elevated salt concentration. It should be noted that the fraction of 

debris bound L-asparaginase, when compared to the total available enzyme activity (enzyme 

activity in the clarified supernatant plus debris bound enzyme), could be as high as 25%. For 

example compare Figure 2.9: L-asparaginase released by pH shift at 4 l h-1: 1.3 MU kg-1 with 

Figure 2.5, batch 2: maximum release of L-asparaginase by bead milling 3.8 MU kg-1.  
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Figure 2.9. Desorption of L-asparaginase from cell debris in disruptates generated at 
different feed rates. 
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Disruptates generated at different feed rates (see Section 2.2.1) were mixed at equal volumes 
with 2 M NaCl in buffer A and 100 mM borate buffer (di-sodium tetraborate, pH 8.5). 
Desorption of L-asparaginase was calculated by the increase of enzyme activity against the 
blank (1:2 dilution with buffer A).  
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2.4 Interim conclusions 

It was demonstrated that Erwinia chrysanthemi can be efficiently disrupted by bead 

milling in a single-pass operation for the effective release of the enzyme L-asparaginase. 

Here, the feedstock conditions for cell disruption, i.e. pH and ionic strength, were chosen with 

the aim of producing a disruptate suitable for immediate processing by cation exchange 

chromatography in fluidised bed contactors operated immediately downstream and in the 

same time frame. However, under these conditions optimisation of the bead mill feed rate, i.e. 

the mean residence time within the milling chamber, was crucial in order to achieve a high 

disruption efficiency whilst minimising adsorptive losses of the enzyme to cell debris. The 

losses of enzyme activity recorded in re-circulation and single pass experiments appeared to 

result from a combination of different causes. Batch adsorption studies using glass and 

zirconia grinding beads yielded a measurable adsorptive capacity of the beads for purified L-

asparaginase. Such interactions, however, were expected to become secondary when a 

complex mixture of biological molecules, such as a bacterial disruptate, was processed. 

Clearly the interactions of L-asparaginase with cell debris were predominant and of an 

electrostatic nature since they are a function of the pH and the salt concentration of the 

disruptate.  

Despite the higher specific activity in the alkaline disruptate (see Table 2.3), some 

general process advantages recommend bead milling as the method for disrupting Erwinia 

rather than alkaline lysis. During the latter, the viscosity of the broth increases considerably 

when the pH is adjusted to alkaline conditions. Therefore, the biomass load at lysis is limited 

in order to ensure homogenous mixing and to avoid the risks of extreme local pH values. The 

neutralised disruptate is also characterised by a comparatively high ionic strength which will 

commonly require further dilution if ion exchange chromatography is planned as a subsequent 
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step (Goward et al., 1989; Goward et al., 1992). In addition, chemical lysis is performed 

batch-wise which ultimately results in extended hold-up periods, in particular at larger scales 

of operation, while processing the disruptate. Such hold-up risks time-dependent product 

modification, inactivation or degradation by system antagonists (Goward et al., 1992; Lee et 

al., 1989). A single-pass disruption, however, as achieved by bead milling, would offer the 

advantage to integrate the cell disruption with an immediate product capture step (refer to 

Figure 1.5). Thus, the product is initially retained in the intact cell where it is less susceptible 

to an antagonistic attack and then removed immediately upon cell disruption from the 

potentially hostile environment of the disruptate. Such an approach is described and evaluated 

in Chapter 4.  

It was demonstrated by Agerkvist and Enfors (1990) for the disruption of E. coli cells 

that multiple passes (2-3) were necessary in high-pressure homogenisation (Manton Gaulin 

15M-8TA at 60 MPa) in order to achieve equivalent disruption efficiencies to those obtained 

by bead milling in single-pass operation. In addition, the mean particle size of debris 

generated by high-pressure homogenisation was considerably smaller in comparison with the 

bead mill disruption. Thus, it might be predicted that, under the given feedstock conditions 

(see Section 2.2.1), disruption of Erwinia in a HPH would result in increased enzyme-debris 

interactions due to the increased debris surface area (see Section 2.3.3.3). Single-pass 

disruption of brewers’ yeast in a high-pressure system has been reported by Rito-Palomares 

and Lyddiatt (1996). In their studies, a CSL Z-series homogeniser (Constant Systems Ltd, 

Warwick), operated at 207 MPa and 54 l h-1, achieved disruption efficiencies which were 

equivalent to those accomplished by a single pass from a Dyno Mill KDL (0.6 l chamber 

volume, 15 l h-1, 3200 rpm, glass beads 0.2 – 0.5 mm) or four discrete passes from a  APV-

Gaulin type homogeniser (15M-8BA, operated at 55 MPa). However, the operating pressure 
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had to be considerably higher than those commonly employed in HPH (30 – 70 MPa) in order 

maximise the degree of disruption. As a consequence, it might be expected that the size range 

of debris, generated under such operating conditions, would be further reduced which again 

would promote product-debris interactions.  
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3 FLUIDISED BED ADSORPTION OF L-ASPARAGINASE 

FROM ERWINIA DISRUPTATES – METHOD 

DEVELOPMENT 

3.1 Introduction – Analysis of operating parameters 

Adsorption in stable fluidised beds was originally carried out exploiting adsorbent solid 

phases which had been developed as conventional packed bed materials. The influence of 

mass transport (Chase and Draeger, 1992a), axial mixing (Draeger and Chase, 1990), and the 

influence of biomass on equilibrium and breakthrough (Draeger and Chase, 1991) for model 

proteins on Sepharose were investigated in studies where stable fluidisation was achieved. 

However, because of the physical properties of the exploited material, bed expansion was 

limited to inconveniently low linear flow velocities (10 – 30 cm h-1) resulting in low overall 

productivities. Based on these studies, Chase and Draeger (1992a) formulated idealised 

criteria which should be met by fluidised bed adsorbents. Thus: 

 size and density of the matrix should result in a significant difference in the terminal 

settling velocity of adsorbent particles and biomass in the feedstock. 

 a distribution of particle size and density should allow for the development of a 

classified fluidised bed exhibiting reduced axial mixing in the solid and liquid phases.  

 mass transport capability of the adsorbent should be sufficient for use in a fluidised bed.  

 the adsorbent should be resistant to fouling by biomass, nucleic acids, and lipids 

contained in the feedstock. 

Various articles published in recent years have been concerned with the investigation of 

operating parameters which influence particle fluidisation as well as adsorption performance. 
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Common analytical studies included physical characterisation of adsorbents, batch binding 

experiments and frontal analysis. Physical characterisation includes the investigation of the 

bed expansion behaviour as a function of fluidisation velocity and residence time distribution 

(RTD) analysis in order to assess the degree of axial dispersion in a fluidised bed. Batch 

binding experiments are commonly employed to assess equilibrium adsorption capacities and 

rates of adsorption/desorption. Frontal analysis investigates protein breakthrough at varying 

linear flow velocities and is a standard experiment to elucidate the limitation of protein 

adsorption by residence time (discussed in Thömmes, 1997).  

Some key publications have been selected and will be discussed here, since the 

presented work therein covers a wide variety of issues in connection with the method 

development of fluidised bed processes. The main parameters which have been identified as 

governing a fluidised bed process were the settled bed height of the adsorbent (SBH), the 

superficial flow velocity (u), axial dispersion, fluid viscosity, and particle/biomass content of 

the feedstock.  

Hjorth et al. (1995) investigated the influence of matrix volume, i.e. SBH, and the 

superficial flow velocity upon the breakthrough capacity of fluidised ion exchangers 

(STREAMLINE). Increasing the flow velocity was shown to reduce the dynamic capacity of 

a given bed of adsorbent. This effect was more pronounced during the adsorption of bovine 

serum albumin (BSA) on STREAMLINE DEAE when compared with lysozyme adsorption 

on STREAMLINE SP which was attributed to the difference in molecular weight and hence 

diffusivity between the two proteins. In addition, it was demonstrated that a minimum settled 

bed height was required in order to achieve a high adsorption efficiency. This behaviour was 

attributed to the existence of flow irregularities at the column inlet which can be overcome 

above a certain bed height. These findings were in accordance with Bascoul et al. (1988) who 
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investigated bed stability as a function of the distributor design. It was shown that channelling 

in the lower part of a fluidised bed due to uneven flow distribution was reduced with 

increasing expanded bed height.  

Chase and Draeger (1992b) reported a negative influence of cells on the binding of BSA 

to a fluidised anion exchanger. It was shown that the presence of yeast cells reduced the 

equilibrium binding capacity, and this was attributed to the binding of cells to the outer 

adsorbent surface and subsequent blocking of the matrix pores. Cation exchanger adsorbents, 

however, were less affected by the presence of yeast cells. Cell/adsorbent interactions were 

also observed by Erickson et al. (1994) who described association of mammalian cells to a 

protein A coated controlled pore glass adsorbent during the capture of antibodies from CHO 

cell culture broth. These interactions led to the formation of aggregates between cells and the 

adsorbent and reduced the efficiency of the overall process. A systematic study of 

cell/adsorbent interactions was presented by Feuser et al. (1999) who used a pulse response 

technique to quantify the adsorption of various cell types (yeast, Gram positive and negative 

bacteria, mammalian cells and yeast homogenate) to a range of commercially available 

matrices (STREAMLINE). Cells and cell debris were found to interact with the ligands of 

agarose based resins mainly by electrostatic forces. In agreement with the finding of Chase 

and Draeger (1992b) anion exchangers showed the most severe interactions, whilst cation 

exchange and affinity adsorbents appeared to be less affected.  

Barnfield-Frej et al. (1994) investigated the influence of E. coli homogenate 

concentration in the feed during the adsorption of recombinant annexin V to STREAMLINE 

DEAE. It was found that under the given conditions, i.e. adsorbent density and flow rate, 

increased feedstock viscosity promoted by biomass concentrations greater than 7 – 8% dry 

weight caused particle elutriation (H/H0 > 5). In addition, the formation of flow channels in 
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the bed was observed at biomass concentrations greater than 8% dry weight. This clearly 

suggested that the particle density of the commercially available STREAMLINE adsorbents 

needs further improvement to facilitate higher throughput of biomass.  

Thömmes et al. (1995a) examined axial dispersion by RTD analysis in fluidised beds as 

a function of flow velocity and fluidised bed height to diameter ratio (H/d). Axial dispersion 

was quantified by the dimensionless Bodenstein number (Bo) which is a measure of the 

overall axial dispersion in a given experimental setup. These results were correlated for two 

representative adsorption systems (SP derivatised adsorbent for the capture of monoclonal 

antibodies from hybridoma supernatant and BSA from a buffer solution) operated under 

conditions similar to those of the RTD experiments. It was found that axial mixing was 

decreased, reflected by an increase in Bo, both by an increase in H/d and by an increase in 

linear velocity (u). Subsequent adsorption experiments confirmed the trend observed during 

RTD measurements, i.e. an increased dynamic capacity at increased H/d ratios. Varying the 

linear velocity at a constant H/d ratio resulted in a broad range of u where capacity was only 

slightly affected. This was attributed to the diffusion characteristic of the protein in the pores 

of the adsorbent. A packed bed experiment was performed in order to isolate the effect of pore 

diffusion from the effect of dispersion. This resulted in a clear reduction of the dynamic 

capacity at an intermediate linear velocity. Consequently, a shift from dispersion-controlled to 

diffusion-controlled adsorption was proposed.  

Chang and Chase (1996b) measured the influence of feedstock viscosity and flow 

velocity, or bed expansion respectively, on the adsorption efficiency of a model system 

(lysozyme binding to STREAMLINE SP). Here, viscous feedstocks were simulated by the 

inclusion of glycerol in the adsorption buffers. Increased viscosity resulted in an increased 

mass transfer resistance. Due to reduced diffusivities, the protein uptake in batch binding 
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experiments was slower and dynamic capacities, assessed by frontal analysis, were reduced. 

RTD analysis exhibited increased axial dispersion, reflected by a reduced number of 

theoretical plates (N), both at increased feedstock viscosities and increased flow velocities. A 

comparison of different operating regimes, i.e. adsorption at a constant linear velocity or at a 

constant bed expansion, revealed a clear difference in the achieved dynamic capacities. 

However, when the processing time for the entire purification cycle, i.e. equilibration, 

loading, washing, and CIP, was taken into account the relative productivities (defined as the 

amount of adsorbed protein divided by the adsorbent volume and the total processing time) 

were found to be almost the same when employing different operating modes with identical 

process feedstocks. Here, in the calculation of the productivity, the reduction in dynamic 

capacities, found at higher flow velocities, was compensated by shorter processing times and 

thus yielded similar values. However, such findings are expected to be system specific and 

vary with the properties of the target molecule, such as (e.g. diffusivity) and the adsorbent 

solid phase (e.g. rate of adsorption).  

Karau et al. (1997) investigated the influence of the adsorbent particle size and 

operating conditions on the adsorption performance. Here, the commercially available matrix 

STREAMLINE (120 – 300 µm) was fractionated by wet sieving and two fractions with a 

narrower size range (120 – 160 µm and 250 – 300 µm) were generated. RTD analysis 

revealed that dispersion in the liquid phase was minimal when the unfractionated material, i.e. 

with a wide size distribution was fluidised. Both, the smaller and the larger fraction exhibited 

a higher degree of dispersion, reflected by lower Bodenstein numbers. Frontal analysis using 

BSA as a model protein resulted in a enhanced dynamic capacity for the smaller fraction 

which was attributed to shorter diffusion paths within the matrix.  
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The results reported in the literature reviewed above may thus be summarised as 

follows. 

 Axial dispersion in a fluidised bed is reduced at increasing ratios of H/d and by a wide 

size distribution of the adsorbent particles. However, no common trend is identified in 

the influence of the flow velocity on axial dispersion. Various experiments exploiting 

different adsorbents and contactors yielded inconsistent results.  

 Dynamic capacity is enhanced at higher H/d ratios due to the dampening of flow 

irregularities in longer beds. Higher dynamic capacities are also achieved when the 

mean particle diameter of a specific adsorbent was reduced owing to shorter diffusion 

paths within the particles and an increased specific surface area.  

 Increased viscosity reduced dynamic capacities at given flow velocities due to the 

reduced diffusivities of the target proteins whilst equilibrium capacities are unaffected. 

In addition, it is observed that high feedstock viscosities may cause channelling and 

destabilisation of fluidised beds.  

 Cell/adsorbent interactions may reduce static capacity of adsorbents and can impair bed 

stability by promoting aggregate formation. As a consequence, harsh regeneration 

conditions may be required in order to release tightly bound cellular material.  

In essence, the publications summarised here, confirmed the requirements of adsorbents 

formulated by Chase and Draeger (1992a), i.e. the need for increased specific weight and 

enhanced mass transport capabilities of the adsorbent. In addition, it is evident that a 

systematic development of a fluidised bed process for the purification of a specific target 

protein must meet a number of specific criteria. An adsorbent has to be selected which 

achieves stable fluidisation at a reasonable flow velocity for a given feedstock viscosity. 

Suitable ligand chemistry should facilitate efficient capture of the target molecule and 
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minimise cell/debris-adsorbent interactions which may reduce the adsorbent capacity or 

diminish bed stability. The adsorption process needs to be characterised by batch binding and 

frontal analysis since equilibrium and dynamic capacity for the target molecule will be 

influenced by both the product properties (molecular weight, surface charge, hydrophobicity) 

and feedstock properties such as viscosity, pH, ionic strength and the presence of 

contaminants.  

This chapter summarises the establishment of operating conditions for the initial 

fractionation of L-asparaginase from unclarified Erwinia disruptates by fluidised bed 

adsorption. Fluidisation characteristics, i.e. bed expansion and axial dispersion of candidate 

adsorbents were investigated (see Section 3.3.1). Two adsorbents, CM HyperD LS and SP 

UpFront, were selected for fluidised bed experimentation. A suitable pH for the efficient 

adsorption of L-asparaginase from Erwinia disruptates was established (see Section 3.3.2). 

Batch adsorption studies were employed in order to investigate and address comparative 

aspects of adsorption kinetics of the pellicular prototype SP UpFront and the macroporous 

CM HyperD LS (see Section 3.3.3). Scouting experiments were performed in small-scale, 

packed and fluidised beds (see Section 3.3.4). Section 3.3.5 summarises experiments which 

investigated the effect of superficial flow velocity and settled bed height on the dynamic 

capacity of the adsorbents.  

3.2 Materials and Methods 

3.2.1 Fluidised bed contactors 

Three different contactors were used in the experiments described here. A commercially 

available contactor (UpFront Chromatography) and two custom-built contactors (referred to 

as BRG contactors, Biochemical Recovery Group, School of Chemical Engineering, 
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University of Birmingham) were employed. A schematic depiction of the contactors is given 

in Figure 3.1. The UpFront contactor (1 cm i.d.) distributed the feed by a magnetic stirrer 

located directly above the feedstock inlet in the bottom of the column. Spent charge left the 

column via a glass tube which was adjustable in height and was sealed airtight in the top lid. 

The BRG contactors (1.0 and 2.5 cm i.d.) comprised a glass column with a hemispherical 

inlet. In the 1 cm contactor, the latter was separated from the column by a stainless steel mesh 

(98 µm) acting to retain the matrix particles and distribute the incoming flow of feedstock. In 

the 2.5 cm BRG contactor, a 2 cm bed of glass beads (710-1180 µm) served as a flow 

distributor. Both BRG contactors were fitted with an adjustable top adapter (plunger) in order 

to minimise headspace.  

3.2.2 Adsorbent materials used 

Table 3.1 Summary of the adsorbents used in scouting experimentation 
Adsorbent Particle size

(µm) 
Density
(g ml-1)

Supplier Adsorbent type 

SP Spherodex LS 100 – 300 1.32 Biosepra Cation-exchange derivative 

Ceramic CM HyperD LS 100 – 300 1.41 Biosepra Cation-exchange 

Macrosorb K6AX 100 – 400 1.27 PhaseSep Underivatised composite matrix 

UpFront glass/agarose 100 – 300 1.52 UpFront Underivatised pellicular matrix, glass core 

UpFront steel/agarose 

 

SP UpFront 

76 – 151 

151 – 323 

76 – 151 

151 – 323 

 

 

2.72 

2.35 

UpFront Underivatised pellicular matrix, steel core 

Underivatised pellicular matrix, steel core 

SP derivative of UpFront steel/agarose 

SP derivative of UpFront steel/agarose 

CM Zirconia 68 3.22 Biosepra Cation-exchange 

 

3.2.3 Measurement of bed expansion characteristics 

A given amount of adsorbent particles was loaded into a fluidised bed contactor 

corresponding to a settled bed height (SBH or H0) of 15 cm. This settled bed was fluidised by 

increasing the flow velocity stepwise until the a maximum degree of expansion was achieved  



 65

 

 

 

Figure 3.1. Fluidised bed contactors for small-scale experiments 
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Three different fluidised bed contactors were used in method scouting, i.e. the commercially 
available UpFront contactor (1.0 cm i.d.) and two custom built contactors (BRG 
contactors,1.0 and 2.5 cm i.d., Biochemical Recovery Group, School of Chemical 
Engineering, University of Birmingham). Flow distribution in the UpFront contactor was 
achieved by a magnetic stirrer located directly above the feedstock inlet in the bottom of the 
column. The BRG 1 cm contactor was fitted with a 98 µm stainless steel mesh and in the BRG 
2.5 cm contactor a 2 cm bed of glass beads (710-1180 µm) served as a flow distributor. 
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 (diffuse surface of the fluidised bed). The flow velocity was then decreased stepwise and 

after each step the bed was allowed to stabilise (approximately 10 min). The height of the 

fluidised bed (H) was recorded after a stable value was achieved and the degree of bed 

expansion was calculated according to Equation 3.1.  

%100expansion of Degree
0

0 ⋅
−

=
H

HH  
Equation 3.1

3.2.4 Measurement of axial dispersion 

A bed of adsorbent particles was fully expanded using buffer A at the test flow rate. 

When a stable fluidised bed height was attained, the top adapter was lowered to a position 

approximately 5 mm above the expanded bed surface. The fluid, loaded into the contactor by 

a peristaltic pump, was switched to the tracer solution (a dilute acetone solution, 1% v/v ). 

The UV absorbance of the acetone was measured in the exit stream from the column using a 

UV monitor and a positive step input was recorded on a chart (see Figure 3.2). When the UV 

signal was stable at maximum absorbance (100%), the feed was changed back to buffer and 

this event was marked on the recorder paper. The decrease of UV absorbance (negative step 

input) was recorded until the signal stabilised at baseline level (0%). The time interval from 

switching the feed to water until the signal reached 50% of the full deflection was taken as the 

mean residence time (t), the time interval of the signal between 84.15% and 15.85% yielded 

the spread of the distribution (2σ). The number of theoretical plates (N) was calculated 

according to Equation 3.2 (average value from at least three runs at each test flow rate). 

2

2

σ
tN =  

Equation 3.2
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Figure 3.2. UV signal recording during the test procedure for the determination of the 
number of theoretical plates 
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3.2.5 Derivatisation of UpFront steel/agarose by sulphonation 

UpFront steel/agarose was derivatised by sulphonation in order to obtain a strong 

cation-exchange derivative of the base material. A method described by Burton and Harding 

(1997) was used where activation of the matrix was achieved by allyl glycidyl ether (AGE). 

The matrix was washed with de-ionised water and suction dried, then the matrix was 

suspended in 0.3 M NaOH containing 3 ml AGE per 10 g of suction dried matrix. This slurry 

was mixed on a roller incubator for 48 h. After reaction, the slurry was drained in a sintered 

funnel and washed with deionised water to remove base and byproducts. The matrix was then 

added into a solution containing sodium metabisulphite (0.5 g ml-1) and sodium sulphite (0.4 

g ml-1), 10 g of activated matrix in a volume of 4 ml. The slurry was placed on a roller 

incubator and allowed to react for 48 h.  
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3.2.6 Effect of disruptate pH on the adsorption performance of various 

cation exchangers 

A batch binding experiment was performed in which adsorbents (SP Spherodex LS, CM 

HyperD LS, and SP UpFront) were contacted with Erwinia disruptate at various pH values 

(see Table 3.2 for mixture compositions). The experimental disruptate was spiked with a 

charge of L-asparaginase sufficient to saturate the adsorbent at the given pH (the required 

activity level was estimated from an adsorption isotherm generated in a preliminary 

experiment, data not shown). As a control, disruptate was incubated with purified L-

asparaginase in the absence of an adsorbent. Thus, it was possible to compensate for 

adsorption of L-asparaginase to cell debris and estimate the binding capacity of the cell 

debris.  

Table 3.2. Composition of the batch binding experiments (at varied pH conditions) 

Component Volume Note 

Adsorbent in buffer A 1 ml 1:1 slurry in buffer A at respective pH 

Purified L-asparaginase 2 ml in 40 mM citric acid / tri-sodium citrate at 

respective pH, approximately 25,000 U ml-1  

Disruptate 2 ml generated at 34 % biomass (ww/v), cells 

suspended in water (method see section 2.2.1) 

Total 5 ml adsorbent in disruptate (15 % biomass in 20 mM 

citric acid / tri-sodium citrate at respective pH) 

 

The pH values investigated were investigated in the range of 4.0 – 7.0 in increments of 

0.5 pH units for SP Spherodex and pH 5.0 to 6.0 in increments of 0.1 pH units for CM 

HyperD and SP UpFront. The reaction tubes were placed on a roller incubator. After an 

incubation time of 4 h at room temperature, the adsorbent was allowed to settle and a sample 

of the unclarified disruptate was removed for enzyme analysis. Cell debris in the sample was 

eliminated by centrifugation (7600g, 10 min) and the clear supernatant was assayed for 
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asparaginase activity. Binding capacities were calculated by a mass balance established from 

the original and intermediate concentration of the enzyme.  

3.2.7 Batch uptake of purified L-asparaginase by CM HyperD LS and SP 

UpFront 

Defined settled volumes of adsorbent (0.25 / 0.5 / 1.0 / 1.5 / 2.0 / 3.0 ml), were 

equilibrated in buffer A. At t = 0 min a solution of purified L-asparaginase (specific activity 

approximately 825 U mg-1, supplied by CAMR, Porton Down) in buffer A was added (final 

concentration 2 mg ml-1, total liquid volume 25 ml). The reaction tubes were placed on a 

roller incubator at room temperature, and at given time intervals the tubes were removed from 

the roller and, after the matrix was allowed to settle (approx. 5 - 10 sec), a small sample of the 

supernatant was removed and assayed for protein concentration (see Section 2.2.4).  

3.2.8 Fluidised bed experiments 

Adsorbent particles were loaded into a fluidised bed contactor corresponding to a given 

settled bed height (SBH) or settled bed volume (SBV) respectively. This settled bed was 

fluidised using equilibration buffer (buffer A) by increasing the flow velocity stepwise until 

the desired flow velocity for feedstock loading was achieved. The adsorbent bed was 

equilibrated in buffer A at the same pH as the feedstock used where at least 10 SBV of 

equilibration buffer were passed through the bed. After equilibration, the inlet was switched to 

the feedstock (e.g. unclarified disruptate). Feedstock application was performed until a 

desired adsorbent saturation was achieved. Washing of the adsorbent bed was achieved by 

passing 10 to 15 settled bed volumes of equilibration buffer through the bed. If not stated 

otherwise, elution was routinely achieved by a step input of buffer B (citric acid / tri-sodium 

citrate, 20 mM containing 1 M NaCl, pH 5.5 if not stated otherwise) in fluidised bed mode at 
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a linear flow velocity of 100 cm h-1. Spent charge was collected in fractions and routinely 

assayed for L-asparaginase activity (see Section 2.2.5) and total protein concentration (see 

Section 2.2.4). Dynamic capacities were estimated from the L-asparaginase challenge 

required to achieve 10 % breakthrough, i.e. C/C0=0.1.  

3.3 Results and Discussion 

3.3.1 Physical characterisation of adsorbent matrices – degree of bed 

expansion and assessment of axial dispersion 

Before running a fluidised bed process, it was necessary to determine the bed expansion 

characteristic of the chosen adsorbent, i.e. variation of expanded bed height with the 

fluidisation velocity and variation of expansion with physical properties of the feedstock. 

Besides being an important design feature, the degree of bed expansion may be used as a 

quick and simple measure of bed stability (Amersham Pharmacia Biotech AB, 1997; Chang et 

al., 1995). The bed expansion of adsorbent particles at a given fluidisation velocity is 

governed by the size and density of the particles and the viscosity of the mobile phase, as 

expected from the Stokes law (see Equation 1.1). Figure 3.3 depicts the bed expansion of 

various matrices as a function of the superficial flow velocity when fluidised in buffer. The 

strong influence of particle size becomes apparent from the curve for CM Zirconia. Although 

it has the highest specific weight of the adsorbents tested, it exhibits the highest degree of bed 

expansion at a given flow velocity and this can be attributed to a small particle size (68 µm). 

On the other hand, Macrosorb K6AX, despite its comparatively low specific weight, was 

characterised by a shallow expansion curve attributable to a large mean particle diameter (size 

range 100 – 400 µm). 
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Figure 3.3. Bed expansion of various adsorbents as a function of the superficial flow 
velocity 
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Ceramic CM HyperD LS
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STREAMLINE
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Bed expansion of various adsorbents in buffer. A constant volume of adsorbent, 
corresponding to a settled bed height of 15 cm was fluidised using buffer A either in a 4.5 cm 
internal diameter BRG contactor (SP Spherodex LS, Ceramic CM HyperD LS, Macrosorb 
K6AX, UpFront glass agarose, STREAMLINE) or in a 1 cm UpFront contactor (UpFront 
steel agarose, CM Zirconia. Densities and size ranges of the adsorbents are given with the 
symbols above.  
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A minimum degree of bed expansion is required in order to provide sufficient voidage 

for the particulates in the feedstock to pass unhindered through the contactor. At the same 

time, a shallow trend of increasing expansion height is desirable since increased voidage at a 

constant flow rate constrains fluid side mass transport (Thömmes, 1997). In addition, the low 

degree of expansion associated with particles of appropriate specific weight and diameter 

allows the adoption of higher flow rates to facilitate throughput maximisation and a more 

efficient exploitation of the length of a contactor. Loading a viscous feedstock, e.g. a cell 

disruptate, increases expansion of a fluidised bed operated with a given particle type. This 

effect is depicted in Figure 3.4 and also in Figure 4.3. It can be seen that the expansion of a 

bed at a given flow velocity increases by a factor of 2 – 3 when fluidised in cell disruptates 

containing 15 % biomass (ww/v, viscosity approximately 2.1 mPa⋅s). This fact underpins 

various implications: for a given settled bed height the required contactor length increases 

with the velocity and viscosity driven expansion of the adsorbent material. Under such 

circumstances, the diffusion distances for the adsorption process are increased with the 

voidage which could impair the adsorption efficiency. Therefore, it is desirable to maintain a 

minimal bed expansion which can be achieved by enhancing particle density at fixed particle 

diameter.  

Measurement of the axial dispersion, i.e. the deviation from plug flow movement of fluid 

elements in an adsorbent bed (both fixed and fluidised), is commonly performed by residence 

time distribution (RTD) analysis of step or pulse signals (Levenspiel, 1972). It has been 

demonstrated that RTD data can be successfully correlated to the adsorption performance of 

FBA experiments (Barnfield-Frej et al., 1997; Chang and Chase, 1996b; Thömmes et al., 

1995a; Lan et al., 1999). In addition, RTD measurements may be used as a measure of bed 

stability and functional testing of complete systems (Amersham Pharmacia Biotech AB, 
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Figure 3.4 Increased bed expansion in biomass containing feedstocks  
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Bed expansion of SP UpFront (151 – 323 µm, 2.35 g ml-1) and CM HyperD LS (100-300 µm, 
1.41 g ml-1) in buffer A and Erwinia disruptate 15 % biomass ww/v, SBH 15 cm. Bed 
expansion of SP UpFront was determined in a 1 cm contactor (UpFront Chromatography), 
CM HyperD LS was used in a 2.5 cm BRG contactor. 
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1997). For example by using a step input of a tracer solution the number of theoretical plates 

(N) can be calculated from the mean residence time of the tracer and the variance of the 

output signal, representing the broadening of an introduced sample zone. This method (see 

3.2.4 for details) was employed in work presented here in order to characterise and compare 

various candidate adsorbents or base matrices respectively, applicable for the fluidised bed 

capture of L-asparaginase. Measurements were made with regard to degrees of axial 

dispersion and bed stability when materials were fluidised under similar conditions. Figure 

3.5 depicts the height equivalent to one theoretical plate (HETP), calculated by dividing the 

number of theoretical plates (N, see Equation 3.2) by the height of the fluidised bed (H), as a 

function of the superficial flow velocity. Within the range of flow velocities employed, a 

common trend could be observed with all the adsorbents. At a low range of flow rates, i.e. 100 

cm h-1, a decrease in HETP with increasing flow velocity was found. For some adsorbents 

(UpFront steel/agarose, CM HyperD LS and UpFront glass/agarose) there appeared to be a 

minimum HETP value at an intermediate flow velocity with a slight increase in HETP at 

higher flow velocities. This might suggest that in a given contactor configuration each 

adsorbent is characterised by a range of flow velocities at which the degree of axial dispersion 

is at a minimum. Macrosorb K6AX exhibited the highest HETP values at flow velocities 

commonly employed for fluidised bed adsorption (200 – 400 cm h-1). This might be attributed 

to the irregular shape of the particles causing a high degree of particle movement within the 

fluidised bed (due to a variation in settling velocity with spatial position of the particle). This 

was clearly evident by visual inspection. Another trend depicted in Figure 3.5 for all 

adsorbents with the exception of CM HyperD LS, was that the higher the density of an 

adsorbent (i.e. the lower its bed expansion and voidage) the lower was the HETP value at a 
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Figure 3.5. Theoretical plate height as a function of the superficial flow velocity. 
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Adsorbents were fluidised in a 4.5 cm BRG contactor (SBH 15 cm) fitted with a 98 µm 
stainless steel mesh serving as a flow distributor. The number of theoretical plates was 
calculated from a negative step input signal using a dilute acetone solution as a tracer (see 
3.2.4 for test procedure).  
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given flow velocity. This might suggest that the movement of equally sized particles in a 

fluidised bed is reduced for beads with increased density.  

The results obtained here were in good agreement with Lan et al. (1999) who employed 

a similar contactor (BRG contactor, 2.5 cm i.d., SBH 15.8 cm, 98 µm mesh distributor) for 

negative step input RTD analyses (as described in Section 3.2.4). In that study HETP values 

of 12.2 mm for STREAMLINE DEAE (100 – 300 µm, 1.2 g ml-1) and 8.5 mm for DEAE 

Spherodex LS (100 – 300 µm, 1.35 g ml-1) were found for fluidisation in buffer at 200 cm h-1. 

Chang and Chase (1996b) reported an HETP value for STREAMLINE SP of 10.5 mm 

(STREAMLINE contactor, 5 cm i.d. SBH 10 cm, 300 cm h-1). Increasing the viscosity of the 

mobile phase by the inclusion of glycerol at 25 and 32% caused a higher bed expansion or 

higher voidage respectively and resulted in a fivefold and tenfold increase in HETP when the 

flow velocity was kept constant at 300 cm h-1. However, maintaining a constant bed 

expansion of 100%, i.e. a constant voidage, at increased viscosities yielded an increase in 

HETP of only 10% for buffers containing 25% and 32% glycerol. Here, flow velocities to 

achieve 100% bed expansion in 0% glycerol were 300 cm h-1, at 25% glycerol 121 cm h-1 and 

at 32% glycerol 88 cm h-1. This might suggest that axial dispersion is reduced at low degrees 

of bed voidage, which can either be achieved by the reduced bed expansion of an adsorbent 

with a high specific weight or by reduced flow velocities at higher feedstock viscosities. 

Judged by the measured HETP values, UpFront steel/agarose and CM HyperD LS exhibited 

superior fluidisation characteristics which recommended them for further experimentation in 

the fluidised bed adsorption of L-asparaginase.  
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3.3.2 The effect of disruptate pH on the adsorption performance of CM 

HyperD LS and SP Spherodex 

In order to identify a suitable pH for the capture of L-asparaginase by the two cation 

exchange matrices, a series of batch binding experiments was performed (see 3.2.5). Figure 

3.6 depicts the equilibrium binding capacities of three adsorbents achieved at various pH 

values when challenged with an Erwinia disruptate (disruptates were spiked with a standard 

charge of purified L-asparaginase in order to provide a sufficient amount of enzyme to 

saturate the adsorbent). Initially, L-asparaginase binding was investigated for SP Spherodex 

LS. It can be seen that the capacity of this adsorbent significantly declined at pH values 

greater than 4.5 and approximated to zero at pH 6.0. From control samples, i.e. disruptate 

incubated with a charge of purified enzyme in the absence of an adsorbent, the adsorption of 

L-asparaginase to cell debris could be estimated. The curve for the debris bound enzyme 

followed the same trend, i.e. a clear decrease between pH 4.0 and 5.0 (see Figure 3.6). 

Allowing for the proportional ratio of L-asparaginase binding to matrix and debris, it 

appeared favourable to adopt an operational pH between 4.5 and 5.0 for further 

experimentation. However, experiments employing unclarified Erwinia disruptates at pH 

values below 5.5 were compromised by precipitates and flocs which fouled both the meshes 

fitted to columns as flow distributors as well as the narrow fittings of small-scale columns. 

Therefore it was concluded that pH conditions for the effective adsorption of L-asparaginase 

were best established between values of 5.0 and 6.0. CM HyperD and SP UpFront, tested at 

values between pH 5.0 and 6.0, exhibited a considerably higher capacity in comparison with 

SP Spherodex LS which confirmed applications for the former adsorbents in a suitable pH 

range (5.0 – 5.6). However, binding capacity diminished when pH 6.0 was approached.  
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Figure 3.6. Influence of the disruptate pH on the equilibrium binding capacity of various 
adsorbents.  
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Matrix, equilibrated in buffer A at the relevant pH, was incubated for four hours with Erwinia 
disruptate, 15% ww/v original biomass, spiked with purified L-asparaginase. Debris binding 
was analysed by incubating the disruptate with purified L-asparaginase at the relevant pH 
values in the absence of an adsorbent. Binding capacities were estimated from a mass 
balance established from the original and intermediate concentrations of the enzyme.  
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3.3.3 Batch-uptake of purified L-asparaginase by Ceramic CM HyperD LS 

and SP UpFront 

CM HyperD and SP UpFront (strong cation-exchange SP derivative of UpFront 

steel/agarose, see 3.2.5) represent two different types of adsorbent solid phases (see Figure 

3.7). The commercially available CM HyperD is a composite stationary phase comprising a 

rigid, high-porosity skeleton (polystyrene-coated silica) which is filled with a polyacrylamide-

based hydrogel. The skeleton provides mechanical strength while the soft gel provides 

adsorption or ion-exchange sites for the interaction with the solutes to be separated (Boschetti, 

1994; Fernandez and Carta, 1996). The unique feature of this resin is that adsorbed proteins 

can move freely between charges in the functionalised gel (Wright et al., 1999; Weaver and 

Carta, 1996). These so-called hyper-diffuse particles are therefore claimed to be characterised 

by rapid intraparticle mass transfer kinetics and high dynamic capacities.  

In conventional, rigid macroporous adsorbents, adsorption takes place at an available 

binding site within a pore. The saturation of available adsorption sites progresses from the 

surface into the interior of the bead. Such adsorbents will commonly have high intraparticle 

mass transfer resistances and reduced dynamic capacities at increased flow velocities 

(discussed in Afeyan et al., 1990; Skidmore et al., 1990; Wright et al., 1999). Various reports 

demonstrate a superior performance of hyper-diffusive resins in comparison with 

macroporous adsorbents. Weaver and Carta (1996) compared the hyper-diffusive S-HyperD-

M (Biosepra) with POROS 50 (PerSeptive Biosystems) which is a macroporous adsorbent 

claimed to achieve convective flow within pores. Despite a larger particle size, S-HyperD 

exhibited considerably higher equilibrium and dynamic capacities during the adsorption of 

lysozyme from buffer solutions. Wright et al. (1998) and Wright et al. (1999) compared the 

macroporous STREAMLINE SP with the hyper-diffusive S-HyperD LS under batch binding 
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Figure 3.7. Structural characteristics of a macroporous, hyper-diffusive and a pellicular 
adsorbent 

 

 

 

 

 

 

 

 

CM HyperD LS, a so-called hyper-diffusive adsorbent, comprises a megaporous, rigid and 
non-reactive skeleton filled with a homogeneous, macroporous continuum (polyacrylamide-
based hydrogel). SP UpFront, a pellicular adsorbent, comprises a non-porous, solid core 
(stainless steel) coated with a comparatively thin layer of porous material (agarose). The 
depth of the porous agarose layer of the pellicular SP UpFront (bead size range 151-323 µm) 
was estimated as 40% of the bead radius, i.e. a 20 µm agarose layer on a 60 µm stainless 
steel bead (calculation based on the densities of the core and coating material and the 
composite bead). Redrawn from Zhang et al. (2000), not to scale. 
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and frontal analysis exploiting lysozyme as a model protein. It was found that increased flow 

velocity and feedstock viscosity affected the adsorption performance of STREAMLINE SP to 

a significantly higher degree than S-HyperD.  

The prototype adsorbent SP UpFront has a more limited pellicular structure, i.e. a 

comparatively thin retentive agarose layer on the surface of a non-porous steel core (see 

Figure 3.7). The depth of the porous agarose layer of the pellicular SP UpFront (bead size 

range 151-323 µm) was estimated as 40% of the bead radius, i.e. a 20 µm agarose layer on a 

60 µm stainless steel bead (estimations were based on difference analysis of the densities of 

the core and coating material and the composite bead). In such a particle, the volume fraction 

of the agarose shell would correspond to 78% and of the steel core to 22% of the total particle 

volume. Pellicular particles reduce bulk intraparticle mass transfer limitations by minimising 

diffusion distances for product (Weaver and Carta, 1996; Boschetti, 1994) but at the expense 

of volumetric capacity. Thus, it might be predicted that such particles attain adsorption 

equilibrium more rapidly than conventional macroporous particles. On the other hand, the 

equilibrium capacity of pellicular matrices is expected to be reduced in comparison with an 

equivalently sized macroporous or hyper-diffusive continuum by virtue of a reduced volume 

for adsorption.  

In order to investigate and address comparative aspects of adsorption kinetics, a series 

of batch binding experiments were designed and performed (see 3.2.7). Uptake of purified L-

asparaginase in buffer A as a function of incubation time for the two adsorbents is depicted in 

panel A of Figure 3.8 and adsorption isotherms are given in panel B. It can be seen from panel 

A that enzyme adsorption by SP UpFront was more rapid and reached a steady state value at 

about 20 min of incubation time, whereas in the case of CM HyperD LS significant 

adsorption was still detectable at times up to 60 min. A higher rate of adsorption for the 

pellicular  
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Figure 3.8. Batch adsorption of L-asparaginase to SP UpFront and CM HyperD LS 
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Selected settled adsorbent volumes (0.25 / 0.5 / 1.0 / 1.5 / 2.0 / 3.0 ml) were incubated with 
purified L-asparaginase in buffer A (25 ml total volume). Panel A: uptake of L-asparaginase 
by the cation adsorbents as a function of time. Panel B: adsorption isotherms of the adsorbents 
compiled from equilibrium data (adsorption time > 120 min). 
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adsorbent may also be indicated by a lower apparent KD value for SP UpFront (see adsorption 

isotherms, panel B in Figure 3.8). However, the difference in KD is comparatively small and it 

has to be noted that the determination of KD from a plot of c*/q* vs. c* (c*, q*: liquid phase 

and solid phase concentration of the analyte at equilibrium) is usually affected by a 

considerable degree of experimental error. Adsorption isotherms exhibited a threefold higher 

equilibrium capacity for CM HyperD LS which confirmed the prediction made from the 

structural differences of the two adsorbents. A threefold difference in capacity, e.g. CM 

HyperD LS 21000 U ml-1 and SP UpFront 6800 U ml-1, was also evident from small-scale 

fluidised bed and packed bed adsorption experiments (curves 2 and 5 in Figure 3.10, refer to 

page 86). However, it was estimated that the inert core reduces the volume of the pellicular 

bead only by 22% in comparison with an equally sized, macroporous continuum. The 

considerably lower capacity of SP UpFront in comparison with CM HyperD might therefore 

be attributed to a lower ligand concentration in the pellicular adsorbent (SP UpFront 76 µmol 

ml-1, CM HyperD LS >250 µmol ml-1 according to the manufacturer) and/or to a limited 

accessibility of the ion-exchange groups in the porous layer. 

Preliminary batch binding experiments comparing SP and CM derivatives (i.e. strong 

and weak cation exchangers) of the same base matrix (Sepharose, Amersham Pharmacia) 

revealed almost identical uptake rates and equilibrium capacities at the relevant pH (see 

Figure 3.9. This suggested that the different performance of SP UpFront and CM HyperD 

with regard to L-asparaginase uptake (Figure 3.8, panel A) can be attributed to their 

differences in resin structure rather than their different cation exchange chemistries. CM 

derivatives of UpFront stainless steel and SP derivatives of HyperD were not available for this 

study.  
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Figure 3.9. Batch adsorption of purified L-asparaginase on SP and CM Sepharose 
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Panel A. Batch uptake of purified L-asparaginase by CM and SP Sepharose. One ml of 
adsorbent was stirred in a solution of purified L-asparaginase (5 mg ml-1 in buffer A, pH 5.5, 
total volume 20 ml). Supernatant was continuously drawn from the vessel through a fritted 
device and pumped through a UV detector for the monitoring the protein concentration. 
Panel B. Adsorption isotherms for CM and SP Sepharose compiled from batch binding 
experiments. A constant amount of adsorbent (settled volume 0.5 ml) was incubated over 
night with purified L-asparaginase in buffer A at various concentrations (2-16 mg ml-1, total 
volume 5 ml).  
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3.3.4 Small-scale packed bed and fluidised bed experiments 

Figure 3.10 depicts various packed and fluidised bed experiments exploiting CM 

HyperD and SP UpFront as adsorbents (washing and elution profiles of enzyme activity for 

the beds is depicted in Figure 3.11). Previously generated Erwinia disruptate (15% original 

biomass, ww/v, see Section 2.2.1) was used as a feedstock. For fluidised bed experiments, 

unclarified feedstock was employed. For packed bed experiments the disruptate was clarified 

by centrifugation (5800 g, 30 min). Fouling problems in the 1 cm BRG contactor using the 

steel mesh as distributor in conjunction with unclarified feedstocks also required the use of 

clarified disruptates.  

It can be seen from Figure 3.10, that the dynamic capacities achieved by CM HyperD 

are considerably higher (approximately threefold) in comparison with pellicular SP UpFront 

(both operated in an UpFront 1 cm contactor), which was already evident from batch binding 

experiments (see Figure 3.8). The dynamic capacity at C/C0 = 0.1 in the UpFront contactor 

was 21000 U ml-1 (experiment 5) which exceeded that in the BRG contactor (14500 U ml-1, 

experiment 6) by approximately 45 % and rivalled values recorded in the packed bed (22500 

U ml-1, experiment 4). Besides the dynamic capacity, the shape of the breakthrough curve was 

additionally almost identical to the packed bed. This indicated a very low degree of axial 

mixing and therefore a high stability of the fluidised bed in the UpFront 1 cm contactor. The 

BRG contactor exhibited a lower dynamic capacity and a slightly shallower increase in 

product breakthrough which was attributed to minor bed instabilities promoting channelling 

phenomena. 

SP UpFront was tested at two different size ranges, i.e. 76 – 151 µm (experiment 3) and 

151 – 323 µm (experiment 2, see Figure 3.10). However, despite the size difference both 

adsorbents achieved comparable dynamic capacities of 6100 U ml-1 (76 – 151 µm) and 6800 
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Figure 3.10. Small-scale packed bed and fluidised bed experiments 
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(1) SP UpFront, 151-323 µm, packed bed
(2) SP UpFront, 151-323 µm, fluidised bed (UpFront contactor)
(3) SP UpFront, 76-151 µm, fluidised bed (UpFront contactor)
(4) CM HyperD LS, packed bed
(5) CM HyperD LS, fluidised bed (UpFront contactor)
(6) CM HyperD LS, fluidised bed (BRG contactor, 1 cm)

 

Experiment Contactor 
(see 3.2.1) 

Feedstock u 
(cm h-1)

H/H0 dyn. capacity at 
C/C0=0.1 (U ml-1)

(1) SP UpFront, 151-323 µm Packed bed, SBV 2 ml clarified 100 - 7500 

(2) SP UpFront, 151-323 µm UpFront 1 cm, SBH 15 cm unclarified 200 1.4 6800 

(3) SP UpFront, 76-151 µm UpFront 1 cm, SBH 15 cm unclarified 200 1.6 6100 

(4) CM HyperD LS Packed bed, SBV 2 ml clarified 100 - 22500 

(5) CM HyperD LS UpFront 1 cm, SBH 15 cm unclarified 200 2.4 21000 

(6) CM HyperD LS BRG 1 cm, SBH 15 cm clarified 200 2.3 14500 

Disruptate was previously generated by bead milling (see Section 2.2.1). For fluidised bed 
experiments unclarified feedstock was used. For packed bed and fluidised bed experiments 
employing the BRG 1 cm contactor the disruptate was clarified by centrifugation (5800 g, 30 
min). Estimated dynamic capacities are given as the amount of L-asparaginase applied per ml 
of adsorbent (L-asparaginase challenge) at C/C0 = 0.1.  
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Figure 3.11. Elution profiles of L-asparaginase in small-scale packed and fluidised beds 
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Beds were loaded as shown in Figure 3.10. Elution in packed and fluidised beds was achieved 
by a step input of buffer B (citric acid / tri-sodium citrate, 20 mM, pH 5.5 containing NaCl 1 
M) at a superficial flow velocity of 100 cm h-1 (Panel A: SP UpFront, Panel B: CM HyperD 
LS). In the BRG contactor (CM HyperD LS) elution was achieved by a linear salt gradient (0-
100 % buffer B).  
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U ml-1 (151 – 323 µm). Packed bed adsorption employing SP UpFront (151 – 323 µm, 

experiment 1) resulted in a slightly higher dynamic capacity in comparison with the fluidised 

bed experiments.  

Figure 3.12 depicts the adsorption of purified L-asparaginase in packed beds by SP UpFront 

and CM HyperD LS. Once more, an approximatly threefold difference in dynamic capacity 

for the two structurally distinct adsorbents was established. However, it was evident from a 

comparison of Figure 3.10 with Figure 3.12 that the capacity for L-asparaginase was greatly 

reduced when the enzyme was adsorbed from a disruptate rather than from a buffer solution. 

Clearly this can be attributed to the nature of the disruptate as a complex mixture of biological 

molecules which may interact with the adsorbents and thus reduce the number of adsorption 

sites available for a specific target molecule. In addition dynamic capacities are reduced with 

increased feedstock viscosity (Chang and Chase, 1996b; Wright et al., 1999). However, the 

presence of particulates, i.e. cells and cell debris did not appear to substantially affect the 

performance of the adsorbents, since the use of both clarified and unclarified feedstocks 

yielded almost identical dynamic capacities and breakthrough curves (Figure 3.10, compare 

experiments 4 and 5 for CM HyperD and experiments 1 and 2 for SP UpFront). Thus, 

cell/adsorbent or debris/adsorbent interactions appeared to be minimal under the given 

feedstock conditions. This was in accordance with findings of Feuser et al. (1999) who found 

insignificant interactions of various cell types with cation exchange matrices, a significant 

advantage over anion exchange processes. 

Figure 3.11 depicts a comparison of elution profiles of various experiments using SP 

UpFront in panel A and CM HyperD in panel B (loading of these beds is depicted in Figure 

3.10). It can be seen for both adsorbents that a step elution using buffer B (citric acid / tri-

sodium citrate, 20 mM containing 1 M NaCl) resulted in a sharp peak of enzyme activity. The 
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Figure 3.12. Adsorption of purified L-asparaginase in packed beds 

L-asparaginase challenge (mg ml-1)
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L-asparaginase challenge (U ml-1)

0 50000 100000 150000

SP UpFront
(151-323 µm)
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Packed bed adsorption of purified L-asparaginase in buffer A (964 U ml-1, 1.1 mg ml-1) on SP 
UpFront and CM HyperD LS. Bed dimensions: d=1 cm, H0= 2.5 cm, 2 ml adsorbent. Loading 
flow velocity 100 cm h-1. Detection of L-asparaginase by continuous UV-absorption of the 
effluent at 280 nm.  
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peak volume achieved in packed beds and fluidised beds was almost identical (approximately 

2 settled bed volumes, SBVs) which again demonstrated a low degree of axial mixing in the 

small-scale fluidised beds (the different peak heights in panel A and B of Figure 3.11 were the 

result of different degrees of adsorbent bed saturation). A gradient elution (0-1.0 M NaCl) 

performed in the BRG contactor resulted in an unsatisfactory broad peak of L-asparaginase 

activity. Bed instabilities causing channelling in the BRG system might have contributed to 

the comparatively broad nature and asymmetric tailing of the enzyme peak. However, during 

a separate experiment a step elution using 0.4 M NaCl (conditions derived from the salt 

concentration at peak maximum during gradient elution, see Figure 3.11) yielded only 9 % of 

bound enzyme (data not shown). This suggested that the peak broadening during gradient 

elution could be attributed to the slow increase in ionic strength and that an ionic shock (> 0.6 

M) necessary to front off the enzyme. All experiments depicted in Figure 3.11 exhibited a 

high percentage of recovered enzyme (> 80 % of bound product).  

3.3.5 Effect of flow velocity and settled bed height on the dynamic 

capacity of CM HyperD LS and SP UpFront 

This section summarises various primary purification experiments in which L-

asparaginase was captured from unclarified Erwinia disruptates employing CM HyperD and 

SP UpFront as the fluidised adsorbents. For CM HyperD experiments a 2.5 cm BRG 

contactor was used. However, due to limited availability of the prototype adsorbent, the 

experiments employing SP UpFront were performed in a 1 cm UpFront contactor. In the first 

set of experiments, the fluidised beds were operated at a constant settled bed height of 15 cm 

and feedstocks were applied over a range of flow velocities (200 – 400 cm h-1). Panel A in 

Figure 3.13 (CM HyperD LS) and Figure 3.14 (SP UpFront) depicts the breakthrough curves 

with respect to L-asparaginase activity achieved at various flow velocities. In addition, 
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Figure 3.13. Primary purification of L-asparaginase by fluidised bed adsorption from 
unclarified Erwinia disruptate on CM HyperD LS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Panel A: Disruptate was previously generated by bead milling and applied to the contactor 
(BRG 2.5 cm, SBH 15 cm, SBV 74 ml). Estimated dynamic capacities are recorded as the 
amount of L-asparaginase applied per ml of adsorbent (L-asparaginase challenge) at C/C0 = 
0.1. Panel B: Following the loading to approximate saturation (depicted in panel A) beds 
were washed using buffer A at the loading flow velocity (initial enzyme activity during the 
wash corresponds to the feed concentration, C/C0 = 1) . Elution was performed in fluidised 
bed mode at 100 cm h-1 (1 M NaCl step).  
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Figure 3.14. Primary purification of L-asparaginase by fluidised bed adsorption from 
unclarified Erwinia disruptate on SP UpFront 
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Panel A: Disruptate was previously generated by bead milling and applied to the contactor 
(UpFront 1.0 cm, SBH 15 cm, SBV 12 ml). Estimated dynamic capacities are recorded as the 
amount of L-asparaginase applied per ml of adsorbent (L-asparaginase challenge) at C/C0 = 
0.1. Panel B: Following the loading to approximate saturation (depicted in panel A) beds 
were washed using buffer A at the loading flow velocity (initial enzyme activity during the 
wash corresponds to the feed concentration, C/C0 = 1) . Elution was performed in fluidised 
bed mode at 100 cm h-1 (1 M NaCl step). 
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washing and elution profiles of enzyme activity for the beds are shown in panel B of the 

respective figures. Figure 3.15 summarises the dynamic capacities achieved by the two 

adsorbents at various flow velocities. Here, in order to facilitate a comparison, the results 

were normalised to the dynamic capacities (where C/C0 = 0.1) achieved at 200 cm h-1 by the 

respective adsorbent. Productivities were estimated as the amount of enzyme adsorbed at 10% 

product breakthrough divided by the settled volume of the adsorbent (SBV) and the time 

required to load, wash and elute the fluidised bed, these result are given in Table 3.3. 

Additionally, the effect of settled bed height was studied by performing frontal analysis at 

different settled bed heights (7 – 22 cm) employing a constant loading flow velocity (250 cm 

h-1). These results are summarised in Figure 3.16.  

 

Table 3.3. Productivities of CM HyperD LS and SP UpFront achieved at various flow 
velocities 

Flow velocity Productivity 
CM HyperD LS 
(U ml-1 min-1) 

Productivity 
SP UpFront 

(U ml-1 min-1) 

200 cm h-1 56 42 

250 cm h-1 59 43 

300 cm h-1 65 46 

400 cm h-1 - 26 

Loading, washing and elution of the beds is depicted in Figure 3.13 and in Figure 3.14. The 
productivity at a given flow velocity was estimated as the amount of enzyme adsorbed at 10% 
product breakthrough (dynamic capacity at C/C0 = 0.1) divided by the settled volume of the 
adsorbent and the total process time (loading to C/C0 = 0.1 at the respective flow rate; wash 
of 10 SBV at the respective flow rate; elution of 5 SBV at 100 cm h-1, 100% desorption 
assumed).  

 

At a constant settled bed height both adsorbents exhibited a gradual decrease in 

dynamic capacity (estimated from the L-asparaginase challenge required to achieve 10 % 

breakthrough, i.e. C/C0=0.1) with increasing flow velocity (see Figures 3.13 and 3.14). 
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Figure 3.15. Dynamic capacities and fluid residence time of CM HyperD LS and SP 
UpFront as a function of the superficial flow velocity 
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This bar diagram was compiled from data depicted in Figures 3.13 and 3.14. Adsorbent 
settled bed height was 15 cm (SP UpFront in 1 cm UpFront contactor, CM HyperD in 2.5 cm 
BRG contactor) whilst Erwinia disruptate (15% biomass ww/v) was used as feedstock. In 
order to facilitate a comparison, dynamic capacities are normalised relative to that achieved 
at a loading flow velocity of 200 cm h-1. The mean residence time of a fluid element was 
calculated using the superficial flow velocity, the fluidised bed height and the bed voidage. 
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Figure 3.16. Effect if the settled bed height (SBH) on the dynamic capacity of CM 
HyperD and SP UpFront 
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The settled bed heights of the adsorbents are given with the graph symbols. Adsorbents were 
equilibrated in buffer A and the feedstock (containing 15 % biomass (ww/v) was applied at a 
linear flow velocity of 250 cm h-1. Estimated dynamic capacities are taken as the amount of L-
asparaginase applied per ml of adsorbent (L-asparaginase challenge) at C/C0 = 0.1. Panel A. 
CM HyperD LS, BRG contactor, 2.5 cm i.d. Panel B. SP UpFront, UpFront contactor, 1 cm 
i.d.  
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Estimated productivities varied only to a small degree with operating flow velocities 

(summarised in Table 3.3). Here, shorter processing times at higher flow velocities (during 

loading and washing) compensated for decreases in dynamic capacities. Both adsorbents 

appeared to be equally affected by the increase in superficial flow velocity. This became 

apparent as a proportional decrease in capacity after normalising the dynamic capacity results 

(Figure 3.15). Increasing the loading flow velocity from 200 to 300 cm h-1 resulted in a 

throughput increase of 50%, whereas the dynamic capacities of the adsorbents were only 

reduced by 24% (SP UpFront) and 27% (CM HyperD) respectively. This was judged 

acceptable in the face of a 50% increase in throughput and was also reflected by an increase in 

productivity (see Table 3.3). For SP UpFront the degree of bed expansion at a given flow 

velocity and likewise the bed voidage were considerably lower in comparison with CM 

HyperD owing to its higher specific weight (see Figure 3.4 and legends in Figure 3.13 and 

3.14). Consequently, the interstitial velocities within the fluidised beds were higher which in 

combination with a reduced bed height resulted in greatly reduced mean residence times of a 

unit volume of feedstock (given in Figure 3.15) within the fluidised beds. However, the 

higher uptake rate of SP UpFront (Figure 3.8) appeared to compensate for the shorter contact 

times since both adsorbents exhibited similar influences of the flow velocity on their 

respective adsorption performances.  

The dynamic capacities achieved with CM HyperD LS in the 2.5 cm BRG contactor 

were lower in comparison with the experiments performed in the 1 cm UpFront contactor (see 

Figure 3.10) which indicated a higher degree of axial mixing in the BRG contactor. At higher 

flow velocities, i.e. 300 cm h-1, the top of the fluidised bed became increasingly diffuse which 

aggravated the determination of the true value of the expanded bed height (EBH). Also, small 

amounts of adsorbent particles were elutriated from the bed and could be found in the flow-
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through. This suggested that a linear flow velocity of 300 cm h-1 approached the upper limit 

for operating CM HyperD under the given feedstock viscosity (that represented a disruptate 

generated from 15% biomass).  

 For SP UpFront, a loading flow velocity of 400 cm h-1 resulted in early product 

breakthrough and a clear reduction in dynamic capacity and productivity. Also included in 

Figure 3.14 is a data plot which depicts the loading of a disruptate containing 22% biomass 

ww/v at 200 cm h-1. Here, immediate high breakthrough of product occurred even at a 

comparatively low loading velocity. Visual inspection of the bed revealed extensive 

channelling which suggested that the increased viscosity associated with elevated biomass 

loading adversely affects the bed stability and thus the adsorption process. Similar effects, i.e. 

the development of flow channels and particle elutriation, were reported by Barnfield-Frej et 

al. (1994) when STREAMLINE DEAE was challenged with E. coli homogenate containing 

more than 8% biomass (dry weight). 

Figure 3.16. depicts the effect of the adsorbent settled bed height upon adsorption 

performance. Again, CM HyperD and SP Upfront exhibit a similar behaviour. At a settled bed 

height of 7 cm, L-asparaginase breakthrough began significantly earlier than at 15 or 22 cm. 

The experiments at 15 cm SBH showed a characteristic breakthrough curve, i.e. a prolonged 

phase of negligible product breakthrough followed by an approach to saturation with a 

significant increase in enzyme levels in the outlet stream. A further increase in SBH from 15 

to 22 cm resulted in only a slight increase in dynamic capacity of 14 % for CM HyperD and 

20 % for SP UpFront. Similar results were reported by Hjorth et al. (1995) employing 

STREAMLINE SP for the adsorption of lysozyme. It was found that the dynamic capacity 

increased considerably when the settled bed height was increased from 5 cm to 10 cm. Further 

increases in settled bed height up to 30 cm resulted in a less pronounced increase in 
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breakthrough capacity. RTD analysis performed at the settled bed heights employed for 

frontal analysis experiments (7, 15, and 22 cm) revealed increased HETP values, i.e. 

increased axial dispersion, with decreasing settled bed heights (Hjorth et al., 1995). This 

suggested that the reduced dynamic capacity found at a SBH of 7 cm was caused by an 

increased degree of axial dispersion, possibly caused by uneven flow distribution. These flow 

irregularities were incrementally dampened with increasing SBH, reflected both by the 

decrease in HETP at a given flow velocity (refer to Figure 3.17) and a considerable increase 

in dynamic capacity at 15 SBH (panel A, Figure 3.16. ). These results suggested that for both 

adsorbents a minimum settled bed height was required for an economic exploitation of the 

adsorbent capacity. Here, a SBH of 15 cm yielded satisfactory results and dynamic capacities 

could be improved only slightly by a further increase in SBH.  

For both adsorbents, a wash volume of 5 settled bed volumes, applied at various flow 

velocities, was normally sufficient to reduce the concentration of contaminating debris (as 

judged from the total protein concentration, see Section 2.2.4) in the effluent of the fluidised 

bed by more than 95% (see panels B in Figure 3.13 and 3.14). Despite the reduction in 

dynamic capacity of CM HyperD LS during the scale-up from the 1 cm BRG to the 2.5 cm 

BRG contactor (see Figures 3.10 and 3.13) the elution volume remained constant at 

approximately 2 settled bed volumes (step elution employing 1 M NaCl in fluidised bed mode 

at 100 cm h-1).  Table 3.4 summarises data concerning the eluates obtained from the two 

adsorbents. It can be seen that the recovery values were consistently high ranging between 70 

and 86% of the adsorbed enzyme recovered in the peak eluted fractions. Specific activities 

and purification factors exhibited some variation which might be attributed to the use of 

different batches of cell paste necessarily employed in the feedstock preparation.  
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Table 3.4. Eluates obtained from CM HyperD and SP Upfront 

Experiment loading/ 
wash 

(cm h-1) 
 

Feed 
enzyme 
activity  
(U ml-1) 

Feed 
total 

protein 
(mg ml-1)

Feed 
specific 
activity 
(U mg-1) 

Eluate 
enzyme 
activity  
(U ml-1) 

Eluate 
total 

protein 
(mg ml-1) 

Eluate 
specific 
activity 
(U mg-1) 

Purif. 
factor 

Recovery 
(%) 

CM HyperD 200 

250 

300 

430 

561 

489 

5.58 

5.66 

5.89 

77 

99 

83 

6169 

5368 

5233 

16.02 

11.51 

12.54 

385 

466 

417 

5.0 

4.7 

5.0 

76 

76 

82 

SP UpFront 200 

250 

300 

400 

663 

525 

638 

504 

6.37 

5.96 

6.07 

5.54 

104 

88 

105 

91 

3562 

3892 

2489 

2346 

5.96 

7.37 

5.65 

5.46 

598 

528 

441 

430 

5.7 

6.0 

4.2 

4.7 

75 

86 

80 

70 

This table was compiled from the loading and the elution of fluidised beds employing CM 
HyperD LS and SP UpFront at various flow velocities (as depicted in Figures 3.13 for CM 
HyperD and 3.14 for SP UpFront). Data given for the eluates represent the pooled fractions 
of the respective elution peak (depicted in panel B of Figures 3.13 and 3.14).  

activity specificfeedstock 
activity specific eluate  factor Purif. =  

)C - (C   volumefraction hflowthroug  adsorbed enzyme  total                    

   
adsorbed enzyme total

eluate inactivity  enzyme total Recovery 

fraction0∑ ⋅=
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Figure 3.17. Axial dispersion of CM HyperD LS at different settled bed heights 
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The adsorbent was fluidised in a 4.5 cm BRG contactor. The number of theoretical plates was 
calculated from a negative step input signal using a dilute acetone solution as a tracer (see 
3.2.4 for test procedure). 
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3.4  Interim conclusions 

Candidate adsorbents for the FBA of L-asparaginase from Erwinia disruptates were 

physically characterised, i.e. their bed expansion and axial dispersion characteristics were 

studied. Scouting experiments were performed which investigated the adsorption capacity of 

cation exchange adsorbents for L-asparaginase as a function of disruptate pH. Two cation 

exchange adsorbents, the hyper-diffusive CM HyperD LS and the pellicular SP UpFront, were 

employed in a side-by-side comparison which demonstrated the feasibility of the fluidised bed 

capture of L-asparaginase from unclarified Erwinia disruptates. The adsorption 

characteristics, i.e. uptake rate and equilibrium binding capacity, of the two adsorbents were 

investigated in batch binding experiments and the effect of loading flow velocity and 

adsorbent settled bed height on the dynamic capacity were studied using frontal analysis.  

It was found that the elevated viscosity of biomass-containing feedstocks, such as yeast 

or bacterial disruptates, significantly increased the expansion of a fluidised bed in comparison 

with fluidisation in buffer solutions. An increased viscosity may limit the operational window 

of a fluidised bed process with regard to loading flow velocity for a given adsorbent, 

characterised by its particle density and size range. Such a limitation was identified for CM 

HyperD LS when unclarified Erwinia disruptate (15% biomass ww/v) was loaded into a 

fluidised bed at 300 cm-1. Here, the surface of the fluidised bed became increasingly diffuse 

and small amounts of adsorbent particles were elutriated from the bed. In addition, high 

feedstock viscosity may compromise stable fluidisation and lead to poor adsorption 

performance (e.g. see Figure 3.14 for the application of a 22% ww/v Erwinia disruptate). 

Increased particle density, e.g. by the incorporation of heavy filler materials such as stainless 

steel in SP UpFront, considerably decreased the degree of bed expansion at a given linear 

flow velocity. Such adsorbent properties enable the use of higher flow velocities and/or the 
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use of higher feedstock viscosities and thus facilitate the maximisation of biomass throughput. 

RTD analysis indicated reduced HETP values with increasing particle density (Figure 3.5). 

Due to their superior fluidisation characteristics, CM HyperD and SP UpFront were targeted 

for further experimentation. Due to a comparatively low particle density, it was expected that 

materials such as STREAMLINE (1.2 g ml-1) would be less suitable for the application with 

Erwinia disruptates since operating flow velocities and/or biomass loadings would be more 

restricted.  

Batch binding experiments employing Erwinia disruptate at various pH values revealed 

a narrow window of operation with regard to pH for the effective adsorption of L-

asparaginase by cation exchange adsorbents. Low pH values, i.e. below 5.0 were 

characterised by increased adsorption of L-asparaginase and the tendency of the disruptate to 

form precipitates which were capable of clogging mesh distributors or narrow column fittings. 

However, matrix capacities were diminished when pH 6.0 was approached. Thus, a pH of 5.5 

was chosen as a trade-off between matrix capacity and reduced adsorption of L-asparaginase 

to cell debris.  

In a side-by-side comparison of CM HyperD LS with SP UpFront adsorbents, batch 

binding experiments revealed a higher uptake rate for the pellicular SP UpFront. However, the 

equilibrium capacity of CM HyperD turned out to be considerably higher owing to the 

structural differences of the adsorbents (i.e. a greater volumetric capacity for the latter) 

combined with a higher ligand concentration. The use of disruptate reduced the adsorbent 

capacities for L-asparaginase considerably in comparison to the adsorption of purified enzyme 

from buffer solution. However, clarified and unclarified disruptates yielded corresponding 

dynamic capacities and thus, debris/adsorbent interactions appeared to be minimal. Despite 

their different adsorption characteristics, the dynamic capacities of both adsorbents were 
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equally affected by variations in flow rate and settled bed height during frontal analysis. Here, 

the higher uptake rate of SP UpFront found in batch binding experiments, did not turn out to 

be exploitable under the given experimental conditions. This might be attributed to the 

considerably shorter liquid residence times in fluidised beds comparison with CM HyperD 

due to a lower degree of bed expansion. For both adsorbents, step elution in expanded bed 

mode yielded consistently high elution efficiencies and peak volumes which were equivalent 

to packed bed elution.  

The two adsorbents employed in this study exhibited different characteristics which can 

be separately exploited to benefit specific process requirements. On the one hand, CM 

HyperD LS, representing a macroporous, hyper-diffusive continuum, distinguished itself by 

its high capacity for L-asparaginase but was restricted with regard to operating flow velocity 

by a moderate density. However, due to its commercial availability and its advantages with 

regard to binding capacity, CM HyperD LS was expected to perform best in integrated 

recovery experiments (see Figure 1.5) and was thus used exclusively used for further 

experimentation. 

The pellicular SP UpFront, on the other hand, is ideal by virtue of its elevated density 

for applications with high flow velocities and/or high viscous feedstocks. A reduced bed 

expansion, achieved by increased particle density can improve the economical use of a 

fluidised bed contactor, i.e. a given amount of matrix required comparatively less contactor 

volume during operation. The mass transfer characteristics of the pellicular structure also 

encourage novel routes to the design of an adsorptive step in downstream processing. For 

example, it would be conceivable to process a batch of feedstock by using a manifold of 

appropriately down-scaled fluidised beds which could be characterised by short cycle times of 

adsorption, desorption and cleaning/re-equilibration (Morton and Lyddiatt, 1994a). These 
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beds would be operated in such a way that one bed is used for product adsorption while others 

are being eluted or re-equilibrated for re-use in processing the same batch of feedstock (see 

Figure 3.18). Advantages of such a multi-bed system would be a reduced adsorbent inventory, 

short residence times for feedstocks and applicability with both fermentation and disruption 

operations. Hamilton et al. (1999) reported the successful implementation of multiple 

fluidised beds as an external loop to a productive bioreactor for the direct product 

sequestration of an extracellular protease integrated with the fermentation process. Dense, 

pellicular adsorbents, operated at high fluid velocities and viscosities with low bed expansions 

and rapid adsorption/desorption rates appear to be ideal for such applications and are the 

subject of further study (Jahanshahi and Lyddiatt, personal comm.).  
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Figure 3.18. Principle of a multi-fluidised bed system. 
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In a system of appropriately down-scaled fluidised beds, feedstock is continuously fed into a 
fluidised bed previously primed for adsorption. Saturated beds are taken off-line, eluted and 
reused for adsorption  
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4 PROCESS INTEGRATION OF CELL DISRUPTION AND 

FLUIDISED BED ADSORPTION 

4.1 Introduction  

Adsorption in expanded or fluidised beds is now widely adopted for the direct recovery 

of protein products from particulate feedstocks. As an integrative protein recovery operation it 

circumvents process bottlenecks encountered with the solid liquid separation required 

upstream of fixed bed adsorption, whilst achieving considerable concentration and primary 

purification of products(Hjorth, 1997). For example it has been demonstrated that the use of 

fluidised bed adsorption reduced the cell concentration in the eluted fraction by a factor of 104 

– 105 (Hjorth et al., 1995) which is at least one to two orders of magnitude higher than that for 

industrial centrifuges (102 – 103, claimed by Datar and Rosen (1996). However, such 

technology still employs discrete upstream operations of fermentation or cell disruption, and 

is commonly characterised by potentially detrimental hold-up periods whilst batches of 

feedstock are accumulated and/or conditioned prior to fluidised bed processing. Hold-up risks 

product modification, inactivation or degradation by system antagonists such as proteases, 

carbohydrases and drifting physical conditions of temperature, pH and ionic strength 

(Kaufmann, 1997). Consequently, a logical physical coupling of fluidised bed adsorption with 

upstream operations of fermentation or cell disruption might be predicted to gain additional 

benefits of product yield and quality by virtue of the immediate and direct sequestration of 

products from process feedstocks at source (Hamilton et al., 2000; Bierau et al., 1999).  

Direct product sequestration (DPS) of extracellular molecules from productive 

bioreactors can be achieved by the operation of a fluidised bed of product-selective adsorbent 

in an external loop by broth recirculation. It has the potential to minimise product degradation 
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and increase overall yield by acting as a product sink for proteins regulated by feedback 

inhibition (Morton and Lyddiatt, 1994a). This was clearly demonstrated by Hamilton et al. 

(1999) by the employment of a manifold of fluidised beds attached to a bioreactor for the 

primary purification of an extracellular acid protease produced by Yarrowia lipolytica. Here, a 

threefold increase in enzyme productivity and the elimination of product autolysis was 

achieved. Similar advantages were noted with the DSP of α-amylase from fermentations of 

Bacillus amyloliquifaciens exploiting a manifold of fluidised beds (Burns, 1997). The use of a 

manifold of contactors, wherein one acts as an external loop whilst others are variously 

exposed to off-line wash, desorption, and/or re-equilibration, has the advantage of minimising 

the volume of the external loop. Such a strategy minimises the time spent by producer cells 

outside the controlled environment of the bioreactor, thereby reducing physiological stress 

together with the adsorbent inventory required to service a productive fermentation.  

During the purification of intracellular microbial enzymes, cell disruption by 

mechanical or (bio)chemical means is the first step required in the process (refer to Figure 

1.1). However, it commonly initiates cellular and molecular degradation processes, analogous 

to those of natural cell death and lysis, due to the disintegration of intracellular compartments 

which confine lytic enzymes (Kaufmann, 1997; Middelberg, 1995). In addition, the 

generation of fine cell debris may promote electrostatic and/or hydrophobic product-debris 

interactions (see Section 2.3.3.3). Such adverse effects will compromise the yield and 

molecular fidelity of protein products, particularly when feedstocks are accumulated and 

processed in time-dependent batch operations. Proteolytic activity may be restrained by the 

addition of specific inhibitors. However, due to the complexity and diversity of different host 

organisms such measures are haphazard. Consequently, rapid processing for example by the 

direct product sequestration at cell disruption should minimise such degradation and enhance 
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the yield and quality of even the most labile products. Here, instead of accumulating a 

disruptate in a holding tank, the product remains in its physiological environment, i.e. the 

intact cell, as long as possible and is exposed to the adsorbent immediately after its release 

from the cell in the disrupter. Contact times between the target molecule and the disruptate are 

thus minimal.  

Mechanical cell breakage in a bead-mill has many attractive process characteristics 

including high disruption efficiency, high throughput and biomass loading, good temperature 

control and unlimited scale-up for most bioprocesses (see Chapter 2). In addition, the 

operational characteristic of single-pass and continuous operation recommends the bead mill 

as the ideal feedstock generator for direct sequestration of released products in a fluidised bed.  

This chapter summarises experiments which seek to demonstrate the feasibility of the 

integration of cell disruption by bead milling with product capture by fluidised bed 

adsorption. In the first place, a study of the primary purification of the enzyme G3PDH from 

brewers’ yeast exploiting Cibacron Blue Macrosorb is reported (see Section 4.3). Here, the 

practical objective was to method scout global problems of the coupled handling of the two 

unit operations whilst preserving precious stocks of Erwinia cell paste. Subsequently, the 

integrated primary purification of L-asparaginase from Erwinia disruptates exploiting cation 

exchange adsorbents was investigated (see 4.3.1). This study included the comparison of 

different scaled-up versions of fluidised bed contactors (UpFront contactor, 5 cm i.d., and 

BRG contactor, 4.5 cm i.d.) with regard to flow distributor design (RTD analysis, see 4.3.2.1) 

and frontal analysis (4.3.2.2). The purity of partially purified L-asparaginase by fluidised bed 

adsorption was compared with samples derived from a conventional production process by 

SDS PAGE analysis in tandem with activity and total protein assays. In addition, the 

phenomenon of L-asparaginase adsorption to cell debris (see Section 2.3.3.3) was re-
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investigated. Here, the objective was to assess to what extent the immediate exposure of the 

disruptate to the adsorbent (as in integrated disruption/adsorption) reduces enzyme losses 

through unwanted adsorption to cell debris by competitively shifting the adsorption 

equilibrium towards positive capture on fluidised bed adsorbents (see 4.3.2.3). 

4.2 Materials and methods 

4.2.1 Fluidised bed contactors 

Two different contactors were used in the experiments described here. A commercially 

available contactor (UpFront Chromatography, 5 cm i.d.) and the custom-built BRG contactor 

(Biochemical Recovery Group, School of Chemical Engineering, University of Birmingham, 

4.5 cm i.d.) was employed. A schematic depiction of the contactors is given in Figure 4.1. 

The UpFront contactor distributed the feed by a motor-driven stirrer paddle located near 

the feedstock inlet in the bottom of the column. Effluent left the contactor via a glass tube 

which was adjustable in height and was sealed airtight in the top lid. In contrast, the BRG 

contactor comprised a hemispherical inlet port which was clamped to the glass column. This 

configuration allowed the inclusion of a mesh (e.g. stainless steel, 98 µm) between the inlet 

and the column for the support of the settled adsorbent bed and distribution of the incoming 

flow. As an alternative method for flow distribution, a short bed of glass beads could be used 

filling the hemispherical inlet and the column (2 cm height). The BRG contactor was also 

fitted with an adjustable top adapter (plunger) in order to minimise headspace.  

4.2.2 Immobilisation of Cibacron Blue 3GA on Macrosorb K6AX 

Cibacron Blue was immobilised onto Macrosorb K6AX using a method described by 

Dean and Watson (1979). 100 ml of base matrix was suspended in 100 ml of deionised water. 



 110

 

Figure 4.1. Fluidised bed contactors used for process integration experiments 
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Two different fluidised bed contactors were used, the commercially available UpFront 
contactor (UpFront Chromatography, 5.0 cm i.d.) and the custom built BRG contactor 
(Biochemical Recovery Group, School of Chemical Engineering, University of Birmingham, 
4.5 cm i.d.). Flow distribution in the UpFront contactor was achieved by a motor-driven 
stirrer paddle located in the bottom of the column. The hemispherical inlet of the BRG 
contactor, attached to the column by a clamp, allowed different flow distributor designs, e.g. 
a stainless steel mesh and/or a bed of glass beads. 
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3.0 g of Cibacron Blue 3GA was added and the suspension was mixed for 15 min to dissolve 

the dye powder. 30 g of sodium chloride was added and the suspension was mixed for a 

further 30 min. Then 120 ml of sodium carbonate (1 M) was added and mixed for 5 min. The 

mixture was transferred into a round bottom flask which was attached to a rotary mixing unit. 

The flask was semi-submerged in a water bath at 65 °C and incubated for 24h under rotational 

mixing. After the incubation, the adsorbent was separated from spent reactants by filtration 

through a sintered funnel. Unbound dye was washed from the adsorbent with hot and cold 

deionised water. Weakly bound dye was removed from the adsorbent by a cycle of protein 

adsorption (BSA) and subsequent chaotropic (KSCN) elution (Gilchrist, 1996). Here, the 

adsorbent was packed into a chromatography column and 100 ml of BSA (1 mg ml-1) in 

buffer A (10 mM Tris/HCl, pH 7.5) was loaded onto the adsorbent bed. Elution of the protein, 

together with weakly bound dye, was achieved by the irrigation of the adsorbent with 100 ml 

of 3 M potassium thiocyanate (KSCN) in buffer A. The adsorbent was subsequently 

equilibrated using buffer A. 

4.2.3 Integrated cell disruption by bead milling and fluidised bed 

adsorption of target molecules 

4.2.3.1 Primary purification of G3PDH from brewers’ yeast 

The bead mill was a DYNO MILL KDL-I model (Willi A. Bachofen AG, Switzerland, 

refer to Figure 2.2) consisting of a glass chamber cooled by re-circulating iced water (0 °C) 

from a reservoir. The chamber was loaded with glass beads (0.2-0.5 mm) to 83% settled 

volume occupancy. The agitator speed was 3200 rpm corresponding to a peripheral speed of 

the agitating discs of 10.5 m s-1. Waste brewers' yeast was thawed overnight below 4 °C in 

buffer A (10 mM Tris/HCl, pH 7.5 containing 1 mM EDTA). The temperature of the 
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suspension was maintained below 4 °C by storage in an ice bath. In integrated experiments, 

cell suspension (15 % ww/v herein) was fed to the mill by a peristaltic pump at a flow rate of 

4.05 l h-1 and the temperature of the disruptate was maintained at the outlet of the chamber 

between 21 and 22 °C. In order to achieve an experimental steady-state condition with regard 

to effluent protein and G3PDH concentrations, the first 5 chamber volumes of effluent were 

discarded before switching the disruptate to the contactor (see 3.2.1, BRG contactor, 4.5 cm 

i.d., flow distribution by glass beads 3.5 – 4.5 mm and a 98 µm stainless steel mesh) 

containing the adsorbent (Macrosorb K6AX Cibacron Blue, see 4.2.2, equilibrated and 

fluidised in buffer A, SBH 15.5 cm). After loading of the disruptate, the adsorbent bed was 

washed using buffer A until a clear effluent, judged by visual inspection, was achieved. 

Subsequently, the adsorbent was allowed to settle and elution of bound solutes was achieved 

under reversed flow in four stages (elution with 0.2 M NaCl, re-equilibration in buffer A, 

elution with 0.25 M KSCN, adsorbent cleaning in 3 M KSCN).  

4.2.3.2 Primary purification of L-asparaginase from Erwinia 

Cell disruption was performed by bead milling according to methods established earlier 

(refer to Chapter 2). A Dyno Mill KDL-I (Willi A. Bachofen AG, Switzerland) was employed 

consisting of a silicon-carbide lined stainless steel chamber (600 ml) cooled by re-circulating 

iced water (0°C). The chamber was loaded with zirconia beads (0.3 mm) to 83% settled 

volume occupancy. The agitator speed was 3200 rpm corresponding to a peripheral tip speed 

of the agitating discs of 10.5 m s-1. Frozen cells were thawed and resuspended in equilibration 

buffer (buffer A, 20 mM citric acid / tri-sodium citrate, pH 5.5). The cell suspension was 

adjusted to a pH of 5.5 (20 mM citric acid) and a biomass concentration of 15% wet weight 

per volume (ww/v). Cell suspension was fed to the mill by a peristaltic pump at a flow rate of 

4.05 l h-1. The disruptate was directly fed from the bead mill into the fluidised bed contactor 
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(BRG 4.5 cm, UpFront 5.0 cm). Prior to the application of feedstock all beds were fluidised at 

the loading flow velocity. After loading of the disruptate, the adsorbent bed was washed using 

buffer A (10 SBV). Elution was routinely performed in fluidised bed mode using buffer B (20 

mM citric acid / tri-sodium citrate, pH 5.5, 1 M NaCl).  

4.2.4 G3PDH activity assay 

The enzyme activity was estimated by a method developed by Stallcup (1972) and 

adapted by Byers (1982) and Gilchrist (1996). The physiological reaction catalysed by 

G3PDH can be summarised as follows: 

(1)  D-glyceraldehyde 3-phosphate  +  NAD+  +  Pi →←  1,3-diphosphoglycerate + NADH  +  H+ 

However, the assay is based on the arsenolysis reaction introduced by Warburg and 

Christian (1939) and described by Velick (1955).  

(2) D-glyceraldehyde 3-phosphate + NAD+  +  Pi  →
−2

4HAsO  3-phosphoglycerate + NADH +  H+ 

Reaction (2) is preferred to the physiological reaction (1) due to its irreversible nature 

since the immediate product 1-arseno-3-phosphoglycerate is rapidly hydrolysed. This allows 

for a convenient and efficacious assay for G3PDH. The production of NADH was monitored 

spectrophotometrically (Pharmacia Ultraspec III) at 340 nm using a software package 

designed for enzyme kinetic studies (Viglen Ltd). An appropriate concentration of G3PDH 

produced a linear increase of NADH in the assay mixture. This increase was recorded and the 

slope of the curve was used to calculate enzyme activity of the sample. 

Table 4.1 lists the reagent solutions required for the assay. An assay mixture containing 

10 µl of enzyme solution, 100 µl of NAD+, 50 µl of sodium arsenate solution and 790 µl of 

bicine buffer (pre-warmed, 25 °C) was incubated at 25 °C for 3 minutes and the reaction was 
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initiated by the addition of 50 µl of the D-G3P solution. The mixture was then immediately 

transferred into a quartz cuvette and the conversion of NAD+ to NADH (i.e. the increase in 

absorption at 340 nm) was recorded. Using the slope of the curve in a 30 sec interval (e.g. 15 

– 45 sec after initiation) the enzyme activity in the sample could be calculated using the molar 

extinction coefficient (E) for NADH of 6.3 x 03 M-1 cm-1. The unit of enzyme activity was 

designated as the number of µmoles of NADH produced minute at 25 °C per ml of solution. 

(IU ml-1). The specific activity was defined as the enzyme activity per mg pf total protein (IU 

mg-1).  

 

Table 4.1. Reagents for the G3PDH assay  

Reagent Ingredients 

Bicine buffer 

 

50 

1 

1 

 

mM  

M  

1 

mM 

Bicine (N,N-bis 2-hydroxyethyl glycine, Sigma Chemicals, Poole, UK) 

sodium acetate  

EDTA 

pH adjusted to 8.5 using 1 M NaOH, buffer was stored at 4 °C 

NAD+ 10 mM NAD+ (Sigma Chemicals, Poole, UK), concentration was determined 

spectrophotometrically at 260 nm (E=1.73 x 104 M-1 cm-1 (Haid, 

1974), pH adjusted to 4.0, aliquots were stored at –20 °C. 

Sodium arsenate 0.5 M Na2HAsO4 (Sigma Chemicals, Poole, UK), pH adjusted to 8.5 (1 M 

HCl), solution was stored at 4 °C 

Substrate (D-G3P) 20 mM DL-Glyceraldehyde 3-phosphate (DL-G3P, Sigma Chemicals, Poole, 

UK). The concentration of the D-G3P enantiomeric form of the 

substrate was determined enzymatically by oxidation in Bicine buffer 

(pH 8.5) containing 25 mM arsenate and sufficient pure G3PDH to 

completely oxidise the D-enantiomer in 3 minutes. The substrate 

solution was then diluted with deionised water to yield a 20 mM 

solution. Aliquots were stored at – 20 °C. 

 

4.2.5 Gel electrophoresis (SDS-PAGE) 

Protein composition profiles of specific samples and fractions were analysed and 

compared by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). 
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Gradient gels (8 – 18 % acrylamide, 1.5 mm) were cast and run in a vertical slab 

electrophoresis chamber (Protean II xi, Bio-Rad, California, USA). Low molecular weight 

markers (LMW, Pharmacia, Uppsala, Sweden: phosphorylase b 94 kD, albumin 67 kD, 

ovalbumin 43 kD, carbonic anhydrase 30 kD, trypsin inhibitor 20.1 kD, β-lactalbumin 14.4 

kD) were included in the gels.  

Gradient solutions were prepared according to Table 4.2. Ammonium persulphate 

solution was added last to initiate the polymerisation. The resolving gel was poured into the 

chamber using a gradient former. During polymerisation (approximately 30 min) the surface 

of the gel was covered with a layer of water-saturated butanol. After polymerisation, the 

surface of the gel was washed with water to remove the butanol. A stacking gel was cast on 

top of the resolving gel (see Table 4.2). Sample wells in the stacking gel were formed by 

inserting template combs. Polymerisation of the stacking gel required approximately 1 h.  

 

Table 4.2. Gel composition for SDS-PAGE gradient gels 

Component Resolving gel Stacking gel
 Gradient solution 1

8% acrylamide 

Gradient solution 2 

18% acrylamide 

 

Acrylamide-bisacrylamide  

(30% w/v acrylamide, 2 % bis-acrylamide)

3.2 ml 7.2 ml 1.2 

Resolving gel buffer 

(Tris/HCl, 3 M, pH 8.8) 

1.5 ml 1.5 ml - 

Stacking gel buffer 

(Tris-HCl, 0.5 M, pH 6.8) 

- - 2.5 ml 

SDS (10% w/v) 120 µl 120 µl 100 µl 

Deionised water 6.8 ml 2.8 ml 5.65 ml 

Sucrose - 1.8 g - 

TEMED 

(N1N1N1’N’ tetramethyl ethylendiamine) 

5 µl 5 µl 10 µl 

Ammonium persulphate (30 mg ml-1) 280 µl 280 µl 500 µl 
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The gels were placed into the electrophoresis tank and immersed into running buffer 

(3.03 g l-1 Tris, 14.4 g l-1 glycine, 1 g l-1 SDS). Protein samples and standard markers were 

treated by solubilisation and denaturation in reducing buffer (62.5 mM Tris-HCl pH 6.8, 10% 

v/v glycerol, 2% w/v SDS, 5% v/v β-mercaptoethanol, 0.05% w/v bromphenol blue) and 

boiled for 5 min. Gels were run at 150 V until the dye front penetrated the stacking gel to the 

resolving gel. The voltage was then increased to 300 V and the run was terminated when the 

dye front reached the bottom of the gel.  

Gels were stained in staining solution (41.7% v/v deionised water, 41.7% v/v methanol, 

16.7% v/v glacial acetic acid, 0.1% w/v Coomassie Blue R-250 1 g) for approximately 1 h. 

Then the gel was developed in destaining solution (82.5% v/v deionised water, 10% v/v 

methanol, 7.5% v/v glacial acetic acid until clear protein bands appeared and the background 

staining was removed. The gel was then immersed into shrinking solution (50% v/v deionised 

water, 48% v/v methanol, 2% v/v glycerol) over night. 

4.2.6 Flow distributor comparison by RTD analysis 

RTD analysis was performed employing fluidised bed contactors with different flow 

distributor configurations. The BRG contactor was either fitted with a stainless steel mesh (98 

µm) clamped between the column and its hemispherical inlet, or with beds of glass beads (3.5 

– 4.5 mm and 710 – 1180 µm) filling the inlet and the column up to a height of 2 cm (refer to 

Figure 4.1). In addition, the local stirring by a motor driven paddle in the UpFront contactor 

was tested. A bed of CM HyperD LS at a constant settled bed height of 15 cm was fluidised in 

buffer A at two linear flow velocities. RTD analysis was performed as described in Section 

3.2.4. The number of theoretical plates was calculated and expressed in terms of theoretical 

plates per meter of expanded bed (see Figure 4.8). 
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4.2.7 Diafiltration of CM HyperD LS eluates 

Diafiltration of eluates from the fluidised bed was performed in a Millipore Minitan 

cross-flow system using a 30 KDa MWCO membrane (6 cassettes, 0.06 m2 per cassette, 10 

psi transmembrane pressure). The eluate was diluted tenfold using 20 mM Tris/HCl buffer 

(pH 8.7) and concentrated to the original volume while the permeate was discarded. The 

procedure was repeated twice in order to reduce the concentration of remaining NaCl from the 

elution in the sample. 

4.2.8 Batch binding of L-asparaginase on CM HyperD in the presence of 

cell debris (debris-matrix competition) 

Batch binding experiments were performed by incubating 1 ml settled volume of the 

cation exchanger CM HyperD LS (equilibrated in buffer A) with different volumes (5 / 10 / 

15 / 20 / 30 / 40 ml) of freshly generated Erwinia disruptate (bead mill feed rate 5 l h-1, 15% 

original biomass wet w/v at pH 5.5). The reaction tubes were placed on a roller incubator and 

at given time intervals tubes were removed from the roller and, after the matrix was allowed 

to settle (approx. 10-15 sec), a small sample (200 µl) of the supernatant, i.e. the particulate 

disruptate was taken. Cell debris in the sample was eliminated by centrifugation (7600g, 10 

min) and the clear supernatant removed, quantified volumetrically, and assayed for 

asparaginase activity to yield the variation with time of enzyme concentrations in the liquid 

phase. The cell debris was re-suspended in a 50 mM borate buffer (pH 8.5) in order to desorb 

L-asparaginase bound to sedimented cell debris (see Section 2.2.8). After a 2 h incubation 

time, samples were again clarified by centrifugation (7600 g, 10 min), and the supernatant 

assayed for free L-asparaginase activity. Debris bound L-asparaginase was estimated by a 

mass balance.  
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4.3 Results and Discussion 

4.3.1 Primary purification of G3PDH by integrated cell disruption and 

Fluidised Bed Adsorption 

The primary purification of the enzyme glyceraldehyde 3-phosphate dehydrogenase 

(G3PDH) was exploited herein as a preliminary study to method scout and demonstrate the 

feasibility of the integrated operation of cell disruption by bead milling and immediate 

product capture by fluidised bed adsorption (see panel A in Figure 4.2 for experimental 

configuration). G3PDH is a key enzyme in the glycolytic conversion of glucose to pyruvic 

acid which represents an essential pathway of carbohydrate degradation in most organisms. 

The wide availability in different species led to its popularity among enzymologists and 

protein chemists such that its characteristics are well documented (Harris and Waters, 1976). 

Yeast G3PDH comprises a tetramer of identical subunits with a native molecular weight of 

146,000 Dalton. It binds nicotinamide adenine dinucleotide (NAD) as a cofactor which 

enables the use of the triazene dye Cibacron Blue 3GA as a pseudo-affinity ligand for its 

purification. Cibacron Blue mimics the structure of NAD and thus interacts specifically with 

enzymes which associate with such nucleotide cofactors (Boyer and Hsu, 1993). Cibacron 

Blue was immobilised onto Macrosorb K6AX in order to prepare a fluidisable adsorbent for 

the purification of G3PDH (see 4.2.2).  

Scouting experiments were conducted to establish the efficacy of wet-milling alone in 

respect of protein release and temperature rises, exploiting a range of biomass concentrations 

(15 to 50 % ww/v) and feedstock flow rates (4 to 25 l h-1, see Table 4.3). With respect to total 

protein or G3PDH release the data indicated that total cell disruption was effectively achieved 

over a wide range of feed rates from 5 to 25 l h-1. Lower feed rates resulted in extended 
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Figure 4.2. Experimental configuration for the integrated, primary purification of 
intracellular proteins from unclarified disruptates 
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Panel A. Configuration employed for the purification of G3PDH from waste brewers’ yeast 
(see 4.3.1). Elution was performed in packed bed mode under reversed flow. Panel B. 
Configuration for loading, wash and elution in fluidised bed mode (employed for the 
purification of L-asparaginase from Erwinia chrysanthemi (see 4.3.2).  
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residence times and risked increased temperature for unit volumes of processed feedstock. 

Earlier studies exploiting an acetone pulse as a tracer, indicated that the rate of change of 

residence time within the milling chamber was greatest at feed rates between 3 and 10 l h-1 

(refer to Figure 2.3). The outlet temperature at low feed rates, e.g. 5 l h-1, was close to ambient 

temperature and thus heat denaturation of the labile product was possible. The efficiency of 

cell disruption apparently increased with biomass concentration of the feedstock as evidenced 

by product release at 30 and 40% (ww/v) biomass concentration when normalised to that 

achieved at 50% biomass (see Table 4.3). These findings indicate that bead milling can 

effectively be carried out at high yeast biomass loads, e.g. 50 % (frozen wet weight/volume), 

and high feed rates, e.g. 25 l h-1 in order to maximise throughput (Zhang, 1998). Such 

physical characteristics define the specification limit for an integrated fluidised bed contactor.  

 

Table 4.3. Disruption of brewers' yeast by bead milling. 

Feedstock Feed rate 
(l h-1) 

Outlet temp. 
(°C) 

Total protein released 
(mg ml-1) 

G3PDH released 
(IU ml-1) 

50 % biomass 

 

 

5 

15 

25 

23.8 

17.1 

13.6 

19.4 

19.4 

18.7 

402 

437 

427 

40 % biomass 25 12.6 13.8 (17.4) 298 (376) 

30 % biomass 25 11.9 8.6 (15.2) 144 (256) 

15 % biomass 4.05 21.5 [3.0] [5.9] 

The experiments were carried out in the DYNO MILLl KDL-1 using glass beads (diameter 0.2 
- 0.5 mm) at a bead occupancy of 83 % of the chamber volume and an agitator speed of 3200 
rpm. The yeast was suspended in buffer A (10 mM Tris/HCl, pH 7.5, and 1 mM EDTA). The 
inlet feedstock was maintained at a temperature of 2 °C. Values in parentheses are 
normalised to a 50 % ww/v fresh yeast feedstock to facilitate comparison. Values in square 
brackets were obtained using yeast stored for 9 months at –20 °C.  
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However, in this demonstration of principle, the operating parameters of the bead mill 

had to be matched with the dimensions and the expansion characteristics of the 4.5 cm 

diameter fluidised bed BRG contactor (see Figure 4.1) available for preliminary experiments. 

Figure 4.3 depicts the bed expansion of underivatised Macrosorb K6AX when fluidised in 

buffer A or in the presence of various concentrations of disrupted biomass. The elevated 

viscosity associated with increased biomass strongly increased the expansion of the bed for a 

given flow rate. Experimental conditions, i.e. 15 % biomass concentration, feed rate 4 l h-1, 

were established for the demonstration of process integration with the 4.5 cm contactor.  

During adsorption, disruptate was applied to the bed until apparent saturation of the 

adsorbent capacity for G3PDH had been achieved (see Figure 4.4). The bed was initially 

expanded (H/H0=1.8) using buffer A as determined in preliminary experiments (see Figure 

4.3). However, during loading, the bed expanded further (H/H0=2.3) in the face of the 

elevated viscosity of chilled feedstock. Immediate breakthrough of enzyme activity was 

evident which might be associated with the channelling clearly visible in the lower segment of 

the expanded bed on switching the column inlet from buffer to disruptate. This indicated that 

axial mixing of Macrosorb K6AX, a highly heterogeneous particle (Gilchrist, 1996; Morton 

and Lyddiatt, 1994b) is greater than for other matrices and promotes poor adsorption 

behaviour. Tracer studies which comparatively assessed the degree of axial dispersion of 

various adsorbents revealed considerably higher HETP values for Macrosorb K6AX (refer to 

Figure 3.5) which was already indicative of a relatively high degree of axial dispersion for 

this adsorbent at the superficial flow velocity employed. An idealised breakthrough curve is 

included in Figure 4.4 to indicate the extent of improvement of fluidised bed adsorption 

required in the integrated process. 
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Figure 4.3. Bed expansion characteristics of underivatised Macrosorb K6AX 
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Influence of biomass concentration (disrupted brewers’ yeast) on the bed expansion of 
Macrosorb K6AX. The adsorbent was fluidised in a 4.5 cm BRG contactor at a settled bed 
height of SBH 15 cm. 
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Figure 4.4. Expanded bed adsorption of G3PDH from wet-milled yeast onto Macrosorb 
K6AX-Cibacron Blue 3GA 
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The feedstock contained 15 % brewers' yeast (wet weight per volume, ww/v) and was fed to 
the bead mill at a rate of 4.05 l h-1 which corresponded to a superficial velocity of 255 cm h-1 
within the contactor operated at a settled bed height 155 mm and (settled bed volume: 247 
ml). Disruptate from the mill was directly applied to the fluidised bed contactor. Samples 
were taken from the outlet of the column and assayed for G3PDH activity.  
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At the termination of the adsorption stage residual particulate material was washed from 

the expanded bed with buffer A until a clear effluent was achieved. Enzyme elution was 

achieved in a four-stage process (see Figure 4.5), performed in packed bed mode under 

reversed flow (Figure 4.2). Initially, 0.2 M NaCl in buffer A eluted a considerable amount of 

weakly bound contaminants together with traces of enzyme product which were discarded. 

Following re-equilibration of the bed in buffer A, the enzyme was desorbed in 0.25 M KSCN 

in buffer A (a chaotropic elution was adopted since preliminary screening of alternative 

specific eluents for dehydrogenases such as NADP or NADPH yielded low elution 

efficiencies (Zhang, 1998). A final treatment using 3M KSCN in buffer A stripped residual 

material bound to the matrix as a prelude to the re-equilibration and the re-use of the 

adsorbent. A typical mass balance of G3PDH purification is documented in Table 4.4. 

Specific activities were higher than those previously recorded from wet-milling and fluidised 

bed adsorption operated as discrete processes over longer time scales (Zhang, 1998). This was 

encouraging given the low starting activity of yeast which had been stored at -20 °C for 9 

months (< 15 % of fresh material, see Table 4.3). 

 

Table 4.4. Mass balance of G3PDH recovery 

Stage Volume 
(ml) 

Protein 
(mg) 

Enzyme activity
(IU) 

Specific activity 
(IU mg-1) 

Purification factor

Disruptate 7763 23290 45802 2.0 1 

Flow through 7763 20823 30808 1.5 - 

Elution (peak) 190 602 5241 8.7 4.4 

Brewers’ yeast (stored at –20 °C for 9 months) was disrupted by bead milling and directly 
applied to the fluidised bed contactor containing Macrosorb K6AX Cibacron Blue 3GA. 
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Figure 4.5. Elution of bound solutes from Macrosorb K6AX-Cibacron Blue 3GA in 
packed bed mode 
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The fluidised bed was loaded as depicted in Figure 4.4. After washing the bed, the adsorbent 
was allowed to settle and elution was performed in packed bed mode under reversed flow. 
The following elution procedures were used. (1) 4 column volumes of 0.2 M NaCl in buffer A 
(10 mM Tris/HCl, pH 7.5 containing 1 mM EDTA) at a superficial velocity of 75 cm h-1. (2) 
Re-equilibration of the adsorbent by 7 column volumes of buffer A at a superficial velocity of 
75 cm h-1. (3) 3 column volumes of 0.25 M KSCN in buffer A at a superficial velocity of 25 cm 
h-1. (4) 5 column volumes of 3 M KSCN in buffer A at a superficial velocity of 75 cm h-1. 
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The 0.25 M KSCN treatment resulted in a discrete peak of G3PDH activity coincidental 

with a broader peak of protein material. Sodium dodecyl sulphate-polyacrylamide gel 

electrophoresis (SDS-PAGE) indicated the presence of the subunit of the tetrameric G3PDH 

in all samples taken throughout this protein peak (see Figure 4.6, lanes 7-11) but later 

fractions (3100-3400 ml, lanes 10 and 11) were inactive. This might reflect different affinities 

of active and inactive forms of G3PDH for Macrosorb K6AX Cibacron Blue 3GA generated 

during the disruption process. Alternatively, the enzyme may have been partially inactivated 

during the elution process due to the extended time of exposure to the chaotrope KSCN. For 

example, it has been reported that high ionic strength promotes sub-unit dissociation of the 

enzyme and that only the intact tetramer retains catalytic activity (Harris and Waters, 1976). 

In order to assess the influence of KSCN on the activity of G3PDH, a sample was taken from 

the eluted peak (stage 3 of the elution, 0.25 M KSCN, see Figure 4.5) and stored for up to 36 

h at 4 °C in an undiluted state (i.e. in 250 mM KSCN in buffer A) as well as diluted tenfold 

(i.e. in 25 mM KSCN in buffer A). Here, decreases of enzyme activity of 50% and 29% 

respectively were recorded for the undiluted sample and the 10-fold diluted sample. This 

indicated that enzyme inactivation occurred due to prolonged exposure to KSCN and was 

dependent upon the chaotrope concentration. The labile nature of G3PDH was confirmed by 

the loss of activity seen on prolonged storage of the yeast at -20 °C (see Table 4.3). The time 

of exposure to high concentrations of KSCN could be shortened by online application of the 

eluate to a gel filtration column for desalting (Gilchrist, 1996) or direct elution of the G3PDH 

peak into a buffer reservoir in order to dilute the KSCN. Both options would considerably 

increase the volume of the eluate. 

SDS PAGE analysis depicted the presence of a strong protein band at approximately 43 

kDa in all fractions of the elution stages 1 and 3 (lanes 3-11 in Figure 4.6). In the same way as 



 127

 

 

 

Figure 4.6. SDS PAGE analysis of elution samples: G3PDH purification from waste 
brewers’ yeast 

 

Fractions were taken from various elution stages (see Figure 4.5) and a constant mass of 
total protein (30 µg) was loaded per lane. The position of the G3PDH monomer band in the 
gel is indicated by the arrow. Lane 1 and 15, low molecular marker (LMW). Lane 2: yeast 
disruptate 15% biomass ww/v. Lane 3 – 6: fractions of elution stage 1 (0.2 M NaCl). Lane 7 – 
11: fractions of elution stage 3 (0.25 M KSCN). Lane 12 – 14: fractions of elution stage 4 (3 
M KSCN).  
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G3PDH, this protein appeared to be considerably concentrated in comparison with the 

disruptate (lane 2). This suggested that this component is another (NAD dependent) protein 

which specifically interacted with Cibacron Blue. Other enzymes which were isolated from 

disrupted yeast exploiting Cibacron Blue as an affinity ligand are for example aldehyde 

dehydrogenase (Tamaki et al., 1977), phosglycerate kinase (Kulbe and Schuer, 1979), ATP-

AMP phosphotransferase (Ito et al., 2000), fumarate reductase (Muratsubaki et al., 1994) and 

6-phosphofructokinase (Chase and Draeger, 1992a; Kopperschlager and Johansson, 1982). 

However, the protein represented by the 43 kDa band could not be successfully identified by 

N-terminal sequencing because of an apparently blocked N-terminus (Dr J Fox, Alta 

Bioscience, The University of Birmingham). 

4.3.2 Primary purification of L-asparaginase by integrated cell disruption 

and Fluidised Bed Adsorption 

4.3.2.1 Influence of flow distributor design on the degree of axial dispersion 

Two different fluidised bed contactors were used for the integrated recovery of L-

asparaginase (see Section 3.2.1). The internal diameters of the contactors were similar (BRG 

4.5 cm, UpFront 5.0 cm) but different modes of flow distribution could be employed (refer to 

Figure 4.1). The BRG contactor could be fitted either with a mesh distributor or a bed of glass 

beads. However, previous experiments employing a 1 cm BRG contactor with a mesh 

distributor demonstrated that such a mesh was prone to fouling by precipitates and or cell 

debris. 

The UpFront contactor distinguished itself by its novel flow distributor design. Similar 

to the 1 cm UpFront contactor (see Figure 3.1), the incoming stream was distributed by local 

stirring in the bottom of the column. Here, a motor-driven paddle (in contrast to a magnetic 
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flea) generated a local vortex near the feedstock inlet and thus divided the fluidised bed into a 

well-mixed zone around the stirrer and a stable fluidised zone above. The rotational velocity 

of the stirrer could be set on an arbitrary scale from 0 to 10 (maximum rotational velocity). In 

order to investigate the influence of the rotational velocity of the stirrer upon axial dispersion 

in a fluidised bed, RTD analysis was used to determine the number of theoretical plates at 

various rotational velocities (see Figure 4.7). The method employed a dilute acetone solution 

as a tracer and was described earlier (see Section 3.2.4). At a rotational velocity settings lower 

than 4 visible channelling appeared in the lower part of the fluidised bed suggesting that the 

stirrer speed was not sufficient to avoid channelling by distributing the incoming stream. At a 

rotational velocity setting greater than 3, no discernible channelling occurred. But the vortex 

generated by the stirrer increased slightly with increasing the rotational velocity of the stirrer. 

This behaviour was also reflected in the number of theoretical plates depicted in Figure 4.7 

which shows a maximum number of theoretical plates at the rotational velocity at which the 

channelling ceased and the vortex height was at a minimum. However, this behaviour 

presumably changes with feedstock viscosity and therefore it was judged advisable for further 

experimentation to choose a rotational velocity at which channelling in the bed is just 

eliminated. It should be noted that estimates of the number of revolutions per time unit or 

stirrer tip speed could not be recovered from the arbitrary scale. 

A comparison of four different flow distributor configurations is depicted in Figure 4.8. 

Here, a bed of adsorbent at a constant settled bed height of 15 cm was fluidised and the 

number of theoretical plates was determined by RTD analysis (see Section 3.2.4). The BRG 

contactor was fitted with three different configurations which were compared with the novel 

design of the UpFront contactor (see Section 4.2.6). Here, the influence of the difference in 

column diameter of the contactors (4.5 and 5.0 cm) was judged to be insignificant.  

It can be seen in Figure 4.8 (panel A) that the best performance with regard to axial 

dispersion was achieved by a bed of glass beads (710 – 1180 µm), and that the other 
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Figure 4.7. Effect of stirrer speed on axial mixing: UpFront contactor (5 cm i.d.) 
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The adsorbent, CM HyperD LS at a settled bed height of 15 cm, was fluidised at a superficial 
flow velocity of 330 cm h-1 resulting in a degree of bed expansion of 82 %. A dilute acetone 
solution was introduced into the column as a tracer. The UV absorbance was measured in the 
exit stream from the column (refer to 3.2.4). The number of theoretical plates was calculated 
from the negative step input signal. 
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Figure 4.8. Comparison of flow distributor design on axial dispersion and bed expansion 
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A bed of CM HyperD LS (SBH 15 cm) was fluidised in buffer A employing a BRG contactor 
(4.5 cm), fitted with various flow distributors, and an UpFront contactor (5.0 cm, stirrer 
distributor). Axial dispersion was measured by RTD analysis (refer to Section 3.2.4). 
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configurations yielded considerably lower numbers of theoretical plates at a given SBH and 

linear flow velocity. The variation in performance found in the BRG contactor apparently 

correlated to the degree of bed expansion (panel B of Figure 4.8). Here, a low degree of axial 

dispersion coincided with a high degree of bed expansion which showed that the degree of 

bed expansion at a given flow velocity may be used as a quick measure of bed stability 

(Chang et al., 1995; Lan et al., 1999). When the mesh distributor was used, visual inspection 

revealed a high degree of channelling in the lower part of the bed. This behaviour was 

reflected by the RTD analysis, i.e. a low number of theoretical plates. The stirring action in 

the UpFront contactor generated a visible vortex up to approximately a third of the fluidised 

bed height. This apparently promoted the poor performance with respect to the estimated 

number of theoretical plates in comparison with the BRG contactor fitted with glass beads 

(710 – 1180 µm). 

4.3.2.2 Adsorption performance during integrated recovery of L-asparaginase 

– UpFront (5.0 cm) and BRG (4.5 cm) fluidised bed contactor 

The experimental conditions established in Chapter 3 for the primary purification of L-

asparaginase by CM Hyper D LS were exploited here at a larger scale. In a side-by-side 

comparison the UpFront and the BRG contactors (see Figure 4.1) were used for the fluidised 

bed capture of the enzyme directly integrated with cell disruption by bead milling (see panel 

B in Figure 4.2 for experimental configuration).  

Loading of unclarified cell disruptates onto larger-scale columns is depicted in Figure 

4.9. In experiments using the UpFront contactor, significant product breakthrough occurred 

comparatively early during the loading process while loading in a similarly operated BRG 

contactor was continued over an extended period with only negligible breakthrough. Thus, 

dynamic capacities achieved in the UpFront contactor were significantly lower. This
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Figure 4.9. Integrated cell disruption and fluidised bed adsorption of L-asparaginase on 
CM HyperD LS from unclarified Erwinia disruptates 
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The adsorbent was equilibrated in buffer A and a disruptate generated by the bead mill (15 % 
ww/v original cells) was directly introduced into the contactors (integration of cell disruption 
and fluidised bed adsorption, see panel B in Figure 1.1 for configuration). The bead mill feed 
rate of 4 l h-1 corresponded to a superficial flow velocity of 200 cm-1 in the UpFront contactor 
(5.0 cm i.d.) and 250 cm h-1 in the BRG contactor (4.5 cm i.d.). The respective settled bed 
heights of the adsorbent, and the degrees of bed expansion and achieved dynamic capacities 
(at C/C0 = 0.1 for the BRG contactor, at C/C0 = 0.2 for the UpFront contactor) are given 
with the symbols in the Figure. Stirrer speed in the UpFront contactor was set to 4 (rotational 
and tip speed unknown).  
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suggested that the stirrer, providing the distribution of the incoming flow, diminished the 

adsorption performance of CM HyperD LS when operated in this contactor. The poor 

adsorption performance was in accordance with the findings of the RTD analysis (depicted in 

Figure 4.8) where flow distribution by the stirrer in the upscaled UpFront contactor resulted in 

comparatively low numbers of theoretical plates. In experiments employing disruptate, the 

vortex generated by the stirrer in the lower part of the bed reached heights of 6 – 7 cm, 

corresponding to 15 – 19 % of the total expanded height of the fluidised bed (H/H0 

approximately 2.1). However, by way of contrast, the vortex height generated in the small-

scale UpFront contactor (1 cm i.d.) was less than 1 cm (3 % of the total bed height) resulting 

in a packed bed-like performance (refer to Figure 3.10). Experiments conducted by 

Amersham Pharmacia Biotech AB (1997) demonstrated that the volume of adsorbent particles 

is not evenly distributed throughout a fluidised bed but is naturally increased in lower parts 

because of the particle size distribution. In their experiments a bed of STREAMLINE 

particles was fluidised to 2.5 times its settled bed volume. Here, the bottom 25% of the 

fluidised bed contained 41% of the adsorbent particles (by volume) whereas in the top 25% of 

the bed only 12% was present. These results emphasised the influence of the proportion of the 

well-mixed zone, generated by the stirrer in the UpFront contactor, relative to the expanded 

bed volume, on the adsorption performance and suggested that for a given settled bed height, 

the adsorption performance decreases with increasing contactor diameter due to a higher 

vortex-bed height ratio. However, increasing the settled bed height in the UpFront contactor 

from 15 to 25 cm only slightly flattened the early product breakthrough but did not 

significantly enhance the achieved dynamic capacity.  

The results obtained in the 4.5 cm BRG contactor are in good agreement to those found 

at an intermediate scale (2.5 cm BRG contactor, refer to Figure 3.13). Equivalent dynamic 
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capacities (BRG 4.5 cm: 8100 – 8800 U ml-1, BRG 2.5 cm: 8400 U ml-1) were achieved in 

both experiments depicted in Figure 4.9, one maintaining the settled bed height used in earlier 

experimentations in the 2.5 cm contactor (15 cm) and the second one employing a similar 

height to diameter ratio for both contactors (approx. 6 at 25 cm settled bed height).  

Figure 4.10 depicts the elution of L-asparaginase in the larger scale contactors, routinely 

performed in fluidised bed mode at a superficial flow velocity of 100 cm h-1 and Table 4.5 

summarises a qualitative assessment of the eluates obtained. As observed for the small-scale 

experiments (see Figure 3.11 and panel B in Figures 3.13 and 2.4), a wash volume of 5 settled 

bed volumes (SBV) for both contactors was generally sufficient to reduce the concentration of 

contaminating proteins in the effluent of the fluidised bed by more than 95%. A sufficiently 

clear effluent was achieved after 10 SBV. Elution in fluidised bed mode by a step input of 

buffer B desorbed the enzyme in 2 – 3 SBV in the UpFront contactor. The elution volume in 

the BRG contactor (4.5 cm i.d.) required 3 – 4 SBV, which was slightly increased when 

compared with experiments performed in the 2.5 cm BRG contactor (refer to panel B of 

Figure 3.13). This suggested a higher degree of axial mixing during fluidised bed desorption 

in the larger contactor. During elution the UpFront contactor exhibited an equivalent 

performance with regard to elution volume to that achieved in the BRG contactor, which 

might be attributed to a lower amount of product initially adsorbed to the bed and to a reduced 

bed voidage under elution conditions (100 cm h-1, at a lower viscosity for the mobile eluting 

phase). Recovery values and purification factors (see Table 4.5) were in good agreement with 

results achieved in previous experiments using CM HyperD LS (refer to Table 3.4).  

A comparison of the purity of samples collected from key stages of both the 

conventional commercial process (supplied by Hinton R.J. and Nwoguh, C., CAMR, Porton 

Down) and the integrated cell disruption/fluidised bed adsorption employing CM HyperD LS  
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Figure 4.10. Elution of L-asparaginase from CM HyperD LS in fluidised beds. 

Elution volume (SBV)

0 5 10 15 20

L-
as

pa
ra

gi
na

se
 a

ct
iv

ity
 (U

 m
l-1

)

0

1000

2000

3000

4000

5000

15 cm SBH
25 cm SBH

Wash
250 cm h-1

Elution
(1.0 M NaCl step)

100 cm h-1

A

BRG contactor (4.5 cm)

 

Elution volume (SBV)

0 5 10 15 20

L-
as

pa
ra

gi
na

se
 a

ct
iv

ity
 (U

 m
l-1

)

0

500

1000

1500

2000

2500

SBH 15 cm
SBH 25 cm

Wash
(200 cm h-1)

Elution
(1.0 M NaCl step)

100 cm h-1

B

UpFront contactor (5.0 cm)

 

Fluidised beds were loaded as depicted in Figure 4.9. The beds were washed with 10 settled 
bed volumes (SBV) of buffer A at the loading flow velocity (BRG contactor 250 cm h-1, 
UpFront contactor 200 cm h-1). Elution was achieved in fluidised bed mode at a linear flow 
velocity of 100 cm h-1 by a step of 1.0 M NaCl in buffer A.  
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is depicted in Figure 4.11. Also included is an eluate sample obtained from small-scale (1 cm 

contactor) fluidised bed experiments using SP UpFront. Fluidised bed eluates (CM HyperD in 

lane 2 , SP UpFront in lane 6) appeared to be more pure from SDS-PAGE analysis than the 

equivalent interim product of the current purification process (lane 7 and 8) which was also 

confirmed by a higher specific activitiy (CM HyperD LS at 442 U mg-1, SP UpFront at 421 U 

mg-1, compared with CAMR CM Cellulose at 328 U mg-1). The comparative yields for these 

three process routes were respectively 2.9 MU kg-1 (CM HyperD LS), 3.0 MU kg-1 (SP 

UpFront), and 1.9 MU kg-1 (CAMR CM Cellulose). 

 

Table 4.5. Purification of L-asparaginase by integrated cell disruption and fluidised bed 
adsorption (CM HyperD LS) 

Contactor SBV 
(ml) 

Feed 
enzyme 
activity 
(U ml-1) 

Feed 
total  

protein 
(mg ml-1)

Feed 
specific 
activity 
(U mg-1) 

Eluate 
enzyme 
activity 
(U ml-1) 

Eluate 
total  

protein 
(mg ml-1)

Eluate 
specific 
activity 
(U mg-1) 

Purif.  
factor 

Recovery 
(%) 

 

Productivity 
U ml-1

matrix 
min-1 

BRG  
15 cm SBH 

25 cm SBH 

 

239 

398 

 

462 

336 

 

5.50 

4.73 

 

84 

71 

 

1979 

3085 

 

5.21 

7.40 

 

380 

417 

 

4.5 

5.8 

 

93 

87 

 

56.3 

29.1 

UpFront  
15 cm SBH 

25 cm SBH 

 

294 

490 

 

168 

321 

 

4.30 

5.35 

 

39 

60 

 

1281 

1375 

 

4.48 

5.61 

 

286 

245 

 

7.2 

4.1 

 

89 

61 

 

15.5 

10.3 

Data given for the eluates represent the pooled fractions of the respective elution peak 
(depicted in Figures 4.10). The productivity at a given flow velocity was estimated as the 
amount of enzyme adsorbed at 10% product breakthrough (dynamic capacity at C/C0 = 0.1, 
given in Figure 4.9) divided by the settled volume of the adsorbent (SBV) and the total 
process time (loading to C/C0 = 0.1 at the respective flow rate; wash of 10 SBV at the 
respective flow rate; elution of 5 SBV at 100 cm h-1, 100% desorption assumed). 

activity specificfeedstock 
activity specific eluate  factor Purif. =  

)C - (C   volumefraction hflowthroug  adsorbed enzyme  total                    

   
adsorbed enzyme total

eluate inactivity  enzyme total Recovery 

fraction0∑ ⋅=

=
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Figure 4.11. Purity comparison (SDS PAGE) of the conventional purification process 
and integrated cell disruption/fluidised bed adsorption. 
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The numbers given in the flow sheet indicate the origin of samples and correspond to their 
respective lane numbers. Lanes: M - low molecular weight markers; 1 - Erwinia disruptate, 
15 % biomass ww/v; 2 - eluate CM HyperD LS, fluidised bed; 3 - desalted eluate (after 
dia/ultrafiltration, 30 K MWCO membrane); 4 - flow-through, DEAE fixed bed; 5 - elution, 
DEAE fixed bed; 6 - SP UpFront eluate; 7 - CM cellulose eluate; 8 - CM cellulose eluate, 
final; 9 - final commercial product. Approximately 50 µg of total protein was loaded per lane.  
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The product from the two process routes are distinguished by variation in the pattern of 

impurities. Eluates from fluidised bed adsorption show a strongly stained band of a low 

molecular weight contaminant (< 14.4 KDa) which is either absent or not pronounced in the 

CM cellulose eluate (refer to lane 7 and 8 of Figure 4.11). Further processing of the FBA 

eluate (depicted in lane 2) confirmed that a subsequent diafiltration step using a 30 KDa 

MWCO membrane (see Section 4.2.7) eliminated most of this material (refer to lane 3 in 

Figure 4.11). A subsequent subtractive adsorption step exploiting DEAE Trisacryl, selected to 

mimic an anion exchange step operated further downstream in the current purification process 

(refer to Figure 4.11), confirmed the practical potential for its separation from the product and 

the elimination of other contaminants (see lane 4 in Figure 4.11). This chromatographic step 

was carried out at pH 8.6, the pI of L-asparaginase, in order to facilitate product passage 

through the adsorbent bed and to retain more acidic contaminants (lane 5 in Figure 4.11). In 

the preliminary conducted studies here, about 40 % of the applied L-asparaginase also 

adsorbed to the anion exchanger (refer to lane 5). Clearly, this step needs further optimisation 

in order to minimise adsorptive losses of L-asparaginase whilst retaining maximum clearance 

of the 14 KDa impurity. However, the purity of the enzyme product (715 U mg-1) after 3 

operational steps of integrated bead milling/FBA, diafiltration and fixed bed adsorption is 

highly encouraging (CAMR final product 850 U mg-1). 

4.3.2.3 Reduced product-debris interaction through competitive adsorption on 

CM HyperD LS 

Preliminary work (see Section 2.3.3.3) has demonstrated that L-asparaginase has a 

tendency to adsorb to cell debris in a pH and ionic strength dependent manner similar to 

behaviour seen with a cation exchange matrix (Goward et al., 1992). The fact, that levels of 

L-asparaginase activity in disruptates could be increased by the addition of salt (e.g. 1M 
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NaCl) or shifting the pH towards a more basic condition (addition of 50 mM borate buffer) 

suggested that electrostatic interactions between the enzyme and oppositely charged cell 

debris were influential upon achievable product yields. However, with regard to process 

economy, it is of course desirable to minimise such adsorptive losses to debris. Here, a study 

was performed in order to determine whether the direct and immediate exposure of disruptates 

to the adsorbent solid phase in an integrated fluidised bed contactor promoted a beneficial 

competition for L-asparaginase and a concomitant shift in the debris-product adsorption 

equilibrium. The net effect would be expected to be a reduction in product-debris interactions 

and/or an actual desorption from debris of already bound product.  

The results of this study are depicted in Figure 4.12 (batch binding experiment, see 4.2.8). 

Cell disruption by bead milling yielded a disruptate containing an initial soluble enzyme 

activity in the liquid phase of 417 U ml-1 (enzyme activity of the clarified disruptate) which 

corresponds to a cell paste activity of 2.78 MU per kg of biomass. Initial values of debris 

bound enzyme (estimated by desorption of debris bound L-asparaginase by a pH shift, refer to 

Section 2.2.8) were estimated at 1.62 MU per kg of biomass which is equivalent to 36% of the 

total available enzyme (i.e. soluble enzyme in clarified disruptate plus enzyme desorbed from 

debris). Panel A in Figure 4.12 depicts the decrease in liquid phase concentration of L-

asparaginase as a function of incubation time in the presence of freshly milled cells and a 

cation exchange adsorbent. These curves reflected only the uptake of the enzyme by CM 

HyperD LS since soluble enzyme in the disruptate (control sample, not in contact with 

matrix) appeared to remain constant over the time course of the experiment, i.e. no 

degradation of the enzyme occurred. However, debris bound enzyme in disruptate which was 

in contact with the cation exchange matrix decreased with incubation time which suggested 

that L-asparaginase was desorbed from cell debris during the course of the experiment (see  
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Figure 4.12. Matrix-debris competition in the batch adsorption of L-asparaginase from 
unclarified Erwinia disruptates. 
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A constant volume of CM HyperD LS (1 ml) was incubated with different volumes of Erwinia 
disruptate (5 / 10 / 15 / 20 / 30 / 40 ml). L-asparaginase, both in the liquid phase and debris 
bound was quantified with time. Panel A: uptake of L-asparaginase by CM HyperD LS from 
unclarified Erwinia disruptates as a function of incubation time. Panel B: release of debris 
bound L-asparaginase as a function of incubation time. 
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panel B of Figure 4.12). Furthermore, the amount of enzyme desorbed from debris increased 

with incremental decreases of the disruptate-matrix ratio. This demonstrated that the exposure 

of a disruptate to an adsorbent matrix facilitates a competitive reduction of product-debris 

adsorption. However, although matrix adsorption reduced enzyme levels in the liquid-phase 

by approximately 95% (panel A in Figure 4.12, 5 ml disruptate per ml of matrix) the amount 

of debris bound enzyme was only reduced by 43% (panel B, Figure 4.12).  

After cell disruption the disruptate was stored for 60 minutes during preparations for the 

batch binding experiment depicted in Figure 4.12. During this period, the product was 

exposed to cell debris and some adsorption inevitably took place. It would have been 

beneficial to expose the disruptate immediately after cell disruption to an adsorbent matrix 

such that contact times between product and cell debris were minimised and gross product 

losses by adsorption to debris reduced overall. Such a facilitation has been proposed earlier by 

the integration of cell disruption by bead milling and the primary product capture by fluidised 

bed adsorption (Bierau et al., 1999). It would be expected to favour further benefits of 

decreased product degradation, shortened process times and lower operational costs.  

4.4 Interim conclusions 

4.4.1 Primary purification of G3PDH by integrated cell disruption and 

Fluidised Bed Adsorption 

The approach to process integration as reported herein for potentially labile enzymes 

clearly proved that a bioproduct can rapidly be removed from the potentially harmful 

environment of the cell disruptate by performing cell disruption and primary capture 

simultaneously. Table 4.6 summarises a stage comparison of a conventional purification 

scheme for G3PDH and the integrated approach adopted herein. It is evident that there is a 
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considerable reduction in the number of consecutive unit operations in line with operating 

time-frame and product losses when the integrated process is compared with the conventional 

process. Such immediate product sequestration will be particularly important for labile 

proteins in order to improve both the yield and molecular integrity of the target products.  

 

Table 4.6. Stage definition of conventional purification compared with integrated 
disruption/purification of G3PDH 

Conventional purification of G3PDH from 
yeast (Byers, 1982) 

 Integrated disruption / purification 

 Cell disruption by high pressure 

homogenisation (2 passes) 

 Solid-liquid separation (centrifugation) 

 Fractionation of impurities (50% ammonium 

sulphate precipitation) 

 Fractionation of product (80% ammonium 

sulphate precipitation) 

 Desalting by gel filtration 

 Fractionation of product by fixed bed ion-

exchange chromatography 

 Purification of product by affinity 

chromatography 

 Product formulation 

 
 Cell disruption / selective recovery on 

Macrosorb Cibacron Blue 

 Product formulation 

 

 

 

Early breakthrough of product during the fluidised bed capture was attributed to the 

poor fluidisation properties of Macrosorb K6AX. This was evident by visible bed channelling 

and comparatively high HETP values obtained by RTD studies (refer to Figure 3.5). The 

fluidisation characteristics could be improved with an increased operational bed height and by 

the use of an adsorbent having a higher density and a more regular particle geometry. Such 

measures would reduce the mixing of adsorbent particles and improve overall adsorption 
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performance as illustrated in the idealised breakthrough curve in Figure 4.4. Composites of 

silica-dextran, pyrex-agarose, titanic-cellulose and zircon-agar all possess such characteristics 

(Gilchrist, 1996; Morton and Lyddiatt, 1994a), but were not available in forms suited to the 

chemical derivatisation required for this study.  

Throughput of feedstock in this experiment was limited by the cross-sectional area of 

the contactor but could be increased by use of a denser matrix requiring higher fluid velocities 

for equivalent bed expansion. Using an adsorbent of a density of 1.6 g ml-1, Beveridge (1997) 

has recorded that a superficial flow velocity of 1250 cm h-1 was required to generate 100% 

bed expansion in an equivalent contactor (45 mm diameter). Assuming that a disruptate 

originating from 15 % initial cell biomass extends the degree of bed expansion by a factor of 

2.5 at a superficial flow velocity of 300 cm h-1 (see Figure 4.3), then such a high density 

matrix could be operated at superficial flow velocities of 700 cm h-1 in the present contactor 

representing a three-fold increase of throughput (i.e. milling at 12 l h-1).  

A comparatively low purification factor (Table 4.4) suggested that a considerable 

amount of non-specific adsorption of impurities occurred during primary capture. This is not 

an uncommon finding, since protein binding to Cibacron Blue is viewed as a combination of 

several forces including both electrostatic and hydrophobic interactions (Boyer and Hsu, 

1989; Boyer and Hsu, 1993; Scopes, 1987). 

4.4.2 Primary purification of L-asparaginase by integrated cell disruption 

and Fluidised Bed Adsorption 

The concept of directly integrating conventionally discrete operations of cell disruption 

by bead milling and the product capture by fluidised bed adsorption previously demonstrated 

for the purification of G3PDH from yeast was adapted for the purification of L-asparaginase 

from Erwinia. In a side-by-side comparison with the established purification process for this 
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enzyme, the novel process proved to be more efficient by yielding a purer interim product 

using either CM HyperD or SP UpFront as an adsorbent (see Figure 4.11). The overall yield 

of the integrated process (i.e. the amount of enzyme revovered in the eluate relative to the 

initial biomass activity) bettered the one commonly achieved in the commercial process (52% 

in the integrated process, 39% in the commercial process, see Table 4.7). Furthermore, 

operational sequences were considerably compressed without the need of disruptate 

clarification and/or storage. Here, the total process time (cell disruption / loading, washing 

and elution) to yield an equivalent primary extract would be less than 2.5 hours when 

employing an appropriately up-scaled fluidised bed (e.g. column diameter 48 cm, settled bed 

volume 28 litres), refer to Figure 1.4. This process duration was estimated for an average 

biomass activity of 3.6 MU kg-1 cell paste (corresponding to 540 U ml-1 of feedstock at 15% 

biomass ww/v), an adsorbent dynamic capacity of 8000 U ml-1 achieved at a flow velocity of 

250 cm h-1, a wash of 10 SBV at 250 cm h-1, and elution in 5 SBV at 100 cm h-1). Taking this 

considerable reduction in the overall process time into account, the integrated process exhibits 

a tenfold higher productivity (estimated as the total amount of enzyme recovered in the eluate 

per kg of cell paste divided by the total process time, see Table 4.7). With the given system 

configuration operated at pilot-scale, the throughput of biomass was only limited by the 

dimensions of the fluidised bed contactor since optimal product release was achieved at a 

bead mill feed rate of 8 l h-1 (corresponding to a superficial flow velocity of 500 cm h-1 in the 

column, a twofold increase in comparison with flow velocities used in this study). Process 

intensification, i.e. increased biomass throughput, could be achieved by increasing the 

contactor diameter and/or by the use of an adsorbent with enhanced density. Such material, 

provided that capacity and mass transfer characteristics were appropriate, would facilitate the 
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use of higher superficial flow velocities and/or higher biomass concentrations in the 

feedstock.  

By employing the 4.5 cm BRG contactor, the fluidised bed capture of L-asparaginase 

was scaled up from an intermediate level of operation (2.5 cm, see Chapter 3). Maintaining a 

constant settled bed height or H/d ratio and a constant linear flow velocity yielded consistent 

results with regard to dynamic capacity, recovery and purification factors. However, operating 

the 5.0 cm UpFront contactor under similar conditions resulted in early product breakthrough 

and thus greatly reduced dynamic capacities in comparison to the BRG contactor. Although 

the 1.0 cm UpFront contactor exhibited an adsorption performance similar to a packed bed 

(refer to Figure 3.10) the poor performance of the 5.0 cm contactor can be attributed to the 

mode of flow distribution. Here, the stirrer paddle generated a proportionally larger vortex 

and thus a considerable fraction of the adsorbent bed behaved like a stirred tank reactor, 

equivalent to a single adsorption stage, as opposed to a stable fluidised bed which is 

characterised by multiple adsorption stages. This was reflected both by the RTD analysis, i.e. 

the number of theoretical plates, and the early product breakthrough under frontal analysis. It 

may be expected that with a further increase in diameter (column and stirrer), the height of the 

generated vortex increases which suggests that the disturbance of stable fluidisation by the 

local stirring has to be compensated by maintaining comparatively high H/d ratios. However, 

the use of glass beads (710 – 1180 µm) in the BRG contactor proved to be a simple, yet 

effective means of flow distribution. This design was not prone to blockage and yielded 

considerably higher numbers of theoretical plates in comparison with fluid distributors 

exploiting a defined mesh distributor, a bed of larger beads (3.5 – 4.5 mm) or the stirrer 

design in the UpFront contactor.  
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It was demonstrated that a partial elimination of debris bound losses could be promoted 

by the immediate exposure of disruptates to an adsorbent matrix, by establishing a 

competition between the two solid phases present in the system, i.e. cation exchange 

adsorbent and debris. The exposure of the disruptate to CM HyperD LS reduced the amount 

of debris bound enzyme by more than 40%. However, in order to minimise the initial amount 

of debris bound enzyme, rapid processing was essential and this was achieved by the direct 

integration of cell disruption and product capture by fluidised bed adsorption. The observation 

that the release of debris bound enzyme in batch binding experiments was increased at lower 

volume ratios of disruptate to adsorbent (panel B, Figure 4.12) might indicate that within a 

fluidised bed L-asparaginase release from debris is enhanced at low degrees of bed voidage, 

i.e. low degrees of bed expansion. 
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Table 4.7: Process performance in the primary purification of L-asparaginase  

Current commercial process Integrated bead milling and FBA *d 

Stage / process stream Elapsed 
process 
time *a 

(h) 

Total 
enzyme 
act. *a 
(MU) 

Enzyme 
yield 

(MU kg-1) 

Overall 
enzyme 
recovery 

(%) 

Stage / process stream Elapsed 
process 

time 
(h) 

Total 
enzyme 
activity 
(MU) 

Enzyme 
yield 

(MU kg-1) 

Overall 
enzyme 
recovery 

(%) 

Cell suspension 
 Total biomass: 60 kg  
 Total volume: 900 l 
 Biomass conc.: 7 % ww/v 
 Biomass activity: 3.6 MU kg 
 
Unclarified lysate 
 
Clarified lysate 
 
Eluate (from batch 
adsorption) 
 

0 
 
 
 
 
 
3 
 

12 
 

20 

216 
 
 
 
 
 

168 
 
 
 

84 

3.6 
 
 
 
 
 

2.8 
 
 
 

1.4 

100 
 
 
 
 
 

78 *a 
 
 
 

39 *a 

Cell suspension 
 Total biomass: 60 kg  
 Total volume: 400 l 
 Biomass conc.: 15 % ww/v 
 Biomass activity: 3.6 MU kg 
 
Disruptate 
 
Eluate (from FBA) 
 

0 
 
 
 
 
 
 
 

2.5 *e 
 

216 
 
 
 
 
 

134 
 

111 

3.6 
 
 
 
 
 

2.23 
 

1.85 

100 
 
 
 
 
 

62*b 
 

52*c 

Productivity: 70,000  U kgbiomass
-1 h-1 Productivity: 740,000  U kgbiomass

-1 h-1 

*a  Data provided by CAMR, Porton Down Salisbury. 
*b  The estimated recovery value for this step is based on the result that enzyme release by bead milling was commonly about 79% of that achieved by alkaline lysis 

(refer to Table 2.3). 
*c  Average recovery for CM HyperD LS in integrated recovery experiments 83% (refer to Table 4.5). 
*d In this process example, an appropriately up-scaled fluidised bed of CM HyperD LS is employed, for calculation refer to Section 4.4.2 (column diameter 48 cm, SBV 

28l, adsorbent dynamic capacity 8000 units per ml of adsorbent at a loading flow velocity of 250 cm h-1)  
*e This process time reflects the cell disruption with simultaneous loading of the disruptate onto the fluidised bed, a wash of 10 settled bed volumes at 250 cm h-1, and 

an elution in 3 settled bed volumes at 100 cm h-1. 

This table summarises the performance of the two approaches to the primary purification of L-asparaginase from Erwinia chrysanthemi.  
Recovery data for the current, commercial process was provided by CAMR (Porton Down, Salisbury). The calculation was based on a 
typical batch size of the current commercial process (60 kg cell paste per campaign, average biomass activity 3.6 MU kg-1). The 
productivity is given as the total amount enzyme activity recovered per kg of biomass divided by the total process time. 
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5 CONCLUSIONS AND FURTHER WORK 

5.1 Final conclusions 

The study presented here was concerned with the redesign of a process for the primary 

purification of the intracellular enzyme L-asparaginase from Erwinia chrysanthemi. The 

overall aim was to establish a simpler, yet more efficient, means of recovering the enzyme 

without compromising existing standards of purity and activity. Of particular importance was 

the omission of bottlenecks present in the current commercial process which diminish process 

economy and entail losses of enzyme activity.  

The current, commercial process employs alkaline lysis for the disintegration of 

Erwinia chrysanthemi and the release of L-asparaginase (refer to Figure 1.4). The lysate is 

clarified by centrifugation steps and the product is recovered by a batch adsorption step. 

However, this process is characterised by several disadvantages. Firstly, the initial biomass 

concentration employed for the lysis is limited since a considerable increase in broth viscosity 

during the addition of sodium hydroxide aggravates homogeneous mixing of the broth and 

may therefore promote product damage by extreme local pH values. Secondly, the batch-wise 

operation of the lysis may result in a loss of enzyme activity due to the exposure of the 

product to system antagonists, such as proteases and cell debris, while the lysate is 

accumulated and clarified. Broth clarification is accomplished by centrifugation, which 

predominantly contributes to the overall process duration (refer to Figure 1.4). Moreover, the 

addition of alkali and acid during the lysis results in a comparatively high conductivity of the 

lysate. A dilution is thus required for an efficient adsorption of the product by the cation 

exchange adsorbent.  
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For the revision of the process, an integration of cell disruption and fluidised bed 

adsorption was proposed (refer to Figure 1.4 and 1.5). By employing fluidised bed adsorption, 

the clarification of the broth would be incorporated with the capture of the product which 

would result in a considerably shortened overall process time. Here, an efficient cell 

disruption method capable of continuous, single-pass operation would omit the accumulation 

of the disruptate prior to the product capture and therefore benefit its yield and molecular 

fidelity by the minimisation of its contact time with antagonists present in the disruptate.  

The experiments presented in Chapter 2 investigated the development of a cell 

disruption process for Erwinia chrysanthemi by bead milling. Although not widely used for 

the disruption of bacteria, bead milling proved to be an efficient means for the release of L-

asparaginase. Here, the product yield per unit of biomass (i.e. resuspended cell paste) was 

slightly lower in comparison with that achieved by alkaline lysis for the same batch of cell 

paste (refer to Table 2.3). This may be attributed to a combination of process intensification 

(up to 15% biomass ww/v for bead milling; refer to Figure 1.4) and back mixing phenomena 

in the disruption chamber. However, this was judged acceptable in view of the process 

advantage of continuous, single-pass disruption, but requires further optimisation. An 

optimum range of feed rates for the milling process, resulting in maximum product release 

whilst minimising product-debris interactions, was established (8 – 10 l h-1, refer to Figure 

2.5). It was found that at a low range of feed rates (< 8 l h-1) product-debris interactions were 

increased and thus influential on achievable product yields (refer to Figure 2.5 and Figure 

2.9). These results suggested that disruption at low feed rates, i.e. at prolonged liquid 

residence times within the disruption chamber, promoted product debris interactions as a 

result of an increased specific surface area due to the increased micronisation of cell 

fragments. It was demonstrated that product-debris interactions were of an electrostatic nature 
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and decreased with increasing ionic strength and disruptate pH (see Figure 2.8). A measurable 

adsorption of purified L-asparaginase from buffer solutions to glass and zirconia grinding 

beads could be found (see Figure 2.7). However, such interactions will be clearly reduced in a 

competitive environment, e.g. when the grinding beads are in contact with a complex mixture 

of biological molecules during the continuous disruption of a cell suspension.  

Experiments summarised in Chapter 3 investigated the development of a fluidised bed 

process for the initial fractionation of L-asparaginase from unclarified Erwinia disruptates 

generated by bead milling. Candidate adsorbents were physically characterised, i.e. their bed 

expansion and axial dispersion characteristics were studied. Two cation exchange adsorbents, 

CM HyperD LS and SP UpFront, were selected for fluidised bed experiments using Erwinia 

disruptates. In a side-by-side comparison, their adsorption characteristics, i.e. uptake rate and 

equilibrium capacity, were assessed in batch binding experiments. Frontal analysis was 

employed to study the effect of superficial flow velocity and settled bed height on the 

dynamic capacity of the adsorbents.  

Bed expansion studies demonstrated that fluidisation of CM HyperD LS and SP Upfront 

in a 15% biomass (ww/v) containing feedstock increased their bed expansion at given flow 

velocities approximately by a factor of three in comparison with fluidisation in buffer (see 

Figure 3.4). Increased particle density considerably reduced bed expansion at given flow 

velocities which facilitated the use of higher flow velocities. During frontal analysis 

experiments employing CM HyperD LS (1.41 g ml-1) in a 15% biomass containing feedstock 

at a superficial flow velocity of 300 cm h-1, adsorbent particles elutriated from the fluidised 

bed suggesting that, with respect to the given feedstock viscosity, an upper limit for 

operations using this adsorbent was approached. Owing to its enhanced particle density of 

2.35 g ml-1, SP UpFront exhibited a significantly lower bed expansion in comparison with 
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CM HyperD LS and could be operated at 400 cm h-1 in 15% biomass without any entrainment 

of adsorbent particles. However, increasing the biomass concentration to 22% (ww/v) 

diminished the stable fluidisation of SP UpFront even at low flow velocities (200 cm h-1) and 

promoted channelling which resulted in early product breakthrough (refer to Figure 3.14 panel 

A).  

It was found that product-debris interactions were considerably reduced at a disruptate 

pH of 6.0 in comparison with a pH of 5.0 (refer to Figure 2.8). However, both adsorbents, CM 

HyperD LS and SP UpFront, exhibited a considerable reduction in equilibrium capacity for L-

asparaginase when pH values of 6.0 were approached (see Figure 3.6). Thus, an intermediate 

pH of 5.5 was adopted for the fluidised bed capture of L-asparaginase as a trade-off between 

adsorbent capacity and product-debris adsorption.  

CM HyperD LS and SP UpFront represented two structurally distinct solid phases (refer 

to Figure 3.7). The former comprises a highly porous, rigid skeleton filled with a hyper-

diffusive hydrogel containing the ion-exchange groups. The pellicular SP UpFront comprises 

a non-porous solid, stainless steel core coated with a porous agarose layer. It was estimated 

that the inert core amounted to 22% of the total bead volume (i.e. a 100 µm composite bead 

comprising 60 µm steel core). Owing to their distinct solid phase structures, both adsorbents 

exhibited different adsorption characteristics. Batch binding experiments revealed a threefold 

higher equilibrium capacity for CM HyperD LS which could be attributed only to a degree to 

a greater internal particle volume. Here, the higher ligand concentration of CM HyperD LS 

appeared to have contributed to this result. The pellicular SP UpFront, on the other hand, 

distinguished itself by a higher adsorption rate attributable to reduced diffusion paths in the 

macroporous layer. Despite different uptake rates, both adsorbents exhibited an equivalent 

proportional decrease in dynamic capacity with increasing flow velocity (see Figure 3.15). 
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The higher uptake rates of SP UpFront did not result in a better performance, presumably due 

to considerably shorter liquid residence times in SP UpFront fluidised beds as a result of the 

reduced bed expansion. Under equivalent conditions with regard to fluid residence times, e.g. 

in a fixed bed, it would be expected that the dynamic capacity of an adsorbent with a higher 

adsorption rate would be less affected by an increase in flow velocity.  

Frontal analysis performed at different settled bed heights revealed that dynamic 

capacities were comparatively low at 7 cm SBH (refer to Figure 3.16). Increasing the SBH to 

15 cm resulted in considerably improved dynamic capacities. A further increase of the SBH to 

22 cm improved the dynamic capacities only slightly. The increase in dynamic capacity found 

with increasing SBH appeared to be due to a combination of a prolonged residence time of a 

fluid front within the fluidised bed and the dampening of flow irregularities at the bottom of 

the bed promoted by uneven flow distribution. Both for CM HyperD and for SP UpFront, a 

settled bed height of 15 cm or greater resulted in a good utilisation of the adsorbent capacity.  

The contrasting characteristics of the two adsorbents, high static and dynamic capacity 

(CM HyperD LS) as opposed to enhanced particle density in combination with high uptake 

rates (SP UpFront) may be exploited for particular applications. High capacity enhances 

process economy by a reduced adsorbent inventory. On the other hand, increased particle 

density in combination with high uptake rates enable efficient product capture at high linear 

flow velocities. Such properties would be ideal for applications such as the in-situ product 

removal where a fluidised bed is connected as an external loop to a productive fermenter 

(Hamilton et al., 1999). Here, high flow velocities in the external loop would minimise the 

time for the producer cells to be outside the controlled environment of the bioreactor. The 

concept of a manifold of fluidised beds (see Figure 3.18) as exploited by (Hamilton et al., 

1999) would also be applicable to the processing of a disruptate generated by a continuous, 
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single pass process such as bead milling (refer to Chapter 2). Advantages of such a system of 

multiple, down-scaled fluidised beds would be a reduced adsorbent inventory, short feedstock 

residence times and thus short cycles of adsorption, washing, desorption and re-conditioning.  

Chapter 4 summarised experiments concerned with the integration of cell disruption by 

bead milling and product capture by fluidised bed adsorption. Here, the feasibility of the 

concept of performing cell disruption and product capture simultaneously was demonstrated 

for the purification of the glyceraldehyde 3-phosphate dehydrogenase (G3PDH) from 

Saccharomyces cerevisiae and L-asparaginase from Erwinia chrysanthemi. From a stage 

comparison of conventional purification routes of the respective enzymes with the integrated 

approach (G3PDH: refer to Table 4.6, L-asparaginase: refer to Figure 1.4) it is evident that 

there is a considerable reduction in the number of consecutive unit operations in line with 

operating time-frames and concomitant product losses (in particular due to the elimination of 

disruptate accumulation and discrete solid-liquid separation steps). Since proteins are 

generally stabilised when adsorbed onto a solid support (Melrose, 1971), it is advantageous to 

place an adsorptive step as far upstream as possible. As a consequence, the immediate and 

direct sequestration of products from cell disruptates, as proposed by the integration of bead 

milling and fluidised bed adsorption in the same time frame, particularly benefits the 

purification of potentially labile proteins. This is largely because the hold-up periods, whilst 

batches of feedstock are accumulated and/or conditioned prior to fluidised bed processing, are 

minimised.  

Disruptates of Erwinia chrysanthemi were generally characterised by a considerable 

amount of debris bound enzyme (e.g. 25% of the total available enzyme, refer to Section 

2.3.3.3). This fraction of enzyme would not be accessible for recovery when disruptates were 

to be clarified prior to the product capture. Since these interactions were of an electrostatic 
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nature, they are not system-specific but represent a generic problem in the downstream 

processing of basic proteins by cation exchange processes. Employing a batch adsorption 

experiment it was demonstrated that the exposure of an unclarified Erwinia disruptate to a 

cation-exchange adsorbent reduced the amount of debris-bound L-asparaginase by 

approximately 40% (see Figure 4.12). Here, a competition between the two solid phases (i.e. 

the cation exchanger and cell debris) appeared to shift the product-debris adsorption 

equilibrium towards positive product capture on the ion exchanger. The immediate exposure 

of the disruptate to an adsorbent matrix in a fluidised bed, directly connected to a bead mill, 

might therefore reduce the initial amount of debris-bound product by minimising the 

incubation time of the product with cell debris. This process is schematically depicted in 

Figure 5.1.  

 It has been demonstrated earlier that fluidised bed adsorption is a scaleable operation 

(Barnfield-Frej et al., 1997). In the same way, bead mills are commercially available from 

laboratory to industrial scale (Kula and Schütte, 1987; Middelberg, 1995). Thus, integrated 

bead milling and fluidised bed adsorption is a scalable and generic approach to the efficient 

recovery of intracellular proteins.  

 



 156

 

 

 

 

 

Figure 5.1. Stages during the primary purification of L-asparaginase. 
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L-asparaginase in solution is present in the cell suspension prior to cell disruption 
presumably due to freezing and thawing of the cells. Bead milling releases intracellular L-
asparaginase and generates fine cell debris which adsorbs enzyme in solution. Immediate 
exposure of the disruptate to an adsorbent matrix in a fluidised bed minimises the contact 
time of the product and debris and promotes desorption of debris bound product.  
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5.2 Future work 

The primary purification of L-asparaginase could be further enhanced by (i) optimised 

product release (i.e. disruption conditions which minimise product-debris interactions), (ii) 

the maximisation of biomass throughput using high density adsorbents, and (iii) an alternative 

method of product capture (e.g. mixed mode or affinity adsorbents). In addition, the potential 

of the direct product sequestration at cell disruption should be validated for the purification of 

a particular labile product. 

Optimisation of operating conditions for the disruption of Erwinia chrysanthemi 

The reduction of debris-bound L-asparaginase following cell disruption requires further 

investigation. Under the operating conditions adopted for bead milling (refer to Section 4.2.3), 

a considerable amount of debris-bound product was observed (refer to Section 2.3.3.3) which 

could in part be desorbed by the exposure of the disruptate to an adsorbent matrix (refer to 

Section 4.3.2.3). However, it would be beneficial to minimise the amount of debris bound 

product formed. It was demonstrated that product-debris interactions were minimal at a 

disruptate pH of 6.0. However, under such conditions, the capacity of ion exchange 

adsorbents was diminished (refer to Section 3.3.2). Thus, the adoption of a disruptate pH 

greater than 6.0 would minimise adsorptive product losses, but on the other hand require an 

alternative method of product capture (e.g. affinity or mixed mode adsorbents, see below).  

Maximisation of biomass throughput by high-density adsorbents 

Due to its higher density in comparison with other well-established, commercially 

available adsorbents, such as the STREAMLINE range (1.15 g ml-1, Amersham Pharmacia), 

CM HyperD LS (1.4 g ml-1, Biosepra/Life Technologies) appeared to be better suited for the 

primary purification of L-asparaginase. However, viscosity driven elutriation still limited its 
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operational window with regard to fluidisation velocity (refer to Section 3.3.5). Pellicular, 

adsorbents with enhanced densities, such as the prototype SP UpFront (2.35 g ml-1, UpFront 

Chromatography), demonstrated that high-density adsorbents facilitate stable fluidisation at 

increased loading flow velocities. However, a considerably lower static and dynamic capacity 

was found for SP UpFront in side-by-side comparison with CM HyperD. This can only to a 

limited degree be attributed to a reduced internal bead volume and thus needs further 

investigation. In this regard, an equivalent ligand concentration per available unit of internal 

bead volume would yield a more valid comparison.  

It has been demonstrated that cell disruption in bead mills can be efficiently achieved at 

high biomass concentrations (e.g. 50% yeast ww/v, refer to Section 4.3.1). However, in the 

integrated purification of L-asparaginase from Erwinia, the initial biomass concentration in 

the feedstock was limited. For example, a biomass concentration of 22% ww/v promoted 

channelling and bed instability when employing SP UpFront at a loading flow velocity of  

200 cm h-1, refer to Section 3.3.5).  Here, a high-density adsorbent could improve the bed 

stability at high feedstock viscosities, i.e. high biomass concentrations.  

Further application for high-density adsorbents with appropriate mass transfer 

characteristics lies in in-situ product removal, e.g. by fluidised beds as an external loop 

attached to a productive fermenter, as reported by Hamilton et al. (1999). Here, high flow 

velocities would minimise the residence time of the culture broth outside the controlled 

environment of the bioreactor. In such a system, enhanced particle density might also reduce 

the entrainment of adsorbent particles caused by perturbations of the fluidised bed, e.g. by air 

bubbles transferred from a bioreactor into the fluidised bed. Another attractive application for 

high-density adsorbents would be the integration of a manifold of fluidised beds with a 

continuously operating cell disrupter. Instead of processing a given batch of biomass with a 
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large, single fluidised bed, a manifold of appropriately down-scaled fluidised beds could 

reduce the adsorbent inventory by the re-use of smaller beds within a purification campaign 

(refer to Figure 3.18).  

Alternative modes of product capture in the purification of L-asparaginase 

It was demonstrated that product debris interactions were minimal at pH values greater 

than 6.0. However, product capture at such pH ranges was compromised by diminished 

adsorbent capacities. Thus, adsorbents which offer effective adsorption of L-asparaginase 

whilst being less sensitive to disruptate pH and /or ionic strength (e.g. affinity or mixed mode 

adsorbents) would improve the product yield by minimising adsorptive losses to cell debris. 

For example, Hamilton et al. (2000) reported the development of a mixed mode adsorbent 

which facilitated the in-situ product removal of an extracellular acid protease from cultures of 

Yarrowia lipolytica at pH values close to the pI of the enzyme where ion exchange adsorbents 

would prove inappropriate.   

Verification of the potential for the integration of cell disruption and FBA 

The potential of the integrated process as presented in Chapter 4 should be verified by 

its application to the purification of a particularly labile product. For example, Grodberg and 

Dunn (1988) reported a case where a recombinant RNA polymerase, expressed and 

accumulated in Escherichia coli, was found to be very susceptible to cleavage by at least one 

outer membrane endoprotease following cell lysis. The inclusion of a variety of standard 

protease inhibitors during purification failed to prevent cleavage of the enzyme. Employing 

such a production system, the impact of immediate product sequestration (DPS) on product 

degradation could be ascertained.  
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