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Abstract

The time delay estimation between time series is a real-world problem in gravitational

lensing, an area of astrophysics. Lensing is the most direct method of measuring

the distribution of matter, which is often dark, and the accurate measurement of

time delays set the scale to measure distances over cosmological scales. For our

purposes, this means that we have to estimate a time delay between two or more noisy

and irregularly sampled time series. Estimations have been made using statistical

methods in the astrophysics literature, such as interpolation, dispersion analysis,

discrete correlation function, Gaussian processes and Bayesian method, among others.

Instead, this thesis proposes a kernel-based approach to estimating the time delay,

which is inspired by kernel methods in the context of statistical and machine learning.

Moreover, our methodology is evolved to perform model selection, regularisation and

time delay estimation globally and simultaneously. Experimental results show that

this approach is one of the most accurate methods for gaps (missing data) and distinct

noise levels. Results on artificial and real data are shown.
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Chapter 1

Introduction

1.1 Background

THE Einstein’s General Theory of Relativity showed that the presence of matter

locally distorts the fabric of space-time. Since light travels along geodesics, rays

of light (radio waves or X-rays) are bent as they pass in the vicinity of massive objects

in space. Geodesics are the shortest path between two points, i.e., the generalisation of

straight lines in curved space. Depending on the angle of deflection, images of distant

objects can be dramatically distorted, and even broken up into multiple images, due

to massive objects like galaxies or galaxy clusters along the line of sight (see §2). This

is known as gravitational lensing [79, 56].

Gravitational lensing can produce various spectacular effects in astronomical ob-

servations. On the one hand, microlensing is caused by star-sized massive compact

halo objects (MACHOs) between a source and the observer, which increase the mag-

nification of the observed images [13, 60]. On the other hand, galaxy clusters, which

have masses of 1015 times the mass of stars, can cause distant galaxy images to be

distorted in arcs and arclets.

A variation of gravitational lensing is known as strong lensing, where an as-

tronomer observes two or more images of the same distant celestial object (quasar),

when light travelling from it passes close to the centre of a massive galaxy on the way.

Quasars are highly variable sources, and the variation can be represented as a random

1
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process. The level of variation depends on the frequency of observation, so that the

variability in optical images, for instance, is different from that in X-ray images. The

light paths from the common source to the multiple images are in general different

for each image, so a variation in the source will be observed at different times in the

different images. An accurate measurement of the time delay is one of very few direct

ways of measuring distances in the universe, which is essential in measuring such pa-

rameters of the universe as its expansion rate, mass density and the Hubble constant

[74, 75]. With these parameters, it is possible to discover the age and future of the

universe [79, 56]. Therefore, the time delay is the most direct method of measuring

matter in the universe [74, 75, 43].

In practice, a gravitationally lensed quasar is monitored such that its brightness

at some wavelength (optical, radio or X-ray) is measured as a function of time. These

light curves are represented as noisy time series. The problem here is to find the

time delay between any given pair of these time series. Depending on the type of

telescope, however, the recorded observations have different levels of errors due to the

observational process. Related to the process of observation, the time series are also

irregularly sampled and can have large gaps.

The earliest discovered gravitational lens, Q0957+561, discovered in 1979 [92], is

also the most studied so far. This system has two images of the same quasar, referred

to as images A and B (see Fig. 2.3). Since the discovery, many attempts to estimate

the time delay between the light curves obtained from images A and B, in both radio

and optical images, have been made, e.g., see [71, 64, 65, 58, 69, 83, 49, 32, 59].

Controversy raged from the first report in 1981 until 1997, when a time delay of

417 ± 3 days was published [49], which apparently stopped the controversy. The

history of this controversy is well reviewed in Haarsma et al. [31], which tabulates

different time delays (in the range of 300 to 1000 days) claimed over different data

sets using distinct methods. One of many recent publications is Kochanek et al. [43],

which judges [49] to be correct. However Ovaldsen et. al. [59], with new and more

accurate photometry, report a time delay of 424.9 ± 1.2 days, which is one of the

latest and best-measured optical data set for the source 0957+561. Previous and

recent publications such as Oscoz et al. [57], Burud et al. [9], Colley et al. [13],
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among others, report values of the time delay as 422.6± 0.6, 423± 9 and 417± 0.07

days respectively. Therefore, the time delay for Q0957+561 is still not agreed upon

by the various research groups studying it, even if a lot of them use the same set of

observations. This is largely due to the limitations of the different methods used by

these groups.

Next we address the question: Why is the measurement of time delay complicated?

Basically there are two reasons: (a) the data are irregularly sampled with big gaps

(or missing data), and (b) the data have appreciable levels of noise. If we have to do

better than existing methods, we have to directly address these two aspects of the

data.

1.2 Motivation

Having introduced briefly the time delay problem, we cite Ovaldsen et al. [59]

(page 904), who state:

“A longer observational base line and maybe more statistical techniques

could shed new light on [the] time delay issue.”

Haarsma et al. [32] (page 69) who made the last analysis using radio data also state:

“The 0957 radio light curves will continue to be a useful data set for

studying systematic effects and time-delay analysis techniques.”

Talking about the future of time delay measurements, Kochanek et al. [44] bring

attention to the problem of estimating the Hubble constant and the structure of the

mass distribution of lens galaxies. Then, they state

“ The simplest way to clarify this problem is to measure accurate time

delays for many more systems” (quasars).

Moreover, Pindor [70], studying time delays as a gravitational lens searching tech-

nique, states

“... the best possible method for identifying time delays [remains] a matter

open to investigation.”
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The above citations, and the failure to reach agreement on the value of the time

delay between the two images of Q0957+561, have been the main motivation of this

research.

1.3 Contribution

Here we propose a kernel-based approach to estimating time delays in the context

of kernel methods [86] and statistical and machine learning from the standpoint of

computer science [54, 35]. This approach can be defined as a data-driven approach.

Through artificial data sets, we answer such questions as: What is the effect of

noise in the time delay estimation? What is the influence of gaps? What is the

effect of features? The answers to these questions are useful before launching an

observational campaign to study a specific gravitational lens in order to estimate a

time delay accurately. Moreover, this thesis compares the proposed method with

other methods such as linear interpolation, correlation-based methods, Dispersion

spectra, PRH method (Gaussian processes) and Bayesian method.

1.4 Thesis Organisation

The remainder of this thesis is organised as follows: Chapter 2 gives a broad de-

scription of the time delay problem and our real and artificial astronomical data.

Chapter 3 contains the literature review and other methods, including the synthetic

data associated with them. Chapter 4 gives a brief introduction to kernels and in-

troduces the kernel-based approach. Chapter 5 presents the evolved version of our

approach. Chapter 6 has the experimental results on artificial and real data. Some

conclusions are drawn in Chapter 7.

1.5 Publications from this Thesis

Some results of this thesis have been published. The list in chronological order is

below:
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• Cuevas-Tello, J.C., Tino, P. and Raychaudhury, S. (2005) Determining time

delays in gravitational lensing: How significant are the results. RAS National

Astronomy Meeting 2005 (poster), Birmingham, UK.

• Cuevas-Tello, J.C., Tino, P. and Raychaudhury, S. (2005) Time delay estimation

in gravitational lensing: a new approach. RAS National Astronomy Meeting

2005 (talk), Birmingham, UK.

• Cuevas-Tello, J.C., Tino, P. and Raychaudhury, S., (2005) Kernel-based method
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(poster), Erice, Italy (Ettore Majorana Centre for Scientific Culture). Directors:

N. Cristianini, R. Cerulli and J. Shawe-Taylor.
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Chapter 2

Problem Statement and

Astronomical Data

THIS chapter, besides introducing gravitational lensing and the time delay prob-

lem, also defines some concepts in astrophysics. We introduce gravitational

lensing in order to discover where the data come from, especially the delay ∆, be-

cause in practice one works directly with the time series and previous knowledge of

gravitational lensing is not needed; hence, §2.1 may be skipped at discretion. We also

describe specific aspects of observational radio and optical data in §2.3.

——————————————————————————————————–

2.1 Gravitational Lensing

Figure 2.1 illustrates gravitational lensing in detail. On the left-hand side is the

source plane where the quasar (or bright source) is located (shaded circle); the mass

deflecting the light from the source is in the middle, lens plane; the observer plane,

on the right, is where the telescope is located. Here one assumes that the deflection

of light happens in one plane, which is the lens plane. The astronomer observes two

images from the source, denoted by empty circles in the source plane, giving rise

to an interesting cosmic illusion. This is due to the fact that photons of light (or

any other form of electromagnetic radiation, e.g., radio or x-rays), are affected by a

6
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Figure 2.1: Gravitational Lensing. See §2.1 for details. This figure was obtained from

http://en.wikipedia.org/

gravitational field, described by the general relativity [79, 56].

The effect of gravity on photons can be described by

α =
4GM
c2b

(2.1)

whereas α is the angular amount of deflection (see Fig. 2.1), G is the gravitational

constant [56], M is the mass in the lens plane, c is the speed of light, and b is the

closest distance from the source to the mass M. This is why gravitational lensing is

the most direct method of measuring matter, which is often dark. The massM may

be clumps of matter such as stars or galaxies.

Also from general relativity and Fig. 2.1, a photon coming from the source plane

to the observer plane passing by a point mass M from a direction θI relative to the

lens, will be delayed by

−4GM
c3

ln θI (2.2)



CHAPTER 2. PROBLEM STATEMENT AND ASTRONOMICAL DATA 8

due to the gravitational influence of the lens. Therefore, the photons making up the

two distorted images obtained at the observer plane arrive at distinct times, differing

by ∆, because of the geometry of the lens and the distribution of gravitational

potential within the lens [79].

The source plane in Fig. 2.1 shows two apparent images from a single source, but

this is only to illustrate this phenomenon. One can in fact observe more than two

images at the observer plane. For instance, when a point mass is interposed exactly

along the line of sight to the source, one can observe a spectacular ring image, known

as the Einstein ring [79, 56, 20]. In practice, such rings are rarely observed. In Fig.

2.2 are some gravitational lenses with either two or four images1 within the Einstein

ring.

2.2 Cosmological Significance of Time Delays

Over a hundred systems of lensed quasars are currently known2, and about 10 of these

have been monitored for long periods. In some of these cases, the measurement of a

time delay ∆ has been claimed.

To measure a time delay ∆, a monitoring campaign must produce light curves

from a individual lensed quasar [43]. These light curves are well sampled compared

to the time delays. Then, the source must have measurable features (brightness

fluctuations) on time scales shorter than the monitoring period. Finally, a time delay

estimation method is used to measure the delay.

Since the time delay between light curves depends on the mass of the lens, it

is the most direct method to measure the distribution of matter in the Universe

[75, 43]. Therefore, through time delays, observations of gravitational lenses yield

estimates of the masses of galaxies and of clusters of galaxies [29]. However, the main

motivation to study time delays is the estimation of the cosmological constant, the

Hubble constant, from gravitational lens [79, 29, 43]. The Hubble constant is useful

1For B1938+666 and B1608+656, the apparent sources are clearly visible in [42] after removing

the lens galaxies M.
2A growing list of multiply-imaged gravitationally lensed quasars can be found at

http://www.cfa.harvard.edu/castles



CHAPTER 2. PROBLEM STATEMENT AND ASTRONOMICAL DATA 9

(a) (b)

(c) (d)

Figure 2.2: Gravitational Lenses. Images observed at H-band by the Hubble Space

telescope (http://www.cfa.harvard.edu/castles). At each falsea colour image (a)-(d),

a point image (white) corresponds to the observed image from the source, and the

extended objects are M; i.e., colours apart from black and white. (a) Two-image

B1938+666 lens. (b) Four-image B1608+656 lens. (c) Four-image PG1115+080 lens.

(d) Two-image Q0957+561 lens.

a i.e., colours are modified to obtain an enhanced image.

in measuring the parameters of the universe such as the expansion rate, mass density,

age and future.

Moreover, recent investigations concentrate on discovering gravitational lenses
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through measurements of their time delays [70]. This is also one of the objectives

of the ongoing Sloan Digital Sky Survey3 (SDSS) and the Large Synoptic Survey

Telescope4 (LSST).

2.3 Gravitational Lens: Q0957+561

Quasar Q0957+561, an ultra-bright galaxy with a super-massive central black hole,

in Fig. 2.2d, was the first lensed source to be discovered and has so far been the

most studied. Therefore, we concentrate our study only on this quasar. The source

is 3.3× 1010 light-years away from us, being lensed by a galaxy (visible in Fig. 2.2d),

along the line of sight, only 0.62 × 1010 light-years away. The brightness of quasars

varies on the time-scale of days. The lens is a galaxy with a mass M ∼ 1042 kg,

which is about 1012 times the mass of the sun.

The observations have been made by both radio and optical astronomers, since

theory predicts that they should measure the same time delay between the light

curves obtained from the two images. This is because gravitational lensing is a purely

gravitational effect, which cannot affect the frequency of an electromagnetic wave, and

thus the time delay is independent of the frequency of observation.

For our purposes, the data are available as two unevenly sampled time series of

fluxes (or logarithm thereof) of the two images; see Fig. 2.3 where the three plots,

data sets, on the left are radio data and those on the right are optical data sets; for

more details on these data see §2.3.1 and §2.3.2 respectively. The data sets depicted

in Fig. 2.3 are our real data. The observations are made at irregular intervals due

to weather conditions, equipment availability, object visibility, among other practical

considerations [21].

Some time delay estimates for this quasar are given in the next chapter, where

the time delay ∆ is around 400 days.

3http://www.sdss.org/
4http://www.lsst.org/
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Figure 2.3: Real Data: Q0957+561. Error bars represent the observational error. (a)

6 cm. (b) DS3; image A has been shifted upwards by 0.2 mag for visualisation. (c)

6*cm. (d) DS2. (e) 4 cm. (f) DS1. For more details see §2.3.
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2.3.1 Radio Data

The radio data to be used in this thesis are reported as time series, and the error

involved is assumed to be 2% of the density flux [32]. A data set at 6 cm wavelength

is shown in Table 2.1, which contains in its first column the observation number, in

the second column the calendar date and in the third the date represented in Julian

days. The Julian day (JD) is the decimal number of days that have elapsed since

Noon, Greenwich Mean Time (GMT), of Monday, 1st of January 4713 BC. This is

used as a way of representing the date as a continuous real variable. The last two

columns have the density flux of images A and B. In radio data the flux is reported

in linear scale, milliJanskys (mJy), where 1 mJy=10−29 W m −2 Hz−1. In practice,

we need only the last three columns. We use mainly two data sets at two different

wavelengths: 4 cm and 6 cm [32]. For the 6 cm data set5, we use the light curve

with four points from Spring 1990 removed, as in [32]. The 4 cm data set [32] has

n = 58 observations from 4 October 1990 to 22 September 1997. These data sets were

gathered from the National Radio Astronomy Observatory6, the Very Large Array

radio telescope (VLA).

Since we have generated a new data set, 6*cm contains 6 cm observations only at

the observation times of the 4 cm data set. In other words, we keep a 6 cm observation

when there is a 4 cm observation at the same time t . Therefore, both 4 cm and 6*cm

data sets contain 58 observations and gaps of the same size.

The three data sets are depicted on the left-hand side of Fig. 2.3.

2.3.2 Optical Data

The optical data are also reported as time series, but in a different way. The Table 2.2

gives an example. This table contains the standard deviation of measurement errors

at each observation for each density flux (A and B). This characteristic makes these

5Data are available at http://space.mit.edu/RADIO/papers.html. Note that a record of the 6 cm

data set is not included in the published papers and the observation on 11th April 1994 is recorded

a day earlier in previous studies.
6Its total cost was US$78,578,000 (in 1972), roughly US$1 per taxpayer at the time –

http://www.vla.nrao.edu/.
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Table 2.1: Radio Data: Q0957+561 at 6cm

# Calendar date Timea t Image A Image B

1 23 Jun 1979 4,047.50 39.26 31.71

2 13 Oct 1979 4,160.16 39.26 29.67

3 23 Feb 1980 4,292.79 37.37 29.69

... ... ... ... ...

n = 143 6 Oct 1997 10,728.18 33.06 22.32

a Julian date - 2.44× 106

data more attractive than radio data, because they are more precise; about 0.006%

– 0.474% of its flux, i.e 0.001–0.08 mag. This is an advantage over radio data (2%).

However, the disadvantage is that optical data contain more oscillations than radio

data, and they are sensitive to other sources of noise such as microlensing [13, 60].

In Fig. 2.3, on the right-hand side, are depicted three data sets (hereafter referred to

as DS1, DS2 and DS3, from bottom upwards). DS1 is an optical data set at g-band

[49] with n = 97 observations from 2 December 1994 to 8 April 1996. DS2 is also an

optical data set at r-band [49] with n = 100 observations during same period of time

as in DS1. And DS3 refers to optical data at r-band [59] with n = 422 observations

from 2 June 1992 to 8 April 1997. In both DS1 and DS2, there is a gap of 182 days

because a time delay of about 420 days was known a priori [49].

Contrary to radio data, optical astronomers measure the brightness of a source

(flux) using imaging devices (e.g., Charge-Coupled Device – CCD), with filters to

restrict the range of wavelength/frequency of light observed. The flux f of light

from a source is expressed in logarithmic units known as magnitudes (mag), defined

as mag = −2.5 log10 f + constant, where f can be represented in mJy (see radio flux

units above). The errors on mag are mainly measurement errors, assumed to be zero-

mean Gaussian. The green (g-) and red (r-) bands represent measurements obtained

with filters in the wavelength range 400–550 nm and 550–700 nm, respectively.
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Table 2.2: Optical Data: Q0957+561 at g-band

Timea t Image A Error A Image B Error B

9,689.009 16.9505 0.0152 16.8010 0.0152

9,691.007 16.9439 0.0111 16.7957 0.0111

9,695.001 16.9356 0.0090 16.7949 0.0090

... ... ... ... ...

10,253.672 17.0544 0.0084 16.9206 0.0084

10,266.665 17.0544 0.0205 16.9808 0.0205

10,268.642 17.0798 0.0170 16.9261 0.0170

10,270.652 17.0928 0.0145 16.9597 0.0119

a Julian date - 2.44× 106

2.4 Artificial Data

Since the exact time delay of Q0957+561 is unknown (see §1 and §3), we use artificial

data sets to perform a set of controlled large-scale experiments in order to measure the

accuracy of time delay estimation techniques on gravitational lens systems. We gen-

erate simulated data sets with different levels of noise and varying sizes and locations

of observational gaps.

2.4.1 DS-500

For this data, DS-500, the basic signal was constructed by superimposing twenty

Gaussian functions with centres and widths generated randomly. The width was

allowed to vary from zero up to a quarter of the duration of the entire monitoring

campaign. Next, two artificial fluxes were created by scaling and shifting the basic

signal in the flux density and time domains, respectively. The amplitude and flux

densities are similar to radio data, 4 cm [32]. The flux ratio was set to M = 1/1.44

and the temporal shift was equal to ∆ = 500 days. The time goes from 0 to TS ·∆
days with s1 samples per ∆ days (TS = 10 and s1 = 5), i.e., if the samples had

been regularly sampled, we would have had a separation of z = ∆/s1 days between

samples. To irregularly sample, we disturbed the regular observation times with a
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Table 2.3: Artificial Data: DS-500

Gap size

Noise 0 1 2 3 4 5

0% 1 10 10 10 10 10

1% 50 500 500 500 500 500

2% 50 500 500 500 500 500

3% 50 500 500 500 500 500

Sub-Total 151 1510 1510 1510 1510 1510

Total = 7,701 data sets per underlying function.

5 underlying functions yield 38,505 data sets.

random variable uniformly distributed in [−P · z, +P · z], P = 0.49. Moreover, we

simulated continuous gaps in observations by imposing five blocks of missing data.

The blocks were located randomly with at least one sample between them. We used

block lengths, gap size, of 1, 2, ..., 5 (see Table 2.3).

Three levels of noise were used to contaminate the flux signal: 1%, 2% and 3%

of the flux; these represent our measurement errors σA(ti) and σB(ti), which are

standard deviations of the flux distribution at each observation time. Fig. 2.4 depicts

an example of a couple of scaled and shifted artificial fluxes7.

We use 5 different underlying functions (basic signals). For each underlying func-

tion, there are 50 realisations for each noise level by adding a Gaussian noise to the

underlying functions. For each such a data set, there are 10 realisations of missing

observational blocks. Overall, DS-500 contains 38,505 distinct data sets; 7,701 data

sets per underlying function (see Table 2.3).

2.4.2 DS-5

These artificial data, DS-5, are generated as above, but with an observational season

of 1.3 years, 50 irregular samples, a true time delay of 5 days, an offset M = 0.1. Three

levels of noise are involved 0.03%, 0.106% and 0.466% of mag; they come from Image

7More plots can be found at http://www.cs.bham.ac.uk/∼jcc/artificial/
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Figure 2.4: DS-500 Artificial Data. At the top, this plot shows the underlying function

DS-500-5 without observational gaps but irregularly sampled, and the error bars of

2% of the flux are shown. At the bottom are the same noise-free fluxes with imposed

observational gaps of length 5; here error bars are 3% of flux.

A of DS3: minimum (0.005 mag), average (0.0177 mag) and maximum (0.078 mag),

respectively. Gaps are simulated as above. DS-5 employs five different underlying

functions8, 50 realisations per level of noise and ten realisations per gap size. This

yields 38,505 data sets under analysis. Thus, these data sets simulate optical data

8Plots are available at http://www.cs.bham.ac.uk/∼jcc/artificial-optical/
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with low time delay and low offset with high precision [59]. Figure 2.5 shows two

plots with distinct error bars; with and without gaps.
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Figure 2.5: Artificial Data: DS-5. At the top is depicted the first underlying function

(DS-5-1) without noise and no gaps. Error bars represent 0.106% of mag. At the

bottom, this data set corresponds to the same underlying function without noise and

gap size equals to five (first realisation). Error bars represent 0.466% of flux.



CHAPTER 2. PROBLEM STATEMENT AND ASTRONOMICAL DATA 18

2.5 Chapter Summary

We have introduced the concepts of gravitational lensing and gravitational lens, which

are the source of our data. The time delay problem has been given, i.e., the time

delay ∆ between pairs of light curves – in Q0957+561, the image B is delayed with

respect to the image A (see Fig. 2.3a). The time delay is estimated directly from

the time series, for optical or radio observations, and the data sets are shown in

Figure 2.3, which correspond to the quasar under study in this thesis. A snapshot

of this quasar is in Fig. 2.2d. The importance of studying the time delay is also

presented in §2.2. Finally, we described the artificial data, DS-500 and DS-5. These

data will be used to compare the performance of all the methods given in the next

two chapters. Furthermore, with these data, it will be possible to measure bias and

variance, among other statistical estimators (see Appendix A).



Chapter 3

Literature Review and Other

Methodologies

HERE we present the literature survey based on Q0957+561; some time delay

estimates for this quasar are given from 1997 to 2005 along with their methods;

estimates before 1997 can be found in Haarsma et al. [31]. Further, a review of the

most important methods is introduced, finally, more artificial data are described:

PRH data and Harva data. Strictly speaking, we start the literature review in §1 and

it continues in the following chapters.

——————————————————————————————————–

3.1 Time Delay Estimates: Q0957+561

Table 3.1 contains a review in chronological order of the more recent time delay

estimates of the quasar Q0957+561 and the methods employed. The first column

indicates the type of data set used, either optical or radio. The second one displays the

year when the time delay estimate was published. In third column are the method(s)

used for time delay estimation. The last column has the estimates (in days) with

their confidence intervals (CI). These CI are estimated in distinct ways; for instance,

it can be 95% or 68% (1σ) from Monte Carlo simulations [72](§15.6) or bootstrap

methods [35]. Note that these estimates have been adopted by their authors, and

19
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Table 3.1: Review of Time Delay Estimates of Q0957+561 from 1997.

Data Year Method(s) Time delay

Opticalg,r 1997 Linear, Cross correlation, PRH method and 417±3 [49]

Dispersion spectra

Opticalg 1997 Cross correlation and Dispersion spectra 427±3 [58]

Opticalr 1997 SOLA 425±17 [69]

Opticalg,r 1998 Dispersion spectra 416.3±1.7 [66]

Radio4,6 1999 PRH method and Dispersion spectra 409±30 [32]

Opticalg,r 2001 Linear, Cross correlation 422.6±0.6 [57]

and Dispersion spectra

Opticalr 2001 χ2 algorithm 423±9 [9]

Opticalr 2003 PRH method 417.09±0.07 [13]

Opticalr 2003 Dispersion spectra and χ2 algorithm 424.9±1.2 [59]

Radio4,6 2005 Bayesian method 394± 8 [33]

Opticalr 2005 Bayesian method 423.5± 0.5 [33]

g g-band; r r-band; 4 4 cm; 6 6 cm

therefore rarely converge all methods on all data sets to the reported time delay.

This gravitational lens Q0957+561 is the most extensively monitored one so far,

being the first to be discovered (see §1.1). As is evident in Table 3.1, a whole range

of estimates (with varying uncertainty bounds) for the gravitational lens is available;

the problem is that we do not know the actual time delay. Therefore, one of the aims

of this thesis is to study the reliability of several time delay estimation methods in

a large set of controlled experiments on artificially generated data with realistically

modelled observational noise and mechanisms for missing measurements (see §2.4).

Only after learning lessons from such a study does it make sense to offer yet another

batch of time delay estimation claims.

Table 3.1 has the main time delay estimation methods that have been used on

gravitational lens data. The Cross correlation method [49, 58], PRH method [71],

Dispersion spectra method [65] and Bayesian method [33, 34] are described in §3.2;

these first three methods have been widely used in the literature. Therefore, we
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employ them as base-line models when reporting the performance of our methods.

Of the methods mentioned in Table 3.1, the Linear method uses chi-squared (χ2)

fitting [72](§15.1). Since the data are irregularly sampled, linear interpolation in the

observational gaps is performed [49].

The method of Subtractive Optimally Localised Averages (SOLA) has been pro-

posed as a method for solving inverse problems. The method was adopted by Pijpers

[69] who formulated time delay estimation as an inverse problem. It is worth noting

that SOLA employs kernels, called averaging kernels. However, SOLA differs from

our approach in several respects: i) SOLA makes a symmetrical treatment of the

two estimated signals (image A is fixed and image B is varied to match A and vice

versa); ii) the reported time delay is the mean of the estimated time delays in the two

symmetric cases; and iii) a free parameter is used to adjust the relative weighting of

the errors in the variance-covariance matrix. It is argued that parameter estimation

in SOLA is problematic [51, 73], therefore, this method has been not often used.

The χ2 algorithm [9, 59] is a χ2-based method similar in principle to our model,

in that it also uses the notion of an underlying model curve when fitting the two

observed images. However, the underlying model is assumed to be regularly sampled.

It is regularised using a smoothing term [9](Eq. 3). Confidence intervals on the delay

are estimated by performing Monte Carlo simulations [9].

3.2 Methods

Let us denote the observed signals from two lensed images A and B of the same

distant source, as two time series xA(ti) and xB(ti), where ti, i = 1, 2, ..., n are

discrete observational times. Observational errors are modelled as zero-mean normal

distributions N(0, σA(ti)) and N(0, σB(ti)).

3.2.1 Interpolation

Perhaps, this is the more straightforward method to think about. If one sees Fig.

2.3a, where is clearer that a time delay exists, it is possible to shift one of the time

series in two directions, time and flux, keeping the other one fixed. Then, the fitting
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can be measured through a loss function; e.g., mean squared error. Therefore, the

less the error, the better the time delay and the flux shift. But, because irregular

sampling occurs, it is not possible to measure the error at certain times ti given

a time shift. Therefore, interpolation is needed. The problem of this formulation

is that, depending on the desired time resolution, one can come up with too many

samples due to interpolation. For instance, the 6 cm data set has 143 observations, so

with a time resolution of 0.01 one obtains 668,069 samples. The amount of samples

grows exponentially, and this makes intractable this method; in particular when huge

amounts of data sets are involved. Besides, it is necessary to define a range of trial

time shifts where the error will be measured.

However,the interpolation method needs to be defined before use. We have found

that linear interpolation gives reasonably good results compared with other methods,

such as splines and nearest neighbours.

This methodology is rarely used but is still valid [46, 34]. In theory, it is better

to avoid it, since interpolation adds more uncertainty to unseen data, where observa-

tional errors are not easy to discover.

3.2.2 Cross Correlation

Basically, there are two versions of the methods based on cross correlation: the Dis-

crete Correlation Function (DCF) [19] and its variant, the Locally Normalised Discrete

Correlation Function (LNDCF) [52]. Both calculate correlations directly on discrete

pairs of light curves. These methods avoid interpolation in the observational gaps.

They are also the simplest and quickest time delay estimation methods.

First, time differences (lags), ∆tij = tj − ti , between all pairs of observations are

binned into discrete bins. Given a bin size ∆τ , the bin centred at lag τ is the time

interval Iτ = [τ −∆τ/2, τ +∆τ/2], where P (τ) is the number of observational pairs

in the bin centred at τ . The DCF at lag τ is given by

DCF (τ) =
1

P (τ)

ti,tj∈Iτ∑

i,j

(xA(ti)− ā)(xB(tj)− b̄)√
(σ2

a − σ2
A(ti))(σ2

b − σ2
B(tj))

, (3.1)

where ā and b̄ are the means of the observed data, xA(ti) and xB(tj), and the variances

are σ2
a and σ2

b , respectively.
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Likewise,

LNDCF (τ) =
1

P (τ)

ti,tj∈Iτ∑

i,j

(xA(ti)− ā(τ))(xB(tj)− b̄(τ))√
(σ2

a(τ)− σ2
A(ti))(σ2

b (τ)− σ2
B(tj))

, (3.2)

where ā(τ), b̄(τ), σ2
a(τ) and σ2

b (τ) are the lag means and variances in the bin centred

at τ .

The time delay ∆ is found when DCF (τ) and LNDCF (τ) (3.1)-(3.2) are greatest;

i.e., at the best correlation [19, 52].

3.2.3 PRH Method

This method is widely used for time delay estimation. Its fundamentals are based on

the theory of stochastic processes and Wiener filtering [71]. Given two light curves

~xA and ~xB, the PRH method combines them into a single time series ~y by assuming

a trial time delay ∆t = [∆min, ∆max] and a constant offset/ratio M between ~xA

and ~xB. Thus, for each of the two images, we end up with a new data set of 2n

observations; half is interpolated using the other image. The parameter M can be

estimated as a difference between the weighted means of the observed images, ~xA and

~xB; the weights are derived from the quoted observational errors, ~σA and ~σB.

The optimal time delay ∆ is estimated by minimising

χ2(∆t) = ~yT


 ~A−

~A~E~E
T ~A

~E
T ~A~E


 ~y, (3.3)

which is a measure of the goodness of fit of measurements from a Gaussian process

[71]. Here, ~y is the combined signal1, ~E is a column vector of ones, and

~A =
{
Cab + 〈σ2

a〉δab

}−1
(3.4)

where

Cab = 〈y(ta)y(tb)〉 ≡ C(ta − tb) ≡ C(τab) (3.5)

1Note that Press et al. [71] refer to ~y as a component rather than a combination of the com-

ponents, image A and image B. The same occurs with the matrices ~A and ~C in Eq. (3.4) and

(3.5).
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is a covariance model estimated from the data (angle brackets denote the expectation

operator); ta, tb, a, b = 1, ..., 2n, are sample times of the combined light curve; δab

denotes the Kronecker delta [86](pp.52). Press et al. [71] suggest finding C(τab)

through a first-order structure function V (τab) = 〈s2〉 − C(τab) with the assumption

that s is stationary, where s is the source (clean data) of ~y. Then, the structure

function V (τab) is computed from the data, using a single image, by determining

lags2

τij ≡ |ti − tj| (3.6)

and values

vij ≡ (xS(ti)− xS(tj))
2 − σ2

S(ti)− σ2
S(tj). (3.7)

where S = {A,B} denotes that ~x comes from either image A or image B.

All pairs (τij, vij) are sorted with respect to τij and binned into 100 bins [71]. The

values of τij and vij in each bin are averaged and finally a power-law model is built

to fit the binned list,

V (τij) = BτAij . (3.8)

Note that this model is linear in logarithmic scale,

ln(V (τij)) = ln(B) +A ln(τij). (3.9)

Therefore parameters A and B of the structure function can be determined using

a simple line-fitting algorithm3. Remember that ~V is estimated on a single signal,

and one would naturally expect that estimates on image A would be similar to those

on image B. However, this is often not the case. Press et al. [71] claim that it does

not matter which image is chosen. Our experience suggests that this may be an

overoptimistic expectation. Moreover, the matrix ~A (3.4) is often ill-conditioned and

we regularise the inversion operation through SVD.

2Note that τij denotes lags ∆tij ; i.e., to be consistent with authors.
3We have noticed that in some cases a negative slope A is found. Also we note that a negative

B, y-intercept, in Eq. (3.9), and τij = 0 leads to numerical overflow. In such cases we apply a shift

upwards in Eq. (3.7), and we set τ to a small positive number; e.g., min τij in (3.6).



CHAPTER 3. LITERATURE REVIEW AND OTHER METHODOLOGIES 25

Artificial Data: PRH data

A possible criticism of our testing framework in §2.4 may be that we construct arti-

ficial underlying functions as linear superpositions of Gaussian functions, while our

proposed model is a linear superposition of Gaussian kernels – discussed in the next

chapter. However, widths of the Gaussian functions used to construct the underlying

functions are much greater than the widths of Gaussian kernels in our model formu-

lation, and thus this criticism is less important. Still, in order to properly address

this issue, we let the PRH method “play at its own game” by constructing a set of

underlying functions using the PRH method4 with a specified structure function (SF).

We refer to such data sets as PRH data.

These are Monte Carlo time series, generated exactly as described in [71](§5.2),

with a fixed SF given by B = 1/5.36×105 andA = 0.246 [90, 70]. We use a monitoring

campaign length of 8 months with an irregular sampling rate, every two days with

periodic gaps of fifteen days [21] yielding n = 61 samples. The ratio between light

curves is M = 1.

We randomly choose seven time delays in the range of 30–100 days and then we

generate 100 Monte Carlo data sets. To simulate observational errors, we use a fixed

variance of 1× 10−7 in order to obtain distinguishable shapes by eye, i.e., low noise.

Two data sets are shown in Fig. 3.1.

3.2.4 Dispersion Spectra

Dispersion spectra is a weighted sum of squared differences between xA(ti) and xB(ti)

[65, 66]. The method is similar to those based on DCF (see §3.2.2). However, it

measures the dispersion of the time series of two light curves in a different way by

combining them (given a trial time delay ∆t and offset/ratio M) into a single signal,

~y, as in the PRH method (§3.2.3). We employ two versions of this method [66]:

D2
1(∆t) =min

M

∑2n−1
a=1 wa (y(ta+1)− y(ta))

2

2
∑2n−1

a=1 wa

(3.10)

4We are grateful to the A&A anonymous reviewer for this suggestion.
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Figure 3.1: PRH Data. The error bars represent a variance of 1 × 10−7. (a) This

is a realisation for a true delay of 34; image A has been shifted upwards by 0.08 for

visualisation. (b) In this realisation, the true delay is 66. Image A has been shifted

upwards by 0.1 for visualisation.

and

D2
4,2(∆t) =min

M

∑2n−1
a=1

∑2n
c=a+1 S(2)

a,cWa,cGa,c (y(ta)− y(tc))
2

2
∑2n−1

a=1

∑2n
c=a+1 S

(2)
a,cWa,cGa,c

, (3.11)

where

wa =
1

σ2(ta+1) + σ2(ta)
,Wa,c =

1

σ2(ta) + σ2(tc)
(3.12)

are the statistical weights taking in account the measurement errors, where Ga,c = 1

only when y(ta) and y(tc) are from different images, and Ga,c = 0 otherwise.

S(2)
a,c =





1− |ta−tc|
δ

, if |ta − tc| ≤ δ

0, otherwise.
(3.13)

The estimated time delay ∆ is found by minimising D2 over a range of time delay

trials, as above.

Compared with D2
1, the D2

4,2 method has an additional parameter, the decorre-

lation length δ, which signifies the maximum distance between observations that we

are willing to consider when calculating the correlations [65].
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So far, D2
4,2 has been widely used; e.g., see [21, 70]. Furthermore, it is simple and

fast.

3.2.5 A Bayesian Estimation Method

Given the two observed time series ~xA and ~xB, again, these are combined into a single

time series x(ta), a = 1, ..., 2n; the correspondence is denoted by k(a) ∈ {1, 2} [33, 34].

This combination procedure is similar to the Dispersion spectra and PRH methods.

But this method models ~xA and ~xB from the source S = {s(ta)|a} with scale and

shift factors, ak(a) and bk(a) respectively. For ~xB, the shift is bidirectional, in time ∆

and in flux bk(a).

The modelled observations, as noisy versions of the source, are given by

x(ta) ∼ N(ak(a)s(ta) + bk(a), e
vk(a)) (3.14)

where N(µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2, and

vk(a) denotes the log variances of the noise. Additionally, the source ~s is assumed to

be temporally correlated and modelled as a Markov process

s(t1) ∼ N(0, 102)

s(ta) ∼ N(s(ta−1), (ta − ta−1)
γM eωM ) a > 1 (3.15)

where the set of parameters is Θ = {ak, bk, vk, γM , ωM}, except ∆.

When the uncertainties of observations σy(ta) are known, the data are referred to

as Y = {y(ta)|a}.
The aim of this methodology is to find the posterior distribution of the delay

p(∆|Y), i.e., the distribution of ∆ given the data Y. The posterior distribution is

estimated by sampling p(∆,Θ|Y) through the MCMC method and Metropolis algo-

rithm. The marginalisation is made to obtain p(Y|∆,Θ) from p(Y,S|∆,Θ). Thus,

p(Y|∆,Θ) is used (with the prior) to sample from p(∆,Θ|Y). The marginalisation

over the source S is a crucial part in the method, since otherwise sampling would be

almost impossible. The derivation of likelihood and priors are in [34]. A compact

presentation of this approach is also in [33].
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Artificial Data: Harva data

The data were generated by the above model (3.14)-(3.15) with γM = 2, ωM = 2 ln

0.05, a1 = 1, b1 = 0, a2 = 0.8 and b2 = 0.2 [34]. These data simulate three levels of

noise with 225 data sets per level of noise, where each level of noise represents the

variance; 0.12, 0.22 and 0.42. Each data set has n = 100 samples. They are irregularly

sampled and the true time delay in all the cases is 35 units. Some examples are shown

in Fig. 3.2.
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Figure 3.2: Harva Data. (a) First realisation of the data set with variance 0.12, image

A has been shifted upwards by 1.5 for visualisation. Error bars represent a standard

deviation of 0.1. (b) First realisation of the data set with variance 0.42, image A

has been shifted upwards by 2.9 for visualisation. Error bars represent a standard

deviation of 0.4.

3.3 Chapter Summary

We started with a review of time delay estimates of Q0957+561. At the same time,

we listed the principal methods used for time delay estimation, where the DCF,

LNDCF, PRH and Dispersion spectra methods are the most popular, and therefore

the methods to beat; this is the reason why we presented them in detail. Two kinds

of artificial data were also described: PRH data and Harva data. In the next chapter,

we introduce our kernel-based method. In §6, we will present the results of the above
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methods on real and artificial data. In §7, we discuss the results in detail by pointing

out the advantages and disadvantages of each method, and some conclusions are also

given.



Chapter 4

Machine Learning and

Kernel-based Method

FIRST we contextualise our kernel-based method in §4.1, and start by introducing

some relevant concepts in statistical and machine learning. Then, we introduce

our kernel methodology to deal with irregularly sampled time series in gravitational

lensing in §4.2.

——————————————————————————————————–

4.1 Machine Learning

Many authors refer to Machine Leaning (ML) as a branch of Artificial Intelligence

(AI); for instance Tom Mitchell’s book [54], which is a good book to introduce ML

topics, is well known in AI. It is not intended here to discuss whether ML either derives

from AI or from statistical learning theory [35], or from other sources. The fact is

that ML techniques are those that implement learning from data in an automatic way

(algorithm), and include neural networks, evolutionary computation, reinforcement

learning, Bayesian networks, and more recently support vector machines and kernel

methods just to mention the most popular approaches. Nowadays, there are several

conferences and journals that deal with ML and all types of learning.

Our interest is to develop an automatic method, an algorithm, to estimate the

30
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time delay given a set of observations, so ML is a promising approach to explore

because its main scope is noisy data.

Across ML literature, one finds three types of learning: supervised learning, un-

supervised learning and reinforcement learning [54, 35, 86]. What kind of learning

to use will depend on the problem to solve. In our case, our problem deals with

supervised learning, which is described in the next subsection.

4.1.1 Supervised Learning

Supervised learning occurs when we have labelled data for a given phenomenon. It

is called “supervised” because of the presence of the outcome variable to guide the

learning process [35]. In the unsupervised learning problem, there are not measure-

ments of the outcome (i.e., no labels). Depending on the types of outputs, supervised

learning can perform either classification or regression. Classification if the outputs

are a finite number of categories, and regression if the outputs are real numbers; here

we deal with regression. Supervised learning can also produce preferences, which is

known as preference learning.

In theory, supervised learning may give us models for an observed phenomenon,

i.e., the problem to solve. The observations that describe such phenomenon are

divided basically into two sets: training set and test/validation set. The training set

is used to model the system and the test/validation set, as its name suggests, is used

to test/validate the model in order to obtain generalisation, so one can deal with the

problem of overfitting. The test set and validation set may be the same data set.

Some authors refer the test set as validation set; e.g., see [54]. Others define clearly

three data sets: training, validation and test [35], where validation is used to estimate

prediction error for model selection, and, the test set is used for assessment of the

generalisation error of the final model. With the use of test/validation set, we have a

robust model that describes the phenomenon. The division of data sets occurs when

there are a lot of observations, and when we remove some of them, this does not affect

the model.

In our case, we have few observations and we cannot remove any of them because

we are adding more gaps in the time series, so the training set and the test set are
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the same. To obtain generalisation, other approaches are explored in the learning

process.

4.1.2 Kernels, Kernel Methods and Kernel Machines

In general, a kernel1 is a two variable function K(t′, t), and the mathematical theory of

kernels is relatively old (about 1909); e.g., see review in [86](§3.6). In kernel methods,

the basic idea is the transformation to the feature space φ, so

K(t′, t) = 〈φ(t′), φ(t)〉 (4.1)

where K : L × L 7→ < and t′, t ∈ L; thus 〈·, ·〉 denotes the dot product. Then the

map φ : L 7→ H is the so-called reproducing kernel Hilbert space (RKHS) and Eq.

(4.1) known as kernel function [86, 84]. This transformation allows us to deal with

nonlinearity through the linear space H (feature space), and it is also known as the

kernel trick [84].

The above is a general formulation of kernels. In practice, there are several types

of kernels including polynomial, Gaussian and sigmoid kernels [86, 84]. This the-

sis concentrates only on Gaussian kernels K(t′, t) = exp(−|t, t′|2/ω2), because few

parameters are involved (centres t′ and width ω) and they are widely used in both

theory and practice [22, 38, 2, 6, 50, 91, 41].

Given a training set T = {t1, ..., tn} and a kernel function K(·, ·) , there is a Gram

matrix

Kij = K(tj, ti), for i, j = 1, ..., n. (4.2)

which is the core ingredient in the theory of kernel methods, and it is the main data

structure in their implementation. The larger the training set T , the larger the Gram

matrix Kij. Therefore, kernels are also considered to be memory-based methods [35].

With kernels, one is able to create complicated kernels from simple building blocks

(4.2); see [86](§3.4). Moreover, there are other kernel constructions such as graph

1In operating computer systems, the concept of kernel is distinct since it means the core of the

system.
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kernels, string kernels, P -kernels among many others [86].

Since this thesis deals with regression, the kernels are represented as (known as

representer theorem [84])

f(t) =
n∑

j=1

αjK(tj, t) (4.3)

which is a linear combination of kernels (basis functions) and αj ∈ < . For example, let

T = {10, 15, 25, 32, 38, 43} and K(tj, t) = exp(−|t− tj|2/ω2) be a training set of size

six and a Gaussian kernel with ω = 3, respectively. The time t goes from 0 to 50 with

a resolution of 0.1, and ~α = [0.5, 1, 0.5, 1, 1.5, 1]. This set of Gaussian kernels K(tj, ·)
scaled by αj is shown in Fig. 4.1. Then, T has the centres of Gaussian functions

and ~α contains the heights. Now it is clear that if one wants to fit an arbitrary curve

g(t), we may do it through f(t) in (4.3). In the above example, we fixed centres

and weights ~α. However, the most common is to locate centres at observations ti,

but kernels are quite flexible and they can be located anywhere. The weights ~α, or

heights, play an important role, and here is where the concept of learning is involved.
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Figure 4.1: A Set of Six Gaussian Kernels. The centres are at {10, 15, 25, 32, 38, 43},
ω = 3 and ~α = [0.5, 1, 0.5, 1, 1.5, 1]. At the top is f(x), which is a linear combination

of Gaussian kernels (4.3); it has been shifted upwards by two units for visualisation.

At the bottom are the set of Gaussian kernels (basis functions).

On-line learning is processing the training data one at a time as it is received
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[22], and in real-time applications is a very important issue. In the above kernel

formulation, we process all training data at once, which is batch learning.

Again, given a training set T = {t1, ..., tn} and a kernel function K(·, ·), the Gram

matrix is straightforward, but ~α is not, and it needs to be learned from the data.

There are a number of different directions, but these can be grouped in two: eigen-

decompositions and convex optimisations [86]; the latter leads to Support Vector

Machines (SVM) [35, 86, 84]. In this thesis, we explore only eigen-decompositions;

see §4.2.1.

Finally, the concept of kernel machines comes from learning machines [8] and SVM

[36, 2].

4.1.3 Other Disciplines Related to Kernels

This brief review aims to cover those disciplines that are not referenced in the ML

literature, specifically in the kernels literature [86, 84].

Radial Basis Function (RBF) networks are similar to kernels, but developed in a

different field; i.e., artificial neural networks [36, 55]. In fact, a Gaussian kernel is

sometimes referred to as RBF Kernel; e.g., see [68, 50]. Recalling Eq. (4.3), it can be

seen as a RBF network where ~α are the weights and K(·, ·) the activation functions. In

neural networks, the activation functions are usually chosen to be sigmoid. However,

if there is a single hidden layer and Gaussian functions as activation functions, this

leads to RBF networks. Consequently, one can see Eq. (4.3) plus a regularisation

term as a RBF network [54]. Moreover, the normalised RBF network corresponds to

the Nadaraya-Watson regression estimator; for a study presenting the relations among

kernels, RBF networks and Nadaraya-Watson regression estimators, see [36](§5.12).

The example illustrated in Fig 4.1 is also related to inverse problems and ill-posed

problems, where inverse theory has been mainly developed in geophysics [61, 82].

This theory also involves linear combinations of kernels, defined as G(x, y), and it is

also known as the Backus-Gilbert method [61, 72].

A problem is considered ill-posed when one or more conditions for well-posed

problems are not satisfied. The conditions are existence, uniqueness and continuity;

see [36](§5.4). In practice, the existence condition may be violated when an output
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is not available for a given input (e.g., gaps). The uniqueness condition is likely

to be violated if there may not be as much information in the training sample to

reconstruct the input-output mapping uniquely. Finally, the unavoidable presence of

noise adds uncertainty, and therefore there is likelihood for the continuity condition

to be violated. The regularisation theory of Tikhonov is widely used in RBF networks

for solving ill-posed problems.

Other related topics are general linear least squares [72](§15), where the concept

of design matrix is similar to the Gram matrix (4.2), and wavelet analysis, which also

combines a set of basis functions (scaled and shifted versions of a mother wavelet) to

fit a curve; i.e., g(t) [30, 72]. Still more generally, since we are contextualising, other

disciplines come in; for instance if g(t) is treated as a signal, one deals with signal

processing. At the same time, signal processing overlaps with image processing when

an image is studied as a signal.

4.1.4 Regression and Motivation

Several approaches appear for regression problems. The literature is vast on regression

methods including linear, non-linear, parametric and non-parametric regression [36,

35, 72], which we will not attempt to summarise here. Some of them on the notion

of interpolation (e.g., RBF networks) and others on the notion of density estimation

(e.g., kernel regression).

This thesis concentrates on kernel regression; see next section. Besides the moti-

vation given in §1.2, we propose our kernel formulation because

1. linearity in parameters enables us to use tools of linear algebra in parameter

fitting and regularisation,

2. Gaussian kernel formulation using variable kernel widths is natural in cases of

irregularly sampled data,

3. parameter sharing in (4.6) and (4.7) provides a transparent tool for coupling

the two observed images.

As we have shown in the previous section, the RBF networks, Nadaraya-Watson
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regression estimator and our kernel formulation belong to the same class of kernel

regression techniques.

4.2 Kernel-based Method for Time Delay Estima-

tion

We model the observed data from two lensed images A and B of the same distant

source (see §2), as two time series

xA(ti) = hA(ti) + εA(ti)

xB(ti) = hB(ti)ªM + εB(ti),
(4.4)

where ª = {×,−} denotes either multiplication or subtraction. Hence, M is either

a ratio (for radio data) or an offset (for optical data) between the two images, and

ti, i = 1, 2, ..., n are discrete observation times. The observation errors εA(ti) and

εB(ti) are modelled as zero-mean Normal distributions

N(0, σA(ti)) and N(0, σB(ti)), (4.5)

respectively. Now,

hA(ti) =
N∑

j=1

αjK(cj, ti) (4.6)

is the “underlying” light curve that underpins image A, whereas

hB(ti) =
N∑

j=1

αjK(cj + ∆, ti) (4.7)

is a time-delayed (by ∆) version of hA(ti) underpinning image B.

The functions hA and hB are formulated as in §4.1.2. Each function is a linear

superposition of N kernels K(·, ·) centred at either cj, j = 1, 2, ..., N (function fA),

or cj + ∆, j = 1, 2, ..., N (function fB). The model (4.4)-(4.7) has N free parameters

αj, j = 1, 2, ..., N , that need to be determined by (learned from) the data. We use

Gaussian kernels of width ω2: for c, t ∈ <,
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K(c, t) = exp
−|t− c|2

ω2
c

. (4.8)

The kernel width ωc > 0 determines the ‘degree of smoothness’ of the underlying

curves hA and hB. We describe setting of ωj = ωcj
and regression weights αj in the

next subsections. In this study, we position kernels on all observations, i.e., N = n.

Finally, our aim is to estimate the time delay ∆ between the temporal light curves

corresponding to images A and B. Given the observed data, the likelihood of our model

reads

P (Data | Model) =
n∏

i=1

p(xA(ti), xB(ti) | ∆, {αj}), (4.9)

where

p(xA(ti), xB(ti) | ∆, {αj}) =
1

2πσ2
A(ti)σ2

B(ti)

exp

{−(xA(ti)− hA(ti))
2

2σ2
A(ti)

}

exp

{−(xB(ti)−M ª hB(ti))
2

2σ2
B(ti)

}
. (4.10)

The negative log-likelihood (without constant terms) simplifies to

Q =
n∑

i=1

(
(xA(ti)− hA(ti))

2

σ2
A(ti)

+
(xB(ti)−M ª hB(ti))

2

σ2
B(ti)

)
. (4.11)

To avoid extrapolation when we apply a time delay to our underlying curve, we

do not evaluate the goodness of fit over all observations (avoiding border effects [25]):

Q =
n−b1∑

u=1

(xA(tu)− hA(tu))
2

σ2
A(tu)

+
n∑

v=b2

(xB(tv)−M ª hB(tv))
2

σ2
B(tv)

, (4.12)

where b1 is the greatest index satisfying tn−b1 ≤ tn −∆max, and b2 is the smallest

index satisfying tb2 ≥ t1 + ∆max. Here, ∆max is the maximum possible time delay we

are willing to consider (fixed in advance).

We determine the model parameters and evaluate Eq. (4.12) for a series of trial

values ∆t. The time delay is then estimated as the value of ∆ with minimal cost
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(4.12). Note that if the errors cannot be modelled as Gaussian, Eq. (4.12) would

need to be rewritten using an appropriate noise term.

4.2.1 Weights {αj}
We rewrite Eq. (4.11) as

Q =
n∑

i=1




[
xA(ti)

σA(ti)
− hA(ti)

σA(ti)

]2

+

[
xB(ti)

σB(ti)
− M ª hB(ti)

σB(ti)

]2

 . (4.13)

We replace Eqs. (4.6) and (4.7) into (4.13), and we obtain

~K~α = ~x, (4.14)

where

~α = (α1, α2, ..., αN)T ,

~K =




KA(c1, t1) · · · KA(cN , t1)
...

. . .
...

KA(c1, tn) · · · KA(cN , tn)

KB(c1, t1) · · · KB(cN , t1)
...

. . .
...

KB(c1, tn) · · · KB(cN , tn)




, ~x =




xA(t1)
σA(t1)

...
xA(tn)
σA(tn)

xB(t1)
σB(t1)

...
xB(tn)
σB(tn)




, (4.15)

and the kernels KA(·, ·), KB(·, ·) have the form:

KA(c, t) =
K(c, t)

σA(t)
, KB(c, t) =

M ªK(c + ∆, t)

σB(t)
. (4.16)

Hence,

~α = ~K+~x. (4.17)

We regularise the inversion in (4.17) through singular value decomposition (SVD),

~K = ~U · ~W · ~V T , and ~K+ = ~V · [diag(1/wi)] · ~UT is the pseudo inverse (or Moore-

Penrose inverse) [28, 72, 67]. SVD has some interesting properties such as ~W is a

diagonal matrix with positive or zero elements (known as singular values), where
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wi ∈ ~W , ~U and ~V are orthogonal so ~UT · ~U = ~V T · ~V = 1, and ~V is also square and

row-orthonormal; i.e., ~V · ~V = 1.

Since Eq. 4.14 is a noisy overdeterminated system [72](§2.6), ill-posed2 (see

§4.1.3), a regularisation procedure is needed. Therefore, the best way to compute

~K+ is SVD so singular values wi less than a tolerance λ are set to zero [72]. This al-

lows us to deal with ill-conditioning (or singularity); i.e., the condition number, which

is the ratio between the largest and the smallest singular value, can be decreased.

4.2.2 Kernel Parameters

In general, in order to use Gaussian kernels (4.8) in generalised linear regression (4.4)-

(4.7), the kernel positions cj, as well as kernel widths ωj, need to be determined [86].

Several approaches have been taken in the literature. For instance, those who use

radial basis function (RBF) networks employ e.g., k-means clustering, or EM algo-

rithm and Gaussian mixture modelling [36, 35]3. We have explored two approaches

to kernel positioning:

1. the centres cj uniformly distributed across the input range and

2. the centres cj positioned at input samples tj, j = 1, 2, ..., n.

The latter approach leads to superior performance and the results reported in this

thesis were obtained using kernels centred at observation times tj.

As for the kernel widths, we propose two approaches:

1. fixed width ω, and

2. variable widths ωj, where j = 1, 2, ..., n.

Both are described in the following subsections.

2note that ill-conditioning can be also due to roundoff error [72], not only to noise and missing

data.
3Some approaches attempt to simultaneously optimise the number of kernels.
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Fixed Kernels Width

The width of the kernels determines the degree of smoothing for the underlying flux

curves (4.6) and (4.7). Finding ‘appropriate’ values of smoothing parameters is one

of the challenges in non- and semi-parametric regression. We use cross-validation

[35](§7.10) to find the optimal kernel width ω. In particular, we invoke a variant of

five-fold-cross-validation. We start by dividing the data set uniformly into five blocks.

In the first step, we construct a validation set V as a collection of the first elements

of each block, where V has five elements. The training set T = A − V is formed

by the remaining observations; i.e., the observations not included in the validation

set, where A is the set of all observations with cardinality |A| = n; each observation

can be represented by a triple (ti, xA(ti), xB(ti)). We fit our models on the training

set T and determine the mean square error (MSE) over a range of delay values ∆t

on the validation set V . In the next step, we construct a new validation set as a

collection of the second elements of each block. The new training set is again formed

by the remaining observations. As before we fit our models on the training set and

determine MSE on the validation set. We repeat this procedure r times, where r is

the number of observations in each block. Finally, the mean of all such mean square

errors (there are r of them), MSECV , is calculated. The kernel width ω selected using

the cross-validation is the kernel width yielding the smallest MSECV . This scheme is

summarised in Algorithm 4.1.

Variable Kernels Width

Rather than considering a fixed kernel width ω, here we allow variable width Gaussian

kernels of the form

K(cj, ti) = exp
−|ti − cj|2

ω2
j

; K(cj + ∆, ti) = exp
−|ti − (cj + ∆)|2

ω2
j

.

We determine each ωj through a smoothing parameter k ∈ {1, 2, ..., kmax}. Pa-

rameter k is the number of neighbouring observations ti on both sides of cj (boundary

conditions need to be taken into account). In particular, since we centre a kernel on

each observation time, i.e., cj = tj, we have the cumulative kernel width
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Algorithm 4.1: Cross-Validation

/* Bounds for ω and M must be found separately; T = A− V */

Fix M , LowerBound and UpperBound ; // O(1)1

Fix Blocks← 5 ; // O(1)2

Fix PointsPerBlock ← min({b1, n− b2})/Blocks ; // O(1)3

for λ ∈ {10−1, 10−2, ..., 10−6} do4

for ω ← LowerBound to UpperBound do5

for l← 1 to PointsPerBlock do6

Remove the lth observation of each block and include it in the7

validation set V ; // O(n)

for ∆t ← ∆min to ∆max do8

Obtain weights ~α on T , Eq. (4.17) ; // O((n− 5)3)9

Compute hA(tu) and hB(tv) on T ; // O((n− 5)2)10

Obtain MSECV on the validation set V ; // O(5)11

S(∆t)← MSECV ; // O(1)12

R(l)← mean(S)13

Best(ω, λ)← mean(R)14

ω ← argminω,λ(Best)15
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ωj =
k∑

d=1

(tj − tj−d) + (tj+d − tj) =
k∑

d=1

(tj+d − tj−d). (4.18)

The optimal value of k can be estimated using a cross-validation procedure anal-

ogous to Algorithm 4.1.

4.3 Time Complexity

This analysis is based on asymptotic notation [15], specifically on the O-notation

which is an upper bound. In other words, we are interested on the order of growth

of the running time of an algorithm. Because we are looking at the input size (of

training data) to find the upper bound of the running time (time complexity), we are

studying the algorithm efficiency [15].

From our formulation in §4.2, hereafter, we will refer to two methods: K-F and

K-V. That is, K-F corresponds to Gaussian kernels centred at observations with fixed

width, and K-V has variable width. Both methods use Algorithm 4.1 to estimate

their parameters, ω and k, respectively.

Returning to our model formulation (4.4)–(4.12), we are interested in the time

delay ∆ between a pair of time series. Algorithm 4.2 illustrates both methods K-F

and K-V as pseudocode with the running times as upper bounds O(·). Now, let us

analyse the running times in line 1, which come from Algorithm 4.1. We assume

that ω 7→ L ⊂ < (line 5) and ∆t 7→ D ⊂ < (line 8), with cardinality nω = |L| ∼ n

and n∆t = |D| ∼ n, respectively; line 4 is O(6) and line 6 is O(n/5). Therefore, the

complexity of K-F is

O(n6) = 6nω
n
5
n∆t [(n− 5)3 + (n− 5)2 + 5 + 1]

O(n6) = nω
n
5
n∆t(n

3 + n2),
(4.19)

and for K-V is

O(n5) = 6× 15n
5
n∆t [(n− 5)3 + (n− 5)2 + 5 + 1]

O(n5) = n
5
n∆t(n

3 + n2),
(4.20)

Because ω ≡ k, one evaluates k = 1, 2, ..., 15 only; i.e., O(15). In that sense, the

parameter estimation of K-V is cheaper than K-F.
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Returning to Algorithm 4.2 with the above assumption for ∆t, the upper bound

of running time of K-F is O(n6) = n6 + n∆t(n
3 + n2 + n), and for K-V is O(n5) =

n5 + n∆t(n
3 + n2 + n). Note that nω and n∆t may be greater than n, so the above

time complexities may be underestimated. But, if nω and n∆t are constants and much

lower than n, then the complexities reduce to O(n4) for both K-F and K-V, where

Ω(n4) is the lower bound of running time. Therefore, the critical parts are at line 9 in

Algorithm 4.1 and at line 3 in Algorithm 4.2; i.e., the SVD inversion which is O(n3)

[28, 72, 67].

Algorithm 4.2: Time Delay Estimation: K-F or K-V

Input: {ti|i}, ~xA, ~xB; i.e., A

Output: ∆̂

Fix parameters either ω or k by Algorithm 4.1 ; // O(n6) or O(n5)1

for ∆t ← ∆min to ∆max do2

Obtain weights ~α on all observations A, Eq. (4.17) ; // O(n3)3

Compute hA(tu) and hB(tv) ; // O(n2)4

Obtain Q(∆t) via (4.12) ; // O(n)5

∆̂← argmin∆t(Q)6

4.4 Chapter Summary

We have introduced some concepts of machine and statistical learning such as super-

vised learning and regression; see §4.1, §4.1.1 and §4.1.2. We aimed to provide the

context of our kernel-based method. Therefore, in §4.1.2 the concept of kernel and its

background are described, which are the preamble to our method. Our methodology

for time delay estimation was presented in §4.2, including regularisation and Gaussian

width estimation as our automatic model selection technique. Finally, §4.3 shows the

analysis of our methodology in terms of running time or time complexity.



Chapter 5

Evolved Kernel-Based Method

WE start introducing the evolutionary computation terminology, then we present

an evolutionary algorithm for time delay estimation. This approach is based

on kernel methods, presented in the previous chapter. We use two types of represen-

tation: reals and mixed types (reals and integers). In this chapter, we also come up

with a variation of the regularisation approach in §4.2.1.

——————————————————————————————————–

5.1 Introduction

The algorithm to be presented here is an evolutionary algorithm (EA) [87, 80], which

performs artificial evolution. This kind of algorithms belong to a new growing area,

natural computation [95]. Several evolutionary computational models have been pro-

posed: i) genetic algorithms [37, 27], ii) evolutionary programming [24, 23], iii) evolu-

tion strategies [85] and iv) genetic programming [47] mainly. Other recent approaches

have been introduced, but they are variants or improvements of the above evolution-

ary algorithms; e.g., see [39, 48].

These models share the common ingredient in evolution, that is the evolutionary

operators such as selection, recombination and mutation. Some use either recombi-

nation or mutation, others put more emphasis on specific operators, but all of them

are inspired by natural evolution.

The EA proposed here comes from genetic algorithms (GAs) with real and integer

44
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representation; the typical representation in GAs is binary. Moreover, we compare it

with an evolutionary strategy, (1+1)ES [77]; see the next section.

5.2 Evolution Strategies

Typically an evolutionary strategy (ES) uses a single parent and an offspring; this

is denoted as (1+1)ES. Therefore, the population size is one, and the selection is

between the parent and the offspring. The latter is generated via mutation. General

versions1 of ES are (γ, ρ)ES and (γ + ρ)ES, where γ denotes the number of parents

and ρ the number of children with ρ > γ. The first method replaces parents with the

best γ children. The second method allows the best parents and children to survive

by keeping the parent population of size γ. Thus, (γ + ρ)ES is elitist, but (γ, ρ)ES is

not.

To compare with our EA, we use a continuous optimisation approach, (1+1)ES

[77], which is based on the Gray-code neighbourhood distribution and uses real repre-

sentation. Rowe and Hidovic [77] have shown superior performance of their (1+1)ES

over Improved Fast Evolutionary Programming (IFEP) on some benchmark prob-

lems and on a real-world problem (medical tissue optics). IFEP is also a continuous

optimisation approach [94].

5.3 Evolutionary Algorithm

We evolve the parameters of our kernel-based formulation in §4.1.2, and a different

regularisation approach is used.

5.3.1 Regularisation

In §4.2.1 we introduced a regularisation procedure to invert ~K in (4.17); i.e., the

threshold λ tells us how many singular values to set to zero. Thus, for a given ∆

the amount of singular values to keep may vary. We illustrate this through Fig. 5.1.

We can see a well defined pattern in the range θ= [49, 72] (∆ = 419), where θ is the

1These are referred as (µ, λ)ES and (µ + λ)ES, but this conflicts with our notation.
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Figure 5.1: Patterns on DS-5 and DS1. In each relation (∆, θ) the best time delay

has been plotted. The best time delay is found through K-V method, Eq. 4.12. (a)

DS-5-1-G-0-N-0. This data set has no noise and no gaps (see §2.4.2); ∆ = [0, 10] with

increments of 0.1; M = 0.1 and k = 3. The pattern is at θ = [5, 27], where ∆ = 5

(true value). (b) DS1: 0957+561 optical data at g-band (see §2.3.2); ∆ = [400, 450]

with unitary increments; M = 0.117 and k = 3. The pattern is at θ = [49, 72], where

∆ = 419.

number of singular values to set to zero. Thus, if one can find a proper λ that falls in

this range, then one can claim that the estimation of ∆ is “robust”. But the range of

this pattern may change for other M and k parameters. Then there is no warranty

that the estimated λ falls in this range. Moreover, whatever method for goodness

of fit is used, if we test ∆ in a specific range with a fixed λ, we may come up with

different θ – some inside the pattern, some outside, none inside, etc.

Rather, we use θ as a regularisation parameter. In fact, EA aims to perform as

an automatic algorithm with global search, through all parameters, so it finds the

proper θ that falls in the pattern.

A review of other general regularisation techniques for inverse problems can be

found in Cowan [17] and Haykin [36].
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5.3.2 Representation

Following our kernel-based approach in §4.1.2, we have three parameters: i) the time

delay ∆, ii) the variable width k and iii) the amount of singular values to keep θ.

Besides, we have the fitting measurement; e.g., log-likelihood or any loss function.

This give us a third-dimensional search space Ψ. We follow an EA to avoid local

minima [5, 27, 87] because one does not know anything about Ψ; i.e., its shape.

We define as our population

~P1 =




∆1 θ1 k1 f1

∆2 θ2 k2 f2

... ... ... ...

∆x θx kx fx

... ... ... ...

∆np θnp knp fnp




(5.1)

where each row in ~P1 is a hypothesis commonly referred as individual or chromosome,

which is a set of parameters {∆x, θx, kx} initialised randomly. Then we have np

hypotheses [54]. Each hypothesis x is evaluated by fx that is a measure of fitness

pointing the best hypothesis out. Then, we apply artificial genetic operators such as

selection, crossover, mutation and reinsertion (elitist strategy) to generate ~P2, ..., ~Png

populations. At the ng generation, we choose from ~Png the best set of parameters

(or individual) according to its fitness; i.e., with minimum fx. This process leads

to artificial evolution, which is a stochastic global search and optimisation method

based on the principles of biological evolution [27, 87].

For mixed types, we represent every population ~P1 to ~Png as two linked populations

of the same size np, ~P1 = ~[P 1
1

~P 2
1 ]. Hence, ~P 1

1 uses reals to represent ∆x, and ~P 2
1

employs integers to represent θx and kx.

Hereafter, we define two EAs: i) EA-M, that uses mixed types and ii) EA-R, that

uses real representation only. Therefore, we perform two kinds of flooring for integers:

in population and in fitness function (default).

We employ a population size of np = 300 individuals and ng = 50 generations
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unless other values are given. We use the Genetic Algorithm Toolbox2 for MATLAB

[12, 11].

5.3.3 Fitness Function

We use as a measure of fitness (or objective function): i) negative log-likelihood (LL)

and ii) cross-validation (CV). The first one is given by Eq. 4.12. For the latter,

the mean squared error (MSE) is given by CV as described in Algorithm 5.1, where

T = A−V is the training set; A is the set of all observations, and V is the validation

set.

These objective functions are the same regardless of the representation used. To

denote representation and fitness function, we add the suffix CV or LL to either

EA-M or EA-R (e.g., EA-M-CV and EA-R-LL); EA refers simply to any of these

combinations. When only reals are used, a step is added to floor reals to integers

before obtaining the fitness for each individual. In the following chapter, we will

show the performance of both fitness functions on artificial data.

Algorithm 5.1: Fitness Function (A, ∆x, kx, θx)

/* A is the set of all observations; its cardinality is n */

Fix Blocks← 5 ; // O(1)1

Fix PointsPerBlock ← n/Blocks ; // O(1)2

for l← 1 to PointsPerBlock do3

Remove the lth observation of each block and include it in the validation4

set V ; // O(5)

Compute ~hA and ~hB for the training set T = A− V ; // O((n− 5)3)5

Obtain MSECV on the validation set V ; // O(5)6

R(l)← MSECV ; // O(1)7

fx ← mean(R) ; // O(n/5)8

return fx9

2which is available online with a good documentation
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5.3.4 Fitness Landscape

In Figure 5.2 are shown the fitness landscapes (search space) of the above fitness

functions. To reduce the dimensions (for visualisation), we fixed k to 3 in both cases.

We use ∆min = 400 and ∆max = 450 with unitary increments, and θ = 1, 2, ..., n,

where n = 97. Because DS1 is the cleanest data set, we use it to show the landscape;

see §2.3.2. Therefore, one expects that if the noise increases the error surfaces become

worse; e.g., more local minima. We can see that from θ = 80 to n the error surface is

quite complicated for simple search algorithms; e.g., gradient descent or hill climbing

search regardless of the fitness function. There are also more local minima when

θ < 45. In the θ-∆ plane is a mark (x) showing the best parameter combination; i.e.,

minimum Q or MSECV . To smooth the surface, we use a logarithmic scale for both

fitness functions.
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Figure 5.2: Fitness Landscape. (a) LL fitness function landscape. (b) CV fitness

function landscape; the surface is shifted upwards by 10 units for visualisation. See

§5.3.4 for details.
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5.3.5 Evolution Operators

Selection

We use the basic roulette wheel selection method for both ~P 1
1 and ~P 2

1 , which is stochas-

tic sampling with replacement. Consequently, this is a mechanism to probabilistically

select individuals from a population based on their fitness function. The higher the

fitness value, the larger the interval in the wheel [12]. From the initial population, we

select half of the population so we work with this population during recombination,

mutation and evaluation (see Algorithm 5.2). Finally, we reinsert the best individuals

to the initial population to obtain a population of size np for the next generation. In

other words, we perform reinsertion of offsprings [12].

Other selection methods were tested such as tournament selection and stochastic

universal sampling, but roulette wheel selection gave us the better results on artificial

and real data.

Recombination

Four methods for recombination (or crossover) have been tested: discrete, intermedi-

ate, linear and double-point recombination. The last one is only for integer represen-

tation. They all lead to similar results on DS1 and on some artificial data sets so we

adopt linear recombination for reals and double-point for integers.

Linear recombination can generate an offspring on a slightly longer line than that

defined by its parents. Whereas o = p1 + α× (p2 − p1), such as α = U [−0.25, 1.25] is

uniformly distributed, and o is the offspring with parents p1 and p2 [12].

Double-point recombination involves selecting uniformly at random two integer

positions to exchange the variables in those positions. Typically this method is used

for binary representation, but integers also can be used [12].

Mutation

For reals, we tested two methods for mutation: Gaussian mutation and mutbga (as in

Breeder Genetic Algorithm [11, 12]). Both lead to similar performance. Therefore, we

adopt mutbga as our mutation operator; whereas a mutated variable can be obtained
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by mM = v + s1 × r × s2 × δM , where mM is the mutated variable, v is the variable

to mutate, s1 = ±1 with a probability given by a mutation rate in the range [0,1],

r = 0.5 × d (d is the domain of variable) and δM =
∑m−1

i=0 αM
i 2−i; αM

i = 1 with

probability 1/m, else 0 – m = 20. For integers, we use 0.5 as mutation rate.

5.4 Literature Review

This section reviews some recent papers related to Kernel methods and EA across

the evolutionary computation community. They evolve either only the weights or all

the parameters, and they are mainly applications for classification problems.

GK SVM uses Genetic Programming (GP) to evolve a kernel for a Support Vector

Machine (SVM) classifier [38]. This approach chooses a Polynomial, Gaussian or

Sigmoid kernel in order to deal with the problem of kernel selection, that is to find

the proper kernel for a given data set. Howley and Madden [38] present a good review

of methods which evolve the complexity parameter and the width of Gaussian kernels

in SVM via either GP or Evolutionary Strategies (ES). However, this approach has

been tested only on classification problems, and GP explores a huge search space

making it impractical for use with many real problems, in particular for large data

sets.

Another implementation of SVM claims that a single Gaussian kernel K(·, ·) is

replaced by a linear combination of Gaussian kernels. Then ES evolve the new weights

and widths per Gaussian in such a combination [68]. However, the SVM parameters

are not evolved and the optimisation procedure to obtain the support vectors is not

specified.

A GA/SVM approach to the selection and classification of high dimensional DNA

Micro-array data uses a Genetic Algorithm (GA) to select genes [6]. The fitness

function is the classification rate given by a SVM, where the SVM parameters are

estimated experimentally.

The above references differ from ours in different ways: i) most of them deal with

SVM, i.e., convex optimisation rather than eigen-decomposition [86]; ii) They deal

neither with regression nor with time series.
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5.5 Time Complexity

First, the running time of our main fitness function CV (Algorithm 5.1) is

O(n4) = 1 + 1 + n
5
(5 + (n− 5)3 + 5 + 1) + n

5

O(n4) = n
5
(n3);

(5.2)

the critical part is at line 5 of Algorithm 5.1, where SVD is involved. The time

complexity of LL fitness function is O(n3), where the weights ~α are obtained by

pseudo inverse; i.e., SVD.

Second, let us find the overall running time of our EAs. If we assume that np ∼ n

and ng ∼ n, then the time complexity for EA-CV3 is (see Algorithm 5.2)

O(n6) = np + npn
4 + ng(np + 0.5np + 0.5np + 0.5npn

4 + (np + 0.5np))

O(n6) = n5 + n(n5),
(5.3)

and for EA-LL is

O(n5) = np + npn
3 + ng(np + 0.5np + 0.5np + 0.5npn

3 + (np + 0.5np))

O(n5) = n4 + n(n4).
(5.4)

With the above assumptions, EA-CV is as costly as K-F, and EA-LL as K-V.

However, if one considers to ng as constant since ng = 50, the time complexity is

reduced to O(n5) and O(n4) for EA-CV and EA-LL, respectively, where EA-CV is

cheaper than K-F and similar to K-V. But, EA-LL is cheaper than both K-F and

K-V.

Moreover, if we treat np = 300 as constant rather than np ∼ n, then the lower

bound of EA-CV is Ω(n4) and for EA-LL is Ω(n3); this is, because in practice np is

fixed. The lower bound of EA-CV is similar to K-F and K-V methods, but EA-LL

bound is lower.

5.6 Chapter Summary

Through this chapter has been introduced the evolutionary computation terminol-

ogy. It has also been presented an evolutionary strategy, (1+1)ES. Here, our evolved

3Regardless the representation, EA-M or EA-R.
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Algorithm 5.2: Evolutionary Algorithm

/* for mixed types or real representation */

Initialise population ; // O(np)1

Evaluate population ; // O(npn
3) or O(npn

4)2

for generation← 1 to ng do3

Select ; // O(np)4

Recombine ; // O(0.5np)5

Mutate ; // O(0.5np)6

Evaluate ; // O(0.5npn
3) or O(0.5npn

4)7

Reinsert ; // O(np + 0.5np)8

kernel-based approach is described. The parameters to evolve, representation, fitness

functions and evolutionary operators have also been described across this chapter.

The results of this evolutionary algorithm and our kernel methods are in the next

chapter. Finally, we made a time complexity analysis of this evolutionary algorithm

for two fitness functions, and we compared it with the time complexity of methods

in the previous chapter.



Chapter 6

Experimental Results

TROUGH this chapter, we will show all main results from real and artificial data

described in §2 and §3. We also present results from several methods introduced

in §3.2, as well as results from our methodology introduced in §4 and §5. We stress

that this is not an exhaustive analysis of all methods on all data sets, but we do

compare our methods against all other methods, and we test them on all data sets;

that is, real and artificial data. Note that the discussion on results is presented in

the following chapter.

——————————————————————————————————–

6.1 Artificial Data

Remember that the idea of generating synthetic data is that one knows the true time

delay, therefore one can measure distinct statistics over the estimates and the true

values, such as bias, variance, absolute error, mean squared error, t-test, etc. These

statistics are presented in the Appendix A.

6.1.1 DS-500

These data are described in §2.4.1, the true time delay is 500 days for all the involved

data sets. The ratio between image A and image B is fixed to its true value M =

1/1.44. Here, results from linear interpolation, DCF, LNDCF, Dispersion spectra,

54
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PRH, K-F, K-V, EA-M-CV, EA-R-CV and EA-R-LL methods are presented; see

§3.2, §4.2 and §5.3.

Experimental Set Up

To interpolate the light curves, we use linear interpolation with a time resolution of

0.01 days. Therefore, for any given ti we can find the delayed version ti + ∆ of image

A in image B.

For DCF and LNDCF, a bin size of 100 days is used, which is the average lag

in these data. The best time delay is found by searching the maximum correlation

between 400 and 600 days, where if there is not a bin containing a delay of 400 days

then we search at the previous one.

A decorrelation length of δ = 100 is used for Dispersion spectra method, D2
4,2. This

value give us accurate results on selected data sets (free noise cases). Time delay trials

between ∆min = 400 and ∆max = 600 are generated with unitary increments. The

ratio M is set to its true value 1/1.44.

When estimating the structure function of PRH method for each data set, we use

bins in the range 100–700 days [32]. Linear regression is used to estimate the structure

function given by A and B in (3.8). The image A (data) is only used to estimate the

structure function so results by using both image A and image B are in our journal

paper; see §1.5. To obtain ~A in (3.4), we use SVD as in §4.2.1 with λ = 0.001, because

zero noise and duplicate times may occur leading to singularity. Consequently, fast

methods to obtain ~A are not used [78]. When combining both images into ~y (see

§3.2.3), we use time delay trials as above with the ratio M = 1/1.44.

The parameter setting of the Bayesian method is as in Harva and Raychaudhury

[33, 34].

For K-F, we set the bounds of ωc to LowerBound = 900 and UpperBound = 1, 200

with increments of 10; see Algorithm 4.1. For K-V, we set LowerBound = 1 and

UpperBound = 15 with increments of 1. For K-F and K-V, we use also time delay

trials as above, and M is set to 1/1.44.

The ∆ bounds for EA-M and EA-R are also as above; k = [1, 15] and θ = [1, n].
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Results

The results are shown in Figs. 6.1 and 6.2. Each plot is divided in two parts: ∆µ

(top) and ∆σ (bottom), whereas ∆µ is the mean of all estimates grouped by noise

level and gap size, and ∆σ is the standard deviation of those estimates; the standard

deviation of all estimates of each underlying function is computed, then the mean

over the five underlying functions. To be fair in the comparison, in each plot, the

scale of y-axis is the same, apart from DCF and LNDF in Figs. 6.1b–c where their

bounds are larger than others; otherwise, at the top of Fig. 6.1a and 6.2 we will see a

straight line. We also point out that the time delay estimates were obtained exactly

on the same collection of data.

Since the true delay is 500 days, the best solution is a straight line with zero

slope at ∆µ = 500. Therefore, ∆µ is the bias of all the estimates. The uncertainty

is measured by ∆σ; i.e., the variance. In Figs. 6.1 and 6.2, there is a clear tendency

to increase ∆σ as the gap size increases. The same occurs when the noise level is

increased. As expected, the lower the noise and gap size, the more accurate the

results. The aim of this comparison is to find the method with low bias and low

variance; i.e., high accuracy.

The results are interesting because linear interpolation has an outstanding per-

formance compared with the most used methods: PRH method, D2
1, D2

4,2, DCF and

LNDCF. Nevertheless, the best results are for our kernel-based methods: K-F, K-V,

EA-M-CV and EA-R-CV. In Fig. 6.2, one can compare the performance of the distinct

versions of our methodology. Comparing K-F and K-V, both lead to similar perfor-

mance but K-V is less costly; see §4.3. Therefore, we adopt K-V as our best method

of this class. Now, comparing our evolutionary algorithms: EA-R-LL, EA-M-CV and

EA-R-CV. Those based on CV are more accurate than EA-R-LL. However, we adopt

EA-M-CV as our best method because it uses a proper representation. Moreover, the

difference in the performance for this class of algorithms is not significant regardless

the representation.

In Fig. 6.2, the comparison is not easily seen for some methods graphically. Thus,

we carried out a statistical analysis, see Appendix A, over all estimates in order to

perform a quantitative analysis of results from the best methods in Figs. 6.1 and 6.2.
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Figure 6.1: Results on DS-500 from: (a) Linear interpolation, (b) DCF, (c) LNDCF,

(d) PRH method, (e) D2
1 and (f) D2

4,2; see §6.1.1 for details. Note that only (b)-(c)

have different y-axis scale.



CHAPTER 6. EXPERIMENTAL RESULTS 58

      

470

480

490

500

510

520

∆ µ

DS−500−1 to 5  Bayesian method

 

 

0% Noise
1% Noise
2% Noise
3% Noise

0 1 2 3 4 5

0

10

20

30

40

50

60

70

Gap size

∆ σ

(a)

      

470

480

490

500

510

520

∆ µ

DS−500−1 to 5  K−F

 

 

0% Noise
1% Noise
2% Noise
3% Noise

0 1 2 3 4 5

0

10

20

30

40

50

60

70

Gap size

∆ σ

(b)

      

470

480

490

500

510

520

∆ µ

DS−500−1 to 5;  K−V

 

 

0% Noise
1% Noise
2% Noise
3% Noise

0 1 2 3 4 5

0

10

20

30

40

50

60

70

Gap size

∆ σ

(c)

      

470

480

490

500

510

520

∆ µ

DS−500−1 to 5  EA−R−LL

 

 

0% Noise
1% Noise
2% Noise
3% Noise

0 1 2 3 4 5

0

10

20

30

40

50

60

70

Gap size

∆ σ

(d)

      

470

480

490

500

510

520

∆ µ

DS−500−1 to 5;  EA−R−CV

 

 

0% Noise
1% Noise
2% Noise
3% Noise

0 1 2 3 4 5

0

10

20

30

40

50

60

70

Gap size

∆ σ

(e)

      

470

480

490

500

510

520

∆ µ

DS−500−1 to 5;  EA−M−CV

 

 

0% Noise
1% Noise
2% Noise
3% Noise

0 1 2 3 4 5

0

10

20

30

40

50

60

70

Gap size

∆ σ

(f)

Figure 6.2: Results on DS-500 from: (a) Bayesian method, (b) K-F, (c) K-V, (d)

EA-R-LL, (e) EA-R-CV and (f) EA-M-CV; see §6.1.1 for details.
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Table 6.1: DS-500: Statistical Analysis of all the time delay estimates (η = 38, 505).

Statistic Interpa D2
1 D2

4,2 PRH K-V EA-M-CV Bayesb

95% CI [501.1, [494.7, [497.5, [506.9, [498.7, [500.4, [500.4,

502.0] 495.8] 498.6] 507.8] 499.5] 501.2] 501.3]

CI range 0.90 1.05 1.07 0.88 0.75 0.79 0.89

MSE 1986.4 2803.6 2916.2 2019.3 1417.4 1905.1 2017.6

AE 33.8 43.9 43.6 34.0 27.9 33.11 33.19

µ̂ 501.62 495.30 498.12 507.38 499.13 500.83 500.87

σ̂ 44.5 52.7 53.9 44.3 37.6 43.6 44.9

a linear interpolation; b Bayesian method.

We grouped estimates regardless of level of noise, gap size and underlying function,

therefore, the number of degrees of freedom is 38,504 (η = 38, 505). The results are in

Table 6.1 from selected methods. The aim of this analysis is to present various ways

to measure the performance of methods. The 95% confidence interval (CI) is shown

in the first three rows. MSE is the mean squared error (A.3), and AE is the mean

absolute error (A.5). The estimators µ̂ and σ̂ are the mean and standard deviation

(A.1)-(A.2), respectively. In bold fonts are highlighted the best results. Again, the

details of these statistical estimators are in Appendix A.

Figure 6.3 only shows the 95% CI for the first underlying function (DS-500-1) with

0% of noise rather than grouping all time delay estimates as in Table 6.1. Then, we

count the number of cases where the true delay (∆ = 500) falls within the interval.

Consequently, we obtain five cases for Linear interpolation method (shaded points)

and one case for Bayesian estimation method (circles). In Table 6.2 are summarised

the quantity of cases by following the above procedure for all the underlying functions,

all levels of noise and five selected methods. The best results are in bold fonts.

We also performed the t-test on time delay estimates from five selected methods

where the hypothesis to test is H0: µ0 = 500 (the true delay); see the Appendix A. The

results are shown in Fig. 6.4, where the estimates are grouped by underlying function,

level of noise and gap size. Since T (A.6) follows a Student’s t-distribution, which is

centred at zero, those values close to zero are statistically significant [1, 18, 3]. The



CHAPTER 6. EXPERIMENTAL RESULTS 60

0 1 2 3 4 5

450

460

470

480

490

500

510

520

530

540

550

560

Gap size

95
%

 C
I (

∆)

DS−500−1  0% of noise

 

 
L.Interp
Bayesian
PRH SF−A
  K−V
 EA−M−CV

Figure 6.3: 95% CI on DS-500-1-N-0. The intervals correspond to five methods and

grouped at each gap size. Only time delay estimates on the first underlying function

(DS-500-1) and 0% of noise are shown. See §6.1.1 for details.

horizontal dotted line shows the threshold for a significance level of 95%, α = 0.05;

i.e., when P < α, where P (A.7) denotes the cumulative probability from a Student’s

t-distribution. Thus, the threshold values for |T | in Fig. 6.4 are 2.2, 2 and 1.9 for

ν = {9, 49, 499}, degrees of freedom, respectively; see Table 2.3.

In Table 6.3 are shown the quantity of cases that satisfy the above threshold

values. The results are grouped by noise level, and the best ones are highlighted with

bold fonts.

In Fig. 6.5 are shown the results of MSE, where the estimates are grouped as

above. The AE statistic gives similar results; see Fig. 6.6. Figures 6.7 and 6.8 show
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Table 6.2: 95% CI on DS-500. Quantity of cases that are within the 95% Confidence

Intervals per method and level of noise.

Noise Level

Method 0% 1% 2% 3%

Linear interpolation 21 13 20 22

Bayesian estimation 17 17 17 17

PRH 28 15 11 11

K-V 25 24 28 24

EA-M-CV 28 24 27 26

See §6.1.1 for more details.

Table 6.3: t-test on DS-500. The quantities mean the number of cases that are

significant (95%).

Noise Level

Method 0% 1% 2% 3%

Linear interpolation 19 13 20 22

Bayesian estimation 16 16 17 16

PRH 17 15 10 11

K-V 21 24 28 24

EA-M-CV 5 23 27 25

See §6.1.1 for more details.
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the results from µ̂ and σ̂ statistics respectively.
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Figure 6.4: t-test on DS-500. Each row corresponds to a different underlying function

(DS-500-1, DS-500-2,..., DS-500-5), and each column corresponds to a different level

of noise (0%, 1%, 2% and 3%). Every plot shows the results of |T | from five methods;

i.e., Linear interpolation, Bayesian estimation, PRH, K-V and EA-M-CV; shaded

point, circle, diamond, triangle and asterisk respectively. Note that all the plots have

the same scale at y-axis. The horizontal dotted lines show the threshold for 95%

confidence level; see §6.1.1 for details.
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Figure 6.5: MSE on DS-500. Each row corresponds to a different underlying function

(DS-500-1, DS-500-2,..., DS-500-5), and each column corresponds to a different level

of noise (0%, 1%, 2% and 3%). Every plot shows the results of MSE statistic from five

methods; i.e., Linear interpolation, Bayesian estimation, PRH, K-V and EA-M-CV;

shaded point, circle, diamond, triangle and asterisk respectively. For the 0% noise

column, these plots show values of MSE in the range of 0–20 only.

6.1.2 DS-5

On these data, we show only results from the following methods: Linear Interpolation,

D2
1, D2

4,2, PRH method (SF from image A), K-V and EA-M-CV. We choose the two

versions of dispersion spectra and PRH method because they are the most popular
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Figure 6.6: AE on DS-500. Each row corresponds to a different underlying function

(DS-500-1, DS-500-2,..., DS-500-5), and each column corresponds to a different level

of noise (0%, 1%, 2% and 3%). Every plot shows the results of AE statistic from five

methods; i.e., Linear interpolation, Bayesian estimation, PRH, K-V and EA-M-CV;

shaded point, circle, diamond, triangle and asterisk respectively. For the 0% noise

column, these plots show values of AE in the range of 0–5 only.

(see §3.1), moreover, these methods have been used to analyse optical data (low noise)

[59, 13, 21, 70], and DS-5 data simulate optical data. As our methods, we select K-V

and EA-M-CV only.
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Figure 6.7: µ̂ on DS-500. Each row corresponds to a different underlying function

(DS-500-1, DS-500-2,..., DS-500-5), and each column corresponds to a different level

of noise (0%, 1%, 2% and 3%). Every plot shows the results of µ̂ statistic from five

methods; i.e., Linear interpolation, Bayesian estimation, PRH, K-V and EA-M-CV;

shaded point, circle, diamond, triangle and asterisk respectively.

Experimental Set Up

For all methods, time delay trials ∆t are generated between ∆min = 0 and ∆max = 10

with increments of 0.1, and the offset M is fixed to its true value 0.1. For linear

interpolation, we use a time resolution of 0.01 days to interpolate the light curves.

A decorrelation length of δ = 5 is used for Dispersion spectra method, D2
4,2. To
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Figure 6.8: σ̂ on DS-500. Each row corresponds to a different underlying function

(DS-500-1, DS-500-2,..., DS-500-5), and each column corresponds to a different level

of noise (0%, 1%, 2% and 3%). Every plot shows the results of σ̂ statistic from five

methods; i.e., Linear interpolation, Bayesian estimation, PRH, K-V and EA-M-CV;

shaded point, circle, diamond, triangle and asterisk respectively. For the 0% noise

column, these plots show values of σ̂ in the range of 0–5 only.

estimate the structure function of PRH method, we use bins in the range 0–10 days.

Linear regression is also used to estimate the structure function given by A and B
in (3.8). The image A (data) is only used to estimate the structure function, and ~A

in (3.4) is obtained as in previous section. For K-V, we set LowerBound = 1 and
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Table 6.4: DS-5: Statistical Analysis of all the time delay estimates η = 38, 505.

Statistic Interpa D2
1 D2

4,2 PRH K-V EA-M-CV

95% CI [5.06, [5.00, [5.58, [2.67, [4.94, [5.00,

5.07] 5.02] 5.59] 2.73] 4.95] 5.02]

CI range 0.01 0.02 0.01 0.06 0.01 0.02

MSE 0.49 0.74 0.99 13.46 0.47 0.63

AE 0.39 0.52 0.59 3.01 0.39 0.41

µ̂ 5.068 5.013 5.589 2.704 4.946 5.015

σ̂ 0.70 0.86 0.80 2.86 0.68 0.79

a linear interpolation method.

UpperBound = 15 with increments of 1. The bounds for EA-M-CV are ∆ = [0, 10],

k = [1, 15] and θ = [1, n].

Results

The results are shown in Table 6.4 and Fig. 6.9. The statistics are given in Appendix

A, where µ0 = 5 and η = 38, 505. Again, the best results are highlighted with

bold fonts. In Fig. 6.9 are only the results from linear interpolation, D2
1, K-V and

EA-M-CV. Note that the y-axis scale is the same on all plots.

Table 6.5 shows the quantity of cases where the true delay (∆ = 5) falls within

the 95% confidence interval (CI); see §6.1.1 and Fig. 6.3 for more details.

Table 6.6 shows the results from t-test. As above, in Table 6.6 are the number

of cases that satisfy the 95% confidence threshold on |T | values; see Fig. 6.10 and

§6.1.1.

From Table 6.4 and Fig. 6.9, the best results are for K-V, EA-M-CV, Linear

Interpolation and D2
1. Since the noise is about 0.01 mag (< 0.106%) in real optical

data, one is interested on results by level of noise. Furthermore, in Table 6.7 are

the results of MSE, AE, µ̂ and σ̂ on all estimates, which are grouped by noise level

regardless the gap size and underlying function. The best results are also in bold

fonts.

Figures 6.11-6.14 show the results from MSE, AE, µ̂ and σ̂ statistics on DS-5
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Figure 6.9: Results on DS-5 from: (a) Linear Interpolation, the range for ∆µ is

0.176, and the maximum ∆σ is 1.35; (b) D2
1, where the range for ∆µ is 0.255, and the

maximum ∆σ is 1.76; (c) K-V, where the range for ∆µ is 0.164, and the maximum

∆σ is 1.34; and (d) EA-M-CV, where the range for ∆µ is 0.144, and the maximum

∆σ is 1.62. See §6.1.2 for details.

respectively. The results are also grouped by underlying function and noise level.

6.1.3 PRH Data

Here, we compare only PRH method against EA-M-CV since the data is generated

by PRH methodology (see §3.2.3). Therefore, the method to beat is PRH. In fact,

we do the comparison with the PRH method by fixing the PRH parameters to those
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Table 6.5: 95% CI on DS-5. Quantity of cases that are within the 95% Confidence

Intervals.

Noise Level

Method 0% 0.036% 0.106% 0.466%

Linear Interpolation 24 6 13 17

D2
1 23 14 22 20

D2
4,2 12 4 0 0

PRH 0 0 0 6

K-V 19 6 6 13

EA-M-CV 27 23 25 22

See §6.1.2 for more details.

Table 6.6: t-test on DS-5. Quantities mean the number of cases that are significant,

at 95% level. The results are grouped by noise level.

Noise Level

Method 0% 0.036% 0.106% 0.466%

Linear Interpolation 12 6 13 17

D2
1 10 13 21 20

D2
4,2 6 1 0 0

PRH 0 2 14 16

K-V 11 5 6 13

EA-M-CV 22 23 24 22

See §6.1.2 for more details.
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Table 6.7: DS-5: Results Grouped by Noise Level

Noise Level

Statistic 0% 0.036% 0.106% 0.466%

Method: Linear Interpolation

MSE 0.020 0.023 0.063 1.417

AE 0.076 0.093 0.186 0.915

µ̂ 5.03 5.04 5.04 5.11

σ̂ 0.13 0.14 0.24 1.18

Method: D2
1

MSE 0.017 0.044 0.182 2.014

AE 0.060 0.147 0.321 1.121

µ̂ 4.95 4.98 4.98 5.07

σ̂ 0.12 0.20 0.42 1.41

Method: K-V

MSE 0.029 0.041 0.084 1.312

AE 0.117 0.139 0.219 0.833

µ̂ 4.93 4.94 4.93 4.96

σ̂ 0.11 0.13 0.21 0.83

Method: EA-M-CV

MSE 1.9 × 10−4 0.008 0.090 1.831

AE 4.7 × 10−3 0.066 0.216 0.984

µ̂ 4.99 4.99 4.99 5.05

σ̂ 0.01 0.09 0.30 1.35

η 255 12,750 12,750 12,750

values used to generate the data (idealised scenario). That is, the structure function

(SF) to define the covariance matrix in PRH method is used in two ways: SF is fixed

to its true value (SF*) and estimated following the PRH method (SF+). From our

methods, we choose EA-M-CV because it gives good results on data with low noise

(DS-5).
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Figure 6.10: t-test on DS-5. Each row corresponds to a different underlying function

(DS-5-1, DS-5-2,..., DS-5-5), and each column corresponds to a different level of noise

(0%, 0.036%, 0.106% and 0.466%). Every plot shows the results of |T | from five

methods; i.e., Linear Interpolation D2
1, PRH, K-V and EA-M-CV; square, shaded

point, diamond, triangle and asterisk respectively. See §6.1.2 for details.

Experimental Set Up

In all cases, we use bounds1 of µ0 ± 30 days with unitary increments during the

time delay analysis. The measurement error is also fixed to its true value (variance

of 1 × 10−7) for all methods. The number of estimates per each true delay (µ0) is

1These bounds are also used to estimate the structure function SF+ by PRH method.
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Figure 6.11: MSE on DS-5. Each row corresponds to a different underlying function

(DS-5-1, DS-5-2,..., DS-5-5), and each column corresponds to a different level of noise

(0%, 0.036%, 0.106% and 0.466%). Every plot shows the results of MSE statistic

from four methods; i.e., Linear Interpolation, D2
1, K-V and EA-M-CV; square, shaded

point, triangle and asterisk respectively.

η = 100. The bounds for EA-M-CV are ∆ = [µ0 − 30, µ0 + 30], k = [1, 15] and

θ = [1, n].
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Figure 6.12: AE on DS-5. Each row corresponds to a different underlying function

(DS-5-1, DS-5-2,..., DS-5-5), and each column corresponds to a different level of noise

(0%, 0.036%, 0.106% and 0.466%). Every plot shows the results of AE statistic from

four methods; i.e., Linear Interpolation, D2
1, K-V and EA-M-CV; square, shaded

point, triangle and asterisk respectively.

Results

The results from the PRH method, SF* case, are in Table 6.8. The column µ0 denotes

the true time delay, which is also our hypothesis in the t-test. The following columns

are the statistics used in this analysis, where CI range is the range between the 95%

confidence interval (CI) of µ̂; see the Appendix A for details. The last row is the
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Figure 6.13: µ̂ on DS-5. Each row corresponds to a different underlying function (DS-

5-1, DS-5-2,..., DS-5-5), and each column corresponds to a different level of noise (0%,

0.036%, 0.106% and 0.466%). Every plot shows the results of µ̂ statistic from four

methods; i.e., Linear Interpolation, D2
1, K-V and EA; square, shaded point, triangle

and asterisk respectively.

average (Avg). The results from the SF+ case are in Table 6.9. Finally, the results

from EA are in Table 6.10.

Strictly speaking, one should compare Table 6.9 with Table 6.10 because Table 6.8

has the results from SF*.

In Table 6.11 are the results from µ̂ and σ̂ where one can measure the bias and
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Figure 6.14: σ̂ on DS-5. Each row corresponds to a different underlying function (DS-

5-1, DS-5-2,..., DS-5-5), and each column corresponds to a different level of noise (0%,

0.036%, 0.106% and 0.466%). Every plot shows the results of σ̂ statistic from four

methods; i.e., Linear Interpolation, D2
1, K-V and EA; square, shaded point, triangle

and asterisk respectively.

variance of estimates. As one can see, EA-M-CV is competitive even with the idealised

case (SF*).
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Table 6.8: PRH Data Results from PRH Method with SF* (idealised scenario). The

columns show the results from the statistical analysis (details in §6.1.1 and Appendix

A). The rows correspond to the true delays (µ0).

µ0 P T 95% CI CI range AE MSE

34 1.000 0.000 33.5 - 34.4 0.92 0.44 5.28

43 0.702 0.382 42.2 - 44.1 1.87 1.54 21.96

49 0.839 2.375 49.2 - 52.0 2.81 2.36 52.32

59 0.447 1.899 58.9 - 61.1 2.21 1.78 31.96

66 0.465 0.272 65.5 - 66.5 1.02 0.71 6.55

76 0.671 2.026 76.0 - 77.5 1.55 0.95 15.67

99 0.001 2.701 99.5 - 102.3 2.86 2.79 55.39

Avg 0.374 1.89 1.51 27.02

Table 6.9: PRH Data Results from PRH Method with SF+. Each row shows the

results from the statistical analysis for the true delay µ0. For more details see §6.1.3

µ0 P T 95% CI CI range AE MSE

34 0.000 -4.881 18.9 -27.6 8.72 22.79 593.45

43 0.210 1.260 81.8 - 48.2 6.46 13.51 266.19

49 0.315 -1.008 43.7 - 50.7 6.96 15.15 307.95

59 0.977 -0.028 54.6 - 63.1 8.51 19.66 455.20

66 0.257 -1.138 58.7 - 67.9 9.23 22.21 542.99

76 0.031 -2.188 66.7 - 75.5 8.83 20.95 513.97

99 0.407 -0.832 93.0 - 101.4 8.39 18.84 446.00

Avg 0.314 8.16 19.02 446.54
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Table 6.10: PRH Data: Results from EA-M-CV. Every row corresponds to the results

from the statistical analysis for each true delay µ0; see §6.1.3 for details.

µ0 P T 95% CI CI range AE MSE

34 0.600 0.525 32.3 - 36.8 4.58 7.68 132.27

43 0.330 0.977 42.5 - 44.4 1.96 2.28 24.34

49 0.389 -0.864 46.8 - 49.8 2.94 3.99 54.69

59 0.684 0.407 57.2 - 61.9 4.35 7.28 119.00

66 0.957 -0.052 63.9 - 67.9 3.98 7.16 99.53

76 0.301 -1.039 73.0 - 76.9 3.83 6.89 93.42

99 0.830 0.214 96.7 - 101.7 4.94 8.61 153.43

Avg 0.585 3.80 6.27 96.67

Table 6.11: PRH Data Results: Variance (σ̂) and Bias (|µ0 − µ̂|). The true delay

is denoted by µ0, and the estimated time delay by µ̂. Every row corresponds to a

different true delay; see §6.1.3 for details.

PRH with SF* PRH with SF+ EA-M-CV

µ0 µ̂ σ̂ |µ0 − µ̂| µ̂ σ̂ |µ0 − µ̂| µ̂ σ̂ |µ0 − µ̂|
34 34.0 2.3 0.00 23.2 21.9 10.73 34.4 11.8 0.46

43 43.1 4.7 0.18 45.0 16.2 2.05 43.7 4.8 0.79

49 50.6 7.0 1.68 47.2 17.5 1.77 48.4 7.7 0.57

59 60.0 5.5 0.07 58.9 21.4 0.06 59.9 9.7 0.96

66 66.0 2.5 0.07 63.3 23.2 2.65 65.7 9.2 0.21

76 76.7 3.8 0.79 71.1 22.2 4.87 75.1 10.2 0.86

99 100.9 7.2 1.95 97.2 21.1 1.76 99.8 12.2 0.89

Avg 4.7 0.81 20.5 3.41 9.4 0.68
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Table 6.12: Harva Data Results from Bayesian Estimation Method against EA-M-CV.

The last three columns correspond to three different data sets. The second column

denotes the statistic. For more details see §6.1.4 and Appendix A.

Data Set

Method Statistic 0.1 0.2 0.4

P 0.59 0.63 0.06

Bayesian method T 0.52 0.48 1.87

MSE 32.18 9.43 41.89

AE 1.84 1.94 3.7

µ̂ 35.2 35.1 35.8

σ̂ 5.7 3.1 6.4

P 0.92 0.76 0.007

EA-M-CV T 0.09 0.30 2.70

MSE 10.06 23.25 66.99

AE 1.76 3.28 5.72

µ̂ 35.0 35.1 36.4

σ̂ 3.1 4.8 8.0

6.1.4 Harva Data

For these data, we use a statistical analysis as above, where the true delay is µ0 = 35

and η = 225. We only compare the Bayesian method with EA-M-CV.

The configuration of Bayesian method is in Harva and Raychaudhury [34]. The

parameter setting for EA-M-CV is ∆ = [0, 70], k = [1, 15] and θ = [1, n]. The offset

and radio parameters ak(a) and bk(a) were fixed as in §3.2.5, respectively.

The results2 are in Table 6.12. The best results are in bold fonts. In Table 6.12,

each data set 0.1, 0.2 and 0.4 corresponds to a different level of noise (see 3.2.5).

2µ̂ and σ̂ from Bayesian method are not reported in [34], privately communication.
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6.2 Real Data: Q0957+561

In this section are the results of the data introduced in §2.3.1 and §2.3.2. The quasar

Q0957+561 is described in §2.3. These data sets are shown in Fig. 2.3.

6.2.1 Radio Data

The radio data sets are plotted at the left-hand side in Fig. 2.3.

On these data, we use K-F, K-V and EA-M-CV and EA-R-CV. We employ flux

ratios M = 1/1.44, M = 1/1.43 and M = 1/1.42 for the 4 cm, 6 cm and 6*cm data,

respectively (the most likely values given our models). We tested time delay trials

between ∆min = 300 and ∆max = 500, with increments of 1 day. The noise model

is assumed to be zero mean i.i.d. Gaussian with standard deviation of 2% of the

observed flux value.

For K-F (in §4.2), we used Algorithm 4.1 with bounds ω = [100, 1200] and unitary

increments with the threshold λ set to 0.001. The selected kernel widths (ω) were

481, 488 and 528 days, and the estimated time delays were 409 days, 459 days and

405 days for the 4 cm, 6 cm and 6*cm data, respectively.

To calculate confidence intervals on the time delay estimates, we performed 500

Monte Carlo simulations by adding noise realisations to the observed data. The

parameters ω and λ were fixed as above. Confidence intervals were determined as

standard deviations of time delay estimates across the Monte Carlo samples, i.e., σ̂

with η = 500. The results are shown in Table 6.13. Flux reconstructions with these

time delays are shown in Fig. 6.15. Within each plot, at the top is the image A and

at the bottom is image B. The continuous lines are our reconstructed underlying light

curves, hA(tu) and hB(tv) in Eq. 4.12.

For K-V (also see §4.2), the parameter k was estimated by Algorithm 4.1 (ω is

replaced by k) with LowerBound = 1 and UpperBound = 15 (increments of 1). We

obtained k = 3 and λ = 10−6 for 4 cm, and the estimated time delay was 409 days.

For 6 cm data, we found k = 3 and λ = 10−3, and the delay of 449 days. On 6*cm

data, we found k = 5 and λ = 10−3, and the time delay is 427 days. The results

from 500 Monte Carlo samples (MC data) are in Table 6.13. Flux reconstructions are
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Figure 6.15: Reconstructions on Radio Data: a) K-F on 4 cm, b) K-V on 4 cm, c)

K-F on 6 cm, d) K-V on 6 cm, e) K-F on 6*cm and f) K-V on 6*cm. For more

details, see §6.2.1.

shown in Fig. 6.15.

The results of our EA-M-CV are in Tables 6.14, 6.15 and 6.16, where ∆ is given

in days. The parameter setting is ∆ = [400, 600], k = [1, 15] and θ = [1, n]; the ratio

M was set as above. Since our EA is stochastic, we perform ten realisations on each
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Table 6.13: Results on Radio Data (MC data) from K-F and K-V. Here µ̂ and σ̂ are

obtained from 500 Monte Carlo simulations for each data set.

K-F K-V

Data µ̂± σ̂ µ̂± σ̂

4 cm 408.3±10 408.9±11

6 cm 459.9±18 449.4±27

6*cm 405.3±29 418.9±40

Note that quantities are in days.

data set.

In theory, the results from Tables 6.14 to 6.16 should give the same time delay

estimation. We have seen that the difference lies in sampling, that is the gaps or

missing data. Hence, the two data sets, 4 cm and 6*cm, should give close estimates

because they are sampled at the same observational times. In Table 6.14 (4 cm),

there are some time delay estimates above 400 days, where in Table 6.16 (6*cm) all

estimates are below 400 days. To investigate this, we run EA-M-CV and EA-R-CV

on 4 cm until 100 generations rather than 50 generations; this allows us to perform a

better search since the algorithm may be trapped in local minima. The M parameter

is also evolved when using EA-R-CV. Besides, 100 realisations are under analysis.

The results are in Fig. 6.16. We obtain the mode of estimates by taking the integer

part only (flooring). For EA-M-CV, the mode is 398 days with a frequency of 91.

When evolving M (EA-R-CV), the mode is 396 days appearing 65 times. Therefore,

estimates outside the modes might be considered as outliers.

Moreover, if one evolves M then the estimates are distinct on the same data set, 4

cm (see Fig. 6.16). Therefore, we also tested radio data by evolving M and using real

representation; flooring at fitness function. The results are in Tables 6.17 to 6.19.

Results from 500 Monte Carlo simulations are in Table 6.30. The parameters k

and θ were set to their best values; i.e., from the above results, we obtain the more

frequent values.

In summary, our estimates on observed data are in Table 6.20, where EA-CV



CHAPTER 6. EXPERIMENTAL RESULTS 82

Table 6.14: EA-M-CV: Results on Radio Data (4 cm), ten realisations. Each row

shows the best parameter combination after 50 generations; see §6.2.1 for details.

Realisation ∆ θ k fx

1 412.10 35 4 1.9261528

2 396.65 28 3 1.9414268

3 396.70 28 3 1.9414273

4 396.70 28 3 1.9414274

5 415.16 34 4 1.8753556

6 396.66 28 3 1.9414268

7 421.02 34 4 1.9226421

8 422.27 35 4 1.9250800

9 396.65 28 3 1.9414268

10 396.66 28 3 1.9414268

Table 6.15: EA-M-CV: Results on Radio Data (6 cm), ten realisations. Each row

shows the best parameter combination after 50 generations; see 6.2.1 for details.

Realisation ∆ θ k fx

1 449.42 40 6 4.2529894

2 461.70 40 6 4.2146423

3 455.32 40 6 4.2286100

4 459.56 40 6 4.2254048

5 456.84 41 6 4.2460969

6 467.43 40 6 4.2375457

7 449.42 40 6 4.2529894

8 461.77 40 6 4.2146423

9 455.32 40 6 4.2286100

10 459.56 40 6 4.2254048
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Table 6.16: EA-M-CV: Results on Radio Data (6*cm), ten realisations. Each row

shows the best parameter combination after 50 generations; see 6.2.1 for details.

Realisation ∆ θ k fx

1 397.80 12 5 3.9957233

2 389.53 12 5 3.9983381

3 399.31 12 5 3.9960528

4 396.63 12 5 3.9956380

5 371.99 22 7 3.8485912

6 391.27 12 5 3.9971660

7 393.66 12 5 3.9960962

8 396.97 12 5 3.9956473

9 396.84 12 5 3.9956422

10 371.84 15 3 4.0146605

Table 6.17: EA-R-CV: Results on Radio Data (4 cm), ten realisations. Each row

shows the best parameter combination after 50 generations; see 6.2.1 for details.

Realisation ∆ M θ k fx

1 396.66 1.4400 28 3 1.9414

2 396.65 1.4400 28 3 1.9414

3 414.10 1.4358 34 4 1.8544

4 396.65 1.4400 28 3 1.9414

5 396.65 1.4400 28 3 1.9414

6 397.22 1.4413 28 3 1.9429

7 412.86 1.4350 34 4 1.8600

8 396.66 1.4400 28 3 1.9414

9 396.61 1.4399 28 3 1.9414

10 419.72 1.4361 35 4 1.8623
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Table 6.18: EA-R-CV: Results on Radio Data (6 cm), ten realisations. Each row

shows the best parameter combination after 50 generations; see 6.2.1 for details.

Realisation ∆ M θ k fx

1 464.60 1.4299 40 6 4.1829

2 451.40 1.4294 40 3 4.3191

3 455.92 1.4297 40 6 4.1953

4 453.72 1.4277 40 6 4.1947

5 466.34 1.4313 40 6 4.2588

6 480.95 1.4317 32 5 4.3032

7 457.13 1.4295 40 6 4.2093

8 476.49 1.4314 34 6 4.2663

9 454.86 1.4314 40 6 4.2127

10 456.30 1.4307 40 6 4.1608

Table 6.19: EA-R-CV: Results on Radio Data (6*cm), ten realisations. Each row

shows the best parameter combination after 50 generations; see 6.2.1 for details.

Realisation ∆ M θ k fx

1 397.22 1.4220 12 5 3.9916

2 397.21 1.4220 12 5 3.9916

3 397.22 1.4220 12 5 3.9916

4 397.22 1.4220 12 5 3.9916

5 397.22 1.4220 12 5 3.9916

6 397.22 1.4220 12 5 3.9916

7 397.22 1.4220 12 5 3.9916

8 397.22 1.4220 12 5 3.9916

9 397.22 1.4220 12 5 3.9916

10 397.22 1.4220 12 5 3.9916
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Figure 6.16: Results on 4cm Data: a) EA-M-CV with 100 generations. b) EA-R-CV

evolving M and 100 generations.

Table 6.20: Results on Radio Data (observed data). Three data sets are involved:

4 cm, 6 cm and 6*cm. For details see §6.2.1.

K-F K-V EA-CV Reference [32]

4 cm 409 409 397 397

6 cm 459 449 450-460 452

6*cm 405 427 397 –

Note that the time delays are in days.

denotes the best results from both EA-M-CV and EA-R-CV. As reference, Haarsma

et al. [32] report time delays of 397±12 and 452+14
−15 days for the 4 cm and 6 cm

data, respectively, and 409±30 on the combined 4+6 cm data set by using the PRH

method. They also report results of the Dispersion spectra method (D2
4,2): 383+15

−19

and 416+22
−24 days for the 4 cm and 6 cm data, respectively, and 395+13

−15 days on the

combined 4+6 cm data set.

6.2.2 Optical Data

On these data, we use D2
1, D2

4,2, K-V, (1+1)ES, EA-M-CV and EA-R-CV methods.

For all methods, bounds are set to ∆min = 400 and ∆max = 450 days given that
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our prior knowledge is that the best time delay is around 417 days [49, 59]. We

evaluate D2
1, D2

4,2 and K-V in this range with unitary increments. The results are

shown in Table 6.21; for DS1, DS2 and DS3 data sets (in §2.3.2). The decorrelation

length δ in Table 6.21 is the same adopted by Kundic et al. [49] and Ovaldsen et al.

[59]. Hence, ∆ and M are those with the minimum dispersion spectra D2
1 and D2

4,2

respectively, for a given δ. Figure 6.17 depicts the best time delay versus decorrelation

length δ such as M gives the minimum D2
4,2.

The confidence intervals3 were estimated through 500 Monte Carlo simulations

(η = 500) over the noise processes (4.5) by fixing the parameters M and δ to the best

values, as in Table 6.21. The results are shown in Table 6.22.
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Figure 6.17: Dispersion spectra D2
4,2 for DS1, DS2 and DS3 . The top panel shows ∆

vs. δ. At the bottom panel is M vs. δ. The best ∆ is found when minM D2
4,2.

For K-V, we have fixed M to 0.117, 0.21 and 0.076 for DS1, DS2 and DS3 re-

spectively [49, 59]. The regularisation parameter λ and the smoothing parameter k

were chosen through Algorithm 4.1. The results are in Table 6.21. The reconstruc-

tions are shown in Fig. 6.18. The confidence intervals are also estimated through 500

Monte Carlo simulations fixing M , k and λ to the best values. The results are also

in Table 6.22.

In Fig. 6.19 is shown the estimated time delay versus θ (patterns). There is a

3Typically, the confidence intervals for these methods are estimate via bootstraps with replace-

ment and median filter [65, 63].
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Table 6.21: Results on Observed Optical Data

Dispersion spectra K-V

Data set D2
1: ∆ (M) D2

4,2: ∆ (M ; δ) Q : ∆ (k;λ) Reconstruction

DS1 417 (0.119) 420 (0.109;7) 420 (3;10−4) Fig. 6.18 (a)

DS2 429 (0.210) 446 (0.210;7) 420 (3;10−5) Fig. 6.18 (b)

DS3 425 (0.077) 424 (0.077;4) 435 (7;10−6) Fig. 6.18 (c)

∆ is given in days.

Table 6.22: Confidence Intervals: 500 Monte Carlo simulations

Dispersion spectra K-V

Data set D2
1 : µ̂± σ̂ D2

4,2 : µ̂± σ̂ µ̂± σ̂

DS1 416.7±0.9 419.9±1.3 419.5±0.7

DS2 421.6±2.8 443.5±8.2 420.9±4.0

DS3 426.7±2.3 438.5±12.7 436.6±6.1

µ∆ and σ∆ are given in days
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Figure 6.18: Reconstructions on Optical Data. (a) DS1: ∆ = 420, M = 0.117, k = 3

and λ = 0.001. (b) DS2: ∆ = 420, M = 0.21, k = 3 and λ = 0.001. (c) DS3:

∆ = 435, M = 0.076, k = 7 and λ = 10−6. In each plot, at the top is image A

(dashed) and at the bottom image B (dotted). Shaded circles are at observations.

Continuous lines are our curves modelling the underlying source. Note that the image

A for DS3 has been shifted upwards by 0.20 mag for visualisation.

tendency of time delay estimates levelling at 419 days for the range θ = [49, 72] for

DS1. For DS2, ∆ = 420 in the range θ = [50, 61]. On DS3, there is not a well defined

pattern when k = 7, which is given by K-V. But, there are two well defined patterns

when k = 5, which is suggested by EA-CV (see Tables 6.27 and 6.28), where the

patterns are at θ = [83, 110] (∆ = 428–429) and θ = [123, 154] (∆ = 426).
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Figure 6.19: Patterns on Optical Data. The estimated ∆ versus θ. For each θ, Q

is evaluated in the range ∆min = 400 to ∆max = 450. (a) DS1: M = 0.117 and

k = 3. The delay estimates are stable in the range θ = [49, 72] (∆ = 419). (b)

DS2: M = 0.21 and k = 3. The delay estimates are stable in the range θ = [50, 61]

(∆ = 420). (c) DS3: M = 0.076 and k = 7 (K-V). Here, there is not a well

defined pattern, but stability can be found in the ranges θ = [81, 85] (∆ = 431) and

θ = [94, 97] (∆ = 429), and ∆ = 429–431 when θ = [81, 98]. (d) DS3: M = 0.076

and k = 5 (EA-CV). The delay estimates are stable in the ranges θ = [83, 110]

(∆ = 428–429) and θ = [123, 154] (∆ = 426).

By using the (1+1)ES in §5.2, the precision is set to 200 and variable bounds

set as above and allowing 15,000 iterations. The convergence is reached after 14,410
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Table 6.23: EA-R-CV: Results on DS1. There are ten realisations. Each row shows

the best parameter combination after 50 generations. See §6.2.2 for details.

Realisation ∆ M θ k fx

1 419.67 0.1495 58 3 0.0019249601

2 419.67 0.1462 58 3 0.0019249602

3 419.67 0.1923 58 3 0.0019249605

4 419.68 0.1398 58 3 0.0019249620

5 419.68 0.1217 58 3 0.0019249577

6 419.68 0.1197 58 3 0.0019249593

7 419.68 0.1733 58 3 0.0019249592

8 419.68 0.1516 58 3 0.0019249615

9 419.67 0.1482 58 3 0.0019249588

10 419.68 0.1656 58 3 0.0019249586

iterations by using the same fitness function (Algorithm 5.1 in §4.2), so we also floor at

fitness function for integer variables. This ES yields on DS1 ∆ = 419.6, M = 0.1732,

θ = 58, k = 3, and MSE= 1.9249617× 10−3.

Regarding our EAs, we use the following general bounds: ∆ = [400, 450], k =

[1, 15], θ = [1, n], and M = [0, 0.30]. We start showing results of EA-R-CV on DS1

by evolving M also. Hence, the parameters that are integers are floored at fitness

function. The results on DS1 are in Table 6.23.

In Table 6.24 are ten realisations, the result from EA-M-CV on DS1. Here, M is

not evolved and fixed to 0.117. The variable bounds are also set as above. Table 6.23

shows that regardless of the value of M the time delay ∆ is consistent, which justifies

that M does not need to be evolved. Rather, we use the reported value M = 0.117

[49].

Results from EA-R-CV on DS2 by evolving M are in Table 6.25 (flooring at fitness

function).

Table 6.26 shows ten realisations from EA-M-CV on DS2, where M is set to 0.21

[49].

For DS3, Table 6.27 has the results from EA-R-CV, where M is also evolved;
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Table 6.24: EA-M-CV: Results on DS1. There are ten realisations. Each row shows

the best parameter combination after 50 generations. See §6.2.2 for details.

Realisation ∆ θ k fx

1 419.68 58 3 0.0019249744

2 419.67 58 3 0.0019249722

3 419.69 58 3 0.0019249722

4 419.67 58 3 0.0019249719

5 419.66 58 3 0.0019249691

6 419.66 58 3 0.0019249670

7 419.66 58 3 0.0019249753

8 419.67 58 3 0.0019249724

9 419.47 71 3 0.0018908716

10 419.67 58 3 0.0019249711

Table 6.25: EA-R-CV: Results on DS2. There are ten realisations. Each row shows

the best parameter combination after 50 generations. See §6.2.2 for details.

Realisation ∆ M θ k fx

1 418.53 0.2016 55 4 0.00185386

2 418.90 0.2244 56 4 0.001839987

3 418.73 0.1535 56 4 0.001832136

4 419.85 0.1769 55 4 0.001907173

5 419.09 0.1831 56 4 0.001849627

6 418.11 0.1595 55 4 0.001865103

7 418.80 0.1999 55 4 0.001853981

8 420.38 0.1861 55 4 0.001893737

9 418.81 0.1500 55 4 0.001870789

10 419.31 0.1985 56 4 0.001868472
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Table 6.26: EA-M-CV: Results on DS2. There are ten realisations. Each row shows

the best parameter combination after 50 generations. See §6.2.2 for details.

Realisation ∆ θ k fx

1 419.05 54 4 0.0019407480

2 418.85 56 4 0.0018662351

3 419.59 55 4 0.0018971073

4 420.03 55 4 0.0019056176

5 418.78 55 4 0.0018865383

6 420.56 56 4 0.0019137956

7 421.35 56 4 0.0019009342

8 419.51 56 4 0.0018848796

9 420.52 56 4 0.0019022225

10 418.69 55 4 0.0018722574

Table 6.28 shows the results from EA-M-CV, whereas M is set to 0.076 [59].

Results from 500 Monte Carlo simulations are in Table 6.30. The parameters k

and θ were set to their best values. That is, we obtain the more frequent values for

θ and k from the results in Tables 6.27 and 6.28.

In summary, the results on observed optical data are in Table 6.29, which one

should compare with Table 6.21. On DS3, we obtained six realisations only. DS3 is

the largest data set under analysis (n = 422). In 6.29, the column Reference provides

the reported time delays. Nevertheless, those delays are the assumed time delays.

That is, distinct estimates are obtained from different methods on the same data.

6.2.3 Q0957+561 Summary

The results on radio and optical data are in Table 6.30. There, we concentrate all

results including those from 500 Monte Carlo simulations (MC), where the parameters

were fixed to their more likely values; for results from EA, we fixed k and θ according

to their frequency of appearance in the above results – in both EA-M and EA-R. In

Table 6.30, µ̂ and σ̂ denote the mean and standard deviation of estimates from the
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Table 6.27: EA-R-CV: Results on DS3. There are six realisations. Each row shows

the best parameter combination after 50 generations. See §6.2.2 for details.

Realisation ∆ M θ k fx

1 428.89 0.0947 98 5 0.00286733794976

2 427.20 0.0864 109 6 0.00286423323078

3 427.58 0.0732 108 6 0.00286220282065

4 428.90 0.0982 95 5 0.00286734138156

5 428.89 0.0947 98 5 0.00286733794976

6 427.28 0.0667 109 6 0.00286438534341

Table 6.28: EA-M-CV: Results on DS3. There are six realisations. Each row shows

the best parameter combination after 50 generations. See §6.2.2 for details.

Realisation ∆ θ k fx

1 429.26 98 5 0.00286818213046

2 428.95 98 5 0.00286737380445

3 431.43 101 7 0.00247621668255

4 429.29 98 6 0.00288105281463

5 427.08 109 6 0.00286475222488

6 427.72 108 6 0.00286323588324

Table 6.29: Results from EAs on Observed Data

Data set EA-R-CV EA-M-CV (M) Reference

DS1 419.6 419.6 (0.117) 417 [49]

DS2 418.1–420.3 418.6–420.5 (0.210) 417 [49]

DS3 427.2–428.8 427.0–431.4 (0.076) 424.9 [59]
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MC data, where η = 500 (see Appendix A).

Table 6.30: Q0957+561 Summary of Results; see §6.2.3 for details.

K-V EA

Data ∆(k;λ) µ̂± σ̂ ∆(k;θ) µ̂± σ̂ M

4 cm 409 (5;10−6) 408.9±11 396.6–397.2 (3;28) 393.8±12 1/1.44

6 cm 449 (3;10−3) 449.4±27 449.4–476.4 (6;40) 451.5±25 1/1.43

6*cm 427 (4;10−3) 418.9±40 393.6–399.3 (5;12) 414.0±59 1/1.42

DS1 420 (3;10−4) 419.5±0.7 419.6 (3;58) 422.3±4 0.117

DS2 420 (3;10−5) 420.9±4.0 418.1–420.3 (4;55) 420.5±4 0.210

DS3 435 (7;10−6) 436.6±6.1 428.8–429.2 (5;98) 432.4±8 0.076

6.3 Chapter Summary

We presented results from the methods introduced in §3 to §5. We used several types

of data: real and artificial (see §2 and §3). On real data, we used optical and radio

data from quasar Q0957+561, which is a complicated system. Regarding artificial

data, we also used several types of these data: optical-like data (DS-5), radio-like

data (DS-500), PRH data and Harva data. These artificial data simulate distinct

noise levels and various gaps. Moreover, they simulate short and long time delays,

and irregularly sampled time series always were under analysis. The discussion of

results and conclusions (for real and artificial data) are in the following chapter.



Chapter 7

Conclusions and Future Work

IN this chapter (§7.1), first, we present the general conclusions. Then we will

discuss the results obtained in §6 and draw some particular conclusions, which are

presented per each class of data, artificial and real data. Answers to the questions

formulated in §1.3 are given. Furthermore, advantages and disadvantages of the

methods studied in this thesis are also discussed. Finally, we will introduce our

further research directions in §7.2 where ideas are presented within different sections

separately; since we started to explore some of them, we also present some hints.

——————————————————————————————————–

7.1 Conclusions

We have introduced a new approach for measuring the time delay between light curves

of two images of a gravitationally lensed system, based on kernel linear regression

and evolutionary algorithms, in particular K-V and EA-M-CV (see §4.2 and §5.3,

respectively). Using a large set of controlled experiments using artificially generated

data (DS-500 and DS-5), PRH data and Harva data, we compared the accuracy of our

methods with that of other methods used in the literature for time delay estimation,

notably the DCF, LNDCF, PRH, Dispersion spectra and Bayesian method; see §3.2

for details on these methods.

95
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Artificial Data

Running a controlled set of experiments is essential for a well-grounded comparison

of competing models. For the artificial data, unlike in the case of observed fluxes, one

has the luxury of knowing exactly the magnification ratio or offset M and the true

time delay ∆; the noise process is also known. Therefore, we can reliably measure

the bias and variance of the time delay estimates given by the studied methods.

Obviously, one cannot fully measure the bias when estimating the time delay from

real observations. On the artificial data, we conclude that our kernel-based methods

presented in this thesis came across as the most accurate and stable methodologies

for estimating the time delays between multiple images of a gravitationally lensed

quasar (see Figs. 6.1 to 6.14, and Tables 6.1 to 6.12).

On the one hand, previous attempts for generating artificial data have been tried

(e.g., see [69, 9, 21, 70]). However, in general, they only focus on a few types of data

sets by either simulating specific features in the light curves or dealing with sampling

issues, and the performance is usually compared with a single method. On the other

hand, our artificial data sets (DS-500 and DS-5) contain simulated light curves of

widely varying (but still realistic) shapes, observational gaps and noise levels.

On DS-500, we tested all methods introduced in §3 to §5. In Fig. 6.1, one can

see that the best performance is for the linear interpolation method on these data,

where this simple method performs better than PRH method, D2
1 and D2

4,2 – the most

used ones. The disadvantage is that it is slower because a resolution of 0.01 in time

is needed to evaluate the error for trial time delays; this yields too many points in

the fitting. Methods based on cross correlation also show a bad performance, i.e.,

accuracy. Therefore, we avoid DCF and LNDCF on DS-5, PRH Data and Bayesian

Data. In Fig. 6.2, the best results are from our kernel-based methods – including

those in Fig. 6.1 – apart from EA-R-LL. Hence, EA-R-LL suggests that the negative

log-likelihood (LL) is not good in estimating the kernels parameters and the time

delay, where EA-R-CV performs much better in terms of bias and variance. The

results from Bayesian method are competitive with our methods despite it showing

more bias on these data. Our methods introduced in sections §4.2.2 and §4.2.2 (K-F

and K-V) give similar results (see Figs. 6.2b & 6.2c), although K-V tends to require
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less computational time (see §4.3). From Table 6.1, we conclude that the best results

are from K-V and EA-M-CV. Additionally, Tables 6.2 and 6.3 also show that the best

results are from K-V and EA-M-CV through 95% confidence intervals and t-test at

a 95% significance level (see Figs. 6.3 and 6.4). Similar results are obtained from the

MSE, AE, µ̂ and σ̂ estimators (see Figs. 6.5 to 6.8 respectively).

Regarding DS-5, the best methods are K-V, Linear Interpolation and EA-M-CV

according to our statistical analysis over all estimates; see Table 6.4. However, the

95% CI and t-test suggest that the results from EA-M-CV are more statistically

significant than others (see Table 6.5 and 6.6). DS-5 data are important because they

simulate optical data, which currently are widely used. As mentioned above, error

bars on these data are about 0.01 mag (or less); i.e., < 0.106%. Hence, in Table 6.7

and Figs. 6.10–6.14, the best results for low noise are also from EA-M-CV. From

Tables 6.4 to 6.7 and Figs. 6.9 to 6.14, we conclude that the best results are from

EA-CV-M.

We stress that the results from t-test in Table 6.3 on DS-500 with 0% of noise

show a bad performance for EA-M-CV. This is due to Eq. (A.6) because if σ̂ → 0

then T → ∞ regardless of the bias µ̂ − µ0. Here, it is clear that the assumption of

normality is not unique. In fact the derivation of Eq. (A.6) is given by assuming a

standard normal distribution, i.e., N(0, 1) (see [18, 40]). In Fig. 6.8 is shown σ̂; there

one can see that its value is close to zero. Therefore, T and P are robust when σ̂ ≥ 1.

However, the estimator MSE takes into account µ̂ and σ̂ at the same time, i.e., bias

and variance. Because what we want is a method that shows accuracy, the estimators

µ̂, σ̂, MSE and AE are robust with or without the assumption of normality.

We also performed some nonparametric tests such as sign test and signed-rank

test which are distribution-free. These tests, in a similar analysis as in Tables 6.3

and 6.6, suggest that the results from EA-M-CV on DS-500 and DS-5 are the most

statistically significant. Therefore, regarding the normality on results, the use of t-test

in the statistical analysis is not a concern.

Recalling the 95% CI, in Fig. 6.3, the greater σ̂, the larger the interval. Therefore,

the probability that the true µ0 falls within the interval is high. This does not make

the 95% CI robust because we require low variance for accuracy. The 95% CI is
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proportional to σ̂.

We compared K-V with EA on DS-500 and DS-5. On the one hand, K-V employs

the log-likelihood (LL) as loss function where the parameters k and λ are estimated

via cross-validation (see Algorithm 4.1). On the other hand, in Algorithm 5.1, the

fitness function of EA is the MSECV given by cross-validation (CV). Instead, we

compared K-V with EA by using the mean squared error as the measurement of

goodness of fit for K-V rather than LL. Thus, the observational error is considered

constant (see Eq. 4.12 in §4.2). Consequently, we found that the results from LL

are more accurate than simple mean squared error. Moreover, we tested another

fitness function. That is, instead of MSECV , the fitness is given by LL where no

cross-validation is performed because k and θ are also evolved. The results are that

the fitness given by CV performs better than LL, where LL is less time-consuming

(e.g., compare Fig. 6.2d with 6.2e–f). Similar results are obtained on DS-5.

On PRH Data, there are seven different true delays. Here, we only compared PRH

method with EA-M-CV. Two versions of PRH method were used, SF* and SF+. On

the one hand, in SF*, one fixes the parameters to those values used to generate the

data. That is why we call it the idealised scenario. As expected, in Tables 6.8 to

6.11, the best results are from SF*, but EA-M-CV is competitive with it. In fact,

the average bias is better for EA-M-CV. On the other hand, with SF+, where one

finds the structure function from data (as in practice), we conclude that the best

performance is for EA-M-CV (see Tables 6.8 to 6.11).

Harva Data are generated through the model formulation of the Bayesian method

(see §3.2.5). Therefore, we only compared Bayesian method with EA-M-CV. For

0.1 data set, the best results are from EA-M-CV. For 0.2 data set, the best results are

from either Bayesian method or EA-M-CV depending on the statistic. Regarding 0.4

data set, the best results are from Bayesian method. Note that 0.1, 0.2 and 0.4 are

standard deviations (error bars). Recalling optical data, the standard deviations are

about 0.01 mag, so the levels of noise of Harva data are too high compared with real

optical data. Another criticism of these data is that they are unrealistic since they

have ratio and offset at same time, i.e., ak(a) and bk(a) in (3.14). As we have seen, in

practice, the data is either optical or radio (see §2.3). Moreover, the error bars are
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not constant in practice.

Q0957+561: Radio and Optical Data

There has been a great deal of concern about the difference in time delay estimates

from the two different wavelengths on radio data, 4 cm and 6 cm, since gravitational

lensing is achromatic. Inspired by the results from our experimentation with artificial

data, where the uncertainty of time delay estimates increases as the gap size increases,

we have generated the data set 6*cm in order to avoid the effect of the different gap

sizes for different wavelengths. We conclude that such systematic differences between

results obtained from observations at various wavelengths are due to the irregular

sampling, and in particular, due to the presence of large gaps in the monitoring

data. Experiments with simulated data sets like ours help in the understanding of

how the results depends on the sampling, and in assessing the reliability of the time

delays obtained by various methods. Such gaps are unavoidable in realistic long-

term observing programmes, often leading to unacceptably deviant time delays (in

this case, too large by more than 10%). Several recent analyses have come to this

conclusion in various ways [25, 70, 21].

We have estimated the time delay between of two images of the quasar Q0957+561

from radio observations at 4 cm and 6 cm, where no agreement has been found.

However, the 6*cm data set yields essentially the same value for the time delay at

that obtained from the 4 cm data set (see EA-CV in Table 6.20), as opposed to a

value of ∼450 days as obtained from the full 6 cm data set, which covers a longer

monitoring period.

Even though, on optical data, DS1 and DS2 have the same sampling, but the time

delay estimates yield different results (see Tables 6.21, 6.22 and 6.29). Moreover, the

observational errors are comparable so the difference cannot be regarded to the noise.

Here, we attribute the difference to the features in the light curves due to distinct

filters, g- and r-band; see §2.3.2. Consequently, we conclude that the features in the

light curve play an important role, specially on optical data where high variability is

present.

As a result of our analysis, we conclude that DS1 is the best data set for Q0957+561
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including optical and radio data in the comparison. In Tables 6.21 and 6.29, one can

see that the results are consistent with all our methods. A time delay of 420 days

was found by K-V because we only explore delays in the range 400–450 days with

unitary increments; i.e., ∆ ∈ ℵ (see in Table 6.21). But, the MC simulations give us

419.5 ± 0.7 days as a time delay (see Table 6.22). Our EAs suggest a time delay of

419.6 days regardless of representation (see Table 6.29), where ∆ ∈ <. In fact, we also

tested EA-R-LL and gave us the same results. Moreover, the (1+1)ES introduced in

§5.2 yields the same result (see §6.2.2). Therefore, we conclude that one can safely

claim a time delay of 419.6 days for this quasar, where a time delay of 417 days was

reported on DS1 [49], which is underestimated.

We did not use (1+1)ES neither on artificial data nor on radio data because it

is costlier than any variant of our EA; (1+1)ES requires more iterations. On the

one hand, if g = 50 (the maximum number of generations), then we perform 7,800

evaluations to the fitness function with our EAs because of our elitist strategy. On the

other hand, (1+1)ES converges around 14,000 iterations for different initialisations.

Every iteration corresponds to a fitness evaluation. Therefore, (1+1)ES demands

more computational time (about twice). Since we use the same fitness functions, one

expects to obtain a similar performance to EA.

Nowadays, researchers concentrate on optical data because the data can be gath-

ered with high precision [13, 59, 70, 21]. Therefore, we have empirically proved

through results on DS-5 that EA-M-CV is a promising approach because it is the

most accurate method when the noise is less than 0.106%; see §6.1.2.

Thesis Questions

Following the above conclusions, we recall the first two questions in §1.3: What is the

effect of noise in the time delay estimation? What is the influence of gaps? At the

bottom of Figs. 6.1 and 6.2, one can observe a general trend of increased uncertainty as

the gap size increases. The uncertainty is also proportional to the noise level. Besides,

in Table 6.7 one can see quantitatively a clear increasing tendency on MSE, AE and

σ̂, as the noise increases. Therefore, we conclude that the better the sampling (no

gaps) and the cleaner the data (no noise), the more accurate the time delay estimates.
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Finally, the last question in §1.3: What is the effect of features? This can be

explained by 4 cm and 6*cm data, where the sampling is the same and the error bars

are roughly the same (2% of its flux in both cases). On observed data, the estimates

on these data are similar from all methods and the same from EA-CV (see Table 6.20).

Nevertheless, on MC data, the results are much more different, especially the variance

(σ̂); see Table 6.30. On 6*cm data, the variance is high because the features in the

light curves are smooth; compare Figs. 2.3c and 2.3e. Something similar happens

on optical data because DS1 and DS2 have the same sampling and comparable error

bars, but the variance is high on DS2 regardless of the method (see Table 6.22). This

is due to the features filtered by the r-band filter; also compare Figs. 2.3d and 2.3f.

Moreover, the same phenomenon occurs on artificial data (DS-500 and DS-5). If the

underlying function is smooth1, the variance is high.

7.2 Future Work

Several research directions arise. Here we will introduce some ideas, where in some

cases we have started to explore. Therefore, some of them are more detailed than

others.

7.2.1 Speedup

One of the main concerns of our approach is speedup because data sets of thousands of

samples become intractable. With our approach, we have obtained accuracy though

the time complexity is high; see §4.3 and §5.5.

Since the SVD inversion is O(n3) in (4.17), the straightforward approach is to

speed up this. We use Moore-Penrose inverse through SVD (see §4.2.1), but there

are several methods for matrix inversion [72]. Unfortunately, most of them deal with

square matrices and satisfy certain conditions so few approaches deal with matrices

of the type of ~K in (4.14). Courrieu [16] claims that his method, geninv, can compute

the Moore-Penrose inverse faster than typical methods when n is large. This method

is introduced in the context of RBF networks (see §4.1.3). We tested such a method,

1Here, we mean that the light curve has not sharp events (peaks) with high amplitude.
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but the performance is not good because with this method one cannot deal with

ill-conditioning. In fact, its parameter ‘tol’ involves another parameter [16], which is

not straightforward to set.

Inspired by wavelets theory [72](§13.10), the fast solution of linear systems is

another research direction because Press et al. [72] claims that some linear systems

become a sparse system in the wavelet basis. Moreover, Beylkin et al. [4] argue that

separated representation can reduce the cost of numerical computations for solving

high dimensional linear systems, maintaining the accuracy. They also argue that the

curse of dimensionality is the greatest impediment to computing in higher dimensions;

also see [2].

The Kernel Recursive Least-Squares Algorithm (KRLS), a nonlinear version of

recursive least squares algorithm, is designed for on-line signal processing applications

[22]. KRLS aims to obtain sparsity so it can be used on real-time problems. Since this

algorithm is designed for a single signal, we tested it on a single light curve; image A.

On our artificial data (DS-500), one can obtain sparsity, but the accuracy decreases

when fitting the underlying curve. Furthermore, the time delay estimation involves

two time series, and we fit two curves for a given trial time delay. Therefore, the on-

line approach is not useful because the matrix ~K (4.14) is regenerated with each trial

time delay. We also explored k-means algorithm [36, 35, 55] to select the quantity

of Gaussian kernels in our model (4.6)-(4.7), and for positioning them. But, the

quantity of clusters must be fixed, and when one obtains sparsity, one loses accuracy

in the fitting. This leads to a biased time delay estimation. Nevertheless, sparsity is

a promising topic to speed up our approach, but further research is needed.

Speedup can be also achieved by parallelisation of K-V and EA-M-CV. Cross-

validation can be computed in parallel (see Algorithm 4.1), for instance, distinct

values of variables {λ, ω, l, ∆t} can be computed separately, and then the results

brought together. The same occurs for Algorithm 4.2, where distinct values of ∆t

can be computed separately. Moreover, regarding EA-M-CV, the natural parallel

property of evolutionary algorithms makes it a candidate for parallelisation (e.g., see

[10, 53, 80]).

Since EA-M-CV involves a costly fitness function (see §5.5), one can approximate
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the fitness function by k-nearest neighbour local function approximation [76]. Regis

et al. [76] claims that the number of fitness evaluations can be reduced, consequently

an EA is speeded up. They compared their results with several variants of (γ,ρ)ES

on synthetic and real data – an optimisation problem of groundwater bioremediation

– and they show significant results on their test data (with less than 12 dimensions).

We also tried to evolve all parameters, i.e., the weights ~α in (4.6)-(4.7) and ∆.

This allows us to avoid SVD in (4.17). However, the performance is poor because the

amount of parameters to evolve increases as the number of samples n do. In fact, we

tested this approach with artificial data without noise, and even in this situations the

performance is unsatisfactory. This is due to so many variables because one is only

able to optimise up to 30 dimensions through typical evolutionary approaches [88].

Perhaps, new frameworks would overcome this problem.

7.2.2 Theoretical Analysis

We have shown that our methods perform well on radio and artificial data. However,

we are interested on theoretical proofs so one can compare the performance of meth-

ods, specifically for the time delay estimation, in a theoretical manner regardless of

the type of data (artificial, optical or radio data).

Ongoing research includes asymptotic normality of the time delay estimates from

K-F method. This is inspired by the theory of empirical processes [89], area of

mathematical statistics. Here, the aim is to find the bounds for ~α and ∆ in (4.6)-

(4.7). This work is been carried out in collaboration with Dr. Leila Mohammadi.

7.2.3 Superimposed Light Curves

Imagine that an observer obtain a single light curve rather than two. But, there is

some knowledge that this light curve is gravitational lensed. Therefore, the compo-

nents are two light curves coming from a single source where one is a delayed version

of the other. This problem is called unresolved photometry [62]. The main motivation

is that new gravitational lens systems may be discovered through their time delays,

since the time delay estimation is considered the most unambiguous confirmation of
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the lensing hypothesis [70]. In other words, there are gravitational lens undiscovered

because of the unresolved photometry.

We started to explore this problem by following our model formulation in §4.2.

We model a single light curve (observed data) as

xC(ti) = hC(ti) + εC(ti), (7.1)

where observation errors εC(ti) are modelled as a zero-mean Normal distribution

N(0, σC(ti)), (7.2)

and assumed known, whereas the superimposition of two light curves is given by

hC(ti) = hA(ti) + M ª hB(ti) (7.3)

where hA(ti) and hB(ti) are the underlying curve modelling the source and the de-

layed version of the source, respectively (see §4.2), and ª = {×,−} denotes either

multiplication or subtraction – radio or optical data – respectively.

Given the observed data, ~xC , now the likelihood of our model reads

P (Data|Model) =
n∏

ti=1

p(xC(ti) | ∆, {αj}), (7.4)

where

p(xC(ti) | ∆, {αj}) =
1

2πσ2
C(ti)

exp

{−(xC(ti)− hC(ti))
2

2σ2
C(ti)

}
. (7.5)

The negative log-likelihood (without constant terms) simplifies to

Q =
n∑

i=1

(xC(ti)− hC(ti))
2

σ2
C(ti)

. (7.6)

To avoid extrapolation when we apply a time delay to our underlying curve (4.6),

we do not evaluate the goodness of fit over all observations:

Q =
n∑

u=b1

(xC(tu)− hC(tu))
2

σ2
C(tu)

(7.7)
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where b1 is the index satisfying tb1 ≥ t1 + ∆max.

In order to test the above formulation, we used Gaussian kernels and variable

width as in K-V on DS-500 data. That is, we combine image A and B to obtain

~xC = ~xA + M × ~xB. Then, we apply the above method (7.1)-(7.7) on ~xC , obviously

hiding ~xA and ~xB. We find that our method shows high bias, for instance on DS-

500-5-G-0-N-0 data set, which has no gaps and no noise, we estimate a time delay of

616 days, when the true delay is 500 days (see Fig. 7.1); the range of analysis was

∆ = [400, 700] with k = 3. Because we use a fixed tolerance λ = 0.001, we can see in

Fig. 7.1 discontinuities on the Q curve as we discussed it in §5.3.1.

To find out why there appears high bias, we depict the full reconstructions for a

combined curve ~xC , DS-500-5-G-0-N-0 data set. The parameters are set to λ = 0.001

and k = 3. First, in Fig 7.2a, M is set to its true value 1/1.44 varying ∆; second,

in Fig. 7.2b, ∆ is set to its true value (∆ = 500) varying M . Thus, we found that

our method comes out with good reconstructions for ~xC regardless of the time delay

value and ratio. One expects that the best reconstruction is only when ∆ = 500, but

it does not. In other words, Figure 7.2 suggests that we are not able to recover ~xA

and ~xB with a given ~xC just by measuring the goodness of fit (7.7) between ~xC and

~hC for given ranges of ∆ and M . Consequently, one cannot estimate2 the time delay

accurately.

Therefore, more knowledge needs to be incorporated into the model since a single

time series with observational errors is not enough. This problem remains a matter

open to further research.

7.2.4 Multiple Time Delays

While working with optical data, we found that Goicoechea [26] claims the existence

of multiple time delays in DS1 due to possible flares (supernova events). Therefore,

this is another research line to follow to estimate time delays. It may help to clarify

why one may obtain different estimates for the same quasar as we discussed it in §7.1.

2We did not test those methods described in §3, such as DCF, LNDCF, PRH and Dispersion

spectra, because it is not straightforward to apply them to combined light curves.
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Figure 7.1: Q Curve on Artificial Data Set DS-500-5-G-0-N-0. We use Gaussian

kernels with variable width k = 3, M = 1/1.44 and λ = 0.001. We explore time delay

trials in the range [400, 700] with unitary increments.

7.2.5 Other Applications

The proposed methodology in this thesis (see §4 and §5) can be also applied to other

problems, not only for time series from gravitational lensing. In fact, we have not

applied our approach to other quasars – only to Q0957+561.

The missing data problems cover those cases where instrumental equipment fails,

the observations are incorrectly recorded, weather conditions, sociological factors, etc.

Therefore, the observed data are unevenly sampled. This restricts the use of Fourier

analysis [72](§13.8). When there are missing data, the straightforward approach is

interpolation. However, we have shown in §6.1.1 that interpolation is inaccurate on

irregularly sampled time series since it adds false information about the source; see

also [72](§13.8).

Problems with missing data are in almost all sciences, where the data availability

is influenced by what is easy or feasible to collect; e.g., see [69, 14, 7, 81].

7.3 Chapter Summary

We have drawn the conclusions in §7.1. Comments and conclusions on artificial

and real data are also given separately. Advantages and disadvantages of methods
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were discussed. Several research directions were given in §7.2, where in some cases

preliminary work has been presented. Furthermore, some hints were given with their

respective references.
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Figure 7.2: Reconstructions of Superimposed Light Curves and Their Components

for DS-500-5-G-0-N-0. (a) M is fixed to its true value 1/1.44. The green curves,

for xA, xB and xC, are reconstructions for time delays in the range of 100 to 800

days with increments of 10 days; the red curves are when ∆ = 100, and the blue

curves if ∆ = 800. The black ones when ∆ = 500 (true delay). (b) Here, ∆ is

fixed to 500, and M varies from 0.50 to 1.00 with increments of 0.01; from red curves

to blue curves through green curves passing by the black curves that show the true

value M = 1/1.44 = 0.694. As one can see, in both cases the reconstructions on the

superimposed curve ~xC , at the top, are good reconstructions regardless of the time

delay ∆ and ratio M between ~xA and ~xB.
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Statistical Analysis

Let ∆̂j be a estimated time delay between a pair of light curves, where j = 1, 2, ..., η,

and η is the number of time delay estimates.

The empirical mean is

µ̂ =
1

η

η∑

j=1

∆̂j, (A.1)

and the empirical standard deviation is

σ̂ =

√√√√ 1

η − 1

η∑

j=1

(∆̂j − µ̂)2. (A.2)

The mean squared error is given by

MSE =
1

η

η∑

j=1

(∆̂j − µ0)
2, (A.3)

where µ0 is the true time delay.

The estimators µ̂ and σ̂ are used to measure bias and variance of estimates re-

spectively. Because the MSE is a squared loss function, the MSE can be decomposed

as [3]

MSE = E[(∆̂j − µ0)
2|j]

= [µ̂− µ0]
2 + σ̂2

= Bias2 + V ariance,

(A.4)
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where E[·] denotes the expected value so E[∆̂j|j] = µ̂. Equation (A.4) is known as

the bias-variance decomposition [45, 35]. Therefore, the single estimator MSE deals

with the bias-variance tradeoff.

The average of absolute error is

AE =
1

η

η∑

j=1

|∆̂j − µ0|. (A.5)

To measure the significance of estimates, we mainly use the t-test on a single

population with unknown variance [18, 40], where the t-statistic is given by

T =
µ̂− µ0

σ̂/
√

η
. (A.6)

Thus, we test the hypothesis H0: µ̂ = µ0 in (A.6). This is a two-tailed t-test with

unknown variance. Since T has the Student’s t-distribution with ν = η−1 degrees of

freedom [18], the p-value is the cumulative probability given by its probability density

function so

P(x) = 2
∫ x

−∞

Γ(ν+1
2

)

Γ(ν
2
)

1√
νπ

1

(1 + t2

ν
)

ν+1
2

dt, (A.7)

where Γ(·) is the gamma function1 [17], and if T < 0 then x = T else x = −T .

Therefore, the larger P , the higher the significance; i.e., the confidence in asserting

H0.

Nevertheless, T does not have a t-distribution when the population {∆̂j|j} is

not normal [3]. Since one can never be certain that is exactly normal, the above

formulation is nearly correct even if the population is not far from normal, i.e., it is

robust with the assumption of normality [3]. Moreover, by the Central Limit Theorem

the sample mean is approximately normally distributed if the sample size is not small

[1].

The 95% confidence intervals (CI) for µ̂ are given by µ̂ ± C × σ̂/
√

η, where the

constant C depends on the desired confidence level and the sample size [40]; e.g., see

Table IIIa in [3]. For n = 10, we use C = 2.26, and C = 1.96 for n > 25.

1Γ(n) = (n− 1!) for an integer n, Γ(x + 1) = xΓ(x) and Γ(1/2) =
√

π
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We use both T and P values, even when they are proportional to each other,

because many researchers use only T to measure the statistical significance.

Typically, P is used to test whether or not the hypothesis H0 can be accepted or

rejected under the assumption of normality. Thus, if P < α then the hypothesis is

rejected otherwise accepted, where α is the confidence threshold2. Typical values of α

are 0.05 and 0.01, that is, 95% and 99% of confidence respectively. For our purposes,

we are also interested in P as a measurement of statistical significance; not only for

accepting or rejecting the hypothesis with some significance level.

Some nonparametric tests include sign test and signed-rank test [3, 1]. These tests

are distribution-free; they do not depend on the distribution of estimates {∆̂j|j} as

the t-test does. They are based on the median rather than the mean. Hence, if the

distribution is symmetric then one may obtain similar results to the t-test when the

sample size is not small [3].

2We point out that some authors refer to this threshold as the p-value, e.g., see [93]
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Notation

∆ time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

n quantity of samples in a data set . . . . . . . . . . . . . . . . . . . . . . . . 12

t observational time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

f flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

M ratio or offset between light curves . . . . . . . . . . . . . . . . . . . . . . . 14

TS defines the size of the observational season TS ×∆ . . . . . . . 14

s1 samples per time interval ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

z separation between samples if regular sampling . . . . . . . . . . 14

~σA, ~σB observational errors (std) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

~xA, ~xB observed image A and image B, respectively . . . . . . . . . . . . . 21

∆tij time differences (lags) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

∆τ bin size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

τ bin centre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

P (τ) quantity of observational pairs per bin . . . . . . . . . . . . . . . . . . . 22

~y combined light curve (single time series) . . . . . . . . . . . . . . . . . 23

∆t trial time delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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∆min lower bound for ∆t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

∆max upper bound for ∆t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

χ2(∆t) goodness of fit of PRH method . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Cab covariance model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

V (τab) structure function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A, B parameters of structure function . . . . . . . . . . . . . . . . . . . . . . . . . 24

D2
1, D2

4,2 dispersion spectra methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Θ Bayesian method parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ω width of Gaussian kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

K(·, ·) kernel function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

T training set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

~α kernel weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

λ SVD tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

k parameter for variable width . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40

θ singular values to keep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46

np number of individuals (hypotheses) . . . . . . . . . . . . . . . . . . . . . . 47

ng maximum number of generations . . . . . . . . . . . . . . . . . . . . . . . . 47

η quantity of time delay estimates . . . . . . . . . . . . . . . . . . . . . . . . 109

µ̂ estimated mean over time delay estimates . . . . . . . . . . . . . . 109

σ̂ estimated standard deviation over time delay estimates.. 109

MSE mean squared error over time delay estimates . . . . . . . . . . . 109

µ0 true time delay ∆ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

AE mean of absolute error over time delay estimates . . . . . . . .110

T t-statistic given by t-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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P p-value, cumulative probability . . . . . . . . . . . . . . . . . . . . . . . . . 110
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ing variability in time-delay quasars. Astronomy and Astrophysics, 455:L1–L4,

August 2006.

[61] R.L. Parker. Understanding Inverse Theory. Annual Review of Earth and Plan-

etary Science, 5:35–64, 1977.

[62] J. Pelt. Estimation of time delays from unresolved photometry. In L. J.

Goicoechea, editor, 25 Years After the Discovery: Some Current Topics on

Lensed QSOs, February 2005.

[63] J. Pelt, J. Hjorth, S. Refsdal, R. Schild, and R. Stabell. Estimation of multiple

time delays in complex gravitational lens systems. Astronomy and Astrophysics,

337(3):681–684, 1998.

[64] J. Pelt, R. Kayser, S. Refsdal, and T. Schramm. Time delay controversy on QSO

0957+561 not yet decided. Astronomy and Astrophysics, 286(1):775–785, 1994.

[65] J. Pelt, R. Kayser, S. Refsdal, and T. Schramm. The light curve and the time

delay of QSO 0957+561. Astronomy and Astrophysics, 305(1):97–106, 1996.

[66] J. Pelt, R. Schild, S. Refsdal, and R. Stabell. Microlensing on different timescales

in the light curves of QSO 0957+561 A,B. Astronomy and Astrophysics,

336(3):829–839, 1998.

[67] K.B. Petersen and M.S. Pedersen. The Matrix Cookbook.

http://matrixcookbook.com, Feb 2006.



BIBLIOGRAPHY 122

[68] T. Phienthrakul and B. Kijsirikul. Evolutionary strategies for multi-scale radial

basis function kernels in support vector machines. In Hans-Georg Beyer et al.,

editor, Genetic and Evolutionary Computation Conference (GECCO), volume 1,

pages 905–911, 2005.

[69] F.P. Pijpers. The determination of time delays as an inverse problem - the case

of the double quasar 0957+561. Monthly Notices of the RAS, 289(4):933–944,

1997.

[70] B. Pindor. Discovering Gravitational Lenses through Measurements of Their

Time Delays. Astrophysical Journal, 626:649–656, June 2005.

[71] W.H. Press, G.B. Rybicki, and J.N. Hewitt. The time delay of gravitational lens

0957+561, I. Methodology and analysis of optical photometric data. Astrophys-

ical Journal, 385(1):404–415, 1992.

[72] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical

Recipes in C++: The Art of Scientific Computing. Cambridge University Press,

second edition, 2002.

[73] M.C. Rabello-Soares, S. Basu, and J. Christensen-Dalsgaard. On the choice of

parameters in solar-structure inversion. Monthly Notices of the RAS, 309:35–47,

1999.

[74] S. Refsdal. On the possibility of determining Hubble’s parameter and the masses

of galaxies from the gravitational lens effect. Monthly Notices of the RAS,

128:307–310, 1964.

[75] S. Refsdal. On the possibility of determining the distances and masses of stars

from the gravitational lens effect. Monthly Notices of the RAS, 134:315–319,

1966.

[76] R.G. Regis and C.A. Shoemaker. Local function approximation in evolution-

ary algorithms for the optimization of costly functions. IEEE Transactions on

Evolutionary Computation, 8(5):490–505, 2004.



BIBLIOGRAPHY 123

[77] J.E. Rowe and D. Hidovic. An evolution strategy using a continuous version

of the gray-code neighbourhood distribution. In K. Deb et al., editor, Genetic

and Evolutionary Computation Conference (GECCO), volume 1, pages 725–736.

Springer-Verlag, 2004.

[78] G.B. Rybicki and W.H. Press. Class of fast methods for processing irregularly

sampled or otherwise inhomogeneous one-dimensional data. Physical Review

Letters, 74(1):1060–1063, 1995.

[79] P. Saha. Gravitational Lensing. Encyclopedia of Astronomy and Astrophysics,

2000.

[80] J.G. Sánchez-Velazco. Gendered Selection Strategies for Genetic Algorithms.

PhD thesis, School of Computer Science, University of Birmingham, UK, 2006.

[81] G. Sanguinetti and N. Lawrence. Missing data in kernel pca. In Machine Learn-

ing: ECML 2006, Lecture Notes in Artificial Intelligence (LNAI 4212), pages

751–758. Springer-Verlag, September 2006.

[82] J.A. Scales, M.L. Smith, and S. Treitel. Introductory Geophysical Inverse Theory.

Samizdat Press, 1997. Availabe on line at http://samizdat.mines.edu.

[83] R.E. Schild and D.J. Thomson. The Q0957+561 time delay from optical data.

Astronomical Journal, 113(1):130–135, 1997.

[84] B. Schölkopf. Introduction to Kernel Methods. In Raffaele Cerulli Nello Cristian-

ini and John Shawe-Taylor, editors, The Analysis of Patterns, Erice, Italy, Oct-

Nov 2005. Centre ”Ettore Majorana” for Scientific Culture. http://www.analysis-

of-patterns.net/pdf slides/Bernhard Scholkopf.pdf.

[85] H.P. Schwefel. Evolution and optimum seeking. John Wiley & Sons, 2004.

[86] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, 2004.

[87] W.M. Spears. Evolutionary Algorithms: The role of Mutation and Recombina-

tion. Natural computing. Springer-Verlag, 2000.



BIBLIOGRAPHY 124

[88] Zhenguo Tu and Yong Lu. A Robust Stochastic genetic Algorithm (StGA) for

Global Numerical Optimization . IEEE Transactions on Evolutionary Compu-

tation, 8:456–470, October 2004.

[89] S. A. van de Geer. Empirical Processes in M-Estimation. Cambridge Series in

Statistical and Probabilistic Mathematics. Cambridge Press, 2000.

[90] D. E. Vanden Berk, B. C. Wilhite, R. G. Kron, S. F. Anderson, R. J. Brun-
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