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Abstract

This thesis is concerned with momentum anisotropy in strongly correlated electron
systems, and explores its origin and its consequences through two contrasting projects.
The first is a study of the temperature dependences of magnetotransport quantities in
the normal state of the cuprate high-temperature superconductors. A phenomeno-
logical anisotropic small-angle scattering model is investigated; Hall effect measure-
ments can be reproduced for parameters sufficiently close to particle-hole symmetry,
but the experimentally observed magnetoresistance cannot be explained. The second
project studies the phase diagram and quasiparticle properties of the square lattice
Hubbard model within two-site cluster dynamical mean-field theory (DMFT), at zero
temperature. The “two-site” approach provides a drastically simplified but physically-
motivated self-consistency scheme for DMFT. This is combined for the first time with
cluster DMFT, within which different magnetic orders and momentum anisotropy may
be represented consistently. The extent of antiferromagnetism is determined; phases
are discovered where the Fermi surface consists of small hole pockets, and the Mott
transition happens as these pockets shrink to points. Anisotropic phenomena observed
in the cuprates are reproduced by the theory; a pseudogap destroys the Fermi surface
in some places, leaving behind Fermi arcs that closed into hole pockets by lines with
very small quasiparticle residue.
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Chapter 1

INTRODUCTION

Party is Nature too, and you shall see

By force of Logic how they both agree:

The Many in the One, the One in Many;

All is not Some, nor Some the same as Any...

GEORGE ELIOT

Middlemarch [1]
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This thesis is an investigation of the behaviour of electrons in solids. In the vast major-
ity of materials, the electrons moving within a lattice of atoms can be considered to
behave independently. The behaviour of a single electron can be extrapolated to all,
and electronic properties as a whole are well-understood. However, circumstances can
conspire such that this framework breaks down, and certain materials exhibit peculiar
phenomena which defy explanation. The behaviour of many electrons collectively can
be quite different from what one would expect for electrons individually — and, more
surprisingly, the resultant phases are often completely stable, protected by higher orga-
nizational principles. Generally, the phenomena are apparent at low temperature, where
the relevant physical laws are from many-body quantum mechanics.

Superconductivity is a familiar and unmissable example of a phenomenon whose
underlying physics is the collective behaviour of many electrons. In conventional
superconductors, the superconductivity is well-understood, and seeded by the influ-
ence of lattice vibrations (phonons); however, the focus of this thesis will instead be
upon instabilities of the electron gas caused by the interactions of electrons just with
one other. In the so-called “high-temperature” superconductors, the origin of the
superconductivity remains mysterious, but it is widely believed that magnetic fluctua-
tions, due to the interactions between electrons, seed the superconducting instability. It
is not just the high superconducting transition temperature (Tc) that makes these mat-
erials peculiar; the “normal” state of the cuprate high-temperature superconductors,
existing at temperatures above Tc, has many anomalous properties. Several of these
will be studied in this thesis; understanding the normal state of the cuprates is widely
believed to be a prerequisite to understanding their superconductivity.

The Mott insulator is another dramatic instance of the effects of electron correla-
tions. Materials which are predicted to be metals by band theory turn out to be insu-
lators, and the cause is electrons blocking each others’ motions. There are unanswered
questions concerning the Mott transition between such an insulator and a metal — and
indeed the high temperature superconductors are often regarded as a doped Mott ins-
ulator. Later in this thesis the Mott transition will be discussed in detail, and I present
calculations that aid our understanding of it.

Unfortunately, there is no way of observing directly what the electrons in a material
are actually doing; experimental probes are limited and sophisticated, and it is often
difficult to disentangle the underlying physics. The job of the theorist is to invent and
investigate models for materials, and provide clues to understanding of their strange
properties. Such models could be microscopic (such as the Hubbard model discussed be-
low), modelling the behaviour of the electrons from first principles; or constructed phe-
nomenologically from the results of experiments. In either case, the models should pro-
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1. INTRODUCTION FERMI LIQUIDS

duce results which can be compared with experiments, and ideally predict the results
of future experiments. Ultimately, with sufficient insight, conscious design of materials
can become possible; perhaps to increase the superconducting transition temperature,
or capitalize upon unusual properties to construct novel devices.

In the next part of this introduction I will discuss in more detail the conventional
framework for electron fluids (Fermi liquid theory), and the Hubbard model. I will
then describe why strongly correlated electron systems are so difficult — but reward-
ing — to study, and the progress made with a modern technique (dynamical mean-
field theory). Finally, I will give an overview of the specific investigations made in this
thesis.

1.1 Fermi liquids

A metal contains a sea of mutually-repelling electrons in close proximity to each other;
yet, strangely, their interactions are usually unimportant, and merely manifest them-
selves solely as a renormalization of the electron’s mass. Effective electron masses
vary from close to the vacuum value (in s-electron metals, such as sodium), to being
hundreds or thousands of times the bare mass in “heavy-fermion” materials such
as CeCu6−xAux, where there is a large effective electronic interaction in the tight f -
electron orbitals. The ordinary behaviour of these electrons is described by the Fermi
liquid theory of Landau [2]; non-interacting electrons fill up modes in momentum space,
yielding a Fermi surface — the locus of points in momentum-space that are filled last.
At low temperature, the properties of the system depend only on small excitations
around this surface.

Such excitations are robust; if interactions are turned on adiabatically, and we can
keep track of the numbering of eigenstates, electronic properties are merely renormal-
ized.1 But we should not now think in terms of the original electrons, but instead
of quasiparticles, many-particle superpositions containing a fraction z (the quasiparticle
residue) of the original electron. Quasiparticles have a finite lifetime as they are not
exact eigenstates.

There are special situations, however, where the Fermi liquid breaks down, giving
a non-Fermi liquid [4]. In one spatial dimension, the destruction of a Fermi liquid giving
the dramatically different Luttinger liquid (where the charge and spin degrees of the
electron can separate) is well-understood [5]. The focus for this thesis is two-dimensional
systems, which are not understood — perhaps one layer of a compound, where inter-
layer coupling is sufficiently weak, such as the CuO2 plane in many high-temperature

1The Fermi liquid is a “quantum protectorate” [3] — intricate details can be entirely neglected.
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1. INTRODUCTION THE HUBBARD MODEL

superconducting materials.
There are many possible mechanisms for the breakdown of a Fermi liquid. The

lifetime of the quasiparticles could become so small that the concept of a quasipar-
ticle ceases to be meaningful; the marginal Fermi liquid seen in the normal state of the
cuprates (see Chapter 2) is believed to be an example of such as state. Alternatively, the
quasiparticle residue z could tend towards zero — or the quasiparticle gets so heavy,
that it dies [6]. The Mott transition to an insulating state occurs like this (see Chap-
ter 3). A further possibility is superconductivity: an instability to an utterly different
lower energy state;2 interactions can be so large that the ground state of the interacting
system is no longer connected with that of the original system.

In other cases, all we know is that there is experimental evidence that the single
electron-like quasiparticle is no longer the right description of the physics. Trans-
port measurements in the cuprates show that the electron appears to exhibit two dis-
tinctly different scattering rates [7, 8]; Chapter 2 is concerned with this phenomenon.
Breakdown of the Wiedemann–Franz law has been observed in a cuprate [9], implying
that there are somehow different types of electron involved in thermal and electrical
transport. Outside the cuprates, itinerant ferromagnets [10] and the bilayer strontium
ruthenate Sr3Ru2O7 [11] are examples of materials where non-Fermi liquid behaviour
has been observed. Proximity to a quantum critical point [12] is thought to be an under-
lying feature of many of these materials. Non-Fermi liquid behaviour can also be in-
duced artificially — for example, the fractional quantum Hall effect seen with extreme
magnetic fields.

1.2 The Hubbard model

To investigate physics beyond the Fermi liquid a comprehensive but simple micro-
scopic model is required, for which the Hubbard model is commonly utilized. Elec-
trons are assumed to exist on a set of independent sites (Wannier orbitals, perhaps);
they have kinetic energy from hopping between sites, and potential energy from the
interaction between the electrons. The latter is represented in the Hubbard model by a
simple energy penalty U for any site which is doubly-occupied (i.e. containing both an
↑-spin electron and a ↓-spin electron). The Hamiltonian ĤHubbard = T̂+ V̂, where

T̂ =−∑
i j

ti jĉ
†
i,σ ĉ j,σ = ∑

k,σ
εkĉ†k,σ ĉk,σ and V̂ = U ∑

i
ĉ†i↑ĉi↑ĉ

†
i↓ĉi↓ . (1.1)

The Hubbard model is parametrized by the dispersion εk, the Hubbard interaction
2Although superconductivity is to some extent based upon the original Fermi surface.
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1. INTRODUCTION STRONGLY CORRELATED ELECTRON SYSTEMS

energy U, and the number of electrons per site n. Clearly, in real materials the local
chemistry of multiple atomic orbitals etc. will mean that this is not an accurate repre-
sentation of the situation, but in many cases such features will be irrelevant. Further
sophistication can be added subsequently if necessary. We are mainly interested in the
copper oxide plane, where it can be shown that the Hubbard model is a good repre-
sentation of the low energy physics [13].

Despite its simplicity and many years of study, much of the physics of the Hubbard
model remains unknown;3 surprisingly simple facts, such as whether it hosts a ferro-
magnetic ground state, are still not resolved. Recently, the limit of infinite dimensions
has allowed considerable progress, and provided insight into its behaviour in lower di-
mensions (see discussion of dynamical mean-field theory below). The focus here is the
2D Hubbard model, and we aim to survey its phase diagram, concentrating on mag-
netism, as U and n are varied. A particular material, such as a high-temperature super-
conductor at a specific doping level, will fall at a single point on this phase diagram;
the general picture will be relevant to our understanding a wide variety of materials
and how their states relate to each other.

In two limits the Hubbard model is easily understood. For U = 0, it is solvable
when Fourier-transformed, and the k-modes are filled up one by one, giving a non-
interacting Fermi liquid. In the opposite limit ti j = 0, the sites are decoupled and can
be solved independently; the system is clearly an insulator. In the intermediate regime,
the Hubbard model is tough and the electrons have a character somewhere between
localized and itinerant: a strongly correlated electron system.

1.3 Strongly correlated electron systems

When the potential energy of electrons from interactions becomes comparable to their
kinetic energy, the system may be described as strongly correlated; typically, this oc-
curs in materials where d-electrons are active (e.g. cuprates, ruthenates). There is like-
wise a balance between itinerant and localized nature of the electrons, which manifests
itself as the boundary between wave- and particle-like nature: at low temperatures
quantum mechanics is important and wave-particle duality plays an important rôle.
Non-interacting electrons in a crystalline solid fall into eigenmodes of momentum,
defining a clean Fermi surface in momentum space, but the electron-electron inter-
action is fundamentally point-like in space. As this interaction increases, so does the
influence of local, particle-like physics and the Fermi liquid description is called into

3In one dimension the Hubbard model has been solved exactly, although it is still not fully under-
stood.
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1. INTRODUCTION OVERVIEW OF THESIS

question.
A strongly correlated regime is finely balanced: small changes in parameters can

have dramatic effects on the system, so there is a wide variety of fascinating phenom-
ena and a real possibility of intelligent engineering. Another characteristic of such
systems is the simultaneous presence of a large range of energy scales, which means
perturbation theory becomes useless — there is no small parameter to use. It is dif-
ficult to know where to start; simple model Hamiltonians are useful for describing
regimes (perhaps protectorates) whose low energy behaviour is understood, but dras-
tic approximations to the Hubbard model Hamiltonian have often been misleading:
their results have been specific to the reduced model implemented and have not nec-
essarily reflected genuine Hubbard model physics.

In the last 15 years, dynamical mean-field theory (DMFT) has emerged as a well-
justified, non-perturbative approach to strongly correlated electron systems. Inspired
by the limit of infinite spatial dimensions, where physics is simplified by being local,
DMFT encompasses from the outset both localized and itinerant physics. Within the
theory, particles are effectively localized on short timescales but itinerant over long
time scales; technically, this corresponds to a local but fully frequency-dependent self-
energy. DMFT can be derived analytically in the infinite dimensional limit, giving it a
rigorous basis; when applying it to finite dimensional real systems, we know exactly
what approximation is being made. If its results turn out to be different from an exper-
iment, they are still informative: one could ask at what dimension there is a transition
— and whether it could be accessed in crystals with high coordination number. Most
of this thesis is concerned with the use of DMFT to survey the phase diagram of the
Hubbard model.

1.4 Overview of Thesis

This thesis comprises two contrasting and complementary approaches to strongly cor-
related electron systems. The first is a phenomenological study of magnetotransport in
the cuprates; the starting point is not a microscopic model like the Hubbard model, but
instead a proposal is put forward inspired by experimental observations. Calculations
with the phenomenological model predict the results of other experiments, which tests
the veracity of the hypothesis. If it is successful, the form of such a model can provide
hints as to the microscopic physical processes which give rise to it, and considerable
insight into the important physics.

In contrast, the second part of the thesis is an investigation into the properties of a
particular microscopic model across a wide range of parameters. The results are rel-
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1. INTRODUCTION OVERVIEW OF THESIS

evant to a variety of experimental circumstances; the phase diagram contains points
corresponding to individual compounds (including hopefully the normal state of the
superconducting cuprates), and so gives insight into the relationships between differ-
ent materials. Any experimentally relevant quantity may be calculated from the model,
and the details and origin of a phenomenon may be investigated further if comparison
to real observations is favourable.

There turn out to be surprising connections between the two projects, most notably
that of anisotropy: Chapter 6 and Chapter 7 give insight into possible mechanisms that
cause anisotropy, whereas Chapter 2 describes effects that anisotropy might have on a
system.

1.4.1 Magnetotransport

In the normal state of the cuprate superconductors, transport quantities under the
influence of a magnetic field exhibit peculiarly non-concordant properties. The Hall
coefficient has a marked temperature dependence, at odds with the conventional the-
ory of metals according to which it should be constant; and the temperature depend-
ence of the magnetoresistance breaks the prediction of conventional theory, Kohler’s
rule. Together these seem to imply that the electron simultaneously exhibits two dif-
ferent lifetimes. The normal state is certainly peculiar — the resistivity shows a linear
temperature dependence — and many believe all these phenomena are symptoms of a
non-Fermi liquid of an as yet unascertained nature.

Many have tried to explain the Hall effect measurements within the framework of
Fermi liquid theory, generally by invoking anisotropic scattering processes. One such
proposal is that of Varma and Abrahams [14], involving a small-angle scattering model
inspired by photoemission observations. In Chapter 2 I investigate this model in de-
tail using a numerical approach; this work has been published [15]. The calculations
aim to provide an independent verification of the work of Varma and Abrahams on
the Hall effect, and more importantly to calculate the expected behaviour of the mag-
netoresistance according to the small-angle scattering model — a quantity they do not
themselves calculate. In the past, the magnetoresistance has often proved the definitive
quantity for discriminating between transport theories.

1.4.2 Cluster study of the Hubbard model

Little is known definitively about the Hubbard model away from half-filling (the case
where there is exactly one electron per site), yet many fascinating materials such as the
superconducting cuprates are believed to lie within its phase diagram. In this thesis, I
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1. INTRODUCTION OVERVIEW OF THESIS

investigate the Hubbard model using an implementation of dynamical mean-field the-
ory adapted so that calculations are relatively quick, so that the entire phase diagram
may be explored with access to complete spectral information. The technique is also
modified so that it is able to represent antiferromagnetic order and broad features in
momentum space. We concentrate on the 2D Hubbard model on a square lattice at
zero temperature, and do not allow the possibility of superconductivity.

Chapter 3 contains a detailed description of dynamical mean-field theory. There are
many methods for solving the self-consistent equations of DMFT, but they generally
require huge amounts of computational power. The approach within this thesis is to
represent the DMFT equations in a highly restricted, minimal way, which enables com-
putational resources to be rechannelled towards extending DMFT. “Two-site” DMFT,
discussed in Chapter 4, effectively consists of Hartree–Fock mean-field theory together
with a single dynamical degree of freedom, that is self-consistently constrained with
physically well-justified criteria. It is probably the simplest model that is capable of
reproducing the key features of the Mott transition — proven many-body capabilities
that make it a useful kernel for other calculations.

In this thesis I combine two-site DMFT, for the first time, with “cluster DMFT”
(Chapter 5), where the single-site basis of conventional DMFT is extended to a clus-
ter of sites. Whilst neither two-site DMFT nor cluster DMFT maintain the rigorous
infinite-dimensional basis of pure DMFT, we can regard two-site cluster DMFT as a
sophisticated boundary condition that becomes exact in the limit of infinite cluster
size. A cluster enables a consistent approach to different magnetic orders such as anti-
ferromagnetism; also local lattice effects may play a rôle, and features can be resolved
in momentum space. This flexibility will turn out to be critical for our understanding
of the Mott transition in the neighbourhood of antiferromagnetism, and for modelling
anisotropic features in the cuprates.

Before introducing a cluster, I present results for ferromagnetic and antiferromag-
netic phases within ordinary two-site DMFT in Chapter 4, and subsequently I present
the phase diagram and quasiparticle properties for the Hubbard model under several
implementations of two-site cluster DMFT. The DMFT approach ensures that sophisti-
cated many-body processes are included and so a large cluster is not required. The first
cluster results are contained in Chapter 6, where a 2× 1 site “pair-cluster” is utilized;
this work was the subject of a published paper [16]. Finally, I increase the cluster size
and investigate a 2× 2 site “quad-cluster” in Chapter 7.
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1. INTRODUCTION NOTES

1.5 Notes

• Vectors are written like k, and matrices like A. I shall use the symbol + to denote
that the quantities should become equal for self-consistency.

• Hamiltonians are denoted H , and will often include the −µN̂ term of the grand
canonical ensemble.

• The expectation of an operator Ô in a system with Green’s function G is

〈Ô〉 =
∫
+∞

−∞
dωnF(ω)

1
π

lim
δ→0

Im tr [O ·G(ω+ µ− iδ)] , (1.2)

where the trace is over the basis in which O and G are matrices, and nF(ω) is the
Fermi function; generally I work at zero temperature (T = 0) where this becomes
the step function θ(ω).

• I shall use the word “finitesimal” to mean greater than infinitesimal (the word
“finite” is often used for this, but zero is finite).

• Please note the distinction between “two-site” and “pair-cluster” in later chap-
ters. These correspond to very different concepts, despite both referring to objects
consisting of two adjacent sites.
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Chapter 2

MAGNETOTRANSPORT IN THE

CUPRATES: PHENOMENOLOGY

And there he plays extravagant matches

In fitless finger-stalls

On a cloth untrue

With a twisted cue

And elliptical billiard balls!

WILLIAM S. GILBERT

The Mikado [17]
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2.1 Introduction

The cuprate materials that superconduct at high temperatures turn out to exhibit many
bizarre properties in their normal state (i.e. at temperatures above the superconduct-
ing transition). Understanding the peculiar nature of the electronic excitations in this
phase is widely believed to be a prerequisite to understanding the mechanism for its
superconductivity. In this chapter, I shall concentrate upon several measurements
made of electrical transport in these compounds, under the influence of a magnetic
field. How these conductivities vary with temperature, and in relation to each other,
turn out to be significantly different from that of a conventional metal, and shed light
on the nature of the electronic excitations. We will investigate the small-angle scat-
tering model proposed by Varma and Abrahams [14] to account for the anomalous
temperature dependences.

The approach of this chapter is phenomenological. Experiments cannot directly reveal
the nature of electron scattering processes, which underlie many important properties
of materials. Instead, hypothetical scattering models may be constructed, and their
consequences compared with experimental observations. Recent angle-resolved pho-
toemission spectroscopy (ARPES) experiments inspired the phenomenological model
of Varma and Abrahams; ARPES observations revealed an anisotropic part to the elec-
tronic lifetime, and the essence of Varma and Abrahams’ idea is to allocate this feature
to small-angle scattering processes, wherein the momentum of an electron is not changed
significantly. Temperature dependences of the conductivities may be calculated from
the phenomenological scattering model including such a small-angle scattering term,
and compared with the experimental results. If the model proves correct, attention
may then be turned to speculate on possible microscopic causes of the scattering pro-
cesses, which may provide insight into details of the electronic properties of the normal
state of the cuprates.

The remainder of this thesis implements a microscopic approach to understanding
materials, in contrast to the phenomenology of this chapter. Although the phenom-
ena investigated are largely separate, Chapter 7 will provide a possible microscopic
explanation of the anisotropy observed in ARPES experiments.

The original paper by Varma and Abrahams [14] contained serious calculational
errors [18, 19, 20], meaning that they overestimated the effects of small-angle scattering
by several orders of magnitude. In a second paper [21] they maintained the veracity of
their idea and recalculated using a different method. We investigated the model num-
erically, an entirely independent approach; the results were published [15] although
disputed by Abrahams and Varma [21]. In fact, our calculations did generally agree
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2. MAGNETOTRANSPORT IN THE CUPRATES EXPERIMENTS

well with their results, but additionally focused upon the magnetoresistance, a quantity
that they never calculated directly. The magnetoresistance is a sensitive test of any
transport theory (see for example Ref. [22]), and we shall see (in §2.5.2) that it is the
definitive discriminator for the small-angle scattering model.

All quantities shall be regarded as solely two-dimensional; the important physics of
the high-temperature superconducting cuprates lies in the CuO2 plane that they have
in common, and the inter-plane coupling is known to be weak. In §2.2 I shall detail
transport and ARPES experiments on the cuprates, and explain why the temperature
dependences of the conductivities are apparently inconsistent. §2.3 describes theoret-
ical approaches to transport calculations. I show in §2.3.1 how the Drude theory is
inadequate for the cuprates, and in §2.3.2 how Anderson proposed altering the stan-
dard picture to fit experimental observations, and the attempts by other researchers to
give his picture some foundation. §2.3.3 details what is meant by small-angle scatter-
ing in the proposal of Varma and Abrahams. My calculations are described in §2.4,
beginning with Boltzmann transport theory and how the standard solution is altered
to include the particular features of the Varma–Abrahams model, and ending up with
an analytical framework to understand numerical results. The numerical method is
presented in §2.4.3, and I present an overview of the results (§2.4.4) together with de-
tailed graphs for the specific model studied in Abrahams and Varma’s later paper [21]
(§2.4.5). Finally, I discuss and interpret the findings (§2.5).

2.2 Experiments

The transport quantities that underlie the study contained in this chapter are the resis-
tance, Hall effect and magnetoresistance. In this section I will outline the conventional
theory for each of the three quantities, and compare with the anomalous behaviour in
the cuprates, focusing upon their temperature dependences. We are interested in the
cuprates in their normal state, i.e. at relatively high temperatures, above the super-
conducting transition; and near optimal doping (the concentration of dopant atom that
gives the highest superconducting transition temperature). This is the “strange metal”
phase indicated on the phase diagram of the cuprates in Fig. 2.1(a). The cone above the
superconducting dome is believed to be characterized by fluctuations from a quantum
critical point; the strange metal may have the universal properties of a protectorate [3],
and indeed CeCoIn5 near a quantum critical point exhibits the same set of transport
properties as the cuprates [23].

Angle-resolved photoemission spectroscopy (ARPES) gives an independent set of
information about the nature of the quasiparticles in the strange metal; §2.2.4 contains
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Figure 2.1: (a) Phase diagram of the cuprates. Here we study the temperature dependence transport properties of
the “strange metal” phase near optimal doping (shaded). (b) Temperature dependence of the resistance taken from
Chien et al. [8]. It obeys a law ρ ∼ A+ BT where the residual resistivity A depends on the in-plane Zn doping and
B is a constant of the marginal Fermi liquid.

a rationalization of some of the ARPES observations.

2.2.1 Resistance

In metals, the acceleration of electrons by an electric field is reduced to equilibrium by
scattering, from impurities and lattice vibrations for example. As long as the electric
field E is small, the current J will be proportional to it, and the longitudinal resistivity
is defined ρ = |E|/|J|. A conventional Fermi liquid of electrons is expected to have a
temperature variation ρ ∼ T2 at the lowest temperatures, but usually this is obscured
by phonon scattering, for which one would expect ρ ∼ T5 at low T and ρ ∼ T at high
T [24].

In the cuprates near optimal doping (see Fig. 2.1(a)), however, a very good linear-T
law ρ = A+ BT is observed for a wide range of temperatures — see Fig. 2.1(b) and
Refs [25, 8] for example. This behaviour has defied explanation: it is neither a conven-
tional Fermi liquid nor phononic in origin. Other experiments on the cuprates (such as
ARPES [26]) have confirmed that the T-linearity is intrinsic to the single-electron relax-
ation rate, and is consistent with a hypothesis of a scale-invariant fluctuation spectrum
and proximity to a quantum critical point [26]; Varma et al. [27] termed this state a
marginal Fermi liquid. It seems that at the Fermi surface, the quasiparticle residue goes
to zero: quasiparticles have very short lifetimes and are constantly flittering in and
out of existence. However, I am not concerned here with the origin of marginal Fermi
liquid behaviour, but just the relationships between the resistance and the transport
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2. MAGNETOTRANSPORT IN THE CUPRATES EXPERIMENTS

properties under the influence of a magnetic field, that are discussed in the succeeding
sections.

2.2.2 Hall effect

If a magnetic field is introduced perpendicular to the plane of a sample, a electric field
Ey is generated transverse to the applied electric field Ex. This is because the magnetic
field causes electrons to curl to one side and charge builds up (until the electric field
generated cancels the effect of the magnetic field). The Hall coefficient RH is defined
as Ey/Jx. For free electrons, and experimentally in almost all materials, RH is a con-
stant that depends only on the electron density (RH = 1/ne). However, the cuprate
superconductors show a marked monotonic decline in RH with increasing tempera-
ture, continuing up to very high temperatures.

The physics needs to be formulated with tensors for conductivity σ and resistivity
ρ, related by matrix inversion, defined by

J= σE, i.e.

(

Jx

0

)

=

(

σxx σxy

−σxy σxx

)(

Ex

Ey

)

; and

(

Ex

Ey

)

=

(

ρxx ρxy

−ρxy ρxx

)(

Jx

0

)

(2.1)
(if the material has x-y symmetry). The Hall angle ΘH, defined by

cot ΘH =
σxx

σxy =
ρxy

ρxx , (2.2)

is a better quantity to consider than RH, as longitudinal effects are factored out (see
§2.3.1). Intuitively, ΘH is the angle by which an electron deviates from the straight-on
path, due to the magnetic field, and in conventional metals cot ΘH has the same tem-
perature dependence as the resistivity ρ. In the cuprates, the decline in RH alerted re-
searchers to the fact that ΘH exhibits a different temperature dependence to ρ: cot ΘH ∼
C+DT2. Surprisingly and significantly, this rule is even more robust than the linear-T
resistivity. The offset C changes with in-plane zinc-doping, as shown in Fig. 2.2(a): this
is a similar effect to that seen in the residual resistivity A, and implies that cot ΘH also
measures an electronic scattering inverse lifetime, to which impurity scattering would
give such an additive constant. The gradient D, on the other hand, varies with the
carrier doping (see Fig. 2.2(b).

These results seems to imply that the electronic quasiparticles have two different
lifetimes for the processes which contribute to the resistance and the Hall effect respec-
tively. This bizarre situation, where the electron appears to split into particles with
different character, has been taken as evidence for spin-charge separation in the CuO2
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(a) (b)

Figure 2.2: (a) Temperature dependence of the Hall angle in in-plane zinc-doped YBa2Cu3O7−δ , taken from Chien
et al. [8]. (b) Temperature dependence of the Hall angle in out-of-plane cobalt-doped YBa2Cu3O7−δ taken from
Carrington et al. [28]. Cobalt changes the hole concentration in the CuO2 plane. The Hall angle is believed to obey
a law cot ΘH ∼ C+ DT2 where C depends on the in-plane impurity doping and D on the carrier doping.

plane — analagously to 1D systems wherein it is known that the electron splits into two
different components, the holon and the spinon. The breakdown of the Wiedemann–
Franz law observed at low temperature in a cuprate [9], adds further credence to this
view. However, we shall not explore these ideas further here; the small-angle scat-
tering model of Varma and Abrahams that we investigate is one of many attempts to
explain the observations whilst staying within the conventional Fermi liquid picture
(see §2.3).

2.2.3 Magnetoresistance

The magnetic field also causes an increase in the resistance of a sample, known as the
magnetoresistance. It is defined

∆ρ
ρ
=
ρ(B)− ρ(0)
ρ(0)

=
∆ρxx

ρxx =−
∆σxx

σxx −
(
σxy

σxx

)2

, (2.3)

and is proportional to B2, for small fields. Intuitively the origin of the magnetoresis-
tance is the curving of electron paths away from the straight-on direction, thus reduc-
ing conductance. It is more subtle than this, however: in an isotropic metal, the magne-
toresistance can be shown to be zero [24], because the Hall field restores the straight-on
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(a) (b)

Figure 2.3: (a) Temperature dependence of the magnetoresistance ∆ρ/ρ in YBa2Cu3O7−δ and La2−xSrxCuO4 (•,O;

�) taken from Harris et al. [30], fitted to (C+ DT2)−2 (dashed line) and T−4 (solid line). The inset shows cot ΘH ∼
C+ DT2 with only slightly different values of C and D. (b) Kohler plot for a YBa2Cu3O7−δ sample, showing plots
for temperatures between 90K and 175K. If Kohler’s rule were obeyed, all lines would coincide. The inset is a zoom
showing higher temperatures.

path for an electron. The case where there is an observable magnetoresistive effect is
when the Fermi surface is not circular; the magnetoresistance in effect probes the vari-
ance of the Hall angle around the Fermi surface. In a conventional metal ∆ρ/ρ∝ B2/ρ2

(see §2.3.1). On a Kohler plot of ∆ρ/ρ vs B2/ρ2, points fall on a straight line that has a
gradient independent of temperature — this is Kohler’s rule. [29]

However, in the cuprates Kohler’s rule is strongly violated [30]. It is believed that
(for temperature dependences) the magnetoresistance in cuprates is no longer pro-
portional to the inverse square of the resistivity ρ−2. Instead, it is proportional to
the square of the Hall angle ∆ρ/ρ ∼ cot−2 ΘH ∼ (C+ DT2)−2, creating a “modified
Kohler’s rule.” However, magnetoresistance is a very sensitive experiment and this
relationship is somewhat controversial — for example, Malinowski et al. [31] provide
evidence suggesting that a different relaxation rate (see §2.3.1) is associated with the
magnetoresistance than that for the Hall effect.

2.2.4 Photoemission

More recently, angle-resolved photoemission spectroscopy (ARPES) experiments have
shed light on the detailed properties of the electronic quasiparticle. ARPES measures
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the distribution, with angle and energy, of electrons emitted when a sample is bom-
barded with photons; a density A(ω,k), closely related to the spectral function, can be
deduced from this distribution. Near the Fermi level, for non-interacting electrons at
low temperature, one would expect a sharp peak (in energy space) following the Fermi
surface (in momentum space), and for real electrons the peak is broadened. The width
of the peak determines the inverse lifetime, or scattering rate, of an electron at that
momentum.

In the cuprates, the scattering rate around the Fermi surface observed by ARPES [32]
can be interpreted as having two components [33] (see Fig. 2.4). First, there is an
isotropic inelastic contribution with a linear temperature dependence, coming from
electron-electron scattering in a marginal Fermi liquid. Second, there is an elastic
temperature-independent contribution which is anisotropic. Measuring angles with res-
pect to the kx direction around the hole-like Fermi surface of the cuprates (centred at
(π, π)), this anisotropic contribution peaks at angles θ = 0, π/2 . . . , and is smallest at
θ= π/4, 3π/4 . . . ; often this variation is modelled with a cosine, as shown in Fig. 2.4(b).
The larger scattering rate in regions near (π, 0) etc. means that the electrons there, hav-
ing a shorter lifetime, are less well-defined, preempting the pseudogap regime where
there are no low-energy excitations available to give rise to free particles — see Chap-
ter 6 and Chapter 7.

In summary, our interpretation of this scattering rate can be written

τ−1(θ,T)∼ A+ BT
︸ ︷︷ ︸

τ−1
M

+τ−1
i cos2 2θ , (2.4)

where the inverse lifetime τ−1
M is the marginal Fermi liquid scattering rate, and the

amplitude of the anisotropic contribution is τ−1
i .

2.3 Transport theories

2.3.1 Conventional theory

In a conventional metal, transport properties are described well by a fairly straightfor-
ward theory. The relaxation time approximation is used, where quasiparticles, anywhere
on the Fermi surface, decay toward equilibrium exponentially with a single lifetime τ
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FIG. 3. Momentum widths (components perpendicular to the
Fermi surface) as a function of temperature for different posi-
tions on the Fermi surface, obtained by fitting the MDCs with
Lorentzian line shapes. Widths are measured at the Fermi level
and at the leading edge, in the normal and in the superconduct-
ing (gray region) state, respectively.

Therefore, uncertainties are largest in this region. In the
superconducting state, the momentum widths appear to
saturate as one moves away from the nodal line. This is
consistent with the emergence of a sharp peak in the EDCs,
which has a temperature-independent width [14].

The product of the momentum widths and the Fermi ve-
locities provides the scattering rates or inverse lifetimes.
In Fig. 4(a), we show the measured velocities as a func-
tion of position around the Fermi surface. Velocities were
obtained from dispersions deduced from MDCs. The low
energy part in such a dispersion (250 meV , v , 0, for
the normal state, and 250 meV , v , 2jD�kF�j, for the
superconducting state) is then fitted by a straight line, with
the slope representing the velocity. The velocity is shown
both for the normal state, nN , where it appears to be nearly
constant over a large fraction of the Fermi surface, and
for the superconducting state, nSC [15]. The ratio of the
velocities nN�nSC is also shown. Note that due to the
change in velocity, the scattering rates are significantly re-
duced below Tc for points away from the node. Finally,
in Fig. 4(b) we show the single-particle scattering rates at
different points on the Fermi surface for two temperatures,
100 and 300 K. These scattering rates are obtained by
multiplying the momentum widths in Fig. 3 by the nor-
mal-state velocities indicated in Fig. 4(a).

Now we focus on different aspects of the results pre-
sented here for the normal state. From the temperature and
kF dependence of the single-particle scattering rate (for
v � 0), it is possible to calculate the conductivity in the

FIG. 4. (a) Fermi velocities (components perpendicular to the
Fermi surface) in the normal (solid squares) and superconducting
(open squares) state as a function of the angle f, defined in
the inset (see text for details). The ratios between the normal
state and superconducting state velocities are also shown (open
triangles). (b) Normal state scattering rates as a function of
f, obtained by multiplying momentum widths from Fig. 3 with
normal state velocities.

normal state. In a simple Drude-type model, the conduc-
tivity is proportional to the integral of kFl over the Fermi
surface, where kF is the Fermi wave vector and l � 1�Dk

is the mean free path. However, the observation in Fig. 3
that Dk has a negligible zero-temperature offset only along
the node a�kF� � 0, shows that a simple integration would
give an incorrect result for resistivity, the latter acquiring
a significant T -independent term. This means that either
the nodal excitations play a special role in the normal state
transport, or single-particle scattering rates differ signifi-
cantly from transport rates. That the normal state transport
might be dominated by the behavior found in the nodal
region, is not unreasonable if one considers the underlying
antiferromagnetic structure of these materials. Along the
diagonal direction, the spins on neighboring copper sites
are ferromagnetically aligned. Along the copper oxygen
bond direction transport will be frustrated by the antifer-
romagnetic alignment of the spins on neighboring copper
sites. However, it is also true that transport discriminates
scattering events, emphasizing large momentum transfers
(small-angle events do not degrade measured currents).
For example, recent thermal transport measurements on
YBCO have indicated a sharp increase in the mean free
path below Tc [16], a behavior different from that found
in ARPES for nodal excitations [5]. When the system
enters the superconducting state, the phase space for
large momentum (angle) transfers collapses and the nodal
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Figure 2.4: (a) Temperature and momentum dependence of momentum widths in Bi2Sr2CaCu2O8−δ measured by
ARPES, taken from Valla et al. [32]. The temperature dependence has the same linear variation at different points
on the Fermi surface (positions (1) to (5), corresponding to θ ∼ π/4 through θ ∼ 0 respectively), but there is an
additional momentum-dependent, temperature-independent, scattering rate which is maximal at θ = 0 (position
(5)). (b) Schematic diagram of this variation of scattering rate; c.f. Eqn 2.4.

(see §2.4.2). For free electrons (Drude model) one can show that

σxx ∼ (ne2τ/m)

σxy ∼ (ne2τ/m) (ωcτ )

∆σxx ∼−(ne2τ/m) (ωcτ )2

⇒
ρ ∼ τ−1

cot ΘH ∼ τ−1

∆ρ/ρ ∼ τ 2

(2.5)

where n is the electron density, m is the effective mass of an electron, and the cyclotron
frequency ωc ≡ eB/m. Temperature should only affect the scattering rate τ−1, so ρ and
cot ΘH are expected to have an identical temperature dependence, and the magnetore-
sistance is expected to behave as ∆ρ/ρ ∼ ρ−2, which is Kohler’s rule. The cuprates do
not fit into this picture: ρ ∼ T whereas cot ΘH ∼ T2, and Kohler’s rule is violated as
their magnetoresistance ∆ρ/ρ ∼ T−4.
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2.3.2 Two lifetime model

Anderson [7] proposed that in the high-Tc cuprates the forms in Eqn 2.5 should be
altered to

σxx ∼ (ne2τtr/m)

σxy ∼ (ne2τtr/m) (ωcτH)

∆σxx ∼ −(ne2τtr/m) (ωcτH)2

⇒
ρ ∼ τ−1

tr

cot ΘH ∼ τ−1
H

∆ρ/ρ ∼ τ 2
H ,

(2.6)

introducing two different scattering times: τtr for longitudinal transport, and τH for
transverse Hall-like effects. If these scattering times have the different temperature
dependences τ−1

tr ∼ A+ BT and τ−1
H ∼ C+ DT2, the cuprate experimental results are

reproduced correctly.
It has not proved easy to find models for the scattering of electrons which can repro-

duce this phenomenology. Many authors have focused on the possibility of anistropic
scattering rates, beginning with the idea of “hot spots” on the Fermi surface at (π, 0)
etc. [34, 35, 36, 37], akin to the ARPES experiments above (see Chapter 6 and Chap-
ter 7 again where a possible microscopic origin is discussed). Similar ideas include
a varying lifetime around the Fermi surface [38], and an anisotropic scattering rate
which saturates [39]. The simplicity of the Drude forms (Eqn 2.5) belies the complica-
tions which ensue when quantities become anisotropic. A conductivity must first be
calculated by adding up the contributions from scattering rates in different places on
the Fermi surface (see §2.4), which must be inverted as a whole to give the resistivity-
like quantities: all momenta couple together, with the result that any effects are, if not
muddled together, certainly nonintuitive.

Other proposals include a nearly-antiferromagnetic Fermi liquid with vertex cor-
rections included [40], or even going beyond a Fermi liquid description inspired by
the spinons and holons in 1D systems [41, 42]; one of the aims of this chapter is to
gain intuition on whether a model that lies in a conventional Fermi liquid is capable of
producing the Anderson phenomenology.

2.3.3 Small-angle scattering

The focus of this study will be a model that lies within Fermi liquid theory, but uses
an unconventional form of the electron scattering rate including an anisotropic term
with restricted momentum transfer. Abrahams et al. [33] proposed that the anisotropic
contribution to the ARPES scattering rate (the τ−1

i term in Eqn 2.4) could be ascribed
to small-angle scattering. Varma and Abrahams [14] investigated a phenomenological
model including such a term and calculated that the resulting Hall angle had the square
of the temperature dependence of the resistivity, as required to match experiments on
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the cuprates.
In a small-angle scattering event there is little change to the momentum of an

electron, and intuitively such processes should make negligible difference to trans-
port properties, but Varma and Abrahams claim that the combination with anisotropy
creates an effective Lorentz force which changes sign every π/4 round the Fermi sur-
face, and the resulting skewed distribution gives anomalous contibutions to the mag-
netotransport quantities. A possible physical origin of the small-angle scattering is
dopant impurites lying out of the copper oxide plane, sufficiently far away that the mo-
mentum transfer is small. The cos2 2θ anisotropy (c.f. Eqn 2.4) could conceivably come
from coupling to the copper d(x2− y2) orbital, or perhaps even a preview fluctuation of
the instability to d-wave superconductivity at lower temperatures. These provide reas-
surance that there are credible physical mechanisms for the phenomenological model;
at this stage we are not concerned further with them — only their consequences.

Small-angle scattering requires that we take account of not only where an electron
has been scattered from (scattering out) but also where it scatters to (scattering in) —
see Fig. 2.5. ARPES, which measures the lifetime of a momentum state, is blind to
scattering in and so we are free to speculate on it. Quantitatively, the scattering rate
τ−1(θ) can be written more fully as τ−1(θ, θ′), giving the rate of scattering from θ to θ′

(note that these processes are elastic). Small-angle scattering processes exhibit a strong
peak for θ close to θ′, whereas conventional processes are insensitive to θ − θ′. At
a point θ, ARPES observes the inverse lifetime of the state τ−1(θ) = ∑θ′ τ−1(θ, θ′). A
possible realization of the full scattering rate is

τ−1(θ, θ′) = τ−1
M + τ

−1
i | cos 2θ|| cos 2θ′|e

−(θ−θ′)2
2θ2c /θc , (2.7)

where θc is the width of the small angle scattering (and note that the τ−1
i of Eqn 2.4 is

defined slightly differently). Fig. 2.5 shows a schematic visualization of the small-angle
scattering process.

2.4 Calculations

2.4.1 Boltzmann transport theory

Boltzmann transport theory is a classical theory of transport in metals, and describes
the electron liquid in terms of the distribution of electrons fk in k-space, and how this
changes under an applied electric field E, a magnetic field B, and some combined scat-
tering rate Ck. The phenomenological scattering model described above will provide
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Figure 2.5: Schematic diagram of the small-angle scattering process. In general, each point on the Fermi surface loses
electrons that are scattered out, and receives them when they are scattered in. For the small-angle scattering studied
here, an individual electron has an even probability of being scattered (in) to anywhere else on the Fermi surface,
plus an enhanced probability of being scattered back (in) to where it came (out) from; this probability varies around
the Fermi surface and is zero in places. If all scattering-in angles are integrated over, the overall scattering-out rate,
or lifetime, of a particular part of the Fermi surface must have the cos2 2θ envelope observed by ARPES.

the quantity Ck, and from the change in distribution of electrons we will be able to
calculate the conductivities σxx, σxy and ∆σxx, from which the quantities in §2.2 can be
derived.

In Appendix A I give a derivation of the linearized Boltzmann equation (Eqn A.1)

vk×B · ∂gk
∂k
− Ck = E · vk

∂ f 0
k

∂εk
(2.8)

where gk is the departure from equilibrium such that fk = f 0
k + gk. Ck is the rate of

change of occupation of the state at k due to scattering processes, combining scattering
in to that k-state and scattering out of that state. So we can write

Ck ≡∑
k′

[

Ck,k′gk′
︸ ︷︷ ︸

Scattering in

− Ck′,kgk
︸ ︷︷ ︸

Scattering out

]

=∑
k′

[

Ck,k′gk′
]

− gk/τ (k) , (2.9)

where Ck,k′ is the scattering rate from state k′ to k, and we have defined the inverse
lifetime τ−1(k) of a state as the combined scattering out rate ∑k′ Ck′,k. Hence, following
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Kotliar et al. [43], we can write the Boltzmann equation in the form

∑
k′

Ak,k′gk′ = E · vk

(

−∂ f 0
k

∂εk

)

, (2.10)

defining the matrix A with elements

Ak,k′ ≡
(
1/τ (k)+ vk ×B · ∇k

)
δ(k− k′)− Ck,k′ . (2.11)

To calculate the deviation from equilibrium gk, we need to invert the matrix A:

gk = A−1E · vk

(

−∂ f 0
k

∂εk

)

; (2.12)

conductivities may be calculated directly from gk:

J = 2∑
k

vkg(k) ⇒ σµν = 2 ∑
k,k′
δ(εk′ − εF)vµk A−1

kk′v
ν
k′ , (2.13)

noting that
(
−∂ f 0

k/∂εk
) T→0−−→ δ(εk − εF), constraining all values of k under considera-

tion to be on the Fermi surface, if T� εF.

2.4.2 Jones–Zener expansion

Usually, the magnetic field B is small, and the matrix A(k,k′) can be inverted in powers
of B:

A−1 ' T
︸︷︷︸

A0

−T (vk ×B · ∇k)T
︸ ︷︷ ︸

A1

+T (vk ×B · ∇k)T (vk ×B · ∇k)T
︸ ︷︷ ︸

A2

+ . . . (2.14)

with implicit matrix multiplication; T is defined by the condition

Tk,k′ = τ (k)

(

δk,k′ +∑
k′′

Ck,k′′Tk′′,k′

)

. (2.15)

The conductivities σxx, σxy and ∆σxx are generated by the terms at B0, B1 and B2 re-
spectively, and variables can be changed from (kx, ky) to (ε, θ, ) for a circular Fermi
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surface:

σxx ∝ ∑
k,k′

vx
kA0k,k′v

x
k′δ(εk− εF) ∝

∫
dθ vx(θ)τ̂ (θ)vx(θ) (2.16)

σxy ∝ ∑
k,k′

vx
kA1k,k′v

y
k′δ(εk− εF) ∝ B

∫
dθ vx(θ)τ̂ (θ)

d
dθ
τ̂ (θ)vy(θ) (2.17)

∆σxx ∝ ∑
k,k′

vx
kA2k,k′v

x
k′δ(εk− εF) ∝ B2

∫
dθ vx(θ)τ̂ (θ)

d
dθ
τ̂ (θ)

d
dθ
τ̂ (θ)vx(θ) . (2.18)

The gradient ∇k has effectively become d/dθ under the change of variable (see later),
and T can be written as a local operator τ̂ (θ) (see Ref. [14] for more detail). Symmetry
means that the three conductivities above are the only non-zero terms; and terms at
higher orders in B will just add further contributions to the conductivities above. If
the Fermi surface is not circular, very similar expressions can be derived (see later); θ
becomes the path length s, and the density of states (or Jacobian) term |v(s)| appears in
various places.

In the relaxation time approximation, the second term of Eqn 2.15 is discarded, so
the operator τ̂ becomes a normal function τ (θ). Secondly, its momentum dependence
is neglected, so in effect T (k,k′)→ τ . The dependences for σxx, σxy and ∆σxx thence
become τ 1,τ 2 and τ 3 respectively, as summarized in Eqn 2.5.

For the model of Varma and Abrahams, Ck,k′ takes the form of the phenomenolog-
ical scattering rate proposition, such as that in Eqn 2.7, and we must solve Eqn 2.15 (in
the θ basis). The original approach of Ref. [14] is to use θc as a perturbative parameter,
and solve Eqn 2.15 iteratively; however, this route is flawed [21] — and in any case,
to expect a perturbative correction to dominate one’s results is manifestly inconsistent.
Features of small angle scattering can be used to simplify the equations and produce
analytic results [21]; we will compare with these results later.

Nevertheless, some insight can be gained from considering θc as a perturbative
parameter. For the case of a circular Fermi surface,

τ̂ (θ)= τM

[

1+
θ2

cτM

τi

(

cos2 2θ
∂2

∂θ2 − 2 sin 4θ
∂

∂θ

)]

, (2.19)
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which generates the expressions

σxx
=

ne2

m
τM

(

1− 1
2
θ2

cτM

τi

)

σxy
=

ne2

m
ωcτ

2
M

(

1− θ
2
cτM

τi

)

∆σxx
= −ne2

m
ω2

c τ
3
M

(

1− 3
2
θ2

cτM

τi

)

.

(2.20)

for the conductivities. Since τ−1
M ∼ T, there are apparently new temperature depen-

dences at first order in θ2
c . These are actually fallacious; for example, for the resistance

ρ= [σxx]−1, all orders in θ2
c must be resummed and a constant is added to the resistance

— this is Matthiessen’s rule.1 However, any real effects of small angle scattering can be
understood in terms of such an expansion in τM/τi, and we can postulate finitesimal
corrections to the Drude forms:

σxx ∼ τM

(

Cxx
0 − Cxx

1
τM
τi
+ Cxx

2
τ 2

M
τ 2

i
+ . . .

)

, (2.21)

σxy ∼ ωcτ
2
M

(

Cxy
0 − Cxy

1
τM
τi
+ Cxy

2
τ 2

M
τ 2

i
+ . . .

)

, (2.22)

∆σxx ∼ −ω2
cτ

3
M

(

C∆xx
0 − C∆xx

1
τM

τi
+ C∆xx

2
τ 2

M
τ 2

i
. . .

)

. (2.23)

The observed transport properties are determined by the relative sizes of the C{xx,xy,∆xx}
{0,1,2}

coefficients, and the circled terms are those that must dominate to match experiment.
The resistivity ρ = [σxx]−1 should be little affected by the anomalous terms and show
the marginal Fermi liquid behaviour ρ ∼ τ−1

M ∼ T, so to match experiment Cxx
1 �

Cxx
0 , etc. The Hall angle cot ΘH = σ

xx/σxy, however, is observed to vary as cot ΘH ∼
T2 ∼ τ−2

M , so Eqn 2.22 must be dominated by Cxy
1 . The magnetoresistance ∆ρ/ρ =

−∆σxx/σxx − (σxy/σxx)2 has an experimental dependence ∆ρ/ρ ∼ T−4 ∼ τ 4
M, which is

apparently provided by (σxy/σxx)2. However, this term has the wrong sign, and so
∆σxx/σxx needs to have (negative) terms at τ4

M which dominate overall, and thence the
next order coefficient C∆xx

2 must be the largest.
To draw conclusions, we need to actually do some real calculations that effectively

evaluate the sizes of the C{xx,xy,∆xx}
{0,1,2} coefficients, but the calculations must not rely

on the expansions above. Next I shall detail our numerical approach (§2.4.3), which
1In fact, Matthiessen’s rule does not hold for the case when the extra scattering has a different mo-

mentum dependence, as will be the case for our model.
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Figure 2.6: Fermi surface for the ARPES best-fit shape of Norman et al. [44], translated from its (π,π) centre.
Discretization of the surface is illustrated by dots, although in practice several times as many points than shown are
used (up to 1000). Fermi velocities at each point are indicated by arrows (length in arbitrary units); the scattering out
rate τ−1(θ) is indicated by the shaded region (again in arbitrary units), and varies according to the model Eqn 2.7.

is entirely distinct from the perturbative analysis above, and then present its results
(§2.4.4). In §2.5 I shall discuss these results within the context of the previous para-
graph: is it possible for the small-angle scattering model to produce the right terms,
large enough to match experimental observations?

2.4.3 Numerical method

Here I present a completely numerical solution of the Boltzmann equation for the
small-angle scattering model. The input parameters will be first a dispersion εk and
chemical potential µ that together define a Fermi surface and Fermi velocities, and sec-
ond a general scattering rate τ−1(θ, θ′) from a point on the Fermi surface at angle θ to
one at θ′. An example of such a small angle scattering model is given in Eqn 2.7, but
the calculations are not restricted to such a form.

To calculate the conductivities, we use Eqn 2.13, and change variables form (kx, ky)
to (ε, s) where ε is the energy and s the distance round the Fermi surface. The ε sum
in Eqn 2.13 vanishes with the δ(ε− εF), and there remains an s-sum constrained to the
Fermi surface. The Jacobian can be shown to be 1/v(s) where v = |v(s)| is the Fermi
speed. The Fermi surface is now discretized, giving n points separated by equal dis-
tances ds in k space. At each point i, the Fermi velocity vi is obtained from the gradient
of the dispersion εk; the scattering rate τ−1

i j to any other point j is also required, and
easily evaluated from the model τ−1(θ, θ′). Fig. 2.6 shows an example discretized Fermi
surface with velocities and scattering rates.

A matrix Ai j (the A of Eqn 2.11) is constructed with with diagonal elements Aii =
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γi− τ−1
ii /vi and off-diagonal elements Ai j =−τ−1

i j /v j, where γi = ∑ j τ
−1
i j /v j is the total

scattering-in to the point i (c.f. Eqn 2.9). To include the magnetic field, we note that
(vk × B · ∇k)→ Bv(s)∂/∂s, becoming just a derivative with respect to s, so we can in-
clude B as additions ±B on the sub- and superdiagonals respectively. The size of B is
arbitrary (as the Hall effect just scales with B and the magnetoresistance with B2), but
must be small enough that higher orders are not important, and in line with real exp-
eriments. We choose B such that cot ΘH ∼ 102 and the relative change in conductance
with respect to B = 0 is small but observable, perhaps 10−3.

Periodic boundary conditions are necessary, and we make sure that expression for
τ−1

i j is periodic with i and j, so there is scattering from θ = 2π − δ to θ = 0+ δ, and
that there are B elements in the corners of the matrix so that the first and last points
are linked for the gradient operator. Finally, we multiply rows by 1/vi to construct a
symmetric matrix (Ai j/vi), and Eqn 2.10 becomes

∑
j

(
Ai j/vi

)
g j =∑

j

(

γi
vi
δi j−

τ−1
i j

viv j

)

g j = vx
i /vi (2.24)

(vx
i means the x-component of the Fermi velocity at the ith point round the Fermi sur-

face). This is just a set of linear equations to solve for the displacements from equilib-
rium g, from which we can obtain the conductivities

σxx
=∑

i
givx

i /vi (B = 0) ; σxy
=∑

i
giv

y
i /vi ; ∆σxx

= σxx − σxx(B = 0) (2.25)

(remembering the density of states Jacobian 1/vi). Unfortunately, the matrix (Ai j/vi)
has the nasty property that each of its rows and columns sum to zero: the matrix has
zero determinant and is not invertible. Physically, this makes sense as particles are
conserved — they must scatter to somewhere else on the Fermi surface. There are
mathematical consequences; first that there is no solution unless the right hand side of
the equation sums to zero also. vx

i will satisfy this constraint because there is no net
velocity without applied fields. Second, the problem is underspecified and there is no
unique solution: if we add a number to every element of such that gi → gi + ζ , the
result will still be a solution; we have not told the mathematics that g is a departure
from equilibrium, so this also makes sense. In practice, fortunately, numerical linear
equation solvers (see Appendix C) are able to produce a solution to the set of equations,
which can be shifted gi→ gi + ζ , choosing ζ to ensure ∑i gi = 0.

26



2. MAGNETOTRANSPORT IN THE CUPRATES CALCULATIONS

2.4.4 Results

Calculations have involved experimenting with many different dispersions and scat-
tering rate functions, and exploring what the small angle scattering model is capable of
producing. Fermi surfaces considered included the one illustrated in Fig. 2.8(a), the full
range shown in Fig. 2.7, and the ARPES best-fit Fermi surface [44] (Fig. 2.6). A range
of scattering rates were used, generally similar to Eqn 2.7, but extending to others such
as the varying-θc model proposed by Varma and Abrahams [18]. In this section I will
summarize our findings qualitatively, and in the following section (§2.4.5) I present
quantitative results for a best-fit to the parametrization of Abrahams and Varma [21].

In general the resistivity is little affected by the introduction of small-angle scatter-
ing, and obeys a nearly linear-T law, persisting from the τ−1

M of Eqn 2.4.
Similarly, the Hall angle generally maintains a nearly linear-T law from the τ−1

M of
Eqn 2.4, apart from one special case: when the Fermi surface is very close to particle-
hole symmetry. Conventionally, the Hall coefficient changes sign when the Fermi sur-
face goes from particle-like to hole-like, so there is a point in between when the Hall
effect vanishes. In a simple tight-binding model this coincides with half-filling, as
shown in Fig. 2.7(a), yielding a diamond-shaped Fermi surface — but this is patho-
logical for transport calculations. Introducing a next-nearest-neighbour hopping term
splits the particle-hole symmetry point away from half-filling, and now the Fermi sur-
face that is particle-hole symmetric (for the Hall effect) consists of sections with with
equal amounts of positive and negative curvature (see Fig. 2.7(b)).2 The conventional
Hall effect vanishes for such a Fermi surface; and when close to such a point, the tem-
perature dependence of the Hall angle cot ΘH within the small angle scattering model
can become quadratic ∼ T2, as shown in Fig. 2.8(b).

For the magnetoresistance, I was unable to find a set of parameters where there
was any significant deviation from a ∆ρ/ρ ∼ T−2 law, regardless of whether the Fermi
surface is near the particle-hole symmetric point where the Hall angle temperature
exponent changes. Comparing to the resistivity, which has the marginal Fermi liquid
temperature dependence ρ ∼ T, the magnetoresistance behaves as ∆ρ/ρ∼ ρ−2. This is
exactly what one would expect from the Drude picture (Eqn 2.5): Kohler’s rule is well
obeyed, in contradiction with experimental measurements on the cuprates.

2Note that shape alone does not determine particle-hole symmetry as the variation in Fermi speed is
also significant.
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Figure 2.8: (a) Three similar Fermi surfaces for the dispersion εk =−(cos kx+ cos ky+ 0.5966 cos kx cos ky); the solid
line traces a particle-hole symmetric Fermi surface (εF = −0.70t). (b) Log-log graph of cot ΘH against temperature
T. A T2 law (dashed line) is possible for the particle-hole symmetric Fermi surface shown in (a) but on altering the
Fermi level slightly, the linear-T law (dot-dashed line) quickly returns (ε F = −0.75t). Parameters used: θc ∼ 0.02,
τ−1

i ∼ 10, τ−1
M = 0.1+ T; graphs reproduced from Ref. [15].
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2.4.5 Example calculation

In this section, I shall provide a concrete example which fits the qualitative picture out-
lined in the previous section. Abrahams and Varma perform a set of calculations in
Ref. [21], demonstrating that the Hall angle can exhibit the T2 dependence observed
experimentally, but they do not calculate the magnetoresistance. I shall present results
of numerical calculations (as §2.4.3) for the resistance, Hall angle and magnetoresis-
tance, using a set of parameters reverse-engineered to match those of Abrahams and
Varma. The first of these parameters is the dispersion

εk =−0.25(cos kx + cos ky)− 0.03(cos 2kx+ cos 2ky)− 0.09(cos kx cos ky) , (2.26)

used with a Fermi level of εF =−0.19 (units arbitary) to give the Fermi surface shown
in Fig. 2.9(a). A scattering rate

τ−1(θ, θ′) = AT+ B(1− (θ− θ ′)2/θ2
c ) (2.27)

is used, relying upon the density of states to provide the anisotropy (as Abrahams
and Varma do [21]). Matching to ARPES observations, A is chosen to give a gradient
τ−1

M = 0.015(T/100K)eV, and B such that τ−1
i = 0.24eV at θ = π/8. Finally, I choose the

width of the small-angle scattering θc = 0.18.
These choices are made to ensure the calculations are consistent with experimental

quantities. The residual resistance ratio from experiment is ρ(100K)/ρ(0K) ∼ 8; calcu-
lating resistances at 200K and 100K and extrapolating from these down to 0K gives
a comparable ratio of 7.77 for the parameters detailed above. The anisotropy in the
scattering rate near 0K is experimentally measured as τ−1

i (0)/τ−1
i (π/4) = 4.5, and my

parameters result in a value of 4.27 (see Fig. 2.9(b), bottom, which shows the total scat-
tering rate τ−1 as a function of θ at 100K). Fig. 2.9(b), top, shows that my Fermi velocity
component vy(θ) is a good match to the form used by Abrahams and Varma. Finally,
it should be noted that the Fermi surface required to match Abrahams and Varma’s
calculations is quite different from that observed by ARPES (Fig. 2.6); Abrahams and
Varma do not themselves use a Fermi surface directly.

Fig. 2.10 shows the results from conductivity calculations with the above parame-
ters. The resistance in Fig. 2.10(a) exhibits a linear-T law, as expected. The Hall angle,
plotted against T2 in Fig. 2.10(b), achieves a reasonable fit to a T2 law, in good agree-
ment with the graphs in Ref. [21] — the model is sufficiently close to the particle-hole
symmetry point discussed in §2.4.4. So far, experiment can be matched by the small
angle scattering model, but for the magnetoresistance we find that Varma and Abra-
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Figure 2.9: Illustration of properties of a small-angle scattering model with parameters matching that of Varma and
Abrahams [21]. (a) Fermi surface, according to Eqn 2.26 with εF = −0.19 (translated from real centre at (π, π)) (b)
Top: Fermi velocity component vy around the Fermi surface (solid line), compared with sin θ− 0.54 sin 3θ used in
Ref. [21] (dashed line). Bottom: Anisotropic scattering rate τ−1(θ) at 100K.
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Figure 2.10: Graphs of the results of calculations with parameters matching the model of Varma and Abrahams [21];
other parameters in fact give very similar results sufficiently near particle-hole symmetry. The vertical axes have
arbitrary units. (a) The resistance obeys a good linear-T law. (b) The Hall angle is acceptably close to having a T2

dependence. (c) Log-log graph of the magnetoresistance. (∆ρ/ρ)ρ2 (solid line) does not change significantly with
temperature — Kohler’s rule is obeyed, unlike the cuprates. (∆ρ/ρ)cot2 ΘH (dashed line) on the other hand does
vary with temperature, whereas this quantity is thought to be T-independent in the cuprates (a “modified Kohler’s
rule”).

hams’ model produces a resistance which always obeys Kohler’s rule (Fig. 2.10(c)),
in conflict with experiments on the cuprates. In the next section I shall discuss our
findings and place them within the analytical framework described in §2.4.2.

2.5 Discussion

We can understand our results in terms of the series expansion proposed in Eqn 2.21,
Eqn 2.22 and Eqn 2.23: in effect, small-angle scattering processes generate extra terms
at higher orders in the marginal Fermi liquid scattering rate τ−1

M , that lead to new tem-
perature dependences. If these new terms dominate, the temperature dependences
of transport properties may be anomalous. The numerical calculations of the previ-
ous section have established where this is possible, and I shall compare my findings
with those of Abrahams and Varma [21]. First, for the resistivity, we are in agreement
with Abrahams and Varma that small-angle scattering has little effect, and the original
linear-T term always dominates.

2.5.1 Hall angle

For the Hall angle, however, to reproduce the experimentally observed T2 dependence
it is necessary that the conventional term is small and that Eqn 2.22 is dominated by
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the new term at first order (circled). We find that the only circumstance in which this
can happen is when the Fermi surface is tuned to a particle-hole symmetric one where
the conventional term vanishes. Abrahams and Varma [21] claim the new term can be
significantly larger than the conventional term, enough to dominate. In fact their cal-
culations lie very close to particle-hole symmetry: their Fermi surface is characterized
with a parameter ρ, which they choose to be ρ = 0.54; particle-hole symmetry occurs
at ρ = 1/

√
3 ∼ 0.577.

Furthermore, our calculations show that deviations from particle-hole symmetry
quickly produce a large variation in the Hall angle temperature exponent, in contrast
to the experimental situation where changes with doping are slight [28, 45]. However,
we have assumed a naïve rigid band model, and there may be correlation effects that
pin the Fermi surface to exact particle hole symmetry [46], so this sensitivity does not
preclude this model. Hence we consider the magnetoresistance.

2.5.2 Magnetoresistance

I was unable to find a set of parameters for which our numerical calculations for the
magnetoresistance could match experiment. The temperature dependence of the mag-
netoresistance always varied roughly as T−2 (the Drude-like inverse square of the
linear-T dependence of the resistivity), in contrast to the experimentally observed T−4.
Whilst the exact law observed experimentally is still uncertain, Kohler’s rule is cer-
tainly broken, and my calculations found no significant violations of Kohler’s rule from
a small-angle scattering model.

Varma and Abrahams never calculate the magnetoresistance directly, but instead
extrapolate from the Hall angle that ∆ρ/ρ ∼ cot−2 ΘH, which would give the experi-
mentally observed temperature dependence. Varma and Abrahams cite the Ong con-
struction [47] for this conclusion, but this is not valid for the types of scattering rate
under consideration. Eqn 2.3 and Eqn 2.2 show that ∆ρ/ρ = −∆σxx/σxx − cot−2 ΘH; if
the second term dominates, the magnetoresistance would have the wrong sign, so the
significant contributions must come from ∆σxx. To match the experimental T−4 dep-
endence, Eqn 2.23 must be dominated by the second order term (circled), which is one
higher than that for the Hall angle. Both the zeroth and first order terms need to be
insignificant in comparison to the second order term; and we can never win in a way
analagous to the Hall angle, and have the lower order terms vanish for a special case,
as it can be shown analytically that the zeroth order term is positive definite.

So, although the small-angle scattering model can reproduce the temperature dep-
endence of the experimentally observed Hall angle for a specially tuned Fermi surface,
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the temperature dependence of the magnetoresistance does not match experiment and
no further tuning of the Fermi surface can help.

2.6 Summary

Varma and Abrahams proposed a phenomenological transport model for the cuprates,
that they argue can account for the anomalous temperature dependences of in-plane
magnetotransport properties. This is an anisotropic scattering model, where scattering
rates are large in certain directions as observed by ARPES. These anisotropic processes
are allocated to small-angle scattering, where the electrons are highly likely to be scat-
tered to the same direction they were originally moving in. Intuitively, it seems un-
likely that these processes can have dramatic effects, and indeed this is generally the
case.

Our work (which has been published [15]), has involved studying Varma and Abra-
hams’ small-angle scattering model by means of a numerical solution to the Boltzmann
transport equation. Given a linear-T resistivity, the anomalous T2 temperature depend-
ence of the Hall angle observed in the cuprates can be reproduced by the small-angle
scattering model, but only for a specially tuned Fermi surface — near particle-hole
symmetry where there is no conventional Hall effect. However, the magnetoresis-
tance produced by the model is always conventional, and never breaks Kohler’s rule,
whereas experiments on the cuprates demonstrate an unambiguous violation. Varma
and Abrahams did not calculate the magnetoresistance directly, and a major conclu-
sion of the work presented here is the importance of the magnetoresistance as a probe
to distinguish between transport theories.

Interestingly, the conclusion of Varma and Abrahams that the Hall scattering rate
τ−1

H originates from the square of the resistivity scattering rate τ−1
tr fits in with recent

experiments, even though we have shown here that it cannot be explained by small-
angle scattering. Woods et al. [48] show a relationship between ρ and cot ΘH from
experiments irradiating Nd2−xCexCuO4. Optical conductivity or AC Hall effect mea-
surements do not see the expected Lorentzian shape, but their observations are instead
consistent with the normal scattering rate (together with a frequency term) entering
squared [49, 50]. These experiments are believed to be crucial for progressing our un-
derstanding of transport in the cuprates.

Classical Boltzmann transport theory can only produce additive corrections to con-
ductivities, and cannot naturally produce the multiplicative forms proposed by Ander-
son. There are many strange features of the electron liquid in the cuprates in the normal
state near optimal doping, and it seems likely that the explanation for the anomalous
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transport properties does not lie within the single electron-like quasiparticle picture.
Understanding the properties of this non-Fermi liquid remains a key to deciphering
the unconventional normal-state properties of the cuprates, and even their supercond-
uctivity. The remainder of this thesis is devoted to the investigation of a microscopic
model which leads to insight into the detailed behaviour of the quasiparticles in such
a strongly correlated fluid, and provides hints as to the origin of the anisotropic behav-
iour which underlies the models studied within this chapter.
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Chapter 3

DYNAMICAL MEAN FIELD THEORY

Rhythm, said Stephen, is the first formal

esthetic relation of part to part in any esthetic

whole or of an esthetic whole to its part of

parts or of any part to the esthetic whole of

which it is a part.

JAMES JOYCE

A Portrait of the Artist as a Young Man [51]
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3.1 Introduction

Over the last decade, understanding of the strongly correlated metallic state has pro-
gressed significantly due to Dynamical Mean-Field Theory (DMFT) [52]. Materials
which lie near the Mott metal-insulator transition, such as some transition metal oxides,
exhibit a range of peculiar phenomena which have eluded understanding. Theorists
have struggled to solve microscopic models for these materials, such as the Hubbard
model, and DMFT provides a well-founded, successful approximation within which a
many-body interacting system can be investigated in its entirety.

The difficulty of studying strongly correlated systems is that the electrons are inter-
mediate between the well-understood limits of localized and itinerant nature. Pertur-
bation theory starting from either limit generally fails because there is no small param-
eter; a wide range of energy scales is important. DMFT, in effect, solves a compromise
situation where electrons are localized over short timescales, but itinerant over long
timescales. It is inherently non-perturbative, and can easily be shown to be exact in
both the non-interacting (itinerant) limit and in the atomic (localized) limit (see §3.3).
In §3.5 I shall mention some of problems DMFT has successfully tackled, particularly
focusing upon the Mott metal-insulator transition.

In DMFT, local dynamics are recreated fully on a single site of the crystal lattice,
which is coupled to a self-consistent “bath” representing the rest of the lattice. This de-
scription was first derived from the limit of infinite dimensions [53] (see §3.3.2), where
such a representation is exact. In lower numbers of dimensions, it is an approximation.
Any model of a strongly correlated system must make drastic approximations for solv-
ability, and often in their results it is hard to distinguish real physics from artifacts of
the model. However, for DMFT, not only do we know precisely what approximation
is being made, but we know also that the limit of high dimensions may have physical
relevance. For example, if DMFT does not reproduce physical reality and there is a
phase transition lying between three and infinite dimensions, we could ask where it
occurs, and whether it is accessible in materials a with large coordination number.

I shall now give a qualitative description of the DMFT procedure; a more detailed
explanation is given in §3.2. Concentrating upon a single site in the crystal lattice, there
are 4 possible local states on this site: |0〉, | ↑〉, | ↓〉, | ↑↓〉. Electrons can move on and
off the site, and the effect of the rest of the lattice is encoded in a Green’s function which
gives the probability1 of an electron leaving any of these states, and then coming back
to one of them after a given time. As a mean-field approximation, we imagine every
site to be identical, and each has the same Green’s function. Such a Green’s function

1Strictly, the accumulated quantum mechanical phase.
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must be self-consistent: fluctuations from one site must correspond in some way with
those of surrounding sites. The construction of self-consistency conditions for local
Green’s functions forms the core of DMFT.

Returning to the four states mentioned above, if the electrons can be considered in-
dependent (non-interacting), the states are indistinguishable and we know the correct
mean-field Green’s function for the single site, and also know exactly the Green’s func-
tion solution for the whole lattice. We wish to add a Coulomb repulsion, and do this
by energetically penalizing the last state | ↑↓〉 because it has two electrons on the site.
DMFT works by comparing Green’s functions for just the single site with and without
this repulsion, and uses the difference to estimate how the non-interacting solution for
the whole lattice should be changed when interactions are present everywhere. It is a
key assumption of DMFT that the effect of interactions is the same everywhere across
the whole system (quantitatively, a local self-energy), and this is where the approxima-
tion of DMFT is made.

Self-consistency is achieved by averaging all the sites in this constructed interacting
system, and checking that the average site is identical to the single site we started
with.2 We had to start from an arbitrary guess for the single-site Green’s function, and
this guess must be adjusted until it is self-consistent. The physics we investigate is that
of the resulting constructed self-consistent interacting system.

Mathematically, we need to choose a representation for the completely arbitrary
single site Green’s function, and we do this by imagining there to be a “bath” surround-
ing the single site, providing a spectrum of excitations for the system to explore. This
bath can be represented in many different ways, providing different manifestations of
DMFT. The most important representation is that of an impurity model where the bath
consists of (non-interacting) sites connected to the original, impurity, site. Many of the
techniques developed in the past for studying impurity models [54] can be used within
DMFT (see §3.3.3).

A down-side of DMFT is that the bath needs an infinite number of degrees of free-
dom to represent the Green’s function exactly; an impurity model would have to have
an infinite number of sites. Clearly, such a system is not in practice solvable on a
computer, and so further approximations have to be made. There are a variety of tech-
niques researchers have used, and I shall discuss some in §3.4. Chapter 4 describes in
detail the “two-site” approach which will be my choice of technique.

2It is not the same in general, because the “averaging” procedure is unavoidably different from the
initial procedure for spreading the influence of the interactions across the lattice.
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3.2 The pure DMFT procedure

There are many ways of understanding or deriving DMFT and its self-consistency
equations, and in this section I shall derive the self-consistency equations in a way
similar to the “effective medium” description in Ref. [52], which emphasizes DMFT’s
relationship as a dynamical extension of Hartree–Fock mean-field theory. The out-
come is the same as a formal expansion in the limit of a large number of dimensions
(see §3.3.2).

Let us focus on a single site of the Hubbard model (Eqn 1.1). Later we will as-
sume that all sites are identical. We nominally integrate out all the other sites in the
lattice, leaving an effective action for the single site. The Hamiltonian contains an
on-site Coulomb repulsion U, which clearly must be retained; but the hopping terms
ti j no longer appear explicitly, but are captured in a Green’s function, and will only
appear directly in self-consistency conditions. In the coherent state path integral for-
malism [55], the effective action for our single site is:

Seff =−
∫ β

0
dτ
∫ β

0
dτ ′c†σ(τ )G−1

0 (τ − τ ′)cσ(τ ′)+U
∫ β

0
dτ c†↑(τ )c↑(τ )c†↓(τ )c↓(τ ). (3.1)

The function G0(τ − τ ′) (spin-less for simplicity) completely encapsulates the dynamics
of electrons leaving the site at imaginary time τ ′ and returning at an imaginary time
τ ′. We allow an electron to pick up an arbitrary quantum mechanical phase in the
intervening time. The Hamiltonian was not Gaussian, so we cannot in practice inte-
grate out all the other sites in the lattice, and we do not know the function G0 a priori.
However, fluctuations according to this function will be to neighbouring sites, that we
are reckoning to be the same as the original site, and this allows the construction of
self-consistency conditions: G0 can be constrained.

Let us suppose that we can exactly represent the effects of introducing a U term to
some arbitrary G0, and calculate the many-particle Green’s function

Glocal(τ − τ ′) ≡−〈Tc(τ )c†(τ ′)〉Seff
. (3.2)

Glocal is in effect an interacting Green’s function originated from the “non-interacting”
Green’s function G0, and so we can write down a Dyson’s equation [56], defining a
self-energy Σlocal,3 in Fourier-transformed Matsubara-frequency space:

G−1
local(iωn) = G

−1
0 (iωn)− Σlocal(iωn) . (3.3)

3If one works diagrammatically, it turns out that the effect of interactions can be factored out, and
separated from the non-interacting Green’s function as the self-energy.
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We now make use of the DMFT ansatz that the self-energy is assumed to be spatially
homogeneous, but retains a frequency dependence: the true self-energy Σ(i, iωn) (or
Fourier-transformed to Σ(k, iωn)) becomes Σlocal(iωn). So, we can construct a trial inter-
acting Green’s function Glatt for the extended lattice by combining the non-interacting
lattice Green’s function,

G−1
0,latt(k, iωn) = iωn+ µ− εk , (3.4)

with the local self-energy Σlocal(iωn), using a second Dyson’s equation:

G−1
latt(k, iωn) = G−1

0,latt(k, iωn)− Σlocal(iωn)

= iωn+ µ− εk − Σlocal(iωn) . (3.5)

Glatt is a trial function because G0 was arbitrary, and we need to formulate a self-
consistency condition to constrain it. To do this, we need to know what is going on
locally, so we find the on-site component of Glatt, i.e. at R = 0, as a Fourier transform:
Glatt,ii(iωn) = ∑k Glatt(k, iωn). The DMFT self-consistency requirement is that this local
Green’s function is the same as the interacting Green’s function of the local effective
action:

Glocal(iωn) +∑
k

Glatt(k, iωn) , (3.6)

where the k-sum is normalized, and I have used the symbol+ to denote that the quan-
tities should be made self-consistent. This is a functional condition and sufficient to
constrain the function G0(iωn), arbitrary to start with. G0(iωn) should be iteratively ad-
justed until the Green’s functions in Eqn 3.6 are matched. The condition can be rewrit-
ten without the self-energy explicitly present, to give a more succinct self-consistency
condition for G0 in terms of the Green’s function resulting from the effective action,
Glocal:

Glocal(iωn) +∑
k

1
iωn+ µ− εk− Σlocal(iωn)

=∑
k

1
iωn+ µ− εk − (G −1

0 (iωn)−G−1
local(iωn))

, (3.7)

(from Eqn 3.6 and Eqn 3.5). Dynamical Mean-Field Theory can be summarized by
Eqn 3.7, Eqn 3.1 and Eqn 3.2 together. Fig. 3.1 shows the self-consistency procedure in
the form of a flow chart. When self-consistency has been achieved, the lattice Green’s
function with the local self-energy, Glatt(k, iωn) is the physically meaningful correlation
function, and the output from DMFT by which the solution will be characterized.

So, to summarize, we constructed an effective single-site action with an arbitrary
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Figure 3.1: Flow chart showing the pure dynamical mean-field theory self-consistency procedure. The stages indi-
cated with an asterisk cannot be implemented exactly and must be approximated.

dynamical field representing fluctuations of electrons away from that site. Solving
this effective action yields a frequency-dependent self-energy which is combined—
uniformly in space— with the non-interacting Green’s function for the extended lattice,
to give a trial interacting Green’s function for the extended lattice. Finally, the scheme
must be self-consistent, and we achieve this by requiring that the local Green’s function
of the extended lattice (containing the local self-energy) is the same as the interacting
Green’s function for the single site, and this constrains the initial dynamical field.

3.3 Discussion

This section contains elaboration on some elements of the previous section. I shall de-
velop some intuition about DMFT (§3.3.1), describe the the more rigorous formulation
of DMFT as an infinite dimensional limit (§3.3.2), and discuss the equivalence of the
effective action with an impurity model (§3.3.3), a mapping which underlies several
approaches to solving the DMFT equations.

Dynamical field Often the picture of DMFT in terms of the Green’s function G0 is best
replaced by describing the arbitrary adjustable part of the local action as a dynamical
field ∆(iωn), with the relationship G

−1
0 (iωn)= iωn+µ−∆(iωn). ∆(iωn) encapsulates the

ability of the local model to represent fluctuations, and appears in later equations, such
as (for Eqn 3.3):

G−1
local(iωn) = iωn+ µ− ∆(iωn)− Σlocal(iωn) . (3.8)
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DMFT can represent the atomic limit ti j = 0 exactly, as it corresponds to ∆(iωn) = 0,
where sites are completely decoupled. Conversely, the non-interacting limit U = 0 can
be trivially represented within DMFT by setting Σlocal(ω)= 0.

Spin All the Green’s functions described above had a spin index which was omitted
for notational simplicity. The self-consistent procedure should be carried out sepa-
rately for each spin, and the two spins are coupled together only at the stage of solving
the local action, via the Hubbard U term.

Frequencies In later chapters I shall be only concerned with zero temperature prop-
erties, and shall therefore use the analytic continuation from Matsubara frequencies to
real frequency: iωn→ ω− iδ. In some calculations, it will be necessary to retain a small
δ, but in general I shall omit it from equations. I shall also drop the “local” subscript
from Σlocal(ω) as there is only one self-energy.

3.3.1 Intuition

Examining Eqn 3.7, we may deduce that the DMFT interacting lattice Green’s function
Glatt(ω) can be written rather simply in terms of the local non-interacting lattice Green’s
function G0,latt,local(ω):

Glatt(ω)= G0,latt,local(ω− Σσ(ω)) , where G0,latt,local(ω)=∑
k

[
ω+ µ− εk

]−1 ; (3.9)

we have effectively made the transformation ω → ω − Σ(ω). Without the mean-field
approximation, we would have Σ(k, ω) and the transformation would not be possi-
ble. This gives some insight into the reduction DMFT has made and what is going on
within its approximation. If Σ fluctuates significantly, the effective ω will pass back
and forward through the non-interacting band, therefore making several new bands;
it is these that form the Hubbard bands, for example.

We can rewrite the sum in Eqn 3.7 as an integral, with the non-interacting lattice
Green’s function written in terms of the non-interacting density of states ρ0(ω):

Glat(ω)=
∫
+∞

−∞

ρ0(ε)dε
ω+ µ− ε− Σσ(ω)

(3.10)

(using the definition ρ0(ε) ≡ 1
N ∑k δ(ε− εk)). This identity demonstrates that the only

information that DMFT knows about the lattice is its non-interacting density of states.
It turns out that conventional DMFT is generally insensitive to the lattice type, apart
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from special cases [57].
Hartree mean-field theory may be regarded as the static limit of dynamical mean-

field theory: it allows a self-energy that is not frequency-dependent, typically Σ = Un,
where n is the band filling, and momentum-dependent quantities can be included more
easily than in DMFT. The inclusion of fluctuations is crucial, however; for example, the
Stoner criterion for magnetism that Hartree mean-field theory predicts is wrong, vastly
overestimating the region of stability for magnetic order when compared with DMFT
(see §4.4 and Chapter 6).

3.3.2 Infinite dimensions

Although the preceding section (§3.2) presents DMFT as simply a local mean-field ap-
proximation scheme, the theory results from an entirely controlled series expansion
in 1/d, for spatial dimension d. DMFT is exact in infinite dimensions, and in fact the
local effective action above (Eqn 3.1) can be derived rigorously in this limit: non-local
corrections can be shown to appear only at a higher orders in 1/d. Ref. [52] gives a
detailed description of rigorous derivations of the DMFT equations; for example, from
a “cavity” approach, analogous to the Weiss theory of magnetism. It also shows how
perturbation theory is local in infinite dimensions, giving a formal expansion in 1/d.

The infinite dimensional limit can be understood quite simply, in fact. As the di-
mensionality d is increased, the electron has many possible directions to go in, and the
probability of it returning to its starting site becomes vanishingly small, so the problem
can be formulated locally. Quantitatively, it is necessary to scale the hopping t ∼ 1/

√
d

so that the kinetic energy in the Hamiltonian has the same effective magnitude with
respect to the potential energy, otherwise t would completely dominate over U. Non-
local contributions to the action contain more hopping terms and thus vanish in the
limit d→∞.

Although it might appear that the infinite-dimensional limit is unphysical, it is
nevertheless a completely controlled approximation; unlike many other approaches
to strongly correlated systems, the exact assumptions are of the theory are known, and
sum rules etc. are likely to be obeyed. If results show features of the approximation and
not of the real physical system, this is still interesting, because it means that physics in
infinite dimensions is different; questions can be asked such as where the transition
might be. Since many crystals have coordination numbers as high as twelve, perhaps
the effective value of 1/d is quite small and such a transition may be practically acces-
sible.

DMFT can be extended to finite dimensions by including terms of order 1/d etc.,
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and formally this produces a coupled pair of self-consistency schemes. [58, 52] The
focus of this thesis, however, will be on “cluster” DMFT (see Chapter 5), which is in
effect also a finite dimensional extension, without constituting a formal expansion in
1/d; instead it allows lattice geometry to play a rôle.

3.3.3 Impurity models

Dynamical mean-field theory is often studied through an impurity model, and such a
representation will underlie several approaches to solving the DMFT equations pre-
sented later. An impurity model is one possible realization of the effective action in
Eqn 3.1, which we hope to use to calculate the exact local interacting Green’s function.
Let us consider a Anderson impurity model with a Hamiltonian

H =∑
iσ
εia
†
iσaiσ +∑

iσ
Vi(a

†
iσcσ + c†σaiσ)− µ∑

σ
c†σcσ +Uc†↑c↑c

†
↓c↓ (3.11)

(see also Eqn 5.14 in §5.3). An impurity site (with creation operator c†σ) has a Hubbard
double-occupancy penalty U and is connected to a set of bath sites (with creation oper-
ators a†iσ, with i labelling the sites). The energy levels εi and couplings Vi for each site
parametrize the dynamical field and are to be constrained by self-consistency condi-
tions. The label i is abstract and unconnected with the extended lattice index: the bath
sites are there to model separately the dynamics of an electron moving off the impurity
site. If these bath sites are integrated out, the action is identical to Eqn 3.1 with

G
−1
0 (iωn) = iωn+ µ−∑

i

V2
i

iωn− εi
. (3.12)

So for an impurity model, the dynamical field ∆(iωn) = ∑i
V2

i
iωn−εi . If there are an infi-

nite number of sites, one can choose a set of poles and residues {εi,Vi} to reproduce
any Green’s function and hence the mapping from DMFT to an impurity model is ex-
act. However, when infinitely sized the impurity model is clearly impossible to solve
computationally; the exact single-site action remains intractable. Some approximation
must be made, such as truncating to a finite-sized bath (see §3.4.2).

An advantage of the impurity model mapping is that the Anderson impurity model
has been studied extensively in the past [54]. Although general understanding of the
physics of the Anderson model is not directly useful since DMFT requires a complete
solution of an arbitrary model, there are several techniques for the Anderson impurity
model which can be adapted for DMFT, such as the numerical renormalization group
method (see §3.4.2).
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3.4 Methods of solution

Unfortunately, the pure DMFT procedure as described in §3.2 cannot be achieved ex-
actly in practice, for two separate stages. First, solving the local effective action for the
local Green’s function (Eqn 3.1,Eqn 3.2) remains intractable; whilst we have reduced
the complexity of the Hubbard Hamiltonian to a single site, it still has an infinite num-
ber of degrees of freedom that parametrize the whole function G0(iωn). Further approx-
imations have to be made (in addition to the DMFT assumption of local self-energy),
and there are a variety of possibilities which I shall discuss below.

Second, the self-consistency condition (Eqn 3.6 or Eqn 3.7) involves matching two
functions, giving an infinite number of degrees of freedom to be compared. With an
approximated effective action however, there are a finite number of adjustable param-
eters, and the Green’s functions cannot now be made exactly the same. To match them,
there is a choice to be made of a sensible set of criteria, generally equal in number to
the degrees of freedom of the effective action, and also how to optimally improve the
(initially arbitrary) function G0(iωn) for the next iteration. If one chooses to work on the
Bethe lattice (see Appendix B), the k-sum in Eqn 3.7 can be carried out analytically and
the equation rearranged to give a new G0 explicitly: G

−1
0 (iωn) = iωn+ µ− t2Glocal(iωn)

(Eqn B.11). There will still remain the problem of choosing the parameters of the
approximate effective action to best represent this function, though.

The following sections contain descriptions of two major classes of approximation
scheme for the solution of the DMFT self-consistency equations. Quantum Monte
Carlo is probably the most widely used; Exact Diagonalization can be used as part
of many schemes, and indeed underlies the technique I shall ultimately use. There are
many other techniques which have been applied to tackle the DMFT equations [52]
(for example, Iterated Perturbation Theory [59] which extrapolates between the small
and large U limits) but I shall not describe them further here.

3.4.1 Quantum Monte Carlo

Quantum Monte Carlo (QMC) is probably the most commonly used method for solu-
tion of the DMFT equations. The scheme was developed independently by Jarrell [60],
Rozenberg, Zhang and Kotliar [61], and Georges and Krauth [62], based upon the work
of Hirsch and Fye on impurity models [63]. To calculate G from G0 using the action
Seff, first imaginary time is discretized, turning the integrals into sums. Secondly, the
quartic term is decoupled with a Hubbard–Stratonovich transformation, introducing
an auxiliary field consisting of Ising-like spins si ∈ {+1,−1}. Solving the effective ac-
tion for the interaction Green’s function has now reduced to summing over all possible
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sets {si}, and this is done in practice by Monte Carlo sampling. The Bethe lattice can
provide the self-consistent link back to G0 (Eqn B.11).

The technique has many successes and has a great deal of flexibility for dealing
with more complex Hamiltonians. However, there are disadvantages which make it
unsuitable for our purposes. First, low temperatures are difficult to access, since τ is
discretized and low temperatures correspond to more time slices. Second, physical and
experimentally significant quantities are real frequency functions (the density of states
and spectral function); QMC only produces G(iωn), which needs to be analytically con-
tinued. This process is not well-defined since the functions are not complete, and dif-
ficult in practice. It is possible via maximum entropy methods for example; some au-
thors resort to extrapolating results from the first two Matsubara frequencies [64].

3.4.2 Exact diagonalization

The exact diagonalization technique (ED) [65, 66] is based upon the representation of
the effective action by an impurity model (§3.3.3) with a finite number of sites. This
approximate Hamiltonian can only reproduce limited forms of G0, but it can be di-
agonalized exactly if there are not too many sites: the Hamiltonian is rewritten as a
matrix connecting different many-particle states, and all its eigenvalues and eigenvec-
tors found. From these, we can construct the interacting Green’s function by means of
the Lehmann representation [56, 52]:

G(iωn) = 〈Tc†0c0〉 =
1
Z ∑

i, j

∣
∣
∣〈 j|c†0|i〉

∣
∣
∣

2 e−βE j + e−βEi

Ei − E j − iωn
, (3.13)

where i and j are eigenstates with energies Ei,E j, and Z the appropriate partition func-
tion. The simplest way of implementing the self-consistency condition (Eqn 3.6) is to
work on the Bethe lattice and construct a new G0 as Eqn B.11 (automatically satisfying
Eqn 3.7), and then somehow find the best set {εi,Vi} of bath parameters to represent
this function in the impurity model (Eqn 3.12).

This method has proved successful, and does not suffer from some of the problems
of QMC: zero temperature is easy, and there is no problem with calculating densities
of states and other spectral quantities as Eqn 3.13, being analytic in iωn, can be directly
analytically continued. However, the computational difficulty of diagonalizing the im-
purity model Hamiltonian increases exponentially with its size; ∼ 12 sites is the limit
(fewer at finitesimal temperature). This lack of resolution leads to difficulty in accu-
rately representing a new G0; typically, this is done blindly with a conjugate gradient
algorithm, and when the functions have such different shapes, it cannot be reliable.
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An alternative way to truncate the Hilbert space of the Hamiltonian is only to keep
states that lie low in energy, and iterate; such an idea underlies the Numerical Renor-
malization Group (NRG) technique [67, 68], using procedures first developed for the
Anderson impurity model.

A better-justified method is to give up hope of matching the Green’s functions
point-by-point, and carefully construct a set of physically-motivated criteria, each cor-
responding to a degree of freedom of the impurity model. These criteria are quantities
that one should ensure are the same for both the local impurity and lattice Green’s
functions; for example, the electron filling. The simplest such method is Potthoff’s
“two-site” DMFT [69] in which the impurity model has just a single bath site. This
technique has been surprisingly successful; I shall discuss it in Chapter 4 and the rest
of this thesis will be based on it.

3.5 Some applications of DMFT

Dynamical mean-field theory has been applied to a huge number of different systems.
Its most important success is understanding the Mott transition, and I shall describe
this in detail below (§3.5.1). In the study of magnetism, DMFT has shown how the
conventional Stoner picture significantly overestimates the extent of magnetism: order
is destroyed by fluctuations [70]. Wahle et al. showed how a Heisenberg exchange
interaction can stabilise ferromagnetic order within the Hubbard model [71], and the
Curie-Weiss law can be derived within dynamical mean-field theory [72]. Other stud-
ies of magnetism include Refs. [73, 74, 75], and magnetic ordering will be studied later
in this thesis (see §4.4 and §6.3.1).

Density functional theory has been a successful tool for modelling the fine details of
real materials. It has generally depended on the rather crude assumptions of the Local
Density Approximation (LDA) and its variants, but it has been possible to marry in the
abilities of DMFT to deal rather well with strong correlations (e.g. in materials such as
correlated oxides) with considerable success [76, 77]. Specific examples include the ab
initio calculation of key features of the phase diagram of plutonium [78], and studies
of finite-temperature magnetism in iron and nickel [79].

3.5.1 Mott transition

The Mott transition is a metal-insulator transition caused by correlations between elec-
trons. A conventional insulating material has a band which is completely full, and
there is an energy gap above it greater than T, so few free carriers can be excited and

46



3. DYNAMICAL MEAN FIELD THEORY SOME APPLICATIONS OF DMFT

conduction is difficult. In a Mott insulator, however, the repulsive interaction U bet-
ween electrons causes a gap of order U to form in the middle of a band, and materials
which should apparently be metals turn out to insulate (for example, NiO [80]).

Although the Mott insulating state itself is well-understood, its relationship to the
phases surrounding it remains controversial: how might the transition from a metal
take place, with changing doping levels or changing effective interaction strength? The
Hubbard model (Eqn 1.1) often provides a theoretical starting point; its input parame-
ters (at zero temperature) are the electron filling (or doping level) n and an interaction
strength U, forming a (U,n) phase diagram within which such a Mott transition can be
investigated. Phase transitions caused by correlations are exceedingly sensitive, and
in a Mott transition, the resistivity of a material can change by many orders of mag-
nitude with a tiny change to a control parameter. In practice, the transition is often
complicated by other effects such as orbital ordering; for example, V2O3 (the onetime
generic Mott insulator) is plagued by many subtle effects — although recently, doping
this compound with chromium has yielded clearer phases [81].

Historically, there have been three apparently conflicting views of the Mott transi-
tion at half-filling (n = 1) for increasing interaction strength U. First was the picture of
Hubbard [82], who described a metallic band splitting into two bands, the upper band
corresponding to doubly-occupied sites. The bands are an energy U apart, and when U
reaches a certain value they will leave a gap between them, and at half-filling the mate-
rial will therefore be an insulator. Whilst the concept of double-occupation is local and
does not naturally fall into a metallic picture, the general idea of Hubbard bands have
stood up to scrutiny, as we shall see later. There is also clear experimental evidence for
Hubbard bands; for example, Fujimori et al. [83] observed well-formed lower Hub-
bard bands via photoemission spectroscopy of d1 oxides (and see also Fig. 7.13(a)).

The second view approaches the transition from the opposite limit, the metallic
state. Brinkman and Rice [84] described how the metallic quasiparticle becomes grad-
ually more impeded by correlations and its effective mass thus increases, and the band-
width decreases; when the mass becomes infinite, the material is an insulator.

It is difficult to see how to reconcile these views, but DMFT calculations provided
the answer: Fig. 3.2 shows the characteristic three peak structure [85] that emerges (see
also Fig. 4.4). There is a narrow central quasiparticle band, together with two incoher-
ent Mott–Hubbard bands centred at±U. When the interaction strength U is small there
is just a single non-interacting band, and as U increases, the upper and lower Hubbard
bands split off, as in the Hubbard picture. However, unlike the Hubbard picture, a
portion of the central peak remains, and the system is still metallic. Upon increasing U
further, the central peak becomes narrower, and thus heavier, as in the Brinkman–Rice
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Figure 3.2: Density of states calculated by the iterated perturbation theory approach to DMFT, for various values
of U (in units of 2t), Fig. 3 of Ref. [59]. The spectrum has a three peak structure, consisting of the upper and lower
Hubbard bands and a central quasiparticle peak, which gradually gets narrower. This vanishes at the transition,
whereupon the material becomes insulating.

picture. Finally, it becomes delta-function-like and suddenly vanishes, leaving the two
band Mott–Hubbard insulating picture remaining; at this point the system has become
an insulator. The three peak structure can be interpreted in the time domain also: on
long time scales (small energies) the electron is itinerant (central quasiparticle peak),
but on short time scales (large energies), it is localized (Hubbard bands). The simulta-
neous observation of features at both large and small energy scales is only possible in
a non-perturbative approach like DMFT.

Properties of the narrow quasiparticle peak agree with experiments on V2O3 [86]
and NiS2−xSex [87], and DMFT predictions for the nature of the Mott phase transi-
tion have also been verified in V2O3 [81, 88]. Questions about the Mott transition still
remain unresolved [89, 90, 91]; for example, some calculations show a coexistence re-
gion Uc1 < U < Uc2. The two critical points correspond to the point when a gap ini-
tially forms (Uc1), and secondly when the central quasiparticle peak vanishes (Uc2); if
the transition is approached from high U, the insulating solution persists down to Uc1,
but from low U the metallic solution persists up to Uc2 >Uc1. The hysteretic behaviour
in experiments on V2O3 [81, 88] appears to verify this finding.

The third mechanism for a metal-insulator transition, due to Slater [92], is the
appearance of antiferromagnetism, which could destroy the picture presented so far.
At half-filling on an unfrustrated bipartite lattice, the Fermi surface is perfectly nested,
i.e. there is a wave-vector q such that εk = εk+q. This means that there is an infinite
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susceptibility to ordering at this wave-vector, and an infinitesimal interaction strength
will cause ordering; a square lattice will go spontaneously antiferromagnetic. Each
quasiparticle at k will hybridize with the one at k+ q, generating a gap at the Fermi
level, turning the metal into an insulator. The Slater antiferromagnetic insulator has
a lower energy than the paramagnetic states described above, making the results of
those calculations questionable as they do not concern the real ground state. Experi-
mentally, as temperature is reduced, the antiferromagnetism will set in before any sign
of the Mott physics described above. At present, this issue is not satisfactorily resolved
by DMFT, but there has been progress.

At a first glance, conventional DMFT cannot deal with antiferromagnetism because
of its local single site picture, but a crude representation may be made by mapping to
the opposite spin on neighbouring sites in the self-consistency condition [93]; §4.4.2
contains such a calculation. However, effects of the geometry of the crystal lattice such
as frustration are essential for understanding the interplay of antiferromagnetism and
the metal-insulator transition, and to include such features a “cluster” approach to
DMFT is necessary (see Chapter 5). Parcollet et al. [64] used a cluster DMFT approach
on a model where the magnetism was frustrated by a next-nearest neighbour hop-
ping, and concluded that the broad conclusions of the paramagnetic studies remain
valid. However, features of the physics of the Mott transition and the unfrustrated
Hubbard model off half-filling remain controversial, and the subject of scrutiny in the
literature. A large portion of this thesis will be devoted to the development of a clus-
ter DMFT method which is sufficiently computationally cheap to be able to access the
entire phase diagram of the 2D Hubbard model with complete spectral information.
The hope is that such a survey will begin to answer some of questions emerging from
above, such as how the Mott transition might happen in the presence of antiferro-
magnetism (see §6.3.2 and §7.4).

3.6 Summary

A detailed description of dynamical mean-field theory has been given in this chap-
ter. DMFT is a mean-field theory that includes the dynamics of the electrons via a
self-consistency scheme. The theory is formulated in terms of two different Green’s
functions, one for an effective impurity model and one for the extended lattice, which
share the same local self-energy. Self-consistency ensures that the on-site projections
of the two Green’s functions match each other. DMFT is exact in the limit of infinite
coordination number, which gives the theory a rigorous basis; it has proved a versatile
technique that had many successes in improving our understanding of strongly corre-
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lated systems. The most notable is the three-peak picture of the Mott metal-insulator
transition, synthesizing the pictures of Mott–Hubbard and Brinkman–Rice. DMFT is
constantly being developed and remains at the forefront of current research.

Approximations are required to solve the interacting local problem at the core of
DMFT. §3.4 described a few of the many possible approximations; it is crucial to choose
a method of solution that is appropriate to the phenomena that one would like to in-
vestigate. In this thesis I am going to focus on a minimal “two-site” representation
of the local problem (described in Chapter 4), so that the entire phase diagram of the
2D Hubbard model can be studied in detail on a normal computer. Calculational effort
can redirected into extending DMFT to a cluster formulation (Chapter 5) so that a weak
momentum-dependence can be included in the DMFT equations; questions such as the
interplay of antiferromagnetism with the Mott transition are now possible subjects of
investigation.
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Chapter 4

TWO-SITE DMFT

“Well, if you knows of a better ’ole, go to it.”

BRUCE BAIRNSFATHER[94]
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4.1 Introduction

The previous chapter contained a description of dynamical mean-field theory (DMFT),
an approach to strongly correlated electrons systems based upon a rigorous infinite-
dimensional limit. To use DMFT in practice, some kind of approximation to its self-
consistency equations is required, for which there is considerable flexibility. In this
chapter I introduce what is probably the minimal possible implementation of DMFT,
named “two-site” DMFT by Potthoff [69]. A rather drastic approximation is involved,
but the results of two-site DMFT are surprisingly successful and can reproduce much
of the physics of the Mott transition. It is proposed mainly as a kernel for extended
versions of DMFT.

DMFT maps the interacting electron system onto a local model, that contains a set
of “bath” states coupled to an impurity, and the bath is constrained self-consistently.
In two-site DMFT, this bath is truncated to a single site, so the impurity model consists
of just two sites. A straight Hubbard model with two sites allows the deduction of a
surprising amount of Mott physics [95]; two-site DMFT adds the capabilities of DMFT
self-consistency, and a remarkably good picture of the behaviour of interacting elec-
trons emerges, with very little computational effort. The model succeeds because of
its simplicity: a two-site model can be tackled analytically, and physical ideas can be
used to motivate the self-consistency conditions, unlike conventional DMFT. The band
filling and the shape of the quasiparticle peak in the density of states are the specific
physical quantities examined in two-site DMFT.

The idea of reducing DMFT to the minimal two-site representation was investi-
gated by initial workers in the field [96], but the first full published results were by
Potthoff [69]. He showed that two-site DMFT produces a reasonable description of
the Mott transition in comparison to much more sophisticated DMFT techniques (see
§4.3.3). Satisfactory results are found for other properties of the Fermi liquid, the Lut-
tinger sum rule, and thermodynamic consistency [69].

Philosophically, two-site DMFT can be regarded as the first step towards a DMFT
implementation with more degrees of freedom, each corresponding to one of a larger
set of physically-justified self-consistency conditions. DMFT with just a single de-
gree of freedom becomes Hartree–Fock mean-field theory, where the single parame-
ter used to self-consistently constrain the bath is the band filling, n: clearly an essen-
tial characteristic for a sane mean-field theory. In two-site DMFT a second degree of
freedom is introduced, meaning that dynamics can be represented in a minimal, yet
self-consistent, way. Properties of the quasiparticle peak, an essential parameter for
the evolution of a Fermi liquid, may now be taken into consideration; and the result
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is the appearance of a Mott transition. One could imagine building up a succession
of more sophisticated such characteristics to examine, and reaching the complexity
of other approaches to DMFT, but well-motivated physically instead of relying upon
rather blind direct matching of Green’s functions, used in typical exact diagonalization
approaches (§3.4.2).

The next section (§4.2) contains a detailed derivation of the two-site DMFT self-
consistency conditions, along the lines of Potthoff’s paper [69]. We shall work only
at absolute zero (T = 0); whilst finitesimal temperatures are possible to formulate
within two-site DMFT, it is less likely to be reliable as more detailed, flexible spec-
tra would be required. The practicalities for the implementation of the two-site DMFT
self-consistency conditions and the calculation of all the necessary quantities are de-
scribed in §4.3. I discuss the details of its paramagnetic solution in §4.3.3, verifying
Potthoff’s results. We wish to investigate the magnetic phase diagram of the Hubbard
model; two-site DMFT can easily be extended to cover ferromagnetism (§4.4), and anti-
ferromagnetism can also be represented, as I show in §4.4.1.

Whilst bare two-site DMFT does produce a credible phase diagram, it exhibits sig-
natures of a struggle with the tiny phase space available (§4.4.2). However, our intent-
ion for two-site DMFT was not that it should stand alone, but should make up a reli-
able kernel for extensions to DMFT, as I shall discuss at the end of this chapter (§4.5).
In Chapter 5 I will describe how to use two-site DMFT within one possible such exten-
sion: cluster DMFT.

4.2 Potthoff’s “two-site” DMFT

This section contains an exposition of two-site DMFT as proposed by Potthoff [69]; I
shall make frequent reference back to the conventional DMFT procedure as described
in §3.2. The basis of two-site DMFT is the exact diagonalization technique (§3.4.2),
with an impurity model consisting of two sites only — the bath is drastically simpli-
fied to just a single site. The first problem of DMFT mentioned in §3.4, dealing with
the interacting effective action, is thus easily solved since the two-site model is easily
diagonalized. DMFT self-consistency conditions for this model are derived below; the
model has two degrees of freedom (per spin), and thus we require two conditions to
constrain them (the second problematic stage mentioned in §3.4), which will be pro-
vided by band filling and properties of the quasiparticle at the Fermi level.

Let us start with the impurity model that will realize the effective action (Eqn 3.1).
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The Hamiltonian (c.f. Eqn 3.11) is

H =∑
σ
εcσ â†σ âσ +∑

σ
Vσ(â†σ ĉσ + ĉ†σ âσ)− µ∑

σ
ĉ†σ ĉσ +Uĉ†↑ĉ↑ĉ

†
↓ĉ↓ , (4.1)

where the impurity has creation operator c† and the bath site a†, and we have included
spin dependence explicitly. Vσ controls the hopping amplitude, or hybridization, bet-
ween the two sites, and εcσ controls the balance of electrons on the two sites. Diagonal-
izing the non-interacting (U = 0) model gives the Green’s function for spin-σ electrons
on the impurity site (c†):

G
−1
σ (ω)= ω+ µ− V2

σ

ω− εcσ
; so ∆σ(ω) =

V2
σ

ω− εcσ
(4.2)

(c.f. Eqn 3.12 and also §3.3). The parameters {εcσ,Vσ} thus completely characterize G ;
our self-consistency loop is begun with {εcσ,Vσ} set to arbitrary values, which will be
changed at the end of the loop according to the self-consistency conditions.

The interacting Hamiltonian (Eqn 4.1, U > 0) is exactly diagonalized with respect
to the many-particle basis of 16 states. Using the Lehmann decomposition (Eqn 3.13,
see also Eqn 4.13), the interacting impurity Green’s function Gimp,σ(ω) is calculated,
and the local self-energy can be extracted (using Dyson’s equation, c.f. Eqn 3.3):

Σσ(ω)= ω+ µ− V2
σ

ω− εcσ
−G−1

imp,σ(ω) . (4.3)

We can now construct the lattice Green’s function by introducing this self-energy to the
non-interacting lattice Green’s function, exactly as Eqn 3.5. Finally, for self-consistency,
we want to match the local Green’s function of the extending lattice with the local
impurity Green’s function (Eqn 3.6), i.e.

Gimp,σ(ω) + Glat,σ(ω)=∑
k

1
ω+ µ− εk− Σσ(ω)

. (4.4)

We must now decide how to implement this self-consistency condition; clearly, it is not
possible to exactly match the two functions using only two variables. The key to two-
site DMFT’s success is Potthoff’s choice of physically motivated conditions to compare
the functions by [69].

The first is that their electron fillings are the same, i.e.

nimp,σ ≡ 〈c†σcσ〉 + nlat,σ ≡−
1
π

∫ 0

−∞
dω Im
ω→ω−iδ

Glat,σ(ω) , (4.5)
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Figure 4.1: Self-consistent Green’s functions for two-site DMFT at U = 4.1t,n = 0.9 on the Bethe lattice. The solid
lines are the real parts, and the dashed lines the imaginary parts (for the impurity Green’s functions these are
δ-functions and not shown). The impurity and lattice Green’s functions have the same filling; additionally, the
coherent part of the functions have the same high frequency tails (indicated at right), which sets the width of the
quasiparticle peak (indicated on top).

where nimp,σ is the number of electrons on the impurity site, for the ground state of
the impurity model Hamiltonian. Whilst such an essential quantity must clearly be
matched for the self-consistency to be physically sensible, a more formal argument is
possible by comparison of the two Green’s functions at high frequency ω [69]. In this
limit, the self-energy of the impurity model can be calculated by perturbation theory:
Σσ(ω) =Unimpσ̄ +U2nimpσ̄(1− nimpσ̄)/ω+O(1/ω2), where n is the impurity site filling
(under the unperturbed Hamiltonian). Conversely, calculating Σσ(ω) for the Hubbard
model (on the extended lattice) yields an identical expression, but in terms of the lattice
local filling nlatt instead of nimp. In DMFT, we are transferring the impurity self-energy
unchanged to the lattice, and so for these high-energy expansions to be the same, it
is necessary that the impurity and lattice fillings are the same. Furthermore, the high
energy form of the lattice Green’s function with the above impurity self-energy to is
identical to the exact high-energy expansion found by calculating moments of the in-
teracting density of states [97].

The second self-consistency condition is more subtle, and involves comparing fea-
tures of the quasiparticle peak at the Fermi level (see Fig. 4.1). In order to separate the
quasiparticle peak from the rest of the function, we focus on the low frequency behav-
iour of the self-energy, and write it as Σσ(ω)= aσ + bσω+O(ω2). This will characterize
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a normal but renormalized quasiparticle, with a quasiparticle residue z defined:

zσ =
(

1− dΣlocal,σ

dω
(0)
)−1

=
1

(1− bσ)
. (4.6)

We can construct coherent impurity and lattice Green’s functions, by combining the
non-interacting Green’s function with the low frequency self-energy (aσ+ bσω) in place
of the full Σσ(ω) in a Dyson’s equation. These are called coherent because the effect of
such a self-energy is merely to renormalize the width, height and position of the poles
of the non-interacting Green’s function:

G(coh)
latt,σ(k, ω)=

1
ω+ µ− εk− aσ − bσω

=
zσ

ω− zσ
[
εk− µ+ aσ

] (4.7)

G(coh)
imp,σ(ω) =

1
ω+ µ− ∆σ(ω)− aσ − bσω

=
zσ

ω− zσ
[
∆σ(ω)− µ+ aσ

] (4.8)

(recall that ∆σ(ω) = V2
σ/(ω − εcσ) for the two-site impurity model, see Eqn 4.2). The

quasiparticle residue zσ indicates how much of the original non-interacting quasipar-
ticle is left now there are interactions (c.f. Fermi liquid theory, §1.1).

The coherent Green’s functions encapsulate properties of the zero energy quasi-
particle peak, and we characterize the peak by its high-energy tails; keeping only the
coherent part of the self-energy causes the peak to become isolated from the result of
the spectrum. To examine the tails of the Green’s functions, we expand their coherent
forms at high frequency ω, and compare the lattice and impurity cases analytically to
derive a self-consistency condition. Fig. 4.1 shows some typical impurity and lattice
Green’s functions in their normal and coherent forms, at self-consistency. So, for the
lattice Green’s function

G(coh)
latt,σ(k, ω)=

zσ
ω

[

1+
zσ(µ− aσ − εk)

ω

]−1

' zσ
ω
− z2

σ

ω2 (µ− aσ − εk)+
z3
σ

ω3 (µ− aσ − εk)2
+O(1/ω4) , (4.9)

and for the impurity Green’s function

G(coh)
imp,σ(ω) ' zσ

ω

[

1+
zσ(µ− aσ)
ω

+
zσV2

σ

ω2 +O(1/ω3)
]−1

' zσ
ω
− z2

σ

ω2 (µ− aσ)+
z2
σ

ω3

[

V2
σ + zσ(µ− aσ)2

]

+O(1/ω4) . (4.10)
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Comparing order-by-order in 1/ω up to O(1/ω4) in Eqn 4.4, they match if:

∑
k
εk = 0 and V2

σ = zσ∑
k
ε2k . (4.11)

The non-interacting dispersion can always be shifted such that the first condition is
true, and the second provides our other two-site DMFT self-consistency condition.
It constrains the couplings Vσ in terms of the quasiparticle residues zσ, which are
calculated from the local self-energy of the impurity model (Eqn 4.6), and a lattice-
dependent prefactor equal to the second moment of the non-interacting density of
states. On the Bethe lattice, ∑k ε

2
k = t2 (see Eqn B.9).

To summarize, the four self-consistency equations for two-site dynamical mean-
field theory are:

nimp,σ = nlat,σ

V2
σ = zσ∑

k
ε2k .

(4.12)

The self-consistency procedure is illustrated as a flowchart in Fig. 4.2; the bath param-
eters of the two-site DMFT effective impurity model are constrained by matching the
on-site lattice and impurity Green’s functions using the electron filling and the weight,
centre of gravity and variance of the coherent quasiparticle peak. In the next section
(§4.3) I will describe how these self-consistency conditions can be implemented in prac-
tice.

4.3 Method

In this section I shall discuss the implementation of the two-site DMFT self-consistency
procedure described in the previous section. First, given the impurity parameters
{εcσ,Vσ}, we need to calculate the impurity and lattice fillings (nimp,σ, nlatt,σ) and the
quasiparticle weight zσ . Second, we need a method for adjusting the input parame-
ters {εcσ,Vσ} to satisfy the self-consistency equations (Eqn 4.12). We wish to consider
a given total electron filling nAim, so the chemical potential µ becomes an additional
input parameter constrained by the extra self-consistency equation ∑σ nlatt,σ + nAim.

4.3.1 Calculations

The first stage is to construct the impurity Hamiltonian (Eqn 4.1) as a matrix connecting
the 24

= 16 possible many-electron states. It can be separated into sectors {n↑,n↓}with
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Figure 4.2: Flow chart showing the two-site dynamical mean-field theory self-consistency procedure.

the same number of electrons, which are disconnected since the Hamiltonian conserves
particles.1 A numerical diagonalization (see Appendix C) gives a set of eigenvalues
and eigenvectors, from which the ground state can be identified. The impurity filling
nimp,σ = 〈0|c†σcσ|0〉 is calculated easily from the eigenvectors.

The overlap between the ground state, and each excited state that has an electron
added or removed, is used to calculate the zero temperature Green’s function on the
impurity site, by means of the Lehmann representation (c.f. Eqn 3.13):

Gimp,σ(ω) =∑
i

∣
∣
∣〈0|c†σ|i〉

∣
∣
∣

2

ω− (E0− Ei)
+

∣
∣
∣〈i|c†σ|0〉

∣
∣
∣

2

ω− (Ei − E0)
, (4.13)

where the sum is over all eigenstates i, which can be written Gimp,σ(ω) = ∑i aiσ/(ω −
biσ) in terms of a set of residues and poles {aiσ, biσ}. We can now calculate the local
self-energy defined in Eqn 4.3 at any ω, given {aiσ, biσ}:

Σσ(ω)= ω+ µ− V2
σ

ω− εcσ
−
(

∑
i

aiσ
ω− biσ

)−1

; (4.14)

1This is in practice unnecessary for such a small matrix, but will become necessary for later calcula-
tions.

58



4. TWO-SITE DMFT METHOD

and hence also the quasiparticle weight (Eqn 4.6):

z−1
σ =

∑i aiσ/b2
iσ

(

∑i aiσ/biσ
)2 −

V2
σ

ε2c
. (4.15)

The final quantity is the lattice filling nlatt,σ, which is the most time consuming quantity
to evaluate, as a numerical integration is required. From Eqn 4.4 and Eqn 4.5 we have

nlat,σ = −
1
π

∫ 0

−∞
dω Im
ω→ω−iδ

∑
k

1
ω+ µ− εk− Σσ(ω)

. (4.16)

If the local Green’s function or density of states is known analytically, we can use the
form given in Eqn 3.10:

nlat,σ =−
1
π

∫ 0

−∞
dω Im
ω→ω−iδ

G0(ω+ µ− Σσ(ω))= − 1
π

∫ 0

−∞
dωρ0(ω+ µ− Σσ(ω)) , (4.17)

where G0 (ρ0) is the non-interacting local Green’s function (density of states) for the
lattice under consideration. For the Bethe lattice (see §B.1, Eqn B.7)

nlat,σ =
1

2t2π

∫ 0

−∞
dω







0 if |ω+ µ− Σσ(ω)| > 2t
√

(ω+ µ− Σσ(ω))2− 4t2 if |ω+ µ− Σσ(ω)| < 2t
. (4.18)

The integration must be carried out numerically (see Appendix C) since the algebraic
form of Σσ(ω) (see Eqn 4.14) is rather unwieldy.

4.3.2 Self-consistency

We can now calculate all quantities we need, given the input parameters {εcσ,Vσ, µ},
and we now need to decide how these should be adjusted to achieve self-consistency
(Eqn 4.12). Consider the highly non-linear function F which evaluates the vector dis-
tance from self-consistency:

F











εc↑
εc↓
V↑
V↓
µ











=












nimp,↑− nlatt,↑
nimp,↓− nlatt,↓

V2
↑ − z↑t2

V2
↓ − z↓t2

nlatt,↑+ nlatt,↓− nAim












(4.19)
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(for the Bethe lattice); we wish to solve the equation F(x) = 0. The problem is multi-
dimensional root-finding, for which I chose to use the Broyden method, the optimal
variant of Newton’s method for problems with a computationally expensive evalua-
tion of F and an unavailable gradient∇F (see §C.1 for further discussion). If successful,
root-finding yields a set x = {εcσ,Vσ, µ} of self-consistent input parameters. There is
no reason why these should be unique, and indeed multiple solutions for a given (U,n)
pair certainly occur (a simple example is coexistence of ferromagnetic and paramag-
netic solutions; see §4.4), and the ground state must be identified by comparing the
energies of the solutions.

Dynamical mean-field theory describes a truly interacting many-body system, and
the energy of such a system is not trivial to calculate. For a non-interacting system we
may calculate the energy as a quantity similar to

∫ 0
−∞dωωρ(ω), but when interactions

are present the density of states is specific to a given electron filling. We must imagine
summing the energy — the chemical potential — of adding each electron cumulatively
to the system. Each time the density of states as a whole will change due to the in-
fluences of this extra electron. This does not lead to a practical means of calculating
the energy, because we have to find self-consistent solutions for specific values of the
filling, n.

There is an alternative method for calculating the ground state energy, however.
Whilst the two-body Hubbard interaction prohibits direct calculation of the energy
as 〈H 〉, we can proceed by dividing the Hamiltonian into its kinetic energy 〈εk〉 and
potential energy parts. The former is directly calculable, and the latter can be deduced
by virtue of its relationship with the full Hamiltonian [98, 99]. The result for the total
energy is

E = − 1
π

∫ 0

−∞
dω Im
ω→ω−iδ

∑
k,σ

[
εk+

1
2Σσ(ω)

]
Glat,σ(k, ω) (4.20)

=∑
σ

∫ 0

−∞
dω
[
ω+ µ− 1

2Σσ(ω)
]
ρ0(ω+ µ− Σσ(ω)) , (4.21)

where ρ0 is the non-interacting local density of states (c.f. Eqn 4.17, Eqn 4.16 and
Eqn 3.10). This expression coincides with Eqns (36,37) of Ref. [69]. In summary, the
energy of a solution can be calculated merely by means of a further numerical inte-
gration akin to the lattice filling; the ease of this calculation is a further advantage of
two-site DMFT.

As a final note, we wish to explore the two-dimensional (U,n) phase diagram, and
this can be achieved efficiently by “seeding” the self-consistency loop with parameters
corresponding to previously calculated neighbouring points.
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4.3.3 Results for the paramagnetic phase

In this section I shall outline results for the paramagnetic solution of the two-site DMFT
equations on the Bethe lattice (bandwidth 4t), wherein all quantities are constrained to
be identical for σ =↑ and σ =↓.

At half-filling, the numerics become pathological, but progress can be made ana-
lytically. Apart from the sectors which contain two electrons out of the maximum four,
the Hamiltonian matrix is only 2× 2 and can be diagonalized analytically. At half-
filling the system should be particle-hole symmetric, which must also be true for the
impurity model; and the energy of the eigenstate with n electrons is the same as the
eigenstate with 4−n electrons. Comparing n= 0 and n= 4 yields µ= (U+ εc↑+ εc↓)/2,
and comparing n= 1 and n = 3 gives two possibilities: either εc↑ = εc↓ = 0 (and Vσ un-
constrained), or εc↑ = −εc↓ and V↑ = ±V↓. Solving the first case for self-consistency
with V↑ = V↓ gives the key result

zσ =







1− (U/6t)2 if U < 6t

0 if U > 6t .
(4.22)

This demonstrates the Mott transition: the quasiparticle residue falls off as the inter-
action strength is increased, and the system becomes an insulator at Uc = 6t (compared
to a bandwidth of 4t). The parabolic form is the same as the Gutzwiller variational app-
roach [84]. The critical value Uc = 6t compares reasonably well with the Brinkman-Rice
result of Uc = 6.79t; there is better agreement with ED and NRG DMFT calculations
(see Fig. 1 of Ref. [69]).

Using the full numerical two-site DMFT calculations to investigate off half-filling
gives results for the quasiparticle residue z as shown in Fig. 4.3: there is no Mott tran-
sition, as z no longer suddenly becomes exactly zero but falls off increasingly gently
further away from half-filling.

Returning to the half-filling case, Fig. 4.4 shows how the density of states within
two-site DMFT evolves with U. The classic three-peak structure of more sophisticated
DMFT approaches (§3.5.1) is captured neatly: as U increases the Hubbard bands form
and move apart, and the central quasiparticle becomes heavier until the peak suddenly
vanishes at the Mott transition. Off half-filling the density of states retains the three
peak form, but increasing amounts of weight fall in the central band. Fig. 3 of Ref. [69]
shows some examples, which coincide with my calculations.
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Figure 4.3: Quasiparticle residue z as a function of U for various values of the electron filling. Solid line:
analytic form at n = 1 (half-filling) z = 1 − (U/6t)2); the other data points �,F,�,N,• correspond to n =
0.99,0.9,0.7,0.5,0.25 respectively.
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Figure 4.4: Density of states for two-site DMFT on the Bethe lattice at U = {0.1t,2.1t,4.1t,6.1t,8.1t} very near
to half-filling. The pictures of Mott–Hubbard and Brinkman–Rice are both captured by two-site DMFT; Hubbard
bands can be seen coexisting with an increasingly heavy central quasiparticle which vanishes at higher U: the Mott
transition.
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4.4 Ferromagnetic and antiferromagnetic phases

To allow for the possibility of magnetism, quantities should be permitted to differ de-
pending on the spin σ, and if the spin symmetry remains broken in the self-consistent
solution, the state is ferromagnetic: each site in the real lattice would have identical mag-
netic properties. The two-site DMFT equations as formulated above can produce such
solutions.

4.4.1 Representing antiferromagnetism

We also wish to allow for the possibility of antiferromagnetism, where the magnetic
properties of each site alternates: on a bipartite lattice each lattice site can be labelled A
or B, and A sites are only connected to B sites. A ↑ spin on an A site has identical prop-
erties to a ↓ on a B site, which means that we can derive a new set of self-consistency
equations for DMFT, such that an ↑ spin fluctuates so that surrounding sites see it as a
↓ spin, and vice versa [93].

We begin the derivation of antiferromagnetic self-consistency equations for DMFT
by dividing the kinetic energy part of the Hamiltonian into sublattices:

H AFM
0 =∑

k
εkĉ†kĉk =

1
2 ∑

k
εk

[

ĉ†AkĉBk+ ĉ†BkĉAk

]

, (4.23)

which leads to a matrix lattice Green’s function

GAFM
0,latt,σ

−1
(k, ω)= 1

2

(

ω+ µ −εk
−εk ω+ µ

)

, (4.24)

where the sublattice is the matrix index. Matrices within DMFT are discussed in detail
within the context of cluster DMFT (Chapter 5); this section will just contain a brief
summary of results, which will be superseded. The self-energies calculated from the
impurity model can be introduced to the diagonals of the Green’s functions, giving:

GAFM
latt,σ(k, ω)=

ω+ µ− Σσ̄
(ω+ µ− Σσ)(ω+ µ− Σσ̄)− ε2k

(4.25)

where I have used the label σ represents A ↑≡ B ↓ and σ̄ represents A ↓≡ B ↑. This
function should be used in Eqn 4.5 to calculate the lattice filling for the antiferromag-
netic case. When the local density of states is known we can evaluate the k-sum and
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write (c.f. Eqn 4.17):

nAFM
latt,σ =

∫ 0

−∞
dω

√
∣
∣
∣
∣

ω+ µ− Σσ̄
ω+ µ− Σσ

∣
∣
∣
∣
ρ0

(√

|(ω+ µ− Σσ)(ω+ µ− Σσ̄)|
)

; (4.26)

regions where (ω + µ− Σσ)(ω + µ− Σσ̄) < 0 are excluded, noting the structure of the
Green’s function in the complex plane (see §B.1). A direct treatment of antiferro-
magnetism on the Bethe lattice yields an identical result (see §B.3). Finally, for the sec-
ond self-consistency condition involving the quasiparticle peak, we expand the coher-
ent part of the antiferromagnetic lattice Green’s function as per Eqn 4.9, giving the
condition

V2
σ + zσ̄∑

k
ε2k . (4.27)

The only difference from Eqn 4.12 is that opposite spin species are matched, as one
might expect intuitively.

4.4.2 Results

Simple ferromagnetism

Ferromagnetism emerges for U > 4t, and at half filling this critical value can be derived
analytically similarly to §4.3.3. As U increases, it extends away from half-filling as
shown in Fig. 4.5, reaching for example n∼ 0.8 at U= 8t; this is a very much smaller ex-
tent than the Stoner criterion predicts. There are two different ferromagnetic solutions,
with different magnetizations (as shown in Fig. 4.6); one is fully polarized.2 Nowhere
on the phase diagram do either of the ferromagnetic solutions have a lower energy
than the paramagnetic solution.

A mean-field Heisenberg term−F〈m〉m̂/2+ F〈m〉2/4 can be introduced to the Hamil-
tonian to stabilize itinerant ferromagnetism.3 The energy of the saturated ferromag-
netic solution can be decreased sufficiently that it becomes the ground state, and a
phase diagram in excellent agreement with the more sophisticated DMFT approach of
Vollhardt and coworkers (Fig. 2 of Ref. [71]) was found.

Simple antiferromagnetism

There are two antiferromagnetic solutions, which are energetically favoured over the
paramagnet for some regions of the phase diagram, as shown in Fig. 4.5. First, by

2This saturated solution was hard to pin down because it is one of a large subspace of identical
solutions.

3〈m〉was introduced as an extra free parameter with a self-consistency condition 〈m〉+ n↑− n↓.
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Figure 4.5: Phase diagram for the simple antiferromagnetic and ferromagnetic phases within two-site DMFT on the
Bethe lattice (bandwidth 4t). The dashed (dotted) line shows the extent of the antiferromagnetic (ferromagnetic)
phases, although they are not necessarily energetically favoured within these regions; the shaded region indicates
where there is an antiferromagnetic ground state (apart from the hole, which is discussed in the text). Very close to
half-filling (n = 1), the ground state is antiferromagnetic for all U.
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Figure 4.6: Cross-sections of the variation of magnetization with n and U, for the simple magnetic solutions of
two-site DMFT on the Bethe lattice (bandwidth 4t). Two ferromagnetic (FM) phases, one of which is saturated, are
shown, although these are never energetically favoured. There are two antiferromagnetic (AFM) solutions, one of
which is constrained to very near half-filling, and for these the sublattice magnetization is shown. (a) Variation with
filling n at U = 7.5t. Antiferromagnetism at half-filling is indicated by a •. Paramagnetism becomes favoured over
antiferromagnetism for n . 0.885. (b) Variation with interaction strength U at half-filling (n= 1). Antiferromagnet-
ism is energetically favoured everywhere.
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Figure 4.7: Sublattice-resolved densities of states for simple antiferromagnetic solutions to two-site DMFT on the
Bethe lattice (bandwidth 4t) for U = {0.5t,1.5t,3t} at half-filling. A Slater gap is formed immediately U becomes
finitesimal. The densities of states for the other sublattice are identical but reflected such that ω→−ω.

predefining µ as in §4.3.3, a solution can be found at exactly half-filling; there is also a
very similar state slightly off half-filling, extending at most to n ∼ 0.995 at U ∼ 5t (not
shown in Fig. 4.5). The state is an insulating Slater antiferromagnet for any finitesimal
U > 0, and Fig. 4.6(b) shows its Hartree-like magnetization curve; its density of states
is plotted for various values of U in Fig. 4.7.

A second, metallic, antiferromagnetic state exists which has a maximum extent off
half-filling of n= 0.8 at U= 5.5t, and thereafter recedes (see Fig. 4.5). Its magnetization
as a function of U and n is shown in Fig. 4.8; the magnetization drops to zero again
near half-filling for interaction strengths above the Mott transition (U = 6t), which
perhaps indicates how a metallic solution is becoming unfavourable near to the half-
filling insulating state. The quasiparticle weight falls off similarly to the paramagnetic
state shown in Fig. 4.3. Looking at this transition as U increases close to half-filling,
there is a cusp in the magnetization (see inset of Fig. 4.8) where there no solutions
could be found (the hole in Fig. 4.5). In this region, there is behaviour reminiscent of
the Falicov–Kimball model, where one spin species is localized and the other itinerant:
|z↑− z↓| exhibits a large peak here.
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Figure 4.8: Magnetization of the simple antiferromagnetic solution to two-site DMFT on the Bethe lattice (band-
width 4t) as a function of interaction strength U and filling n. The phase is energetically favoured nearer to half-
filling (darker shading), but there is a hole (inset) near the Mott transition (U= 6t) where solutions cannot be found.

Degenerate eigenstates

Yet, it turns out that there is a further set of solutions (with all three types of order) that
are generally lower in energy than the previous ones; they come from impurity models
with degenerate ground states — with different numbers of electrons. For such phases,
we use a thermodynamic average of the two states of the impurity model which are
lowest in energy. The relative weight of the two states, 0 ≤ α ≤ 1, is a new parameter,
with the matching self-consistency condition that the two states really are degenerate.
If they are degenerate, any linear combination is a valid ground state (and off self-
consistency the state is unphysical in any case).

In total there are eleven distinct phases within magnetic two-site DMFT, includ-
ing both the “degenerate” solutions and those described previously; Fig. 4.9 shows
a schematic phase diagram. A region where ferromagnetism is favoured has now
emerged; its extent is within the boundary n > 0.71 found by the authors of Ref. [100].
The ferromagnetic magnetization increases roughly linearly from zero towards half-
filling and does not change significantly with U. All the ground state phases still
exhibit the quasiparticle weight decreases similar to Fig. 4.3, characterizing the Mott
transition.

The degeneracy is indicative that the limit of unenhanced two-site DMFT has been
reached, and I shall not discuss the properties of these phases in further detail as they
will be superseded by results in later chapters.
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Figure 4.9: Phase diagram for the antiferromagnetic (AFM) and ferromagnetic (FM) phases within two-site DMFT
on the Bethe lattice (bandwidth 4t), including those from impurity models with degenerate ground states (AFM2,
AFM3 and FM). The paramagnetic phase (PM) and the AFM1 phase are the “simple” (non-degenerate) phases of
Fig. 4.5. At lower n than shown, there is a region where the ground state phase becomes an antiferromagnet with a
tiny moment. At high U, the phase boundaries continue horizontally at roughly the same fillings.

4.5 Summary

In this chapter I have described a minimal representation of DMFT where a single
bath site provides the spectrum of excitations for the mean-field model to explore.
This approach is remarkably successful: for example, the broad features of the Mott
transition can be reproduced (see §4.3.3 and Ref. [69]). I have extended two-site DMFT
to encompass ferro- and antiferromagnetic phases, which produces a reasonable phase
diagram and predicts a much smaller extent of magnetism than static Hartree mean-
field theory, a result in agreement with more sophisticated DMFT studies.

I have restricted my description of the phases to a brief survey, since they form an
initial test of two-site DMFT, and the results will be superseded by the more soph-
isticated results in later chapters. The final phase diagram in Fig. 4.9 is not entirely
satisfactory; the degenerate states are symptomatic of the struggle to represent the
necessary physics within the restrictions of the two-site impurity model, and the self-
consistency only manages to succeed by combining together the physics of two differ-
ent impurity states by making them degenerate. The results of this chapter serve only
to justify two-site DMFT as a good, quickly calculable kernel for extensions to DMFT;
it is a method with frugal computation requirements that, despite its crudeness, can
produce pictures of interacting systems that in general have only been possible with
far more sophisticated approaches.

When further degrees of freedom are added to the two-site DMFT model, the prob-
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lems caused by its simplicity will reduce. The most obvious way of extending two-site
DMFT would be the addition of further bath sites to the impurity model to represent
the dynamics of non-local electrons more accurately. Suitable extra physically-relevant
self-consistency conditions should then be devised to constrain the bath parameters,
in contrast to the conventional exact diagonalization approach to DMFT where self-
consistency is implemented rather blindly. Extending the coherent Green’s functions
(Eqn 4.7 and Eqn 4.8) to include further terms is one possibility for deriving such self-
consistency conditions; and whilst including a ω2 term to the reduced self-energy is
pathological, terms such as ω−1 etc. would be possible. More generally, the whole
self-energy can be used as a variational functional, as discussed in a further paper of
Potthoff [101]. An alternative to such a mathematical approach is to take advantage of
specific emergent spectral features, inspired by physical intuition.

However, instead of following the conventional DMFT route of representing the
interacting sea faithfully, we can channel our spare computational resources into dif-
ferent areas, and let dynamics be captured minimally. For example, we could include
multiple orbitals or bands, to model real materials where band degeneracy causes
interesting physics. One fruitful subject of study would be ruthenate compounds,
which exhibit fascinating behaviour indicative of strong electronic correlations, such
as unconventional superconductivity in Sr2RuO4 [102] and metamagnetic quantum
criticality in Sr3Ru2O7 [11]. The evolution of magnetism across the strontium/calcium
ruthenate series, Srn+2−xCaxRun+1O3n+4, is counter-intuitive, and DMFT would be an
ideal tool for investigating whether this is due to the influence of local physics on a
good Fermi liquid (Sr2RuO4). Koga et al. [103] used a method based on two-site
DMFT to study orbital-selective Mott transitions in the Ca2−xSrxRuO4 compounds,
further evidence of the efficacy of two-site DMFT.

However, prior to tackling such materials, we want to be sure of modelling mag-
netism accurately, mindful of the pitfalls of studying paramagnetic phases where there
is lower-energy antiferromagnetism present [64]. A cluster formulation provides a
more satisfactory approach to antiferromagnetism than the single impurity site app-
roach of this chapter. The rest of this thesis will focus upon cluster DMFT (described
in Chapter 5), where the impurity model consists of a cluster of impurity sites each
connected to a bath representing off-cluster dynamics; I shall use two-site DMFT as
the impurity solver, so each bath is reduced to a single site. The computational effort
saved by the minimal two-site implementation of the DMFT self-consistency means
that the phase diagram of the 2D Hubbard model can be comprehensively explored
under a cluster model, in contrast to conventional DMFT where the huge computa-
tional requirements limit investigation to just a few points in parameter space.
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Chapter 5

CLUSTER DMFT

HAMLET: Do you see yonder cloud that’s

almost in shape of a camel?

LORD POLONIUS: By the mass, and ’tis like a

camel, indeed.

HAMLET: Methinks it is like a weasel.

LORD POLONIUS: It is backed like a weasel.

HAMLET: Or like a whale?

LORD POLONIUS: Very like a whale.

WILLIAM SHAKESPEARE

Hamlet [104]
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5.1 Introduction

Conventional DMFT is formulated by isolating a single site from the crystal lattice, and
representing the interaction of that site with the rest of the system with a self-consistent
bath. If a cluster of sites is extracted from the lattice instead of the single site, and em-
bedded in a self-consistent medium (see Fig. 5.1) , we have cluster DMFT. The geometry
of neighbouring sites can be included in the theory, and the DMFT equations now have
some momentum dependence. In practical terms, different types of magnetic order can
be investigated consistently, and there is now possibility of anisotropy in the Brillouin
zone; this is invisible to conventional DMFT and turns out to be very important. After
describing in detail how exactly I shall interpret cluster DMFT (§5.2), I shall eventu-
ally focus upon the combination of two-site DMFT (Chapter 4) with cluster DMFT,
described in §5.3.

Conventional DMFT distinguishes between different crystal lattices only by means
of their densities of states (c.f. Eqn 3.10), and is thus fairly insensitive to lattice intri-
cacies [52]. Antiferromagnetism on a bipartite lattice can be dealt with crudely within
conventional DMFT by imagining electrons to change spin orientation as they hop
between identical sites, as in reality alternate sites have opposite spin properties. A
reasonable magnetic phase diagram can be produced with this method (as described
in §4.4.2 for two-site DMFT); and it is even possible to see consequences of frustra-
tion.1 In general, however, conventional DMFT is not an ideal theory for studying
magnetism; phenomena such as frustration are highly dependent on the local geomet-
rical environment. Furthermore, the momentum dependence of any quantity calcu-
lated within conventional dynamical mean-field theory cannot vary from that of the
non-interacting dispersion (c.f. Eqn 3.5, Eqn 3.9), and it is known experimentally that
significant momentum anisotropy can emerge, for example from photoemission stud-
ies of the cuprates. So, to capture fully the dynamical effects of inter-site correlations,
and resolve features in momentum space, a cluster DMFT approach is necessary.

There are several different formulations of cluster DMFT, and indeed its derivation
is fundamentally ambiguous — I shall discuss possible approaches in §5.1.1. DMFT is
exact in infinite dimensions, and cluster DMFT can be formulated to provide rigorous
finite dimensional corrections, at O(1/d), to DMFT. Whilst the cluster approach consid-
ered in this thesis (described in detail in §5.2) is not such a well-defined extension of
DMFT, it will improve upon conventional DMFT as it is a step towards the limit of infi-
nite cluster size, where cluster DMFT is clearly exact. Here the self-consistency condi-

1c.f. Santoro et al. [57], who studied the infinite-dimensional diamond lattice, which is bipartite but
not nested.

71



5. CLUSTER DMFT INTRODUCTION

tions will have become an insignificant, albeit sophisticated, boundary condition. For
small clusters, the momentum dependence of quantities will be weak, and the possible
Fermi surface shapes highly constrained — but improved from conventional DMFT
which is restricted to shapes resulting from the non-interacting dispersion only. As
the cluster size increases, higher Fourier modes become available to characterize the
dispersion, and the representation of the Fermi surface can become more accurate.

Naturally, having to solve a cluster significantly increases computational require-
ments, due to the vast increase in Hilbert space size. The focus of this thesis will be
the use of a minimal DMFT kernel (two-site DMFT as described in Chapter 4) to solve
the DMFT equations emerging from the cluster problem; such an approach enables
a complete survey of the phase diagram of the 2D Hubbard model. In §5.3 I shall
describe how to formulate two-site cluster DMFT for an arbitrary cluster (within the
cluster DMFT approach of §5.2), and in the succeeding sections I will derive equations
for the specific cases of a 2× 1 site “pair-cluster” (§5.3.1) and then a 2× 2 site “quad-
cluster” (§5.3.1). The final two chapters (Chapter 6 and Chapter 7) contain a complete
description of the results of these calculations.

5.1.1 Approaches to cluster DMFT

There is no unique generalization of DMFT to cluster DMFT [105]. Different schemes
will arise for the cluster formulation depending upon what one takes the fundamental
ansatz behind DMFT to be — for example, whether it is a formal infinite dimensional
limit, or as a mean-field theory with dynamics included through an effective medium.

If one regards DMFT as a strict infinite dimensional limit, a cluster DMFT can
be derived formally by expanding to O(1/d) [58, 52]. Perturbation theory is local in
infinite dimensions [53, 52] and the original DMFT equations can be derived from
a Luttinger–Ward functional restricted to local Green’s functions. Allowing in addi-
tion nearest-neighbour Green’s functions produces a cluster-like scheme, requiring the
simultaneous solution of two impurity models, coupled via self-consistency condi-
tions. However, this scheme has been shown to be non-causal [105], and the lattice
geometry does not enter the equations, as the coordination number z <∞ is the only
new parameter.

The Dynamical Cluster Approximation (DCA) [106, 107] involves dividing the Bril-
louin zone into a number of cells Nc, and in effect a separate instance of conventional
DMFT is set up for each cell, centred at K. The DMFT self-consistency condition
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Figure 5.1: In the cluster DMFT procedure, a small cluster is identified and isolated from the rest of the lattice. A bath
is connected to the cluster to represent the dynamics of electrons hopping to neighbouring clusters. To reconstruct
the extended system, the cluster is re-embedded in the lattice, and bath adjusted to ensure it is self-consistent with
this embedding.

(Eqn 3.7) turns into Nc equations

Glocal(K, iωn) =∑
k

1
iωn+ µ− εK+k− Σlocal(K, iωn)

, (5.1)

where k is labelling the momenta within a single cell. Each cell explores a different
part of the dispersion relation εk, and so the result is slightly lattice-dependent. The
DCA can also be formulated in real space [105], and it can be shown to be causal.

In contrast to dividing up momentum space, we can divide real space into clusters,
and this provides the most natural way of approaching phenomena such as antiferro-
magnetism. A real space cluster is the basis of Cellular Dynamical Mean Field Theory
(CDMFT) [108, 109, 110], and self-consistency conditions can be constructed on con-
sideration of its links to surrounding clusters. My approach to cluster DMFT, which I
shall derive carefully in the next section (§5.2), is closely related to CDMFT.

5.2 My cluster DMFT formulation

The broad outline of the cluster DMFT procedure is illustrated in Fig. 5.1. We begin
by dividing our interacting Hamiltonian (perhaps the Hubbard model, Eqn 1.1) into
clusters, each with Nc sites. For each cluster, at a superlattice position labelled R, there
will be terms solely contained in that cluster (the Hubbard repulsion U and hopping
between cluster sites), which I shall collect into HR. Secondly, there are terms that
interlink clusters, which I shall collect into H ∆

R , being careful with counting and keep-
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ing daggered terms within their own cluster. So, the total Hamiltonian is

H =∑
R

[

HR+H ∆
R

]

=∑
R

[

HR+∑
∆R

H ∆
R,R+∆R

]

, (5.2)

showing how the part H ∆
R which interlinks clusters can be further dissected, according

to which neighbouring cluster (at position R+ ∆R) is involved. Similarly to conven-
tional DMFT, we focus on a single cluster, and imagine integrating out all sites which
do not belong to that cluster. This will leave an effective action (c.f. Eqn 3.1 for conven-
tional DMFT) of the form:

Seff = −
∫ β

0
dτ
∫ β

0
dτ ′∑

i, j
c†iσ(τ )G−1

0,i j(τ − τ ′)c jσ(τ
′)+U

∫ β
0

dτ∑
i

c†i↑(τ )ci↑(τ )c†i↓(τ )ci↓(τ ) ,

(5.3)
where i, j label positions within the cluster, and G0 has become a matrix, between pairs
of sites in the cluster. The Green’s function G0,i j represents the dynamics of electrons
leaving the cluster from site j and returning to site i after picking up an arbitrary quan-
tum mechanical phase; a realization of the action must enable each element of the
matrix GGG 0 to represent an arbitrary function. Supposing we can solve this action, we
can calculate the interacting Green’s function for this action (c.f. Eqn 3.2), which will
also be a matrix

Glocal,i j(τ − τ ′) ≡ −〈Tc(τ )ic†(τ ′) j〉Seff
, (5.4)

and extract a matrix self-energy for the cluster (c.f. Eqn 3.3):

G−1
local(iωn) = GGG

−1
0 (iωn)−Σlocal(iωn) . (5.5)

Next, we wish to embed this self-energy in the lattice. To do this, we have to know the
non-interacting Green’s function as a matrix within the cluster basis. Let us start from
Eqn 5.2 with no interactions (U = 0), and define a Fourier transform for the cluster
superlattice of positions R which will have k vectors in some geometry-dependent
Reduced Brillouin Zone (RBZ)

c†R,i =
1√
N ∑

k∈RBZ
eik.Rc†k,i

c†k,i =
1√
N ∑

R∈superlattice
e−ik.Rc†R,i .

(5.6)

Operators are defined specific to each site at position i within the cluster, but with a
superlattice momentum k, transformed from the independent position R of the cluster
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as a whole. The Hamiltonian becomes

H0 =∑
k

ĉ†k ·
[

H+∑
∆R

eik·∆RH∆
]

· ĉk =∑
k

ĉ†k ·H0(k) · ĉk (5.7)

where ĉk is a vector consisting of the operators for each cluster site. H and H∆ are
matrices with respect to the index of a site within the cluster: H is hopping contained
within the cluster, and H∆

i j is the hopping element from site i of the cluster at R to site
j of the cluster at R+ ∆R (for an example, see Eqn 5.25 and Eqn 5.26). The end result
is a non-interacting Hamiltonian matrix H0(k) for the cluster, from which we know the
non-interacting Green’s function matrix (c.f. Eqn 3.4):

G−1
0,latt(k, iωn) = (iωn+ µ)I−H0(k) , (5.8)

and can insert the self-energy matrix (c.f. Eqn 3.5):

G−1
latt(k, iωn) = G−1

0,latt(k, iωn)−Σlocal(iωn) . (5.9)

One of the ambiguities of cluster DMFT is how the local cluster self-energy should be
combined with the lattice Green’s function; here we are choosing to do it element-by-
element in the matrix, and this is particular to the cluster DMFT scheme. There are
alternative possibilities; one example is that used in “PCDMFT” [105], where the real
space self-energy Σi j between two lattice sites is estimated by averaging hops that are
equivalent to i j within the cluster, and the result Fourier transformed.

Finally, the dynamical field matrix in GGG 0 in the initial action is constrained, by com-
paring the local lattice Green’s function with the interacting Green’s function of the
effective action. These matrices are matched element-by-element, giving an identical
expression to Eqn 3.6:

Glocal(iωn) +∑
k

Glatt(k, iωn) . (5.10)

Similarly to above, comparing the Green’s function matrices element-by-element is a
choice, and our cluster DMFT scheme is now specified, by these two choices (Eqn 5.9
and Eqn 5.10). The DCA self-consistency conditions, for example, differ from our app-
roach as patches of momentum space are compared instead of matrix elements with
respect to the spatial cluster in our case.

As with the original DMFT procedure, everything above should be duplicated for
the two spin species, which are coupled only by the electron-electron interaction in the
effective action.
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5.2.1 Extracting physical properties

In conventional DMFT, the constructed lattice Green’s function Glatt(k, iωn) is clearly
the real physical correlation function. In cluster DMFT, we have a matrix lattice Green’s
function Glatt(k, iωn), and the operators for a specific cluster site are not physical quan-
tities, so some manipulation is required to extract physical properties. Diagonalizing
the non-interacting Hamiltonian H0(k) gives a set of Nc eigenstates corresponding to
Nc bands in the first reduced Brillouin zone (RBZ). The interacting Green’s function
can be transformed likewise, and each eigenstate produces a Green’s function which
characterizes the quasiparticles in that band.

More explicitly, let us suppose J is the matrix of normalized eigenvectors of H0(k),
such that H0 = JDJ† where D is a diagonal matrix with eigenvalues on its diagonal
(c.f. Eqn 5.27, Eqn 5.37 and Eqn 5.38 for specific examples). I shall term this basis of
eigenstate bands the quasiparticle basis. To calculate the quantity represented by the
matrix O within the quasiparticle basis, the trace in Eqn 1.2 can be transformed into the
cluster index basis, giving

tr O[(ω+ µ)I−D]−1
= tr JOJ†J[(ω+ µ)I−D]−1J†

= tr JOJ†[(ω+ µ)I−H0]−1

= tr JOJ†Glatt , (5.11)

where in the last line the non-interacting Green’s function (in the cluster basis) can
be recognized and is replaced with the interacting Green’s function. Using matrices
O with just a single non-zero element on its diagonal gives results corresponding to
a single quasiparticle band, and we can calculate the momentum-dependent Green’s
function Gqp(ω,k) whose imaginary part gives us the full spectral function. Specific
examples can be seen in Eqn 5.35 and Eqn 5.45.

If the cluster’s symmetry is completely broken in an otherwise non-interacting sys-
tem, the real quasiparticles of the system will live in the bands of eigenstates described
above. For example, on the two sublattices of the 2D square lattice, the quasiparticles at
k are superpositions of the original particles at k and k+ (π/2a, π/2a), and both bands
only extend to the edges of the first RBZ diamond of Fig. 5.2(b) (p81); expressions out-
side this region will be umklapped, to reproduce its features periodically. I shall often
represent such a system with an extended zone scheme, where (in this case) the second
band is drawn in the second RBZ, the remaining half of the original Brillouin zone.

The energy calculation for conventional DMFT (described in §4.3 for the case of
two-site DMFT) can easily be extended to cluster DMFT. All quantities in Eqn 4.20 be-
come matrices, and we need to take the trace and then integrate over ω (as in Eqn 1.2).
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The non-interacting (or kinetic) energy part εk is simply H0; the final expression is [98,
99]:

E =− 1
π

∫ 0

−∞
dω Im
ω→ω−iδ

∑
k,σ

tr
[(

H0(ω,k)+ 1
2Σ(ω)

)
·Glat(ω,k)

]
. (5.12)

5.3 Two-site cluster DMFT

In this section I will describe the extension of the two-site DMFT self-consistency pro-
cedure (§4.2) as a cluster scheme, according to the formulation in §5.2. The form of the
impurity model Hamiltonian is the same as as the non-cluster equivalent (Eqn 4.1):

H = H0,bath+H0,imp↔bath+H0,imp+HU,imp , (5.13)

there is a bath connected to an impurity part, that has Hubbard U interactions. H0,imp

consists of just −µ and −t terms, and together with HU,imp should exactly reproduce
the original lattice Hamiltonian for the isolated cluster sites only. As usual, this Hamil-
tonian should be exactly-diagonalized, and the interacting impurity Green’s function
Glocal(ω) calculated according to Eqn 5.4. This Green’s function will be a matrix with
respect to cluster sites, with elements corresponding to particle excitations within the
impurity sector; from the ground state, an electron may be annihilated from one cluster
site and recreated at another.

To extract the self energy, we first need the non-interacting impurity Green’s func-
tion matrix for the cluster, to use in Dyson’s equation together with the interacting
function. Writing the non-interacting Hamiltonian as a matrix with respect to the im-
purity or bath sites, gives

H0 =
(

ĉ† â†
)
(

H0,imp V

V† ε

)(

ĉ
â

)

(5.14)

where ĉ and â are vectors of impurity and bath operators respectively. H0,imp is made
up from the H0imp submatrix, the non-interacting original tight-binding Hamiltonian
for the cluster; H0,imp↔bath is made up from the Vi j, the hopping from impurity site i
to bath site j; and H0,bath is made up from ε, the on-site bath site energies and possible
hoppings between bath sites.

At the moment, this formulation is completely general, and not specific to two-
site DMFT; for example, if V is a 1× N vector, the Hamiltonian represents a single
impurity site connected to a chain of bath sites, and would work for the conventional
exact diagonalization procedure (§3.4.2). For two-site DMFT, we generally choose an
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equal number of bath sites as impurity sites, making V square.2 This truncation to a
minimal bath is the drastic approximation of two-site cluster DMFT; V needs an infinite
length to be able to reproduce a completely arbitrary matrix of functions GGG 0(ω).

V need not be hermitian, as there is no reason why the hopping from impurity site
i to bath site j is the same as that from impurity site j to bath site i; the hermiticity of
the Hamiltonian is provided by V†. If each submatrix of Eqn 5.14 is 1× 1, we recover
the original two-site DMFT impurity Hamiltonian, Eqn 4.1.

We wish to integrate out the bath sites; this means inverting the matrix ωI− H0,
throwing away all impurity-connected parts, and reinverting the remaining impurity-
part submatrix. In fact, the quantity we shall need is G−1

0,imp so the last reinversion stage
is unnecessary. So, writing:

(

ωI−H0imp −V0

−V†0 ωI− ε

)−1

=

(

G0,imp X

X† Y

)

, (5.15)

gives the equations

I= ωG0,imp−H0,impG0,imp− V0X† (5.16)

0= ωX†− V†0G0,imp− εX† , (5.17)

and eliminating X† yields

G−1
0,imp = ωI−H0,imp− V(ωI− ε)−1V† . (5.18)

Without loss of generality, we can choose ε to be diagonal; if it is not, we can diago-
nalize it and Eqn 5.18 shows that the matrix of eigenvectors would merely premultiply
V, which was arbitrary in the first place. This remains true when interactions are rein-
troduced, as we can integrate out the bath sites even if the impurity Hamiltonian is
non-Gaussian. With a diagonal ε, Eqn 5.18 is rather simple, and it is clear that the
non-cluster two-site formula Eqn 4.2 is recovered when the quantities are not matrices.

We can now extract the cluster self-energy matrix (c.f. Eqn 5.5 and Eqn 4.3 pre-
viously): Σlocal(ω) = G−1

0,imp(iωn)− G−1
local(ω) and construct the lattice Green’s function

according to Eqn 5.9, using the non-interacting cluster-specific lattice Green’s function.
Let us now derive the self-consistency conditions for matching the impurity and

lattice matrix Green’s functions, i.e. the two-site versions of Eqn 5.10. Firstly, we match
2This is not true if the cluster is large enough to have “internal” sites, i.e. not on its boundary. These

impurity sites should not have any bath sites attached to them as their environment should be the same
as the original Hamiltonian, and V will no longer be square.
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the lattice and impurity fillings for each cluster site ni, which is just a matter of cal-
culating the quantities in Eqn 4.5 for each cluster site separately. This gives Nc self-
consistency conditions, where Nc is the number of sites in the cluster.

For the second condition, we wish to characterize quasiparticles by considering the
self-energy at low energy. So we find matricesΣ0 andΣ1 such thatΣ(ω)=Σ0+ωΣ1+

O(ω2), and define the quasiparticle residue matrix Z (c.f. Eqn 4.6) as:

Z =

(

I− dΣlocal
dω

(0)
)−1

= (I−Σ1)−1 . (5.19)

Analogously to Eqn 4.7 and Eqn 4.8 we can define coherent lattice and impurity matrix
Green’s functions

G(coh)
latt (k, ω)=

[
ωI−H0(k)−Σ0− ωΣ1

]−1

=
[
ωI− Z(H0(k)+Σ0)

]−1
Z (5.20)

G(coh)
imp (ω)=

[
ωI−H0,imp− V(ωI− ε)−1V†−Σ0− ωΣ1

]−1

=
[
ωI− Z(H0,imp+ V(ωI− ε)−1V†+Σ0)

]−1
Z , (5.21)

where the definition of Glatt has come from Eqn 5.8, and that of Gimp from Eqn 5.18.
Expanding these at high frequency analogously to Eqn 4.9 and Eqn 4.10 gives for the
lattice Green’s function

G(coh)
latt (k, ω)=

1
ω

[

1− Z
[
Σ0+H0(k)

]

ω

]−1

Z

' Z

ω
+

Z
[
Σ0+H0(k)

]
Z

ω2 +
Z
[
Σ0+H0(k)

]
Z
[
Σ0+H0(k)

]
Z

ω3 +O(1/ω4) ,

and for the impurity Green’s function

G(coh)
imp (ω)' 1

ω

[

1−
Z
[
Σ0+H0,imp

]

ω
− ZVV†

ω2 +O(1/ω3)

]−1

Z

' Z

ω
+

Z
[
Σ0+H0,imp

]
Z

ω2 +
Z
{

VV†+
[
Σ0+H0,imp

]
Z
[
Σ0+H0,imp

]}
Z

ω3 +O(1/ω4) .

We now compare the Green’s functions order-by-order in 1/ω. At O(1/ω) they clearly
match, and at O(1/ω2) they match as long as:

∑
k

[
H0(k)−H0,imp

]
= 0 . (5.22)
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Consulting Eqn 5.7 (where H0(k) is defined), eik·∆R generally averages to zero, so H∆

disappears and we are left with just H, which is just the hopping elements within the
cluster, and the same as H0,imp. If eik·∆R does not average to zero, the energy origin of
the lattice dispersion can be shifted.

If Eqn 5.22 is thus satisfied, then the Green’s functions match at the next order,
O(1/ω3), if:

∑
k

[

H0(k)ZH0(k)−H0,impZH0,imp− VV†
]

= 0 . (5.23)

This provides the second self-consistency equation for cluster two-site DMFT. It is a
matrix equation for hermitian matrices, so provides N2

c real self-consistency condi-
tions if quantities are complex. The self-consistency condition for non-cluster two-site
DMFT (Eqn 4.12) is reproduced if H0(k)→−µ− εk, H0,imp→−µ, and V→ V.

An important question is whether the number of self-consistency conditions is the
same as the number of variables. Counting complex numbers as two degrees of free-
dom, 2N2

c elements of V plus Nc elements of ε gives a total of 2N2
c +Nc variables. But

we only found N2
c + Nc self-consistency conditions, so there are more variables than

can be constrained. Some can be eliminated due to gauge symmetry of the impurity
Hamiltonian — the phase of the bath sites can be rotated arbitrarily — but in general
there remain too many. We have to make a choice of which variables to keep, and
apply some further constraints to our impurity models. This is not a problem as two-
site DMFT has already made a somewhat arbitrary choice of degrees of freedom; we
are after the simplest possible model in any case, and flexibility in choosing a sensible
small set of parameters is an advantage.

In this section, I have again completely ignored spin indices for clarity. Every quan-
tity can be duplicated for σ =↑ and σ =↓, and the two spins are only coupled in the ex-
act diagonalization of the impurity Hamiltonian, via the Hubbard U interaction terms.

5.3.1 Pair-cluster (2× 1)

This section contains a derivation of the cluster two-site DMFT equations for a cluster
consisting of just a pair of sites, a specific instance of the formalism described above
(§5.3). I shall only include nearest-neighbour hopping, and work on a 2D square lattice,
which is bipartite; every site is a member of one of the two sublattices, and connected
only to sites in the other sublattice. Figure 5.2(a) illustrates how the square lattice
is divided into pair-clusters. The two cluster sites will represent the two sublattices,
and when their spin content is different, the system will have an antiferromagnetic
moment. The tight-binding non-interacting Hamiltonian can be divided into clusters
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Figure 5.2: (a) Division of the 2D square lattice in to clusters consisting of a pair of sites. Each cluster has six
neighbouring clusters, at displacements of (±a,±a) and (±2a,0), and all hoppings connect a site to the opposite
sublattice. (b) All quantities in the Fourier-transformed pair-cluster model have momenta which live in the first
reduced Brillouin zone, a diamond shape shown with a dashed line. The second reduced Brillouin zone makes up
the rest of the original square.

as Eqn 5.2, and written

H = −t∑
R

c†R,AcR,B+ c†R,BcR,A

+ c†R,AcR+(−2a,0),B + c†R,AcR+(−a,a),B + c†R,AcR+(−a,a),B

+ c†R,BcR+(2a,0),A + c†R,BcR+(a,a),A + c†R,BcR+(a,a),A ,

(5.24)

where A and B represent the two sites within the cluster, and the superlattice posi-
tion R = n(2a, 0)+m(a, a) is the position of the cluster as a whole. Daggered operators
are kept in their own cluster: the hermitian conjugates to the last few terms appear in
other clusters. Defining a Fourier transform according to Eqn 5.6 gives a reduced Bril-
louin zone (RBZ) consisting of a diamond shape (see Fig. 5.2(b)), and the Hamiltonian
becomes

H = −t
1
N ∑

R,k,k′(RBZ)
ei(k′−k).Rc†k′,Ack,B

[

1+ e+i2kxa
+ e+ikxa+ikya

+ e+ikxa−ikya
]

+c†k′,Bck,A

[

1+ e−i2kxa
+ e−ikxa+ikya

+ e−ikxa−ikya
]

.

(5.25)
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Figure 5.3: An illustration of the pair-cluster
scheme extended to three dimensions, show-
ing a a cluster and its ten nearest neighbours.
No calculations were done using this scheme;
it is shown merely to illustrate the ease of ex-
tending the pair-cluster scheme to higher di-
mensions.

PSfrag replacements
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Figure 5.4: Impurity model used for pair-cluster two-site DMFT (c.f. Eqn 5.28).
There is an impurity site (with a Hubbard U interaction) representing each sub-
lattice A and B, connected together with a −t hopping element from the original
lattice; each is connected by various couplings V... to two bath sites with energies
ε....

Carrying out the R sum gives Nδ(k′− k), and hence

H = ∑
k∈RBZ

(

c†k,A c†k,B
)
(

0 eikxaεk
e−ikxaεk 0

)(

ck,A

ck,B

)

, (5.26)

defining the matrix H0(k) of Eqn 5.7, where the 2D square lattice dispersion εk =
−2t(cos kxa+ cos kya). The Hamiltonian in Eqn 5.26 is valid for an arbitrary number
of dimensions, since we can replace the ky terms with a sum over further dimensions,
and these terms will be recollected in εk; x remains special as the cluster is aligned
along this direction. Figure 5.3 shows a representation of a 3D pair-cluster scheme.

To find the true quasiparticles when the cluster symmetry is broken (c.f. §5.2.1), we
diagonalize this Hamiltonian to give H0(k) = JDJ†, where

J =
1√
2

(

1 1
e−ikxasgnεk −e−ikxasgnεk

)

and D=

(

|εk| 0
0 −|εk|

)

. (5.27)

As expected, each eigenstate is identical in the first and second RBZs, and in a single
RBZ, both eigenstates together can recreate the complete original dispersion. The sec-
ond band of quasiparticles is just the upper half of the original dispersion (i.e. where
εk > 0). We will use the matrix J to transform between the cluster site (sublattice)
operators to bands of real quasiparticles, as described in §5.2.1.

Let us proceed onto the two-site DMFT procedure, and apply §5.3 to the pair-
cluster. Each impurity site of the cluster has a bath site attached, and hopping is al-
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lowed from either impurity site to either bath site. This impurity model is shown in
Fig. 5.4, and its Hamiltonian, divided into submatrices for impurity and bath sites (as
Eqn 5.14), is

H =∑
σ

Ĉ†σ









0 −t VA,σ VAB,σ

−t 0 VBA,σ VB,σ

V∗A,σ V∗BA,σ εA,σ 0
V∗AB,σ V∗B 0 εB,σ









Ĉσ +Uĉ†A↑ĉA↑ĉ
†
A↓ĉA↓+Uĉ†B↑ĉB↑ĉ

†
B↓ĉB↓ ,

(5.28)
where Ĉ†σ =

(

ĉ†A,σ ĉ†B,σ â†A,σ â†B,σ
)

— recall that impurity sites correspond to ĉ† and

bath sites â†. As ever, we exactly-diagonalize this many-particle Hamiltonian, and
extract a matrix self-energy which is inserted into the lattice Green’s function. In matrix
form, the impurity Green’s function is

G−1
imp(ω)=




ω+ µ− |VA|2

ω−εA −
|VBA|2
ω−εB −ΣAA(ω) t− VAV∗AB

ω−εA −
V∗BVBA
ω−εB − ΣAB(ω)

t− V∗AVAB
ω−εA −

VBV∗BA
ω−εB − Σ∗AB(ω) ω+ µ− |VAB|2

ω−εA −
|VB|2
ω−εB−ΣBB(ω)



 (5.29)

(using Eqn 5.18), and the lattice Green’s function is

G−1
latt(k, ω)=

(

ω+ µ− ΣAA(ω) −eikxaεk− ΣAB(ω)
−e−ikxaεk− Σ∗AB(ω) ω+ µ− ΣBB(ω)

)

, (5.30)

where I have dropped spin indices for clarity. These two Green’s functions should
be matched for self-consistency (Eqn 5.10). Within the two-site cluster DMFT scheme
(§5.2), this requirement is implemented first by the condition that electron fillings for
the impurity and lattice are the same. The impurity fillings can be calculated from the
ground state of the exact diagonalized Hamiltonian

nimp,A,σ = 〈0|ĉ†Aσ ĉAσ|0〉 ; nimp,B,σ = 〈0|ĉ†Bσ ĉBσ|0〉 , (5.31)

and for the lattice fillings we can use Eqn 1.2; both O and G become matrices in the
cluster index basis. For the case of the A sublattice, we have

nlat,A =
1
π

∫ 0

−∞
dω Im∑

k
tr

(

1 0
0 0

)(

ω+ µ− ΣAA(ω) eikxaεk − ΣAB(ω)
−e−ikxaεk− Σ∗AB(ω) ω+ µ− ΣBB(ω)

)−1

(5.32)

=
1
π

∫ 0

−∞
dω Im∑

k

ω+ µ− ΣBB
(
ω+µ−ΣAA

)(
ω+µ−ΣBB

)
− |ΣAB|2− 2Re

[
ΣABεke−ikxa

]
− ε2k

,

where I have again dropped the spin-dependence, and have shown neither the ω dep-

83



5. CLUSTER DMFT TWO-SITE CLUSTER DMFT

endence of the self-energies nor the analytic continuation explicitly. The second self-
consistency condition, Eqn 5.23, gives:

(

3t2ZB − |VA|2− |VBA|2 VAV∗AB+V∗BVBA

V∗AVAB+VBV∗BA 3t2ZA− |VB|2− |VAB|2

)

+ 0 (5.33)

where we have carried out the k-sums, and ZA and ZB are the diagonal elements of
the quasiparticle residue matrix Z, calculated from the derivatives of the self-energy
matrix Σ at ω = 0 (Eqn 5.19).

As discussed in the previous section, two-site cluster DMFT will be underspeci-
fied in general, as there will be more parameters than self-consistency conditions. For
the pair-cluster, after choosing VA,VB to be real (using gauge symmetry), there are 8
input parameters left (εA, εB, VA, VB, VAB, VBA, V∗AB, V∗BA) and 6 matching conditions
(nA, nB, plus the four matrix elements of Eqn 5.33), doubled if spin is included. Con-
tinuing our philosophy of adopting the minimal possible implementation of DMFT,
so that it may be solved quickly for a wide range of parameters, we choose to take
all the cross-hoppings (VAB, VBA, V∗AB, V∗BA) as zero, which leaves four variables and
four equations. The off-diagonal elements of Eqn 5.33 are satisfied, and the remainder
simplify to

3t2ZB + V2
A

3t2ZA + V2
B . (5.34)

The equality of impurity and lattice fillings on each cluster site, together with Eqn 5.34
— all duplicated for the two spin species — provide eight self-consistency conditions
for two-site pair-cluster DMFT. The resulting self-consistent solutions will be presented
in Chapter 6.

After self-consistency is achieved, we need to calculate further quantities. To com-
pare different phases, the energy of a solution is required, and this is given by Eqn 5.12,
using Eqn 5.26 for H0(k) and Eqn 5.30 (inverted) for Glatt(k, ω). To determine the spec-
tral weight for a real quasiparticle (in a non-interacting-eigenstate band, rather than
in the cluster basis), we can use Eqn 5.11. The quantity JOJ† in Eqn 5.11 becomes
(

1 eikxa

e−ikxa 1

)

, giving

G(k, ω)=
ω+ µ−

[
ΣA(ω)+ ΣB(ω)

]
/2+ εk+ ΣAB(ω) cos kxa

[
ω+µ− ΣA(ω)

][
ω+µ− ΣB(ω)

]
− Σ2

AB(ω)− 2ΣAB(ω)εk cos kxa− ε2k
, (5.35)

for the minimal model where ΣAB(ω) must be real. Evaluating G(k, ω) in the second
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RBZ gives the second band of quasiparticles.
Eqn 5.35 can be compared with the lattice Green’s function used for the study of

antiferromagnetism from a single site, Eqn 4.25. Concentrating on the denominators,3

the form is the same except ΣAB was neglected previously: this self-energy term en-
capsulates correlations between the sites and its presence will prove to be important.
Eqn 5.35 also demonstrates the limited k-dependence in an approach involving a small
cluster: Fermi surface can only be some combination of the shape provided by the
non-interacting dispersion εk and a lemon shape corresponding to εk cos kxa. The co-
efficients of these terms are ω-dependent (from the local self-energies), and the DMFT
self-consistency will adjust where in energy each term has an influence — most impor-
tantly at ω = 0 where the Fermi surface is formed.

5.3.2 Quad-cluster (2× 2)

Whilst the 2× 1 cluster produced many interesting results (see Chapter 6), there are
artifacts due to the cluster breaking the x-y symmetry of the lattice. Extending to a 2× 2
cluster removes this problem, and also means that more Fermi surfaces shapes (such
as those with tetragonal symmetry) can be supported. In this section I shall describe
the cluster basis and two-site DMFT equations for such a “quad-cluster,” providing a
second instantiation of the general quantities derived in §5.2 and §5.3.

As previously, the lattice is divided into clusters (illustrated in Fig. 5.5), and the
non-interacting lattice Hamiltonian becomes

H0(k) =









0 −2teikxa cos kxa 0 −2teikya cos kya
−2te−ikxa cos kxa 0 −2teikya cos kya 0

0 −2te−ikya cos kya 0 −2te−ikxa cos kxa
−2te−ikya cos kya 0 −2teikxa cos kxa 0









, (5.36)

as a matrix with respect to cluster sites. Diagonalization is straightforward and gives
four eigenvalues









+2t(− cos kxa− cos kya)
+2t(+ cos kxa+ cos kya)
+2t(+ cos kxa− cos kya)
+2t(− cos kxa+ cos kya)









, (5.37)

3We should really be comparing with Eqn 4.25 transformed to the quasiparticle basis; this is why
there are differences in the numerator.
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Figure 5.5: (a) Division of the 2D square lattice into clusters consisting of four sites in a 2× 2 arrangement. Each
cluster has four neighbouring clusters, at displacements of (±2a,0) and (0,±2a); care needs to be taken in estab-
lishing which cluster site of the neighbour is hopped to from each original cluster site. (b) All quantities in the
Fourier-transformed quad-cluster model have momenta which live in the first reduced Brillouin zone, which is a
smaller square, shown with a dashed line. Three other reduced Brillouin zones make up the rest of the original
zone.
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by various couplings V... to four bath sites with energies ε....

forming the diagonal of D, and four eigenvectors making up

J =
1
2









1 1 1 1
e−ikxa −e−ikxa −e−ikxa e−ikxa

e−ikxa−ikya e−ikxa−ikya −e−ikxa−ikya −e−ikxa−ikya

e−ikya −e−ikya e−ikya −e−ikya









. (5.38)

The two-site impurity model with a bath site attached to each site in the cluster
is illustrated in Fig. 5.6, and the non-interacting Hamiltonian in the matrix form of
Eqn 5.14 has elements

H0,imp =









0 −t 0 −t
−t 0 −t 0
0 −t 0 −t
−t 0 −t 0









and V=









VA VAB VAC VAD

VBA VB VBC VBD

VCA VCB VC VCD

VDA VDB VDC VD









. (5.39)

As previously, the interacting impurity Hamiltonian is exactly-diagonalized to give
the interacting impurity Green’s function. According to Dyson’s equation (Eqn 5.5),
we can extract the 4× 4 matrix self-energy, using the non-interacting Green’s function
(calculated using Eqn 5.18). Combining the self-energy with the matrix non-interacting
lattice Green’s function

[
(ω+ µ)I−H0(k)

]−1 gives the lattice Green’s function. Finally,
this is compared with the impurity Green’s function by means of fillings and the quasi-
particle weight condition (Eqn 5.23).
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Figure 5.7: Impurity model used for 2× 2 cluster calculations, reduced to the minimal set of parameters to study
antiferromagnetism.

However, in practice this gives a solution space with a large number of dimensions,
and a greater mismatch of numbers of parameters and constraints than before. So, we
look for a reduced implementation with the minimal possible number of variables that
will permit self-consistency: as a first stage we just want greater flexibility in k-space
than the 2× 1 cluster.

In the implementation I have chosen, I choose to look only for antiferromagnetism
and paramagnetism, and so take every quantity on site C to be the same as site A,
and every quantity on site D to be the same as site B; and up spins on A sites are
the same as down spins on B sites, and so on. Physically, this will also mean that x-y
symmetry may not be broken (unlike the 2× 1 cluster), although other momentum-
space distortions will still be permitted. There are now just two different site energies
(εA and εB) and six different couplings (VA, VB, VAB, VBA, VAC and VBD), which we
constrain to real numbers for simplicity. This impurity model is illustrated in Fig. 5.7,
and the matrices entering the Hamiltonian in Eqn 5.14 are

V0,↑ =









VA VAB VAC VAB

VBA VB VBA VBD

VAC VAB VA VAB

VBA VBD VBA VB









, ε↑ =









εA 0 0 0
0 εB 0 0
0 0 εA 0
0 0 0 εB









,

V0,↓ =









VB VBA VBD VBA

VAB VA VAB VAC

VBD VBA VB VBA

VAB VAC VAB VA









, ε↓ =









εB 0 0 0
0 εA 0 0
0 0 εB 0
0 0 0 εA









. (5.40)

The matrix impurity Green’s functions now have certain symmetries, exhibiting
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five degrees of freedom:

G−1
imp,↑ =









GA GAB GAC GAB

GAB GB GAB GBD

GAC GAB GA GAB

GAB GBD GAB GB









, G−1
imp,↓ =









GB GAB GBD GAB

GAB GA GAB GAC

GBD GAB GB GAB

GAB GAC GAB GA









(5.41)

and for the non-interacting Green’s function the elements are

GA = ω+ µ−
V2

A+V2
AC

ω− εA
− 2V2

AB
ω− εB

, GB = ω+ µ−
V2

B+V2
BD

ω− εB
− 2V2

BA
ω− εA

,

GAB = t−VBA
VA+VAC
ω− εA

−VAB
VB+VBD

ω− εB
,

GAC =−
2VAVAC
ω− εA

− 2V2
AB

ω− εB
and GBD =−

2VBVBD
ω− εB

− 2V2
BA

ω− εA
, (5.42)

using Eqn 5.18. The interacting Green’s function is calculated by exact diagonalization,
and inverted (taking advantage of the symmetry). From these two Green’s functions
the self-energy matrix can be calculated (which has the same symmetries as Eqn 5.41),
and the lattice Green’s function constructed: G−1

latt,↑(ω,k)=









ω+ µ− ΣA 2teikx cos kx − ΣAB −ΣAC 2teiky cos ky − ΣAB

2te−ikx cos kx − ΣAB ω+ µ− ΣB 2teiky cos ky − ΣAB −ΣBD

−ΣAC 2te−iky cos ky − ΣAB ω+ µ− ΣA 2te−ikx cos kx − ΣAB

2te−iky cos ky− ΣAB −ΣBD 2teikx cos kx − ΣAB ω+ µ− ΣB









(5.43)

where each Σ depends on ω, and kx → kxa, ky → kya. G0,latt,↓ is similar, with ΣA ↔ ΣB

and ΣAC↔ ΣBD.
Moving on to self-consistency conditions, there are two fillings (nA↑ = nB↓ and

nB↑ = nA↓) which must be the same for the impurity (c.f. Eqn 5.31) and lattice (Eqn 5.32,
with Glatt from Eqn 5.43). For the quasiparticle residue conditions, we use Eqn 5.23 to
determine

V2
A+V2

AC+ 2V2
AB = 2t2ZB , V2

B+V2
BD + 2V2

BA = 2t2ZA ,

VBA(VA+VAC)+VAB(VB +VBD) = t2ZAB ,

2V2
AB+ 2VAVAC = 0 and 2V2

BA+ 2VBVBD = 0 , (5.44)

where ZA,ZB and ZAB are elements of the Z matrix, labelled similarly to above; this set
of equations is identical whether derived for ↑ or ↓ spins. Notice that we cannot now
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choose VAB = VBA = 0 as we did for the 2× 1 cluster.
Counting up, the problem is still underspecified: there are eight parameters (εA, εB,

VA, VB, VAB, VBA, VAC and VBD) but only seven self-consistency conditions (nA, nB

plus five in Eqn 5.44). We arbitrarily choose VAB = VBA; whilst there is no physical jus-
tification for this, we have just constrained the bath slightly more, and self-consistent
solutions remain valid. In practice self-consistency is possible with this constraint, and
moreover different relationships such as VAB = −VBA could produce the same result-
ing state, indicating the choice really is somewhat arbitrary.

The last two equations of Eqn 5.44 are not dependent on any self-consistent quan-
tities (i.e. Z) and thus constrain the impurity model from the outset — the equations
are satisfied by choosing VAC = −V2

AB/VA and VBD = −V2
BA/VB. The final number of

degrees of freedom is thus five (plus one for ntotal and µ), a number easily manageable
computationally.

Expressions for the energy of a solution and quasiparticle Green’s functions may
be produced straightforwardly, similarly to the previous section (§5.3.1), making use
of Eqn 5.36 and Eqn 5.43. The expressions are too long to quote, but it is worth noting

JOJ† =









1 eikxa eikxa+ikya eikya

e−ikxa 1 eikya e−ikxa+ikya

e−ikxa−ikya e−ikya 1 e−ikxa

e−ikya eikxa−ikya eikxa 1









, (5.45)

which is to be used in Eqn 5.11 to calculate quasiparticle Green’s functions. We can
determine the momentum dependences that are permitted within the lattice Green’s
function:4 its denominator is made up of a linear combination of the five functions

{

cos2 kxa+ cos2 kya,
[
cos2 kxa− cos2 kya

]2
, cos2 kxa cos 2kxa+ cos2 kya cos 2kya,

cos kxa cos kya cos(kxa+ kya), cos kxa cos kya cos(kxa− kya)
}

, (5.46)

the coefficient of each being ω-dependent. These constitute the shape of the dispersion
for a single RBZ only (the first RBZ is the small square extending to k = (π/2a, π/2a),
c.f. Fig. 5.5(b)).

The phase diagram and details of the ground state spectral functions for quad-
cluster two-site DMFT are presented in Chapter 7.

4For comparison with the pair-cluster lattice Green’s function case, see the discussion following
Eqn 5.35.
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Next-nearest-neighbour hopping

A next-nearest-neighbour t′ term in the lattice Hamiltonian allows study of the ef-
fects of geometrical frustration and changes in Fermi surface shape, and in particu-
lar separates half-filling from the van Hove points. In this section I shall describe
how such a term can be implemented within two-site quad-cluster DMFT. The t′ al-
lows hopping diagonally on the square lattice, so that each site is additionally con-
nected to four other sites on the same sublattice. The remaining zero off-diagonal ele-
ments of the non-interacting lattice Hamiltonian, Eqn 5.36, become terms with a form
−2t′eikxa+ikya cos kxa cos kya, and its eigenstates (providing the bare dispersion) are of
the form −2t(cos kxa+ cos kya)− 2t′ cos kxa cos kya, with changes of sign for cos kxa and
cos kya as Eqn 5.37. Calculations of the lattice Green’s function, and hence lattice filling
and quasiparticle Green’s function must be altered to include these terms, although J

remains the same as previously.
The non-interacting part of the impurity Hamiltonian has extra terms similarly, be-

coming

H0,imp =









0 −t −t′/2 −t
−t 0 −t −t′/2
−t′/2 −t 0 −t
−t −t′/2 −t 0









(5.47)

(note that an actual hopping of t′/2 gives the conventional definition of t′ with com-
plete frustration at t′ = t). The self-consistency conditions for the reduced implemen-
tation (Eqn 5.44) are slightly altered, becoming

V2
A+V2

AC+ 2V2
AB = 2t2ZB +

3
4 t′2ZA + 2tt′ZAB

V2
B +V2

BD+ 2V2
BA = 2t2ZA +

3
4 t′2ZB + 2tt′ZAB

VBA(VA+VAC)+VAB(VB +VBD) = (t2
+

1
4 t′2)ZAB +

1
2 t′t(ZA + ZB) (5.48)

(the conditions that do not involve Z are unaltered).

5.4 Summary

Extending dynamical mean-field theory to cluster DMFT allows lattice geometry to
play a rôle, so that magnetic phases may be compared consistently, and quantities are
permitted a momentum dependence beyond that of the non-interacting dispersion —
the theory is no longer restricted to infinite dimensions. Although cluster DMFT does
not necessarily provide a rigorous extension to a finite number of dimensions, it is an

91



5. CLUSTER DMFT SUMMARY

improvement upon DMFT, and the exact limit of infinite cluster size is approached.
The self-consistency can be regarded as a rather sophisticated boundary condition on
a cluster, which becomes increasingly unimportant as the cluster size is increased.

In this chapter, I have described cluster DMFT in detail, and presented for the first
time a combination of two-site DMFT with cluster DMFT. The ease of solving the two-
site DMFT equations means that cluster DMFT can be studied in reasonable time on
a moderately-specified computer. Two-site cluster DMFT cannot generically provide
enough constraints for all its input parameters, and in general we need to choose deg-
rees of freedom to discard. We are already working in a reduced subspace of solutions
to DMFT, so this is acceptable: there are already types of solutions which cannot be
represented.

I have concentrated on two different shapes of small cluster. First, a 2× 1 pair-
cluster, as a minimum representation of a bipartite lattice, which has the potential to
exhibit ferromagnetic, antiferromagnetic, ferrimagnetic and charge-ordered phases; re-
sults are presented in Chapter 6 and have been published [16]. Second, a 2× 2 cluster
formulation was described, necessary since the reduced symmetry of the 2× 1 cluster
produces artifacts. Such a quad-cluster has the potential to exhibit a wealth of sym-
metry broken phases (such as a spontaneous current around a plaquette), but I have
restricted calculations to a minimal representation of antiferromagnetism, which has a
more manageable number of degrees of freedom. Results for this cluster will be pre-
sented in Chapter 7.

There are endless possibilities for extending the work presented here. The cluster
size could be increased and the model still remain solvable in a reasonable time. Two-
site cluster DMFT could form the kernel of more advanced DMFT calculations, such
as including orbital degrees of freedom to model real materials. And alternatively to
such approaches focused on extending DMFT, two-site cluster DMFT could be used
as an superior alternative to simple periodic boundary conditions for any many-body
calculation on a finite-sized cluster.
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Chapter 6

RESULTS: 2× 1 PAIR-CLUSTER

Vér skulum gera elda þrjá. Skuluð þér heiðnir

menn vígja einn en eg annan en hinn þriðji

skal óvígður vera. En ef berserkurinn hræðist

þann einn eldinn er eg vígi en veður hina báða

þá skuluð þér taka við trú.

We shall kindle three fires. You heathen are to
hallow one of the fires, I shall hallow the second,
and the third fire is to remain unhallowed. If the
berserk is afraid of the fire I hallow, but walks
unscathed through your fire, then you must accept
the new faith.

NJAL’S SAGA [111]
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6.1 Introduction

The previous chapter contained a description of the theory for two-site pair-cluster dy-
namical mean-field theory (§5.3.1), which is probably the simplest possible implemen-
tation of dynamical mean-field theory that can handle antiferromagnetic order con-
sistently. This chapter presents results of a detailed investigation with this model of
the phase diagram and quasiparticle properties of the single band Hubbard model
(Eqn 1.1) on a square lattice. The work has been the subject of a recent publication [16].

At each point in the Hubbard model parameter space (U,n), there are in general
several self-consistent solutions; locating these solutions initially is not straightfor-
ward. Often one must resort to beginning the self-consistency procedure with random
(but sensible) bath parameters. Subsequently the parameters can seed the procedure
for neighbouring points. When the full extent of each such phase has been found, the
phase diagram is constructed by comparing the energy of every phase at each (U,n)
and identifying the ground state.

There are several physical features which may then be used to distinguish the
phases. First, the magnetic order — the pair-cluster can support paramagnetism, fer-
romagnetism, antiferromagnetism and ferrimagnetism. There are, however, phases
with the same magnetic order that are distinct, and these must be distinguished with
reference to the spectral function A(k, ω). From this we can calculate, for example, the
electron density across the Brillouin zone nk, from which the Fermi surface is visible, or
the local density of states. Analysing these quantities may lead to physical interpreta-
tions of each of the phases, giving insight to the important physics. More importantly,
expected experimental quantities can be calculated and comparison can be made with
experiments such as photoemission spectroscopy. The two-site cluster DMFT method
has the huge advantage that any such quantity can be calculated quickly and easily. We
will be able to see complete details of a truly interacting system; we are not constrained
to start out with a system with a Fermi surface, for instance, and could investigate how
a Fermi surface could distort or even vanish, and what characterizes whatever is left
behind.

In the next section (§6.2) I shall detail the phase diagram for two-site pair-cluster
DMFT, and give the quasiparticle properties of each phase in terms of the spectral
function A(k, ω), density of states ρ(ω) and electron filling nk, objectively and with-
out reference to the detailed theory behind the calculations (for this, see Chapter 5,
§5.3.1). I shall discuss these results more subjectively in §6.3, providing an physical
interpretation for each of the phases, and discussing a number of important issues.
I shall compare with other theoretical models and relevant experiments. The results
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give important insights into the Mott transition when antiferromagnetism is present
— finally combining Slater’s approach to the metal-insulator transition with that of
Brinkman–Rice — and also into the strange pseudogap phase of the high-temperature
superconducting cuprate materials.

6.2 Phase diagram

The 2D Hubbard model on a square lattice is investigated within two-site pair-cluster
DMFT, for the Hubbard repulsion in the range 0≤U/t≤ 30, and electron fillings 0.75≤
n ≤ 1, where 1 is half-filling. Within the calculations (see also Appendix C), densities
of states (to integrate for the electron filling or to plot spectral quantities) are evaluated
as the imaginary part of a lattice Green’s function with an analytic continuation ω→
ω + iδ; typically δ ∼ 0.005t. k-space sums are carried out with K = 120 points across
the Brillouin zone; the results are not sensitive to changes in either of these parameters.

The ground state phase diagram is shown in Fig. 6.1. Fillings above n = 0.98 are
ignored since the k-space resolution is insufficient to give an accurate representation
of the Fermi surface here, except at exactly half-filling where this is not an issue. For
n > 1 the results will be the same (n→ 2− n), since the model is particle-hole symmet-
ric; and outside the region shown, the phase boundaries are expected to continue with
little change. Self-consistent solutions for charge-ordered and ferrimagnetic phases
were present, but never energetically favoured. Fig. 6.2(a) shows the variation of the
quasiparticle weight z across the phase diagram, which is still very similar to the sim-
ple two-site DMFT picture of Fig. 4.3.

The phase diagram is demarcated by the regions where two different symmetries
are each broken. First, antiferromagnetism is prominent, and there are three sepa-
rate phases with this order. Fig. 6.2(b) shows how the sublattice magnetization varies
across the phase diagram; the variation is comparable with that of non-cluster two-site
DMFT (Fig. 4.8), and the extent of antiferromagnetism again very much less than that
predicted by Hartree–Fock theory. The boundary between phase (b) and phase (c) is
a second-order phase transition, in contrast to all the other boundaries which are first
order and show a jump in magnetization — owing to a different phase becoming the
ground state at that point.

Second, there is a breaking of x-y symmetry, which is like a Pomeranchuk in-
stability, and can lead to quite severe Fermi surface distortions. Phases (b) and (c)
have such a distortion, although all phases exhibit a slight distortion at very high
U. The non-interacting model should exhibit a non-distorted Fermi surface, and in-
deed in phase (b) at very small U there is a smooth increase in the deviation from
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Figure 6.1: Ground state phase diagram (U/t,n) for the 2D Hubbard model within two-site pair-cluster DMFT.
Distinct solutions are different colours, and labelled (a) paramagnetism, (b) distorted paramagnetism, (c) distorted
antiferromagnetism, (d) and (e) antiferromagnetism, and (f) ferromagnetism. At exactly half-filling the ground state
is an antiferromagnet the same as phase (e). These phases characterized further in the text, and detailed spectra will
be presented for the numbered points.
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Figure 6.2: (a) Quasiparticle weight z (sublattice averaged) and (b) sublattice magnetization |n↑ − n↓| as a function
of (U,n) for the ground state solutions of two-site pair-cluster DMFT. The quasiparticle weight behaves similarly to
pure two-site DMFT (Fig. 4.3). In (b) ferromagnetic order is represented by a negative magnetization.

96



6. RESULTS: 2× 1 PAIR-CLUSTER PHASE DIAGRAM

-Π -
Π
������
2

0 Π
������
2

Π

-Π

-
Π
������
2

0

Π
������
2

Π

PSfrag replacements

kxa

k y
a

Figure 6.3: The arrow indicates the path (0, π)→ (0,0)→
(π,0) → (π,π) → (0,0) taken in k-space, that is used to
present cross-sections of the spectral function and the
electron filling.

symmetry. Quantitatively, we can define a r.m.s. deviation, D, as a normalized sum
D2
= ∑π/ak=0 [n(k,0)− n(0,k)]

2, which can be used to define a phase boundary correspond-
ing to D∼ 0.1 (an arbitrary choice which makes little difference); this reaches U ∼ 0.5t
at n = 0.83. In contrast, the horizontal boundary between phases (a) and (b) corre-
sponds to a first order transition with a jump in energy, as the distorted solution does
not exist below n ∼ 0.83. Points 3, 5, 6, 8 and 9 (c.f. Fig. 6.1) provide a comprehensive
picture of the effects of the distortion, and the phenomenon will be discussed in detail
in §6.3.4.

I shall now present details of the nine example points indicated in Fig. 6.1, by means
of different perspectives on the spectral function A(k, ω), which is the imaginary part
of the quasiparticle lattice Green’s function (Eqn 5.35), at a small analytical continua-
tion ω→ ω − iδ. When antiferromagnetic symmetry is broken, values of k plotted in
the second reduced Brillouin zone (RBZ) actually represent the second band of quasi-
particles from the first Brillouin zone, i.e. at k− (π, π).

The spectral function will be plotted directly, as a density plot with darker regions
indicating greater spectral weight, along a cross-section following the path across the
Brillouin zone shown in Fig. 6.3. The path includes the (0, π) section in addition to the
(π, 0) section in order to illustrate the x-y symmetry breaking. To visualize features
like the Fermi surface, a density plot of the electron filling across the Brillouin zone,
nk =

∫ 0
−∞dωA(k, ω), is shown as a density plot. The scale 0 1 is used, so that

regions filled with electrons appear dark; a Fermi surface follows the discontinuities
in nk, so the graph for non-interacting free electrons would be a sharply demarcated
black circle. In some cases I also show nk as a cross-section along the path of Fig. 6.3,
similarly to the spectral function. The final quantity presented is the local density of
states ρ(ω)= ∑k A(k, ω). All these quantities are normalized appropriately and, unless
stated otherwise, have been averaged over both sublattice and spin.
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6.2.1 Point 1: Paramagnetism at weak interactions

Point 1 (at U = 2t, n = 0.82, see graphs in Fig. 6.4), lying in phase (a), illustrates a con-
ventional paramagnetic metal. A clear Fermi surface is visible: there is a discontinuity
in nk at the places where the dispersion crosses the chemical potential (i.e. ω = 0),
and here nk jumps from almost unity to zero. A few flat (i.e. local) features in the
spectrum show an initial signature of U. The density of states is almost the typical 2D
tight-binding dispersion, with step-function edges and a singularity at the van Hove
point.
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Figure 6.4: Point 1 (U = 2t, n = 0.82). Paramagnetism with weak interactions; see §6.2.1 for discussion.
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6.2.2 Point 2: Paramagnetism at strong interactions

Point 2 (U = 20t, n = 0.8, see graphs in Fig. 6.5) illustrates a solution at a much greater
interaction strength. Phase (a) is still a conventional metallic paramagnet, but effects of
the local interaction have a significant effect and the metal is becoming “worse”. The
quasiparticle residue z of two-site DMFT has dropped — from z = 0.972 at U = 2t to
z= 0.321 at U= 20t, see also Fig. 6.2(a) — and in nk a significant reduction of the Fermi
surface discontinuity reflects this; the graph is taking on the curved form expected
from Fermi liquid theory [4], and spectral weight is becoming distributed uniformly
across the Brillouin zone, reflecting the local nature of the Hubbard U interaction. A
very slight Pomeranchuk distortion is present.

In the density of states, upper and lower Hubbard bands can be seen together with
a central quasiparticle peak. This peak is heavily renormalized (with a bandwidth of∼
3t, reduced from the non-interacting bandwidth of 8t), and the spectral function shows
a flattened dispersion: the quasiparticles have become much heavier. The Hubbard
bands have characteristics that reflect the non-interacting dispersion.
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Figure 6.5: Point 2 (U = 20t, n = 0.8). Paramagnetism with strong interactions; see §6.2.2 for discussion.
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6.2.3 Point 3: Paramagnetism with a distorted Fermi surface

Point 3 (U = 2t, n = 0.9, see graphs in Fig. 6.6) lies within the distorted paramagnetic
phase. The distortion of the Fermi surface, discussed in detail in §6.3.4, is clear in the
graph of nk, and in the spectral function the anisotropy is apparent in the x and y
directions. Antiferromagnetic fluctuations (c.f. §6.3.1 and §6.3.3) are beginning to play
a rôle: in nk a ghost Fermi surface displaced by (π, π) is visible, gaps are appearing in
the density of states, and reflected bands are apparent in the spectral function.

6.2.4 Point 4: Weak ferromagnetism

Enclosed within the distorted paramagnetic phase (b) is a small patch of low moment
ferromagnetism, phase (f). Here the system is exploiting the soft Fermi surface near the
van Hove points (c.f. §6.3.4 and Ref. [112]), and the Fermi surface for one spin species
distorts more than the other. We believe this phase to be an product of the increased
distortion tendency caused by the asymmetry of the 2× 1 cluster.
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Figure 6.6: Point 3 (U = 2t, n = 0.9). Paramagnetism with a distorted Fermi surface; see §6.2.3 for discussion.
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6.2.5 Point 5: Paramagnetism with hole pockets

Increasing either the number of electrons or the interaction strength increases the dis-
tortion that was seen at Point 3, which has a dramatic effect by the time Point 5 is
reached (U = 5t, n = 0.83, see graphs in Fig. 6.7). Where the distorted Fermi surface
hits the reduced zone boundary at (π/2, π/2), it vanishes: nk shows a continuous de-
crease without a characteristic Fermi surface discontinuity (Fig. 6.7(d)). The remaining
sections of Fermi surface are closed into hole pockets (visible in Fig. 6.7(c)) by a line
with very small quasiparticle weight. This line has an origin connected with the anti-
ferromagnetic fluctuations, as it comes from the (π, π)-displaced “ghost” Fermi surface
mentioned above. The ghost Fermi surface is a feature of a ghost dispersion (c.f. the
spectrum in Fig. 6.7(a) near (π, π)), which hybridized with the original dispersion. This
created a gap, which is also apparent in the density of states. Further interpretation and
the experimental relevance of these phenomena are discussed in §6.3.3 below.
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Figure 6.7: Point 5 (U = 5t, n = 0.83). Paramagnetism with hole pockets; see §6.2.5 for discussion.
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6.2.6 Point 6: Antiferromagnetism with hole pockets

On increasing the interaction strength from Point 5, there is a second order transition
to an antiferromagnetic ground state, phase (c). There is virtually no change to any
properties of the state apart from the broken magnetic symmetry. Point 6 (U = 8t,
n = 0.9, see graphs in Fig. 6.8) lies well within phase (c), where increased U and n are
having more effect. The hole pockets have shrunk, but the vague outer line originating
from the ghost Fermi surface has increased in visibility: the whole pocket appears in
Fig. 6.8(c), and a second step upwards can be seen in the nk cross-section in Fig. 6.8(d).
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Figure 6.8: Point 6 (U = 8t, n = 0.9). Antiferromagnetism with hole pockets; see §6.2.6 for discussion. The density
of states is plotted separately for each of the two sublattices, and the Brillouin zone is shown with the second
quasiparticle band of states drawn in the second RBZ for convenience (the dashed line indicates the boundary).
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6.2.7 Point 7: Antiferromagnetism at half-filling

Point 7 (U = 5t, n = 1, see graphs in Fig. 6.9) illustrates the antiferromagnetic insulat-
ing solution at exactly half-filling; phase (e), just off half-filling, has the same character.
The ghost dispersion is clearly visible, together with the gaps caused by its hybridiza-
tion with the original dispersion; in this case the gap occurs everywhere on the Fermi
surface and causes the material to insulate. At very large U, a slight Pomeranchuk
distortion becomes apparent in this phase.
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Figure 6.9: Point 7 (U = 5t, n= 1). Antiferromagnetism at half-filling; see §6.2.7 for discussion. The density of states
is plotted separately for each of the two sublattices, and the Brillouin zone is shown with the second quasiparticle
band of states drawn in the second RBZ for convenience (the dashed line indicates the boundary).
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6.2.8 Point 8: Antiferromagnetism at strong interactions with hole

pockets

Point 8 (U = 20t, n = 0.97, see graphs in Fig. 6.10), lies in the distorted antiferromag-
netic phase (c) at U and n further increased from Point 6. Like Point 2 the strong
interactions have caused an even distribution of the electrons across the Brillouin zone
(uniform grey in Fig. 6.10(c)), reflecting the local nature of the Coulomb interaction.
The hole pockets have shrunk to small circles — indicating how the Mott transition
might happen in an antiferromagnetic material (see §6.3.2). There is a huge Slater gap,
and unlike the paramagnetic Mott gap there are only two bands: it appears as if the
central quasiparticle peak split into two magnetic bands which have fused with the
Hubbard bands.
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Figure 6.10: Point 8 (U = 20t, n = 0.97). Antiferromagnetism at strong interactions with hole pockets; see §6.2.8
for discussion. The density of states is plotted separately for each of the two sublattices, and the Brillouin zone
is shown with the second quasiparticle band of states drawn in the second RBZ for convenience (the dashed line
indicates the boundary).
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6.2.9 Point 9: Antiferromagnetism at strong interactions

Reducing the electron filling n from Point 8 causes the ground state to become an an-
tiferromagnet of different character. This is phase (d), which Point 9 (U = 20t, n = 0.9,
see graphs in Fig. 6.11) illustrates; it is a conventional antiferromagnet, and originates
from the same self-consistent solution as phase (e).1 The density of states has the fa-
miliar three-peak structure, with upper and lower Hubbard bands. The central quasi-
particle peak has been renormalized by interactions (like Point 2), but here it is split by
a Slater gap; in contrast to Point 8, the magnetism is occurring predominantly within
this central renormalized band rather than across the whole spectrum. These antiferro-
magnetic phases are compared in more detail in §6.3.1.

1In the intervening region, right across the phase diagram, its energy is greater than that of the
ground state phase (c).
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Figure 6.11: Point 9 (U = 20t, n = 0.9). Antiferromagnetism at strong interactions; see §6.2.9 for discussion. The
density of states is plotted separately for each of the two sublattices, and the Brillouin zone is shown with the second
quasiparticle band of states drawn in the second RBZ for convenience (the dashed line indicates the boundary).
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6.3 Discussion

In this section I will draw together, and discuss in detail, a variety of themes emerging
from the diverse phases described above. Comparison will be made with other theo-
retical approaches in the literature, and relevant experimental quantities measured for
various materials. Antiferromagnetism appears in several different guises, which I will
interpret in §6.3.1. The progression across the phase diagram of various features gives
insight to the Mott transition in the presence of antiferromagnetism (§6.3.2). Features
have appeared which are intriguingly similar to phenomena observed in the normal
state of the cuprate high-temperature superconductors, such as the pseudogap — see
§6.3.3. Finally, many phases exhibit a Fermi surface distortion akin to that predicted
by Pomeranchuk, which I will discuss in §6.3.4.

6.3.1 Slater antiferromagnetism

At half-filling, the square lattice is perfectly nested: the Fermi surface is a diamond
shape and the wave-vector Q = (±π/a,±π/a) interconnects every point. In conse-
quence, the susceptibility to magnetic order diverges for this wave-vector [113], and
an infinitesimal local U causes an antiferromagnetic (sublattice) magnetization. A gap
is formed at the Fermi energy and the state is an insulator [92] (see §6.3.2 for discus-
sion of the metal-insulator transition). The results of the present calculation are con-
sistent with this well-established picture: at exactly half-filling antiferromagnetism is
observed (illustrated by Point 7, Fig. 6.9), with a moment exhibiting a similar varia-
tion with U to the Hartree-Fock form m ∝ e−α/U (see for example Ref. [114]), and very
similar to that seen in unenhanced two-site DMFT (Fig. 4.6(a)). Spectral features are
consistent with other studies, for example the separate high energy bands of Ref. [115].

However, at electron fillings different from n = 1, there is no theoretical consen-
sus. The general extent of magnetic order that we observe away from half-filling is
vastly smaller than predictions of Hartree–Fock theory, and furthermore in agreement
quantitatively with the results of more sophisticated DMFT calculations. The possibil-
ity of incommensurate order is important off half-filling, but cannot be represented by
our cluster DMFT approach. Our region of antiferromagnetism is divided into several
different phases. Near to half-filling around U = 5t, there is a phase — labelled (e) on
Fig. 6.1 — that is very similar to the half-filling solution, but metallic.

Further off half-filling, phase (e) is superseded by phase (c), which similarly ex-
hibits a gap initially growing with U (for U . 8t), and also can be interpreted as a
Slater antiferromagnet: a weak spin-density wave transition on a metallic state (see,
for example, the mean-field theory of Schrieffer, Wen and Zhang [116]). At higher U,
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the gap to the first available states above εF decreases again, indicated the appearance
of Heisenberg-like physics (this is similar to phase (d) which will be discussed below).
The density of states is quite complex (e.g. Fig. 6.8(b)) and its interpretation is difficult;
the various gaps are the synthesis of Hubbard and Slater gaps.

The magnetism in phase (d) is somewhat easier to interpret: the density of states
(Fig. 6.11(b)) and the spectrum (Fig. 6.11(a)) indicate that the magnetism is appearing
as a spin-density wave transition — but for the renormalized quasiparticles. Just the
central quasiparticle peak is exhibiting the Slater instability seen at Point 7 (Fig. 6.9(a)
and (b)). The gap reduces as U is increased, and behaving consistently with the∼ t2/U
scale expected of Heisenberg model physics. We interpret this phase as an antiferro-
magnetic metal in an effective t-J model, where teff� t and Jeff ∼ t2/U. It is surprising
that J appears to play a rôle in these materials, when U is a much larger energy scale;
but this paradox is resolved now we see that U sets the scale for the outlying Hubbard
bands, and renormalizes the quasiparticle peak such that a smaller Jeff may dominate.
Such a separation of high and low energy scales is thought to be inherent to strongly
correlated systems [117, 118].

Finally, in the conventional paramagnetic phase (a) at higher interaction strength,
effects of antiferromagnetic fluctuations become apparent in the proximity of antiferro-
magnetic phases (e.g. near Point 2 but at larger n). There is a “ghost” Fermi surface,
following the original Fermi surface shifted by (π/a, π/a), similar to that visible at
Point 3 (Fig. 6.6); see also §6.3.3. The electron liquid here could perhaps be described,
at low energies, as a nearly-antiferromagnetic Fermi liquid. [34, 119]

6.3.2 Mott transition

In §3.5.1 I discussed how conventional (non-cluster) DMFT was able to combine the
pictures of Mott–Hubbard and Brinkman–Rice to help understand the Mott transition.
However, the mechanism for the metal-insulator transition proposed by Slater [92]
has still to be fully integrated: if the lattice is not frustrated, the transition to anti-
ferromagnetism will preempt any other metal-insulator mechanism [52]. The conven-
tional DMFT studies, done within a paramagnetic picture, thus do not concern the
true ground state, making their predictions physically doubtful (for T = 0); moreover,
to include antiferromagnetism consistency, a cluster extension to DMFT is necessary.

One avenue of investigation [120, 74, 121, 64] is to remove the magnetic order with
frustration, commonly as a t′ next-nearest-neighbour hopping term in the Hamilto-
nian; and in Chapter 7 I will investigate some consequences of a t′ term. Parcollet et al.
[64] conclude that findings of DMFT for the paramagnetic metal–insulator transition
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remain true. Others investigate the important question of temperature dependence
(for example, Ref. [122]). Here I concentrate on a different question: how is the Mott
insulating state approached from off half-filling, in the presence of antiferromagnet-
ism?

Within my results, much of the metallic state does exhibit the characteristic three-
peak structure of DMFT, for example Point 2 (Fig. 6.5(b)), even in an antiferromag-
netic phase (Point 9, Fig. 6.11(b), where the central peak has a Slater gap). The quasi-
particle weight decreases across the phase diagram regardless of the magnetic order
(Fig. 6.2(a)), indicating a trend towards an insulator at half-filling for U & 12t (the
expected Mott transition point of ∼ 1.5× bandwidth W = 8t). Within conventional
DMFT, the Mott transition is seen as the central quasiparticle peak sharpening and van-
ishing, but our results provide a contrasting picture of the transition. The Fermi surface
breaks up into hole pockets separated by regions without free carriers (see Fig. 6.7(c)
and Fig. 6.8(c)). As U increases, the quasiparticle residue in these pockets decreases
and weight spreads across k-space, and with increased electron numbers the pock-
ets shrink (see Fig. 6.10(c)) — suggesting that the mechanism for the metal-insulator
transition is the shrinking and eventual vanishing of these pockets: at which point the
material becomes an insulator.

Importantly, the hole-pocket features exist regardless of magnetic order, and off
half-filling — two areas where the picture of conventional DMFT is unclear; we see
now that this is because it cannot deal with k-space anisotropy. The phenomenon of
the Fermi surface break-up into hole pockets provides an answer to another mystery:
it describes how a state can transmute from a metallic state with a Fermi surface, to an
insulating state without a Fermi surface at all.2 Additionally, we have now combined
Slater’s approach to the metal insulator transition with the other two approaches: a
Slater gap is formed but its effects are anisotropic (see below).

Luttinger volume The strong correlations between electrons can be seen to be having
a dramatic impact on the properties of the Fermi liquid: Luttinger’s theorem [123],
which states that the volume contained by the Fermi surface will remain constant,
is violated for the states with a broken-up Fermi surface. Our results show that the
Luttinger volume is enclosed instead by lines where the density of electrons falls off
smoothly without the Fermi discontinuity.

2Although our limited k-space resolution means that we cannot approach very close to the transition,
and we do not actually see the insulating state (except for the Slater antiferromagnet at half-filling).
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Cuprates In the normal state of the cuprates, the number of holes seem to charac-
terize physical properties (see, for example, Ref. [124]), which is consistent with our
picture of the doped Mott insulator as a state with hole pockets. Additionally, pho-
toemission observes disconnected sections of Fermi surface directly; this aspect is dis-
cussed further in the next section, and how the transition described above is inextrica-
bly linked with antiferromagnetism.

6.3.3 Pseudogap formation and arc-like Fermi surfaces

We can produce a unified picture of many of the phenomena discussed so far. Looking
carefully at Fig. 6.6(c) reveals a “ghost” Fermi surface: low energy electron-like excita-
tions appearing at the position of the original Fermi surface displaced by the antiferro-
magnetic wave-vector (π, π). These are antiferromagnetic fluctuations preceding the
magnetic symmetry breaking. Looking at the complete spectral function (Fig. 6.6(a))
reveals that this “ghost” Fermi surface is a manifestation of a “ghost dispersion” —
the original dispersion shifted by (π, π), but considerably weaker, having less spectral
weight.

Nevertheless, the ghost dispersion hybridizes with the original dispersion to give
the final electronic structure, giving rise to a gap in the spectrum (observable in the lo-
cal density of states). The effects of this gap depend on whether the chemical potential
µ falls within it, and how the gap evolves around the Fermi surface (c.f. Fig. 6.12). For
Point 3 (Fig. 6.6), µ is below the gap everywhere (c.f. line (ii) in Fig. 6.12(b)), so the
Fermi surface is similar to the non-interacting case; further out, the ghost dispersion
crosses the Fermi level separately, and this leads to the ghost Fermi surface seen in
Fig. 6.6(c).

If, however, µ is raised by increasing the filling n, or alternatively the hybridization
gap is widened by increasing the interaction, µ can fall within the gap (c.f. line (i) in
Fig. 6.12(b)). At half-filling (see Fig. 6.9), everywhere on the Fermi surface is affected in
this way and there is a full gap, leading to an insulating state. But at Point 5 (Fig. 6.7),
the Fermi surface is distorted, and the gap varies around the Fermi surface; the con-
sequences are that near (π/2, π/2), µ falls within the gap (seeFig. 6.7(a), c.f. line (i) in
Fig. 6.12(b) again) and there is no Fermi surface here: nk falls off smoothly towards
(π, π), reflecting the reduced weight in the ghost band.

This gap is a pseudogap because there are other directions in which a well-defined
Fermi surface remains. Along the line from (0, 0) to (π, 0) in Fig. 6.7(a), the chemical
potential still cross the original dispersion, followed by the ghost dispersion (c.f. line
(ii) in Fig. 6.12(b)). Here the ghost Fermi surface completes a closed hole pocket (see
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Figure 6.12: A schematic view (taken from Ref. [16]) of the origin of a pseudogap, as seen for example in the spectral
function of Point 5, Fig. 6.7(a), near (0.8π,0) and near (π/2, π/2); darker lines carry more spectral weight. (a) Distinct
fluctuations on the A and B sublattices result in a second dispersion of low weight (a “ghost” dispersion). This is
formed by the folding of the original, possibly renormalized, dispersion in the antiferromagnetic Brillouin zone
(defining gm). (b) Hybridization with the original dispersion forms a gap. Along directions in momentum space
where the chemical potential lies within the gap [line(i)], there is a full gap in the excitation spectrum and no Fermi
surface. Along directions where the chemical potential lies away from the gap it crosses the dispersion at two points
[line (ii)]. A hole pocket forms with low spectral weight at the second crossing.

Fig. 6.7(a)), although with a much smaller quasiparticle residue than the original line,
and the dominant feature is the arc-like remnant of the original Fermi surface. Hy-
bridization with the ghost dispersion provides an intuitive explanation for origin of
the hole pockets discussed in §6.3.2.

Chubukov [125, 126] first gave the argument detailing how hybridization with a
(π, π)-shifted dispersion could give rise to hole pockets. In common with other studies
in the literature, an initial finitesimal t′ is required in the dispersion to generate an
overlap with the ghost Fermi surface. Our calculations provide, novelly, a mechanism
for the formation of pockets without such a parameter; one way of thinking about it is
that the ΣAB term provides an effective, if asymmetrical, t′.

The features described above are reminiscent of cuprate high-temperature super-
conductors in their normal state, which are believe to have a Fermi surface consisting
of arc-like segments separated by pseudogap regions [125, 127, 128]. There are impor-
tant differences, however, between our results and what is seen in the cuprates, most
significantly in the position of the arcs and the pseudogap regions. In the cuprates the
Fermi surface arcs are seen at (π/2, π/2) but appear near (0.7π, 0) in our calculations,
and the pseudogap occurs near (π, 0) in the cuprates but near (π/2, π/2) in our calcu-
lations. However, our small cluster severely constrains the momentum dependence of
all quantities, and as will be discussed in the next section, the 2× 1 cluster cannot admit
the d-wave symmetry observed in the cuprates but only s- and p-wave configurations,
which means for example that arcing can only happen near the van Hove points such
as (π, 0). Chapter 7 contains the results of calculations with a four site (2× 2) cluster
which permits d-wave symmetry, where a detailed comparison with the physics of the
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cuprates will be made.

6.3.4 Pomeranchuk instability

It is the Fermi surface distortion that enables the emergence of pseudogap physics dis-
cussion in the previous section, and in this section I will discuss this distortion in more
detail. The breaking of x-y symmetry is apparent in the nk electron density plots, and
also through differences between the (0, π) and (π, 0) segments of the spectral func-
tion. Across the phase diagram (see §6.2), its effect ranges from a small distortion —
at Point 3, see Fig. 6.6(c), and in all phases at high U, see e.g. Fig. 6.11(c) — through to
underlying the dramatic break-up of the Fermi surface into hole pockets discussed in
the previous section. Without the distortion, the Fermi surface could not overlap with
itself until diamond-shaped, when the hybridization creates a Slater insulating anti-
ferromagnet. Pomeranchuk [129] first showed that a Fermi liquid could be unstable
to a distortion of its Fermi surface. In more recent years such an effect has been found
within some renormalization group calculations, for example Refs [130, 131],3 although
its existence remains controversial. Experimentally, it has very recently proposed that
Sr3Ru2O7 near quantum critical point [132] might exhibit signs of a ferromagnetic dis-
tortion similar to phase (f) here.

The physical basis for the possibility of distortion is the flatness of the dispersion
near the van Hove points: the system can exploit the reduced Fermi velocity, and move
electrons from (π, 0) to (0, π) with little energy penalty. Similarly, in a phenomenolog-
ical Fermi liquid model, Metzner [112] regards the Pomeranchuk instability as an im-
portant manifestation of a “soft” Fermi surface in strongly correlated system, which
is unusually susceptible to many sorts of fluctuations. These might include those in-
vestigated by Schultz [133], and those causing non-Fermi liquid behaviour such as the
marginal Fermi liquid described in Chapter 2. Moreover, the peculiar patch of ferro-
magnetism constituting phase (f) of our phase diagram, is a further manifestation of
such a soft Fermi surface.

However, before drawing definitive conclusions we should note that a small cluster
means that there are severe restrictions on the Fermi surface shape. Looking at the
pair-cluster quasiparticle Green’s function in Eqn 5.35, the only shapes possible are
the original dispersion εk, and εk cos kxa which gives rise to the lemon-shaped Fermi
surfaces. The latter can only permit changes with opposite sign at (π, 0) and (0, π),
which means that if the Fermi surface has an inclination to distort, it can only do so by

3Competition with antiferromagnetic order is of concern to these authors; our calculations success-
fully address this issue.
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breaking x-y symmetry in this way. The arcs (for example) discussed in the previous
section can only appear in one place, within the cluster formulation.

Our model has broken x-y symmetry from the outset, because of the choice of 2× 1
shape for the cluster, and this means that the tendency to distort will be enhanced; we
cannot at this stage disentangle whether the phenomena described above are an arti-
fact, or whether the Pomeranchuk distortions will still occur without the initial broken
symmetry, or when other shapes are permitted. In Chapter 7, the cluster approach
is extended to a 2× 2 cluster, that preserves x-y symmetry and allows higher order
distortions.

6.4 Summary

Within two-site pair-cluster DMFT, a decent phase diagram of the square lattice Hub-
bard model could be produced, which is much more satisfactory than the result from
plain two-site DMFT. Even the small amount of momentum dependence permitted by
a cluster consisting only of a pair of sites gave considerable insight into a variety of
physical phenomena that many researchers are interested in.

The ground state phase diagram was divided into regions defined by two different
kinds of symmetry breaking. First, magnetic symmetry: there was a region of anti-
ferromagnetism which extends off half-filling to a band filling of 0.8, in good agree-
ment with other modern approaches. Second, some phases exhibited a Pomeranchuk
instability, where x-y symmetry is broken and the Fermi surface distorts. I have in-
vestigated the quasiparticle properties of each phase in detail, utilizing the complete
spectral function that our technique allows access to, and reference was made to exper-
imental quantities. Interpretations were given, although these are just one angle: there
is a large amount of data available, and many alternative possibilities for analysis.

This investigation led to insights into several puzzling features of the Mott metal-
insulator transition and how antiferromagnetism, proximity to van Hove points, and
formation of the Mott gap compete with one another; all play a rôle in various regimes.
The van Hove point means that the Fermi surface becomes soft, and can distort even
at low U. Nesting causes Slater antiferromagnetism near half-filling, which can have
some quite complex features. The Mott gap becomes significant at high U, but at the
same time t-J model physics can be important through a small Slater gap in a highly
renormalized quasiparticle band.

We saw also how the Mott metal-insulator transition might be approached, even
within a magnetically ordered state: the Fermi surface evolves from a renormalized
Fermi liquid obeying Luttinger’s theorem, to a pseudogap state where a gap opens on
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some parts of the Fermi surface, breaking it up into hole pockets separated by regions
without free carriers. These pockets have a strongly momentum-dependent spectral
density, being dominated by Fermi arcs, sections of the original Fermi surface. The
Mott transition to an insulating state occurs by means of these pockets shrinking to
points and vanishing: patterns in k space are absolutely essential for understanding it.

Many of these features, especially the pseudogap and the existence of Fermi arcs,
are highly suggestive of features observed in the normal state of the cuprate super-
conductors. However, the detailed match is not identical, and many features of the
phases reflect the restrictions of the 2× 1 cluster. The only distortions permitted will
break x-y symmetry, and features are only allowed at certain places in the Brillouin
zone; and it is not known if the distortions are real, but an over-emphasized artifact of
the broken cluster symmetry. In the next chapter I will address these issues with a 2× 2
cluster, which can permit the broken symmetries necessary to emulate the cuprates:
increasing the cluster size allows access to higher Fourier components of the Fermi
surface.

Still, the inclinations observed in the model are illuminating. The self-consistency
procedure tried to drive electrons around the Fermi surface, exploiting the van Hove
points — and this action was energetically favourable. We have also gained intuition
on the formation of hole pockets and pseudogaps via hybridization, for example —
useful progress, whether or not the details are correct. We achieved our aim of a quick
investigation of features of the phase diagram and gained at the same time a surprising
amount of other information.
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Chapter 7

RESULTS: 2× 2 QUAD-CLUSTER

Ant and Bee wrote the shopping list on a piece

of paper that was square and flat.

ANGELA BANNER

Ant and Bee go Shopping [134]
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7.1 Introduction

In this chapter I present the phase diagram of the square lattice Hubbard model under
two-site quad-cluster DMFT, where a cluster that consists of four sites arranged in
a 2× 2 plaquette is used in combination with the “two-site” reduction of the DMFT
self-consistency conditions (Chapter 4). The theory underlying the calculations was
presented in Chapter 5 in §5.3.2. Chapter 6 investigated two-site pair-cluster DMFT,
involving a 2× 1 site cluster, and this chapter follows much the same pattern, but for a
cluster double the size instead.

Much of the 2× 1 pair-cluster phase diagram consisted of phases where x-y symme-
try was broken and the Fermi surface had undergone a Pomeranchuk distortion, but it
was not clear if this was just an artifact of the cluster shape. The cluster studied in this
chapter is the simplest cluster that can represent antiferromagnetism without breaking
x-y symmetry from the outset, but the implementation is somewhat restricted and can-
not support broken x-y symmetry and so answer the question of whether the Pomer-
anchuk instability was real. However, what we wish to investigate instead is whether
similar physical phenomena happen to those seen in the 2× 1 cluster. For example,
Chapter 6 showed how the Pomeranchuk-distorted Fermi surface could hybridize with
itself and form hole pockets; we would like to know if a tetragonal distortion, permit-
ted by the 2× 2 cluster, is also favoured. This would be likely to give hole pockets in
the vicinity of (π/2, π/2) in the Brillouin zone, which would correspond better with
observations of the normal state of the cuprate high-temperature superconductors.

As in Chapter 6, we explore the U-n phase diagram (see §7.2), identifying the
ground state phase at each point. Much of the phase diagram indeed turns out to
consist of phases with hole pockets near (π/2, π/2), but these phases are generally anti-
ferromagnetic, whereas the normal state of the cuprates is paramagnetic. There does
exist a paramagnetic phase with hole pockets, but it is never energetically favoured.
So, to encourage this phase, a negative next-nearest-neighbour hopping term (t′) is
added to the model (c.f. §5.3.2), which also means that the observed cuprate Fermi
surface shape is better matched. A further advantage of studying such a geometrically
frustrated model is that the effects of half-filling and the van Hove point are separated
from each other, and now occur at different band fillings. The most part of this chapter
(§7.3) is devoted to investigating the phase diagram when t′ = −0.5t (note that t′ is
defined here so that t′ = −t corresponds to full frustration).

The quad-cluster U-n phase diagram for t′ = −0.5t is presented in §7.3.1 and its
general trends and features discussed, including the broad effects of the next-nearest-
neighbour hopping term. Various representations of the spectral function (electron
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Figure 7.1: Ground state phase diagram (U/t,n) for the 2D Hubbard model within two-site quad-cluster DMFT,
with t′ = 0. Distinct solutions are different colours, and labelled PM (conventional paramagnetism), AFM (con-
ventional antiferromagnetism), AFM-α and AFM-β (both antiferromagnetism with hole pockets). Small gaps were
tidied up. The hatched region is discussed in the text.

filling plus spectral density at the Fermi level across the Brillouin zone, cross-sections
of the spectral function, and the local density of states) provide a detailed descrip-
tion of each of the phases: there are two paramagnetic phases (§7.3.2 and §7.3.3) and
three antiferromagnetic phases (§7.3.4 and §7.3.5). The physical phenomena observed
in these phases are then discussed and interpreted (§7.4). Comparisons are made with
the conclusions from the pair-cluster model of §6.3, and also with a selection of ex-
perimental observations in the cuprates — particularly the pseudogap and the arc-like
Fermi surfaces observed by angle-resolved photoemission spectroscopy (ARPES).

7.2 Results (t′ = 0)

Fig. 7.1 shows the phase diagram for two-site cluster DMFT with no next-nearest-
neighbour hopping (t′ = 0); the underlying model is the same as for the phase diagram
of Chapter 6 (Fig. 6.1), but the 2× 2 cluster is used in place of the 2× 1 cluster. The ex-
tent of antiferromagnetism is very similar, but the results differ in terms of symmetry
in momentum space. The 2× 1 cluster phase diagram exhibited a large region where
x-y symmetry is broken, both in the antiferromagnetic region and continuing in to the
adjoining paramagnetic region at low U. In contrast, our 2× 2 cluster formulation can-
not support such symmetry breaking; in §5.3.2 I described how only antiferromagnetic
configurations are permitted, and so bonds in the x direction and the y direction have
to be identical. Instead, most of the antiferromagnetic region of the 2× 2 cluster phase
diagram is dominated by phases distorted differently, and as dramatically, in momen-
tum space: the Fermi surface vanishes near (π, 0) and equivalent points, and folds into
four hole pockets centred at (π/2, π/2) etc. These two contrasting types of symmetry
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Figure 7.2: A set of non-interacting Fermi sur-
faces from a dispersion εk =−2t(cos kxa+ cos kya−
0.5 cos kxa cos kya) (t′ =−0.5t), at four different elec-
tron fillings n = 0.66,0.78,0.9,1.

Figure 7.3: The arrow indicates the paths (0,0)→ (π,0)→
(π, π)→ (0,0) and (π,0)→ (0, π) that are taken in k-space,
used to present cross-sections of the spectral function.
Also shown is a Fermi surface from Fig. 7.2 at n = 0.9,
showing its (π,π) displacement (dashed) and the hole
pocket regions (shaded).

breaking are discussed further in §7.4.2.
There are in fact two phases (AFM-α and AFM-β) with this type of distortion,

which are differentiated by the precise details of their Fermi surface shape — although
they are exceedingly close in energy. The phases of the same name in the following
section (§7.3.1) are the same, and their properties shall be discussed further there (see
Fig. 7.10 and Fig. 7.9 for AFM-α and AFM-β respectively). At high U, the site energies
in the impurity model begin to diverge, and solutions are numerically difficult to find;
this region is shown hatched in the phase diagram. There is an additional small patch
of antiferromagnetism near half-filling at U ∼ 3 that has more conventional character,
the same as phase (e) of Fig. 6.1. Ferromagnetism is not permitted by the reduced
quad-site implementation.

7.3 Results (t′ = −0.5t)

Introducing next-nearest-neighbour hopping (c.f. §5.3.2) adds a further dimension to
the phase diagram parametrized by t′. There will no longer be a n→ 2− n symmetry,
but the halves are mirrored for t′ → −t′; e.g. n > 1 with t′ > 0 is the same as n < 1
with t′ < 0. I shall concentrate upon the case t′ = −0.5t, leading to a non-interacting
dispersion εk = −2t(cos kxa+ cos kya − 0.5 cos kxa cos kya). This value is close to the
ARPES best fit Fermi surface shape [44] wherein t′ = −0.550t. The van Hove point is
separated from half-filling and now resides near n = 0.78, as shown in Fig. 7.2, which
illustrates the non-interacting Fermi surface for this dispersion at various fillings.
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7.3.1 Phase diagram

Fig. 7.4 shows the phase diagram for two-site quad-cluster DMFT with t′ =−0.5t. The
extent of antiferromagnetism has increased to n= 0.74, compared to n= 0.8 with t′ = 0;
and again there are several different antiferromagnetic phases, all of which exhibit the
tetragonally-distorted Fermi surface with four hole pockets mentioned above. Two of
these phases are the AFM-α and AFM-β phases observed at t′ = 0; there is additionally
a third phase labelled AFM-γ which has no t′ = 0 equivalent. A further difference from
t′ = 0 is the emergence of a small patch of paramagnetism (δ-phase) with a similar hole
pocket Fermi surface; this phase existed at t′ = 0 but was never energetically favoured.

Fig. 7.5 shows the variation of (sublattice) magnetization and quasiparticle residue
z across the phase diagram. Comparing with the 2× 1 cluster equivalents in Fig. 6.2,
the variations are very similar; although in Fig. 7.5(a) z can be seen to drop significantly
on entering AFM-α or AFM-β — this is discussed in §7.4.2.

Proximity to the van Hove point at n ∼ 0.78 presented numerical difficulties due to
the cusp-like Fermi surface. At high U a slightly different solution (shown darker in
Fig. 7.4), with a small antiferromagnetic moment, was possible in the region of n= 0.78;
although this does not extend to low U, hence leaving a gap. Some of these features
are probably artifacts of the limited k-space resolution at the cusps; we do not consider
them further here. The phases with hole pockets do not show any signature of this
particle-hole transition, as would be expected.

The remainder of this section is devoted to a more detailed, objective, analysis of
the phases (interpretive discussion comes later in §7.4); various representations of the
spectral function are presented for a number of demonstration points (§6.2 contained
explanations of each of these representations). Calculations were again made using
120× 120 points in the Brillouin zone, and a contour approach was used for integrating
densities of states (c.f. Appendix C). Fig. 7.3 illustrates the path in momentum states
used for cross-sections of the spectral function.
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Figure 7.4: Ground state phase diagram (U/t,n) for the 2D Hubbard model within two-site quad-cluster DMFT,
with t′ = −0.5t. Distinct solutions are different colours, and labelled PM (conventional paramagnetism), PM-δ
(paramagnetism with hole pockets), AFM-α, AFM-β, and AFM-γ (all antiferromagnetism with hole pockets). The
phases are characterized further in the text (as is the band near n= 0.78), and detailed spectra will be presented for
the indicated points. The diagram has been tidied up to extrapolate across a few points with numerical difficulties.
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Figure 7.5: (a) Quasiparticle weight z (sublattice averaged) and (b) sublattice magnetization |n↑ − n↓| as a function
of (U,n) for the ground state solutions of two-site quad-cluster DMFT with t ′ = −0.5t.
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7.3.2 Paramagnetic phase

Fig. 7.6 illustrates points within the conventional paramagnetic phase (PM in Fig. 7.4).
The Fermi surface encloses (0, 0) for n < 0.78 and (π, π) for n > 0.78, as shown in
Fig. 7.6(a) and Fig. 7.6(b) respectively. The point at (U = 12t, n = 0.78) is within the
region exhibiting a small sublattice moment (m∼ 0.01), and cusps in the Fermi surface
are slightly reduced. Fig. 7.6(c) and (d) show that the spectrum consists of a renormal-
ized quasiparticle band (note the skewed density of states due to the t′ term) together
with Hubbard bands. The phase is indistinguishable from phase (a) of Fig. 6.1 for the
2× 1 cluster (e.g. as illustrated in Fig. 6.5), except for the expected consequences of
t′ < 0, and the small distortion at high U in the pair-cluster solution that is not ob-
served here.
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(a) nk across Brillouin zone (U= 12t, n= 0.78)
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(b) nk across Brillouin zone (U = 2t, n = 0.98)
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(c) Spectral function cross-section (U = 12t, n = 0.78); dark↔ greater spectral weight
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(d) Local density of states (U = 12t, n = 0.78), smoothed

Figure 7.6: Conventional paramagnetism (U = 12t, n = 0.78 and U = 2t, n = 0.98); see §7.3.2 for discussion.
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7.3.3 Paramagnetism with hole pockets (δ-phase)

Fig. 7.7 illustrates the small region of paramagnetism with hole pockets, labelled PM-
δ in Fig. 7.4. The density of states in Fig. 7.7(d) shows the formation of a gap at the
Fermi level. This gap arises everywhere in the Brillouin zone apart from places near
(π/2, π/2): the spectral function — Fig. 7.7(c), (π, 0)→ (0, π) section — shows a plume
of low spectral weight branching off the main band and crossing the Fermi level. The
result is a hole pocket that is almost circular, visible as a discontinuity in the electron
density nk in Fig. 7.7(a), and as the regions of high spectral density at the Fermi level in
Fig. 7.7(b). The quasiparticle residue can be seen to vary around the hole pocket, being
larger towards (0, 0), where the original Fermi surface lay.

In the vicinity of (π, 0) the dispersion is gapped and there is no Fermi surface. The
non-interacting band is flat here due to the van Hove point (see Fig. 7.7(c)). Interactions
cause it to split in two; each half expands over a larger region in momentum space
whilst staying fairly flat, but neither cross the Fermi level anywhere now.

This phase is particularly interesting because of its relevance to the cuprates: it is
a paramagnetic state that exhibits both a pseudogap and arc-like Fermi surfaces. In
§7.4.3 below, this comparison with the normal state of the cuprates will be made in
more detail.
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(a) nk across Brillouin zone
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(b) Spectral density at εF across the Brillouin
zone
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(c) Spectral function cross-section; dark↔ greater spectral weight
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Figure 7.7: Paramagnetism with hole pockets (U = 5t, n = 0.78); see §7.3.3 for discussion. (b) shows A(k, ω = 0)
with a relative scale of spectral density.
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7.3.4 Antiferromagnetism with hole pockets (γ-phase)

Fig. 7.8 illustrates two points within the antiferromagnetic γ-phase of Fig. 7.4. Clear
hole pockets are visible near (π/2, π/2) in Fig. 7.8(a), which become smaller and less
distinct nearer the Mott transition (Fig. 7.8(b)). The spectral function in Fig. 7.8(c)
shows bands crossing the Fermi level that give rise to these hole pockets. As usual,
the hole pockets have a varying quasiparticle weight, becoming less distinct on the
outer portion, where the band fades away along the (0, 0) to (π, π) spectral function
cross-section.

Spectral features are generally similar to the PM-δ phase above, apart from the fact
that the entire band is involved in the creation of a hole pocket, rather than a plume
that branches off the main band.
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Figure 7.8: Antiferromagnetism with hole pockets, γ-phase (U = 4t, n = 0.9 and U = 6t, n = 0.98); see §7.3.4 for
discussion. The density of states is plotted separately for each of the two sublattices, and the Brillouin zone is shown
with the second quasiparticle band of states drawn in the second RBZ for convenience (the dashed line indicates
the boundary).
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7.3.5 Antiferromagnetism with hole pockets (α- and β-phases)

Fig. 7.9 and Fig. 7.10 illustrate points within the antiferromagnetic β- and α-phases
of Fig. 7.4 respectively. General spectral features are similar to AFM-γ and PM-δ dis-
cussed above: near (π/2, π/2) etc. there are hole pockets where a band crosses and
recrosses the Fermi level, and near (π, 0) etc. there are gaps which split the dispersion
into flattened, slightly expanded bands above and below the Fermi level.

Like the PM-δ phase, the spectral function is rather fragmented (in contrast to the
AFM-γ phase). There is a floating narrow central band between the active bottom
band and the upper Hubbard-like band, giving a spectrum reminiscent of the distorted
phase (c) of the 2× 1 cluster (see Fig. 6.8). The band that gives rise to the hole-pocket
Fermi surface is somewhat separate from the main dispersion, particularly apparent
in the AFM-β phase where only a weak plume crosses the Fermi level — exactly the
same as in the PM-δ phase.

The antiferromagnetic α- and β-phases are exceedingly close to each other in en-
ergy and differ only by the orientation of the hole pockets; in the α-phase (Fig. 7.10)
the hole pockets are aligned (conventionally) along the original Fermi surface line, like
the γ-phase; but in the β-phase (Fig. 7.9) the pockets are aligned perpendicular to this.
In this latter case (AFM-β), the quasiparticle residue is stronger on the outer side of the
pockets (opposite the the other phases) and fades away completely on the inner side.
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Figure 7.9: Antiferromagnetism with hole pockets, β-phase (U = 8t, n = 0.9 and U = 7t, n = 0.98); see §7.3.5 for
discussion. The density of states is plotted separately for each of the two sublattices, and the Brillouin zone is shown
with the second quasiparticle band of states drawn in the second RBZ for convenience (the dashed line indicates
the boundary).
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Figure 7.10: Antiferromagnetism with hole pockets, α-phase (U = 10t, n = 0.9 and U = 8t, n = 0.98); see §7.3.5
for discussion. The density of states is plotted separately for each of the two sublattices, and the Brillouin zone
is shown with the second quasiparticle band of states drawn in the second RBZ for convenience (the dashed line
indicates the boundary).
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7.4 Discussion

Many of the physical scenarios presented in Chapter 6 for the 2× 1 cluster remain
true for the 2× 2 cluster. For example, the picture of the Mott transition (§6.3.2) is the
same: the doped Mott insulator has a Fermi surface consisting of hole pockets, that
are separated by regions where the electron density falls smoothly and there are no
free carriers (breaking Luttinger’s theorem). The hole pockets shrink as half-filling is
approached, and become less distinct with increasing interaction strength U (see the
nk plots in Fig. 7.8, Fig. 7.9 and Fig. 7.10). The only difference from the pair-cluster is
that the hole pockets are placed near (±π/2,±π/2) for the quad-cluster.

The picture of Slater antiferromagnetism in §6.3.1 is generally accurate for the quad-
cluster phases also; the AFM-α and AFM-β phases of this chapter are much like phase
(c) of Fig. 6.1. Introducing the t′ < 0 term leads to a suppression of the more conven-
tional antiferromagnetic phases (d) and (e) of Fig. 6.1 for the quad-cluster, and enables
the AFM-γ phase to emerge.

In the rest of this section I shall discuss several topics pertinent to the quad-cluster,
beginning (in §7.4.1) with the effects that the t′ term has upon the antiferromagnetism
and Fermi surface shape within the phases, and on the hybridization of the dispersion
with its (π, π)-displaced ghost. In §7.4.2 I examine the different Fermi surface distor-
tions in each phase and those of Chapter 6, and finally experimental observations in
the cuprates are compared with pseudogap and arc-like Fermi surface phenomena —
now moved from the restricted positions of Chapter 6 to the correct places.

7.4.1 Next-nearest neighbour hopping (t′) and hybridization

Introducing a next-nearest-neighbour hopping t′ term to the lattice model has several
effects. First, the half-filling point (n = 1) is now separate from the van Hove point,
where the Fermi surface switches from enclosing (0, 0) to enclosing (π, π) — this hap-
pens at n ∼ 0.78 for t′ = −0.5. It is useful to be able to distinguish the consequences
of half-filling and the van Hove point: their coincidence in the Hubbard model is not
necessarily reflected in real materials.

The second effect of t′ is the creation of triangles on the lattice that will geometri-
cally frustrate antiferromagnetism. Examining the sublattice magnetization, the effect
can be seen: |n↑ − n↓| is typically 0.1 less in the frustrated model (t′ = −0.5) than the
unfrustrated one (t′ = 0). The effect on the range of the antiferromagnetism off half-
filling is somewhat surprising, though; at U ∼ 7t, for example, the extent increases
from 0.8< n < 1 when t′ = 0, to 0.74< n < 1 when t′ =−0.5 (see Fig. 7.1 and Fig. 7.4).
However, the van Hove points — being flat regions all linked by (π, π) antiferromag-
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(a) (b)

Figure 7.11: Schematic visualization of the formation of hole pockets. A non-interacting dispersion with t′ = −0.5,
shown in (a), hybridizes with a copy of itself displaced by a wave-vector (π,π). The result, with a hybridization gap
of 1.5t, is shown in (b). The “ghost” copy is weaker and is not visible except near the intersection. The Fermi surface
is indicated with a green line, and the red lines show the cross-sections that are visible in the spectral function —
c.f. Fig. 7.6(c) and Fig. 7.8(c), for example.

netic wave-vectors — encourage the antiferromagnetic instability, and have moved
down to n= 0.78 from n = 1. It should also be noted that the antiferromagnetic phases
consist of hole pocket phases, whose formation is encouraged by t′ < 0 (see below).
These two facts together can explain the increase in antiferromagnetic extent. At half-
filling, one would expect less antiferromagnetism and for the order to appear above
some finitesimal U instead of for U > 0.

Third, t′ alters the Fermi surface shape, and this becomes important when the mech-
anism for self-hybridization is considered (c.f. §6.3.3) — i.e. how the dispersion εk can
overlap with the ghost dispersion εk+(π,π) generated by antiferromagnetic fluctuations.
If t′ = 0, by the time the Fermi surface is large enough that it can overlap with itself,
it has reached a diamond shape, which has flat bands along (π, 0)→ (0, π) and cannot
construct hole pockets. A negative t′ causes the Fermi surface to bend inwards near
(π/2, π/2) etc., as shown in Fig. 7.2, and it never takes on a diamond shape. When the
Fermi surface is large enough to enclose (π, π), it still has portions in the first reduced
Brillouin zone, and hole pockets may be formed as shown in Fig. 7.3. A complete pic-
ture of the dispersion before and after this hybridization process is shown in Fig. 7.11,
which will be useful for interpreting spectral function cross-sections.

In §6.3.3 I described the consequences of hybridization with a ghost dispersion for
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the 2× 1 cluster, and the general picture remains true for the 2× 2 cluster. A gap
is formed, but the chemical potential µ may or may not fall within it. At places in
momentum space where it does, portions of the Fermi surface will disappear. Along
the line (π, 0)→ (0, π), the t′ causes the band to curve, and additionally it is split by
U; see Fig. 7.11(b). Near (π, 0) etc. µ falls in the gap and there is no Fermi surface —
but further along, the lower band crosses and recrosses µ, creating a hole pocket. In
the (0, 0)→ (π, π) direction Fig. 6.12 remains relevant: the original dispersion crosses
the ghost dispersion near (π/2, π/2), and when hybridized, the dispersion bends over
and fades out because the ghost dispersion has less spectral weight (this is apparent in
Fig. 7.8(c)).

7.4.2 Spontaneous distortions and soft Fermi surfaces

Whilst the picture above describes the state in the AFM-γ phase Fig. 7.8 (§7.3.4) well,
there are rather more subtle effects in the AFM-α and AFM-β phases. However, the
geometrical understanding of Fig. 7.11 is correct and remains useful; the bands are in
effect just more fragmented by interactions.

First, we note that that hole pockets in AFM-α and AFM-β exist even when t′ = 0
(see §7.2) — there is an effective t′ spontaneously generated. This tetragonal distortion
has the same underlying cause as the spontaneous Pomeranchuk (lemon-shaped) dis-
tortion in the 2× 1 cluster (Chapter 6, c.f. §6.3.4): quasiparticles are easily displaced
from the (π, 0) etc. points because of their low Fermi velocity there. Here they move
to the (±π/2,±π/2) regions, but in Chapter 6 their redistribution was far more con-
strained.

The differences are due to the fact that the shape of the cluster determines the types
of distortion permissible. For example, in §6.3.4 I noted for the pair-cluster that there
could only be opposite changes to the points (π, 0) and (0, π). For the quad-cluster
changes must have the same sign, and hence different distortions are observed. The
2× 2 cluster permits tetragonal symmetry-breaking but does not permit distortions
that break x-y symmetry. This is due to the restrictions put on the impurity model
that the bonds between the A and B sites are identical in the x and y directions. The
question of whether the Pomeranchuk instability of Chapter 6 is real (rather than an
artifact of the broken symmetry of the 2× 1 cluster) cannot be answered yet, but could
be answered by an unrestricted 2× 2 cluster.

Returning to the AFM-α and -β phases, it is apparent from the spectra (Fig. 7.10(c)
and Fig. 7.9(c)) that the hole pockets are not just a result of simple hybridization: the
Fermi surface is formed by plumes of spectral weight branching from the main bands
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(although AFM-α ). The same is true for the paramagnetic δ-phase; although here the
t′ is essential, as it encourages the formation of hole pockets and allows the paramag-
netic state with hole pockets to become energetically favoured in a certain region. The
quasiparticle residue for these three phases (see Fig. 7.5(a)) is reduced in comparison
to the other phases, because of the weakness of these plumes.

These three phases have different shaped Fermi surfaces for the hole pockets: per-
pendicular orientations of ovals for AFM-α and AFM-β phases, and an almost circular
shape for PM-δ. The exact shapes should not be given too much emphasis, since the
2× 2 cluster can only support a limited number of shapes (c.f. Eqn 5.46 for t′ = 0) — the
important feature is the proximity to (π/2, π/2). The crucial message from the results
is the ease of distortion of the Fermi surface, from the Pomeranchuk phenomenon of
Chapter 6 through to the evanescent plumes forming the variety of these hole pocket
shapes (remember too that the AFM-α and AFM-β phases are exceedingly close in
energy): everything fits the soft Fermi surface picture of Metzner [112].

7.4.3 The cuprates: pseudogap and Fermi arcs

In this section I will compare our results for the PM-δ hole pocket phase of Fig. 7.4
with experiments on the normal state of the cuprates. Note that the hole pockets in
this phase are not just a result of hybridization of the Fermi surface containing a next-
nearest neighbour hopping t′ < 0, but exist when t′ = 0 and are a rather more subtle
interaction-caused momentum anisotropy. The t′ is required, though, to make this
phase energetically favoured: it encourages the hole pockets once they are already
formed.

Angle-resolved photoemission spectroscopy (ARPES) experiments on the high tem-
perature superconducting cuprates [127] observed that the superconducting gap ap-
pears to continue into the normal state, leaving a d-wave gap maximal in the (π, 0)
direction and nodal in the (π, π) direction [136]. It was suggested that the Fermi sur-
face becomes gapped in the (π, 0) regions (that are connected by (π, π) antiferromag-
netic wave-vectors [119]) and disappears there. Marshall et al. [135] observed this
effect in Bi2Sr2CaCu2O8−δ (see Fig. 7.12(b)), and more recently it was also observed in
La2−xSrxCuO4 [128] (see Fig. 7.13(b)). Other experimental probes that cannot resolve
momentum-space features show a gap near the Fermi level [136]. All these experi-
mental observations coincide with the results of our calculations; Fig. 7.7(d) shows a
significant reduction in the density of states near the Fermi level, and Fig. 7.7(a) and
(b) demonstrate the lack of free carriers in the region of (π, 0).

Spectrally, the band below the Fermi level near (π, 0) is observed to be very flat
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FIG. 3. (a),(b) Map peak centroids vs k for
Bi2Sr2Ca12x2DyxCu2O81d thin films and deoxygenated
Bi2Sr2CaCu2O81d bulk samples, respectively, with various
hole doping levels. (a) Filled oval, 1% Dy—near optimal
doping with Tc ­ 85 K; gray diamond, 10% Dy—underdoped
with Tc ­ 65 K; gray rectangular, 17.5% Dy—underdoped
with Tc ­ 25 K; triangle, 50% Dy—insulator. (b) Filled oval,
600 air anneal—slightly overdoped with Tc ­ 85 K; gray dia-
mond, 550 argonne annealed—underdoped with Tc ­ 67 K.

levels: slightly overdoped sTc ­ 85 Kd and underdoped
via oxygen reduction sTc , 67 Kd. Of the two possible
FS pieces [10], we plot the generally accepted piece of FS
centered at (p ,p). The error bars indicate our uncertainty
in k. The slightly overdoped sample sTc ­ 85 Kd has
well-defined FL crossings that yield a large Fermi surface
centered at (p,p), consistent with the Luttinger theorem
[1]. The sample with less holes has clear FL crossings
over a smaller portion of the BZ and its Fermi contour
does not extend to the BZ edge. The observations made
in Figs. 3 and 4 from underdoped but still metallic and
superconducting sTc ­ 65 67 Kd samples are not what
one expects from a typical metal, certainly not within the
band picture. As doping is reduced below optimal, band
theory predicts that the Fermi surface would only shrink
in area but still keep its general shape [as indicated by
the dashed FS centered at (p ,p)]. This means that there
should always be a FL crossing between (p,0) and (p ,p),
in contrast to our data. However, these observations
are consistent with the opening of an energy gap at the
underlying FS near the (p ,0) to (p ,p) line.

There are several possibilities for the origin of this gap
in underdoped material. The first possibility is quasipar-
ticle pairing without pair-pair coherence in the normal
state. This would open an energy gap without the ex-
istence of a coherent superconducting state. Two classes
of pairing above Tc have previously been discussed. The
first class is the pairing of quasiparticles [11–14], as dis-
cussed in terms of generalize Ginzburg-Landau theory for
d-wave superconductivity [11]. It has also been argued

FIG. 4. Fermi level crossings from two Bi2212 samples of
differing oxygen content. The entire BZ can be reconstructed
by fourfold rotation about (0,0).

that the phase fluctuation is the limiting factor for Tc in
these underdoped samples where the pairs are formed well
above Tc [12–14]. The second class is d-wave pairing
of spinons [15], discussed in a prediction extending the
original resonating valence bond idea [16]. Both classes
of pairing above Tc explain the binding energy shift near
(p ,0) as a d2

x 2 y2 gap which is largest near (p,0) and is
nonexistent along the (0,0)-(p,p) line. Impurity scatter-
ing may cause a region of near zero gap about the (0,0)-
(p ,p) line explaining why we see a section of Fermi sur-
face [17]. Because the lowest binding energy excitations
are indicative of gap magnitudes, the 20–30 meV leading
edge shift in the data among the samples of Fig. 2 should
be used when assigning gap values. This method is sim-
ilar to the one used to characterize the superconducting
gap [18].

Another possible origin of the gap is the formation
of a 45±-rotated,

p
2 3

p
2 symmetry (as seen in AF

insulating material) induced by either the increased AF
correlations in the underdoped material or by some other
effect with this same symmetry (such as a structural
distortion). If this new symmetry has rigorous long-range
order, it results in a new BZ also centered at (0,0) (the
edge of which is indicated in Fig. 4 by the dashed line)
causing (0,0) and (p,p) to be equivalent. The bands
on the (p,p) side of the new BZ edge become mirrored
replicas of those on the (0,0) side. Their mixing with the
original bands opens a gap near (p,0) similar to a spin
density wave gap [19]. In our case, the new symmetry
could be relatively short range and fluctuating in time,
but it may still cause this “gapping” behavior, although it
does not force (0,0) and (p,p) to be exactly equivalent.
The Fermi contour in this picture terminates at the edge
of the first BZ of the new periodicity, and is made

4843
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Figure 7.12: (a) Spectrum and (b) Fermi surface from ARPES measurements on Bi2Sr2CaCu2O8−δ , taken from Figs
3 and 4 of Ref. [135]. (a) is constructed from a variety of samples; the lower curves are more underdoped.

although we retain the notation of the first BZ for the sake
of convenience.

Figures 1(a) and 1(b) show energy distribution curves
(EDC’s) for the x � 0 and 0.03 samples in the
�0; 0�-�
;
� direction, i.e., in the nodal direction of
the d-wave superconductor, where the d-symmetry super-
conducting gap vanishes. The EDC’s for x � 0 show only
one broad dispersive feature at �� �0:4–0:6� eV arising
from the lower Hubbard band, consistent with what has
been observed in another parent insulator Ca2CuO2Cl2
[9]. In going from x � 0 to x � 0:03, the lower Hubbard
band becomes a little broader and an additional sharp
feature crossing EF appears, indicating a metallic behav-
ior [see the expanded plot in panel (c)]. This ‘‘in-gap’’
state is reminiscent of the coherent part of the spectral
function as predicted by dynamical mean field theory
calculations [10].

In order to highlight the energy dispersion of that sharp
feature, we show a gray-scale plot of the second deriva-
tives of EDC’s in Figs. 1(d) and 1(e). The lower Hubbard
band observed for x � 0 at �� �0:4–0:6� eV remains
almost at the same binding energy with hole doping.
Instead, there appear a sharp peak feature crossing EF
in the nodal direction and a broad feature around (
; 0) at
�� 0:2 eV corresponding to the ‘‘flat band’’ as in the
previous report [3]. Because of the �0:2 eV gap, the
electronic states around (
; 0) would not contribute to

the metallic transport in the normal state, and only the
states around the nodal direction would contribute to it. It
is rather striking to observe such a sharp peak crossing EF
for hole doping as small as 3%, which is near the bound-
ary between the insulating AFI phase (0< x< 0:02) and
the insulating spin-glass phase [11] (0:02< x< 0:06).

In Fig. 2(a), we have plotted the distribution of spectral
weight at EF in the k space (therefore the energy integra-
tion window EF � 10 meV begins set by the energy reso-
lution) for x � 0:03. This plot is obtained from the
spectra in the second BZ and symmetrized with respect
to the �0; 0�-�
;
� line. The color image was produced by
interpolating the spectral intensity of the several momen-
tum lines in two-dimensional momentum space. Owing
to the (pseudo)gap around (
; 0), only the nodal region
remains strong in the EF intensity map. Figure 2(d) in-
deed indicates that EF crossing occurs only near the nodal
direction, forming an arc of Fermi surface seen in
Fig. 2(a). The red dots in Fig. 2(a) are the peak position
of the momentum distribution curve (MDC) at EF which
represent minimum gap locus in the k space. The white

FIG. 1 (color). ARPES spectra for LSCO with x � 0 and x �
0:03. Panels (a) and (b) are EDC’s along the nodal direction
�0; 0�-�
;
� in the second Brillouin zone. The spectra for x �
0:03 are plotted on an enlarged scale in panel (c). Panels (d)
and (e) represent energy dispersions deduced from the second
derivative of the EDC’s. (For details, see the text.)

FIG. 2 (color). (a) Spectral weight at EF for x � 0:03 plotted
in the momentum space. (b) Spectral intensity in the energy-
momentum (E-k) space along the nodal cut with the peak
position of momentum distribution curves for x � 0:03.
(c) Intensity profile along the arc Fermi surface as a function
of Fermi angle � [defined in panel (a)] for various doping
levels. The spectral intensities have been normalized at � �
45�. (d) Spectral intensity in the E-k space along the arc for
x � 0:03. The plots in panels (a), (c), and (d) have been
symmetrized with respect to � � 45�.
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lution) for x � 0:03. This plot is obtained from the
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� line. The color image was produced by
interpolating the spectral intensity of the several momen-
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to the (pseudo)gap around (
; 0), only the nodal region
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direction, forming an arc of Fermi surface seen in
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of the momentum distribution curve (MDC) at EF which
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FIG. 1 (color). ARPES spectra for LSCO with x � 0 and x �
0:03. Panels (a) and (b) are EDC’s along the nodal direction
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;
� in the second Brillouin zone. The spectra for x �
0:03 are plotted on an enlarged scale in panel (c). Panels (d)
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FIG. 2 (color). (a) Spectral weight at EF for x � 0:03 plotted
in the momentum space. (b) Spectral intensity in the energy-
momentum (E-k) space along the nodal cut with the peak
position of momentum distribution curves for x � 0:03.
(c) Intensity profile along the arc Fermi surface as a function
of Fermi angle � [defined in panel (a)] for various doping
levels. The spectral intensities have been normalized at � �
45�. (d) Spectral intensity in the E-k space along the arc for
x � 0:03. The plots in panels (a), (c), and (d) have been
symmetrized with respect to � � 45�.
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Figure 7.13: Spectral density (a) as a cross-section and (b) near the Fermi level from ARPES measurements on
La2−xSrxCuO4, taken from Figs 1 and 2 of Ref. [128] The compound is very underdoped; when x = 0 it is a anti-
ferromagnetic insulator and when x= 0.03 it is just in the insulating spin-glass phase. In (a), note the flat band near
(π,0) and the sharp feature near (π/2, π/2), and the lower Hubbard band at −0.6eV. (b) shows the arc-like Fermi
surface, and the band that gives rise to it.
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(see Fig. 7.12(a) and Fig. 7.13(a)), and again our calculations show the same things —
see Fig. 7.7(c). Note that ARPES cannot observe the unfilled bands above the Fermi
level included in this graph. The modulation near (π, 0) in Fig. 7.12(a) for underdoped
cuprates is tantalisingly similar to Fig. 7.8(c), although the latter is from an antiferro-
magnetically ordered state.

According to ARPES experiments, the Fermi surface is thus eroded near (π, 0) etc.,
and only remains in arc-like segments near (π/2, π/2) etc. — see Fig. 7.12(b) and
Fig. 7.13(b). It has been variously suggested in the past (e.g. Refs [135] and [125])
that these arcs originate from portions of hole pockets; but signatures of the other side
have never been observed, in spite of ARPES workers directly searching for them [137].
Our calculations predict completed hole pockets, like the other theories, but we can go
further and explain why only an arc is observed by ARPES. The outer portion, com-
ing from the weaker “ghost” dispersion, has a smaller spectral weight (see Fig. 7.7(b)),
and is likely to be too weak for ARPES to observe. PM-δ solutions at lower n have an
even more uneven distribution of spectral weight, and the hole pocket is larger, giving
a curvature more like Fig. 7.13(b) (though in any case, we should not take too much
notice of the exact momentum space shapes as the 2× 2 cluster gives limitations on
shapes as discussed above).

Spectrally, the band bending over that causes the far side of the hole pocket is visi-
ble near (π/2, π/2) — see Fig. 7.13(a), top right, agreeing with Fig. 7.7(c). In the under-
doped cuprates, which are nearer the antiferromagnetic region of their phase diagram,
there is a band very reminiscent of the hybridization effect described above — see
Fig. 7.12(a), top left. In fact, the sample in Fig. 7.13 is quite close to being antiferromag-
netic, so comparison may be made with Fig. 7.8 also, which gives excellent agreement
on Fermi surface shape and spectra.

The phenomena discussed above have been intensely studied theoretically, and I
shall now mention a sample of the literature; however few (if any) authors have pro-
duced complete pictures that are directly relevant. The idea of hybridization to pro-
duce hole pockets is well established (see e.g. Ref. [125]) and others have suggested
that the far side of the hole pocket may not be experimentally observable [138]. Various
renormalization group approaches [139, 140] have shown how portions of the Fermi
surface disappear near (0, π) etc. These places are the hot spots that were mentioned
in Chapter 2: at high temperatures quasiparticles can exist here but have short life-
times. Recent theoretical approaches that produce hot spots include that of Sénéchal et
al. [141] who use a cluster perturbation theory approach (but require second and third
neighbour hopping, and the pockets are not clear). The Dynamical Cluster Approxi-
mation can produce hot spots without including a t′ term [142], and another CDMFT
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approach [64] also gets hot spots (with a t′); but neither of these give very clear results
about the Fermi surface.

7.5 Summary

The 2× 2 quad-cluster investigated in this chapter is the last, and most sophisticated,
application of two-site cluster DMFT to be studied in this thesis. It allowed antiferro-
magnetism and a range of momentum-dependent phenomena to be investigated co-
herently within dynamical mean-field theory. I have presented results for the the phase
diagram of the 2D Hubbard model, with and without a t′ next-nearest-neighbour hop-
ping term. The detailed properties of the electronic spectral function and quasiparti-
cles gave some fascinating results, and reproduced features of the normal state of the
cuprates that have not been understood.

The phase diagram is demarcated by borders between paramagnetism and anti-
ferromagnetism, and also by the Fermi surface shape. Some regions do not have a
conventional Fermi surface but instead a dramatically different shape consisting of
four hole pockets centred at (±π/2,±π/2). Generally, the distortion that is necessary
to give rise to this shape occurs spontaneously from the effects of electronic interac-
tions. The many-body Hamiltonian generates an effective t′ necessary to create hole
pockets, and the direct t′ we add enhances the effect, and allows a paramagnetic phase
exhibiting hole pockets to emerge. The spectral shapes can be well understood by
visualizing a non-interacting dispersion, with a direct t′, hybridizing with a (π, π)-
displaced “ghost” caused by antiferromagnetic fluctuations. A good subject for future
study would be the completion of the other half (n > 1) of the phase diagram, and then
progressing towards a full picture of the effects of varying amounts of next-nearest-
neighbour hopping and higher order terms.

Several crucial features of the normal state of the cuprate high-temperature super-
conductors are reproduced in the paramagnetic phase that we discovered with a Fermi
surface consisting of hole pockets, and we hope to publish these results. We observe
the formation of a pseudogap, by the erasure of Fermi surface in the region of (π, 0).
ARPES observations show a Fermi surface consisting of arcs, which are matched well
by the hole pockets seen in our calculations that show one side with very small spectral
weight that would probably be unobservable.

Spectral features are broadly similar to those seen in the results for the 2× 1 pair-
cluster (Chapter 6). The mechanism for the approach to the Mott transition in an anti-
ferromagnetic environment, that emerged from the 2× 1 cluster, remains true in the
2× 2 cluster: hole pockets form, and increasing the number of electrons and the inter-
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action strength U cause them to shrink and become less distinct. The difference is the
position of the hole pockets; for the 2× 1 cluster, the positions of features within the
Brillouin zone were severely constricted, but the 2× 2 cluster model allows the hole
pockets to exist in their natural (π/2, π/2) position. Also, an asymmetrical cluster en-
couraged x-y symmetry to be broken, a feature prohibited within the 2× 2 cluster we
used. Whilst it is useful to have separated the effects of this instability from other Fermi
surface distortions, we still do not know if it is just an artifact of the cluster shape. To
answer this question, a 2× 2 cluster should be studied with free bath parameters that
are not antiferromagnetically constrained; as well as allowing both types of symmetry
breaking, this would permit different types of magnetic order and more exotic phases
(such as spontaneous currents round a plaquette), and all could be studied on an equal
footing.
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Chapter 8

CONCLUSIONS

Who can say how long the eye of the vulture

or the lynx requires to grasp the totality of a

landscape, or whether in a comprehensive

instant the seemingly inexhaustible confusion

of detail falls upon their eyes in an ordered

and intelligible series of distances and shapes,

where the last detail is perceived in relation to

the corporate mass?

MERVYN PEAKE

Titus Groan [143]
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Many approaches to strongly correlated electron systems in the past have neglected
momentum anisotropy, yet experiments on materials such as the cuprate high temper-
ature superconductors have observed significantly anisotropic features. In this thesis, I
have investigated both the cause and effect of anisotropy in momentum-space through
two separate calculations, illustrating two complementary approaches to strongly cor-
related electron systems.

The first concerns magnetotransport properties (Hall effect and magnetoresistance)
arising from a particular model of electron scattering within the normal state of the
cuprates. The project is phenomenological and experimentally oriented: photoemis-
sion measurements observed “hot spots” at particular places in momentum space,
where the electrons have a significantly shorter lifetime. The calculations explored
the consequences of this anisotropy for magnetotransport in the copper oxide layer of
these compounds.

In contrast, the approach of the second project is microscopic: we investigate, math-
ematically and computationally, a many-body model within a sophisticated approxi-
mation scheme. Specifically, we study the phase diagram and quasiparticle properties
of the square lattice Hubbard model within a minimal implementation of cluster dy-
namical mean-field theory, at zero temperature. The calculations show that one con-
sequence of electron-electron interactions is the spontaneous break up of the Fermi
surface. The result is a state with four hole pockets separated by regions without free
carriers: thus providing an origin for the momentum anisotropy observed in the planes
of the cuprates.

I shall now discuss the conclusions from each of the two projects in more detail.

8.1 Phenomenological model for magnetotransport

The aim of Chapter 2 was to investigate the model proposed by Varma and Abrahams,
invoking anisotropic small-angle scattering to attempt to explain the anomalous magne-
totransport properties of the high-temperature superconducting cuprate materials in
their normal state. They find that, given the marginal Fermi liquid linear temperature
(T) dependence of the resistivity, small-angle scattering processes can give rise to a
quadratic T2 dependence of the Hall angle, as is observed in experiments.

In this thesis, I have presented results of calculations for a large variety of Fermi
surfaces, scattering rates and other parameters, using a numerical technique, which
can provide a completely independent check on the calculations of Varma and Abra-
hams. The conclusion from these calculations is that the T2 dependence of the Hall
angle is only possible for Fermi surfaces which are specially tuned to be particle-hole
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symmetric, where the conventional Hall effect vanishes and the Hall angle is dominate
by a higher order term which has the necessary unconventional T2 dependence. Small
deviations from particle-hole symmetry result in significant deviations from this law,
whereas experimentally there is only a small change in the temperature exponent with
doping. However, it is possible that correlations between electrons subtly pin the sys-
tem very close to particle-hole symmetry regardless of doping, so we cannot rule out
the model on this basis.

I show here that the key to resolving the issue is the magnetoresistance. Conventional
metals obey Kohler’s rule, which related the temperature dependences of the resistiv-
ity and the magnetoresistance, but measurements on the cuprates show a violation
of Kohler’s rule and suggest a modified Kohler’s rule which relates the temperature
dependence of the magnetoresistance to that of the Hall angle. Varma and Abrahams
do not directly calculate the magnetoresistance predicted by their model, and we cal-
culate it for the first time. I find that Kohler’s rule is not broken by the small-angle
scattering model: no combination of parameters can generate significant deviations,
and certainly nothing like the modified Kohler’s rule observed experimentally.

Thus we conclude that small-angle scattering does not underlie the anomalous nor-
mal state transport properties of the cuprates, and the explanation most likely does not
lie within a Fermi liquid picture. The question remains the subject of active research,
and more recent experiments on phenomena such as the optical Hall effect have en-
abled progress in our understanding of the electron relaxation rates in the cuprates.

8.2 Two-site cluster DMFT

Dynamical mean-field theory (Chapter 3) is one of the most exciting new techniques
for strongly correlated electron systems from the last decade. A major insight from
DMFT is how the Mott transition takes place via a three peak structure, that comprises
two Mott–Hubbard bands existing simultaneously with an increasingly heavy central
quasiparticle peak. DMFT has aided progress with many other phenomena, for ex-
ample understanding of real materials through combination with density functional
theory.

In conventional implementations, DMFT requires considerable computational re-
sources, and cannot represent momentum-dependent effects of correlations. In this
thesis I address these issues simultaneously with the development of two-site cluster
DMFT. Within two-site DMFT (Chapter 4), the self-consistent bath of DMFT is repre-
sented by just a single site in an impurity model, but physically-motivated concepts
are used to determine self-consistency conditions. Many-body dynamical effects are
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retained; two-site DMFT is probably the simplest model that can reproduce all the key
features of the Mott transition.

Two-site DMFT, being computationally straightforward, constitutes an ideal kernel
for DMFT self-consistency calculations in situations where we wish to concentrate on
further degrees of freedom. In this thesis, I combine two-site DMFT with cluster DMFT
for the first time (Chapter 5). Cluster DMFT involves a cluster of several sites, instead
of the single site of conventional DMFT, connected to some self-consistent bath. Now,
different types of local magnetic order may be compared confidently, and the quantities
calculated by cluster DMFT are permitted some momentum-dependence.

Our aim is to investigate the phase diagram and quasiparticle properties of the 2D
Hubbard model within two-site cluster DMFT, at zero temperature. The simplicity of
two-site DMFT is necessary for a comprehensive survey of the phase diagram — it
is too computationally expensive within conventional DMFT. The cluster approach is
not only essential to represent antiferromagnetism, but we also find that there are some
fascinating momentum-space features of electronic correlations.

Understanding of the phase diagram was built up through three increasingly com-
plex models; firstly within two-site DMFT without a cluster (Chapter 4), secondly with
a 2× 1 pair-cluster (Chapter 6), and thirdly with a 2× 2 quad-cluster (Chapter 7). Here
I shall predominantly focus on the last.

Conventional DMFT showed how the pictures of the Mott transition proposed by
Hubbard and Brinkman–Rice could be synthesized, and our cluster approach allows
the third picture of the Mott transition proposed by Slater (antiferromagnetism) to be
incorporated simultaneously. We observe two predominant features in our phase dia-
gram: antiferromagnetism (ubiquitous at half-filling, and maximally extends to 80% fill-
ing), and regions where the Fermi surface is distorted and forms hole pockets, located
near (π/2, π/2) in the Brillouin zone. The hole pockets provide a mechanism for how
the Fermi surface can disappear through the Mott transition: as the insulating state is
approached, the pockets shrink and become less distinct; the combined quasiparticle
residue reduces, and the pockets will become points and vanish at the point the ma-
terial becomes an insulator. Simultaneously, we observed a complex spectral picture
of how the the Hubbard bands and quasiparticle peak coexist with these hole pockets.
The Slater gap is present, but its consequences are anisotropic.

The distortion of the Fermi surface into hole pockets is demonstrative of another
general feature: a soft Fermi surface. In the pair-cluster model, we observed a sponta-
neous Pomeranchuk lemon-shaped distortion of the Fermi surface, with hole pockets
in corresponding places, and in the quad-cluster model we observed a variety of hole
pocket shapes in phases close in energy. Our approach did not allow a direct com-
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parison — we leave it as a future exercise to determine if there are circumstances in
which the Pomeranchuk distortion remains favourable. But the overall conclusion is
that there will be a number of closely competing distortions of the Fermi surface that
are significant departures from the non-interacting shape. Shape is just one possible
manifestation of this softness: it is indicative of more exotic phases such as supercond-
uctivity, and the fluctuations could lead to a breakdown of Fermi liquid theory.

Introducing a next-nearest-neighbour hopping t′ term increases the favourability of
a paramagnetic state containing hole pockets, that reproduces many phenomena that
have been observed in the normal state of the cuprate high-temperature superconduct-
ors. We observe the formation of a pseudogap, where a partial gap is formed and regions
of the Brillouin zone near (π, 0) etc. are bereft of quasiparticles. The spontaneous for-
mation of hole pockets explains why transport properties depend on the doping 1− n
rather than the Luttinger volume n. We predict a scenario where the Hall coefficient
changes sign, as the Fermi surface goes from particle-like to consisting of hole pockets,
which is probably simultaneous with the metal becoming antiferromagnetic. Finally,
the hole pockets that we observe exhibit a rather asymmetrical distribution of spectral
weight: one side is very weak, and photoemission experiments would only be able
to observe the other side — they indeed see only arcs of Fermi surface. We predict
that with high enough resolution and sensitivity, and close enough to the Fermi level
(εF− δ), the other half of the pockets will become visible.

Self-consistent mean-field theory has some dangers. A wealth of phases are pro-
duced, and whilst we can compare the energies of these phases to identify the ground
state, we can never be sure that there is not an additional, lower-energy phase that
has been missed. A simple example is how conventional DMFT is not able to support
antiferromagnetism, which is lower in energy than paramagnetism. Phases also try to
exploit the detailed features of the model (such as the broken symmetry in the pair-
cluster), and further study has to be made to distinguish how much properties are real
of artifacts of the model. The work in this thesis has been entirely restricted to zero
temperature, and it would be interesting to establish how thermodynamics alters the
ground state picture.

The models studied in this thesis can be viewed from many different perspectives,
and there are a vast number of possible extensions. The general picture of the 2D
Hubbard model phase diagram from a genuine many-body theory is a useful resource,
providing guidance for what more sophisticated DMFT representations (for example)
should look for.1 It is an achievement to see so many phenomena emerge from just one
relatively simple model; its features that have been studied in the past have all been

1And indeed, other researchers have already used my work in this way.
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investigated within different, specialized models.
I have demonstrated that two-site cluster DMFT is an interesting technique that

should provide an effective “impurity solver” for many more complex problems, such
as looking for Fermi surface features and antiferromagnetism in multiple-orbital mod-
els of real materials. Larger clusters and extended Hubbard models could be investi-
gated, and more detailed physical properties of phases extracted, such as conductivity
and the effects of a magnetic field; the possibility of superconductivity could be incl-
uded through the appropriate anomalous Green’s functions. Finally, I would promote
two-site DMFT as a sophisticated boundary condition for any cluster approach to inter-
acting electron systems: as a vastly superior alternative to periodic boundary question,
single sites are just added to the edge of the cluster and constrained self-consistently,
and many-body effects will be included reliably.
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Appendix A

BOLTZMANN TRANSPORT

FORMULATION

God keep me from ever completing anything.

This whole book is but a draught — nay, but

the draught of a draught. Oh, Time, Strength,

Cash, and Patience!

HERMAN MELVILLE

Moby Dick [144]
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The basis of our calculations in Chapter 2 is classical Boltzmann transport theory [24,
29]. Here I reproduce the derivation of the linearized Boltzmann equation. We consider
the steady state equation for the distribution function fk. We have no diffusion (spatial
homogeneity is assumed) and therefore the only processes altering the distribution
in k-space are those due to applied electric and magnetic fields, and a generalized
scattering. The k-vector of each carrier is changed according to

~k̇= e(E+ vk ×B)

(where e is negative for an electron) and the first order contribution to the distribution
is

∂ fk
∂t fields

= −dk
dt
· ∂ fk
∂k
= − e
~

(E+ vk ×B) · ∂ fk
∂k
.

For a steady state we require that the combined change in fk due to contributions from
the fields and scattering is zero; hence

− e
~

(E+ vk ×B) · ∂ fk
∂k
+ Ck = 0 ,

where Ck is the rate of change of the state k due to scattering.
We would like to look at the departure from equilibrium so we write fk = f 0

k + gk,
where f 0

k = (exp{β(εk− µ)}+ 1)−1, the plain Fermi distribution. We note that

∂ f 0
k
∂k
=
∂εk
∂k
∂ f 0

k
∂εk
= ~vk

∂ f 0
k

∂εk
,

and so the cross-product causes the term with B and f0
k to vanish. We also assume

that non-linear E2 contributions are small and neglect the term E · ∇kgk, giving the
linearized Boltzmann equation

eE · vk
∂ f 0

k
∂εk
+

e
~

vk ×B · ∂gk
∂k
= Ck . (A.1)

In future calculations I shall choose units such that e = 1 and ~= 1.
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Appendix B

BETHE LATTICE

Bring us in no egges,

for ther are many schelles;

But bring us in good ale,

and give us nothing elles;

And bring us in good ale.

ANONYMOUS [145]
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The Bethe lattice, in which every lattice point is connected to a number z of others
which do not themselves interconnect (see Fig. B.1), is often used as the underlying
lattice for DMFT calculations since its self-consistency condition turns out to be sim-
ple.1 Here I shall derive the Green’s function and density of states for the Bethe lattice
in infinite dimensions, including the case when there is broken bipartite symmetry; I
show also how the Bethe lattice is useful for the dynamical mean-field theory (DMFT)
self-consistency equations.

PSfrag replacements

i

j

1

2

Figure B.1: A portion of a Bethe lattice with coordination number number z = 3. For an infinitely extended Bethe
lattice, expunging site 0 leaves a lattice subset (1, connected to site i), that is identical to the subset (2, connected to
site j) left when site i is additionally expunged. Hence the Green’s functions G(0)

ii = G(0,i)
j j are equivalent.

B.1 Green’s function

First we derive the non-interacting Green’s function and hence the density of states.
Following Georges et al. [52] we take a “cavity” approach, as no simple Fourier trans-
form is possible. The action is divided into several parts

S =
∫ β

0
dτ
[

c†0(∂τ − µ)c0

︸ ︷︷ ︸

S0

−∑
i

ti0(c†i c0+ h.c.)

︸ ︷︷ ︸

∆S

]

+ S(0) , (B.1)

where sites {i} are the z neighbours of the cavity site 0, S0 is the action of site 0, and S(0)

is the action in the presence of the cavity (i.e. when site 0 has been removed). Suppose
we integrate out all sites except site 0 and those connected to it; sites not connected to
any of {0, i} will disappear into the determinant and cancel out, and the action is left

1A Lorentzian density of states yields a simpler condition — but one in which the Green’s functions
G0 and Glocal are no longer connected, which is not terribly useful.
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in the form

S = S0+ ∆S−∑
i

∫ β
0

dτ
∫ β

0
dτ ′c†i (τ ′)G(0)

ii
−1

(τ ′ − τ )ci(τ ) , (B.2)

where we have introduced the Green’s function G(0) in the presence of the cavity, when
S = S(0). Let us now integrate out the sites {i} by a completing-the-square identity

S =
∫ β

0
dτ

[

c†0(∂τ − µ)c0−∑
i

t2
i0

∫ β
0

dτ ′c†0(τ ′)G(0)
ii (τ ′− τ )c0(τ )

]

; (B.3)

we have used here the Bethe lattice property that none of the i are connected to each
other. Hence we can relate the on-site Green’s function to the Green’s functions in
the presence of the cavity: G00

−1(iωn) = iωn + µ−∑i t2
i0G(0)

ii (iωn). If we are comparing
lattices with different coordination numbers z, we must scale the hopping such that the
electrons’ kinetic and potential energies are in proportion; hence we choose ti j = t/

√
z,

and noting that all sites i are identical

G00
−1
= ζ − t2/z∑

i
G(0)

ii = ζ − t2G(0)
ii , (B.4)

where ζ = iωn+ µ. We can now further remove a site i, and exactly the same equation
will result for nearest neighbours j of i, except there are only z− 1 of them since site 0
was already removed; hence

G(0)
ii
−1
= ζ − z− 1

z
t2G(0,i)

j j . (B.5)

In the limit of an infinitely extended Bethe lattice, we can argue that these two Green’s
functions are identical, as illustrated in Fig. B.1. So, taking the limit of infinite dimen-
sions z→∞, gives the on-site Green’s function:

ζ = t2GBethe +G−1
Bethe (B.6)

GBethe =
ζ −

√

ζ2− 4t2

2t2 . (B.7)

Taking care with the analytic structure of this function (there is a branch cut from ζ =
−2t to ζ = 2t), its imaginary part yields a semi-circular density of states:

D(ε) =

√
4t2− ε2
2πt2 (|ε| < 2t) , D(ε) = 0 (|ε| > 2t) . (B.8)
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For two-site DMFT, we require the second moment of this density of states

∑
k
ε2k =

∫
dε ε2D(ε) = t2 . (B.9)

B.2 DMFT self-consistency

The local non-interacting Green’s function is defined to be G0,local(ω+µ)= ∑k
1

ω+µ−εk ,
and so Eqn 3.7 can be written

Glocal(iωn) = G0,local(iωn+ µ− (G −1(iωn)−G−1
local(iωn))) . (B.10)

This form is only useful if we know the local Green’s function explicitly; for most
lattices, we cannot carry out the k-sum analytically. But for the Bethe lattice, we can
write (using Eqn B.6)

G
−1(iωn) = iωn+ µ− t2Glocal(iωn) . (B.11)

This gives an explicit prescription for reconstructing a new function G from the inter-
acting Green’s function Glocal such that they are self-consistent on a Bethe lattice; this
is equivalent to matching on-site and lattice Green’s functions.

B.3 Two-sublattice symmetry breaking

We can derive directly the Green’s function for a Bethe lattice where alternate sites
are different — this is relevant for the study of antiferromagnetism, and provides a
double check on the equations produced for antiferromagnetic DMFT self-consistency
(c.f. §4.4.1). In infinite dimensions, Eqn B.5 above becomes

G(0)
ii
−1
= ζ − t2G(0,i)

j j . (B.12)

If symmetry is broken an A-type Green’s function must be related to a B-type Green’s
function by this relation, and vice versa. Also, some intrinsic property of the A-site
must be different from that on the B site, so there are now two different ζA, ζB. So we
have

G(0)
A,ii
−1
= ζA− t2G(0,i)

B, j j; G(0,i)
B, j j
−1
= ζB − t2G(0,i, j)

A,kk ; (B.13)
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combining these to eliminate GB gives

t2ζAG2
A− ζAζBGA+ ζB = 0 ⇒ GA=

1
2t2

√

ζB

ζA

(

ζAζB ±
√

ζAζB − 4t2
)

. (B.14)

In DMFT, the difference between A and B is given by the self-energy, and we have
ζA,σ = ω+ µ− Σσ, ζB,σ = ω+ µ− Σσ̄ ; Eqn 4.26 can be reproduced using Eqn B.14.
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Appendix C

COMPUTATIONAL TECHNIQUES

Life is easy to chronicle, but bewildering to

practise...

E. M. FORSTER

A Room with a View [146]
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In this Appendix the computational and numerical techniques utilized in each part
of this thesis are outlined, and the root-finding procedure used to solve the two-site
DMFT self-consistency equations is discussed in detail in §C.1. Mathematica was used
for many of the calculations for Chapter 2; its LinearSolve routine generally dealt
well with the badly-conditioned scattering matrix (despite complaining). The core of
two-site dynamical mean-field theory (DMFT) parts was done using programs written
in C. In addition, Perl was used to manage exploration of the (U,n) phase diagram
(interfaced to C using SWIG [147]) and for data collection, and Mathematica for some
algebra and the presentation of data (phase diagrams and other graphs).

Diagonalizing the DMFT impurity model was done directly with routines from LA-
PACK [148] (e.g. dsyev) for plain two-site DMFT and for the 2× 1 cluster. For the 2× 2
cluster a Lanczos approach is necessary, and to calculate the ground state I used the
dnlaso routine from LASO [149]. Lanczos is used to calculate the zero temperature
Green’s function [150]. Identifying convergence of the Green’s function is tricky, and
I probed it near the ground state eigenvalue and at nearby poles (identified using the
LAPACK routine dstevx to find eigenvalues of a tridiagonal matrix).

Numerical integration of the density of states is required to evaluate the lattice fill-
ing (and also the energy and nk), and for this I used routines from QUADPACK [151]
within the GNU Scientific Library (GSL) [152]. For earlier calculations, on the Bethe
lattice, it is necessary to identify the singularities on the edges of the square root
(e.g. where ω + µ− Σσ(ω) = 2t for Eqn 4.18); these can be calculated by finding the
roots of polynomials, when Σσ(ω) is expressed as Eqn 4.14, using the GSL routine
gsl_poly_complex_solve.

When k-dependence is included explicitly, the k-sum was done as a simple sum
(with look-up tables for all possible quantities), and prior to the numerical integration
(i.e. for each ω point). Densities of states were calculated from the imaginary parts
of a Green’s function, with an analytic continuation ω → ω + iδ to broaden the delta
functions. All poles lie on the real axis, and so we can choose any contour which en-
closes the lower half of the real axis and goes through zero, begin careful of preserving
the measure of distance along the contour. The contour is chosen to be a considerable
distance away from the real axis to make the function smooth and easily integrated
numerically; for this I used infinite range functions such as gsl_integration_qagil.

In later stages, numerical differentiation is required to calculate Z, and I used the
gsl_diff_central routine. For the 2× 2 clusters, it is necessary to carry out operations
(such as inversion) on a 4× 4 matrix, for which I code the algebra directly.
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C. COMPUTATIONAL TECHNIQUES MULTIDIMENSIONAL ROOT-FINDING

C.1 Multidimensional root-finding

At the core of two-site DMFT is a set of self-consistent equations that I solve by means
of multi-dimensional root-finding, to find the parameters of the dynamical field that
cause the self-consistent equations to be satisfied. The alternative (often used for con-
ventional DMFT) is to obtain explicit analytical expressions for these parameters from
the self-consistency equations, and iterate; but in general, this is not possible, and iter-
ation is less reliable than root-finding.

Matching Green’s functions (e.g. Eqn 4.4) gives a number of self-consistency con-
straints, which must be equal to the number of impurity model parameters, and the
problem can be rewritten in the form F(x) = 0 (c.f. §4.3.2). x is the vector of input pa-
rameters (characterizing the dynamical field), from which we can calculate the vector
function F that gives the distance from self-consistency for each of the equations.

We wish to find the best way to treat this problem computationally, regarding the
function F as a black box. Calculating F is computationally expensive (for two-site
DMFT it will involve large matrix diagonalization and numerical integration); and we
certainly do not know its gradients analytically. This means that the best approach is
the Broyden method [153], which is based upon Newton’s method for the calculation of
the optimal step δx:

F(x+ δx) ' F(x)+∇F(x) · δx ⇒ δx =−(∇F)−1 · F(x) for F(x+ δx)= 0 (C.1)

where∇F is the Jacobian matrix. Although the direction given by this δx is guaranteed
to decrease |F|2, it may have too large a magnitude and extend beyond the region
where the approximation is valid; hence we may need to backtrack, and a line search
should be used to find the optimal step size quickly [153].

Evaluation of the Jacobian matrix ∇F is not possible analytically for DMFT, and
in larger dimensions, evaluation by finite differences is costly. Broyden [154] derived
the optimal way of updating the Jacobian, from how the function F has changed in the
previous Newton step:

Ji+1 = Ji +
(δFi − Ji · δxi)⊗ δxi

δxi · δxi
, (C.2)

where J is the approximate Jacobian. The initial Jacobian has to be calculated by fi-
nite differences; and the approximate Jacobian gradually deteriorates, so occasionally
(when the line search fails to provide a suitably good step) it needs to be reinitialized by
finite differences. In practice, the algorithm has proved very reliable, and convergence
is rapid once the minimum is reasonably proximate (even in nine dimensions).
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