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Abstract

Let G be a simple linear algebraic group over the algebraically closed field k. Assume

p = char k > 0 is good for G and that G is defined and split over the prime field Fp. For

a power q of p, we write G(q) for the Chevalley group consisting of the Fq-rational points

of G. Let F : G→ G be the standard Frobenius morphism such that GF = G(q). Let B

be an F -stable Borel subgroup of G; write U for the unipotent radical of B and u for its

Lie algebra. We note that U and u are F -stable and that U(q) is a Sylow p-subgroup of

G(q).

We study the adjoint orbits of U and show that the conjugacy classes of U(q) are in

correspondence with the F -stable adjoint orbits of U . This allows us to deduce results

about the conjugacy classes of U(q). We are also interested in the adjoint orbits of B in u

and the B(q)-conjugacy classes in U(q). In particular, we consider the question of when

B acts on a B-submodule of u with a Zariski dense orbit.

For our study of the adjoint orbits of U we require the existence of B-equivariant

isomorphisms of varieties U/M → u/m, where M is a unipotent normal subgroup of B

and m = LieM . We define relative Springer isomorphisms which are certain maps of the

above form and prove that they exist for all M .
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Introduction

Let G be a reductive algebraic group over the algebraically closed field k. We write g for

the Lie algebra of G and N for the nilpotent variety of g.

There has been a lot of interest in the nilpotent orbits of G, i.e. the adjoint orbits of

G in N . One of the first results in this direction says that if char k is zero or good for G,

then there are only finitely many orbits of G in N – this was proved by R.W. Richardson

in [56]. This finiteness result was generalized to arbitrary characteristic by D. Holt and

N. Spaltenstein, see [36].

There has also been interest in classifying the nilpotent G-orbits. The Dynkin–Kostant

classification which is based on the Jacobson–Morozov theory is valid for char k zero or

“sufficiently large” and associates to each nilpotent orbit a weighted Dynkin diagram.

This classification was proved for char k = 0 by B. Kostant in [48] using work of E.B.

Dynkin from [21]. The classification was shown to be valid for char k “sufficiently large”

by T.A. Springer and R. Steinberg in [67] (see also [17, 5.6]).

The more well-known classification of the nilpotent G-orbits is the Bala–Carter theory.

This says that the nilpotent orbits correspond to G-conjugacy classes of distinguished

parabolic subgroups of Levi subgroups of G. It was proved for char k zero or “sufficiently

large” by P. Bala and R.W. Carter in [9]. K. Pommerening extended the classification to

char k good for G, see [51] and [52]. Recently, A. Premet gave a more conceptual proof

of the Bala–Carter theory, see [54].

The adjoint orbits of a parabolic subgroup P of G in the Lie algebra of its unipotent

radical, which we denote by pu, are also of interest. One of the first papers about these

orbits, considered the case where pu is abelian; R. Richardson, G. Röhrle and R. Steinberg

showed that in this case P acts on pu with finitely many orbits, see [58]. In [60] this result

was generalized by Röhrle, where he proves that, for P arbitrary, P acts on an abelian

P -submodule of pu with finitely many orbits.

There has been recent interest in the question of when P acts on pu with finitely many

orbits. In [43] V.V. Kashin classified all instances when a Borel subgroup B of G acts on

the Lie algebra of its unipotent radical with finitely many orbits. This classification was
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extended to minimal parabolic subgroups by V. Popov and G. Röhrle in [53]. Then in

[33] and [34] L. Hille and G. Röhrle classified all instances when P acts on pu with finitely

many orbits, for G of classical type. By computer calculations U. Jürgens and G. Röhrle

extended this classification to the exceptional groups in [42].

The question of when P acts on terms p
(l)
u of the descending central series of pu with

finitely many orbits has also been considered. There is a classification of all such instances

for G of classical type due to T. Brüstle, L. Hille and G. Röhrle, see [14] and [15]. This

classification was extended to G of type F4 and E6 by G. Röhrle and the author in [28].

The case G of type G2 is straightforward and follows from work of V. Popov and G.

Röhrle in [53].

Part of Richardson’s dense orbit theorem ([57]) implies that P always acts on pu with a

dense orbit. There has also been interest in the question of when p
(l)
u is a prehomogeneous

space for P , for l ≥ 1. This question was first considered by L. Hille and G. Röhrle in

[35]. For certain parabolic subgroups (including Borel subgroups) of GLn(k) they showed

this is true for all l ≥ 0. However, it is possible to find parabolic subgroups P of GLn(k)

such that P fails to admit a dense orbit in p
(1)
u (see [31] or [35]). Hille considered the case

G = GLn(k) further in [32].

There has been particular interest in the special case when P = B is a Borel subgroup

of G. In [16] H. Bürgstein and W.H. Hesselink considered the adjoint orbits of B in

u = bu; they were motivated by the problem of describing the component configuration of

the variety BX = {B′ ∈ B : X ∈ LieB′}, where B denotes the variety of Borel subgroups

of G and X ∈ g is nilpotent. This variety seems important for the representation theory

of the Weyl group of G and its associated Hecke algebra, see [45, 6.3].

There has been a lot of interest in the conjugacy classes of the unitriangular group

Un(q) = {(xij) ∈ GLn(q) : xij = 0 for i > j and xii = 1}, q = ps for some s ∈ Z≥1. Both

G. Higman and J. Thompson have been interested in the number k(Un(q)) of conjugacy

classes of Un(q). For instance, see the paper of Higman [30] and the preprint of Thompson

[71]. In particular, it is conjectured that k(Un(q)) is a polynomial in q with integer

coefficients.

The conjugacy classes of Un(q) have also been considered by A. Vera-López and J.M.

Arregi, see [72]–[79]. In particular, in [78], they showed that k(Un(q)) is a polynomial in

q with integer coefficients for n ≤ 13 by computer calculation.

G.R. Robinson also considered the conjugacy classes of Un(q) and certain subgroups
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of Un(q) in [59]. The main result in loc. cit. implies that the zeta function

ζUn(t) = exp

(
∞∑
s=1

k(Un(p
s))

s
ts

)

(in C[[t]]) is a rational function in t whose numerator and denominator may be assumed

to be elements of 1 + tZ[t]. This implies that once k(Un(p
s)) is known for a certain finite

number of values of s, it can be calculated for all s.

Further, I.M. Isaacs and D. Karagueuzian considered the conjugacy classes and irre-

ducible complex characters of Un(q). In [39] they showed that not all elements of Un(2)

are conjugate to their inverses, implying that not all characters of Un(2) are real valued.

They also discussed analogous phenomena for odd primes.

Assume that p is good for G and G is defined and split over the prime field Fp. For a

power q of p, we write G(q) for the Chevalley group consisting of Fq-rational points of G.

Let F : G→ G be the Frobenius morphism such that G(q) = GF = {g ∈ G : F (g) = g}.
Let B be an F -stable Borel subgroup of G and U the unipotent radical of B. Then U is

F -stable and U(q) is a Sylow p-subgroup of G(q).

In the special case G = GLn(k), we may take B to be the group of upper triangu-

lar matrices, then U = Un(k). Therefore, the study of the conjugacy classes of U(q)

generalizes the study of the conjugacy classes of Un(q).

In Chapter 3 of this thesis we show that we have the correspondence

F -stable adjoint orbits of U ←→ conjugacy classes of U(q).

Therefore, one can study the conjugacy classes of U(q) through the adjoint orbits of U in

u, and vice-versa.

Consider the commuting variety of u

C(u) = {(x, y) ∈ u× u : [x, y] = 0}.

The geometry of this variety is closely linked to the adjoint orbits of U in u – we choose

not to discuss this relationship here. For G of small rank C(u) has been studied by A.G.

Keeton in his PhD thesis [46]. In [55], A. Premet proved that the commuting variety

C(N ) of N is equidimensional.

There has also been interest in the coadjoint orbits of B in u∗. For example, C. André

has considered the coadjoint orbits of Un(q) and their relationship with the complex

characters of Un(q), see [1]–[7]. It is known that, for char k “sufficiently large”, the
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irreducible characters of U are in correspondence with the coadjoint orbits of U in u∗ and

there is a method for calculating a character from a given coadjoint orbit, see [47] and

[44]. In [23] the author considered the coadjoint action of B on u∗ and showed that B

always acts on u∗ with a dense orbit. This generalized a result of A. Joseph ([41]) from

characteristic zero to arbitrary characteristic.

We now give an outline of the structure of this thesis. In this outline, G is a simple

algebraic group defined and split over F(q), F : G → G the Frobenius morphism such

that G(q) = GF , B a Borel subgroup of G, U the unipotent radical of B and u the Lie

algebra of U . In Chapter 1 we give a brief introduction to the theory of algebraic groups,

then in Chapter 2 we consider Springer isomorphisms and relative Springer isomorphisms.

We discuss Springer isomorphisms in §2.1 and then in §2.2 we define and prove existence

of relative Springer isomorphisms. In Chapter 3 we study the adjoint orbits of U in u.

In particular, we show that any U -orbit in u contains a so-called minimal representative

and present an algorithm for calculating all such representatives. Next in Chapter 4 we

consider the adjoint orbits of B in u. In §4.1 and §4.2 we prove analogues of the results in

Chapter 3 for the adjoint action of B on u. We describe an algorithm which determines

whether B acts on a B-submodule of u with a dense orbit in §4.3, then in §4.4 we give a

classification of all instances when B acts on a term of the descending central series of u

with a dense orbit. In the final chapter we use our results for the adjoint actions of U and

B, from Chapters 3 and 4, to consider the conjugacy classes of U(q) and the conjugacy

classes of B(q) in U(q). Lastly in §5.3 we generalize a result of G.R. Robinson mentioned

above.

Some of the results of this thesis are contained in the four articles [27], [24], [25] and

[26]. More specifically, the results of §2.2 are contained in [25] and [26]. Chapter 3 contains

results from [25]. In §4.1 and §4.2, we present some further results from [25]. The results

in §4.3 are contained in [24] and the results of §4.4 are from [27]. Finally, §5.1 and §5.2

contain further results from [25].
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Notation

We make the following conventions in this thesis.

• An algebraic group means a linear algebraic group.

• By a subgroup of an algebraic group we mean a closed subgroup.

• An action of an algebraic group means a morphic action.

• A representation of an algebraic group means a rational representation.

We fix some notation which we use in Chapters 2 to 5.

LetG be a simple algebraic group over the algebraically closed field k. Assume char k =

p > 0 is good for G and that G is defined and split over the prime field Fp. We denote

the Lie algebra of G by g = LieG; likewise for closed subgroups of G. Lower case Roman

letters are used to denote elements of G and upper case Roman letters are used to denote

elements of g. We write r = rankG for the rank of G and h for the Coxeter number of

G. The unipotent variety of G is denoted by U and the nilpotent variety of g is denoted

by N .

Let q be a power of p. We denote by G(q) the group of Fq-rational points in G and

write F for the Frobenius morphism such that GF = G(q). By an abuse of notation we

also write F for the map induced on g by F . Let B be an F -stable Borel subgroup of G

and let T ⊆ B be an F -stable maximal torus of G. We write U for the unipotent radical

of B and u for the Lie algebra of U . Let Ψ be the root system of G with respect to T ,

Ψ+ the system of positive roots determined by B, Π the corresponding set of simple roots

and N = |Ψ+| = dimU . For a root β ∈ Ψ we choose a parametrization uβ : k → Uβ of the

root subgroup Uβ, then eβ = duβ(1) is a generator for the corresponding root subspace

gβ of g.

We make the assumptions that char k > 0 and that G is simple for convenience.

We note that our results are true for char k = 0 whenever they make sense, i.e. do not

involve the Frobenius morphism. Further, our results remain true for reductive G with

an appropriate restatement; they can be proved by a reduction to the simple components

of G.

Let R be an algebraic group and let V be an R-variety. For r ∈ R and v ∈ V we write

r · v for the image of v under r, R · v = {r · v : r ∈ R} for the R-orbit of v in V and

CR(v) = {r ∈ R : r · v = v} for the stabilizer of v in R.
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Now let V be an R-module. Then V is also a module for r = LieR. For Y ∈ r

and v ∈ V , we write Y · v for the image of v under Y , r · v = {Y · v : Y ∈ r} and

cr(v) = {Y ∈ r : Y · v = 0}.
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Chapter 1

Preliminaries

In this chapter we give a brief introduction to the theory of linear algebraic groups and

prove some general results on algebraic groups. We assume the reader is familiar with

elementary group theory, algebraic geometry, Lie algebras and root systems; we give [8],

[29], [37] and [13] as respective references. As a general reference for the theory of algebraic

groups we refer the reader to the books of Borel [11] and Springer [66]. The material in

§1.1– 1.6 is standard so we do not include references for the results we state.

We now give two pieces of terminology from algebraic geometry which we use in the

sequel. Given an algebraically closed field k, we write An for affine n-space over k and for

a variety V over k we write k[V ] for its ring of regular functions.

1.1 Linear algebraic groups

Let k be an algebraically closed field. A linear algebraic group over k is an affine algebraic

variety G over k which is simultaneously an abstract group such that the maps defining

the group structure, µ : G × G → G with µ(x, y) = xy and ι : G → G with ι(x) = x−1,

are morphisms of algebraic varieties. In the sequel we refer to linear algebraic groups over

k simply as algebraic groups.

A homomorphism of algebraic groups is a map from one algebraic group to another

which is both a morphism of algebraic varieties and a homomorphism of abstract groups.

One can easily define the notions of isomorphism, automorphism, etc. In the sequel

a homomorphism means a homomorphism of algebraic groups unless otherwise stated.

Given two algebraic groups G and H we write Hom(G,H) for the set of homomorphisms

G→ H.

A closed subgroup of G is a subgroup of G which is closed in the Zariski topology. The

algebraic group structure on G induces a structure of an algebraic group on H so that the

inclusion H → G is a homomorphism of algebraic groups. When we talk about subgroups

of algebraic groups in the sequel we always mean closed subgroups.
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Given algebraic groups G and H, we can form their direct product G×H – this is an

algebraic group.

Let G be an algebraic group. As an affine variety G can be decomposed into its

irreducible components. There is a unique irreducible component G0 of G that contains

the identity element 1 called the identity component of G. It is a normal subgroup of

G with finite index. The cosets of G0 in G are the other irreducible components of G.

Therefore, the irreducible components of G coincide with the connected components of G.

So when working with algebraic groups, we may use the words irreducible and connected

interchangeably, we choose to use connected.

Perhaps the most important example of an algebraic group is the general linear group

GLn(k) of invertible n × n matrices over k. This may be considered as an affine variety

by identifying it with the closed subset of kn
2+1 defined by the vanishing of det(Tij)S− 1,

where we write the polynomials in n2 + 1 variables as k[Tij, S] (1 ≤ i, j ≤ n). In the

special case n = 1, we have GL1(k) = Gm is the multiplicative group of the field k.

We now give some important subgroups of GLn(k). We have the group of upper

triangular matrices Bn(k) = {(xij ∈ GLn(k) : xij = 0 if i > j} which has the group of

unitriangular matrices Un(k) = {(xij ∈ GLn(k) : xij = 0 if i > j and xii = 1} as a normal

subgroup. The field k is an algebraic group under addition, we denote this group by Ga

and have an isomorphism U2(k) ∼= Ga.

It may seem more natural for linear algebraic groups to be called “affine algebraic

groups”. The chosen adjective “linear” is justified by the following standard proposition.

Proposition 1.1.1 A linear algebraic group is isomorphic to a subgroup of GLn(k) for

some n ∈ Z≥1.

LetG be an algebraic group and V an algebraic variety. We say thatG acts morphically

on V if G acts on V as an abstract group and the map ν : G×V → V with ν(g, v) = g · v
is a morphism of varieties. In the sequel when we consider an action of an algebraic group

we always mean a morphic action. A variety on which G acts morphically is called a

G-variety. Let V and W be G-varieties. A map φ : V → W is a morphism of G-varieties

if it is a morphism of algebraic varieties and φ(g · v) = g · φ(v) for all g ∈ G and v ∈ V .

We sometimes call a morphism of G-varieties, a G-equivariant morphism. Given v ∈ V
we write CG(v) = {g ∈ G : g ·v = v} for the stabilizer of v in G and G ·v = {g ·v : g ∈ G}
for the G-orbit of v.

Now suppose V is a vector space over k of dimension n <∞. The group GL(V ) can be

given the structure of an algebraic group by fixing a basis of V and identifying GL(V ) with

GLn(k). A homomorphism ρ : G → GL(V ) is called a rational representation of G. In
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the sequel we refer to rational representations simply as representations. A representation

ρ : G → GL(V ) gives rise to an action of G on V defined by g · v = ρ(g)v. The notion

of a representation of G is equivalent to that of a G-module. A G-module is a finite

dimensional vector space V over k on which G acts as linear transformations.

Let G be an algebraic group and H a subgroup of G. The coset space G/H can be

given the structure of an algebraic variety so that the natural map π : G → G/H is a

surjective morphism of varieties. If H is a normal subgroup of G, then G/H is an affine

variety and the structure of G/H as an abstract group gives G/H the structure of an

algebraic group.

Let G be an algebraic group, H a subgroup of G and V a G-module. Then V has a

natural structure of an H-module. A G-submodule of V is a G-stable vector subspace of

V . Given a submodule W of V , the quotient space V/W has a natural structure of a G-

module. Suppose H is a normal subgroup of G, W is a submodule of V and h · v− v ∈ W
for all h ∈ H and v ∈ V . Then the action of G on V/W factors through G/H, giving

V/W the structure of a G/H-module.

1.2 The Lie algebra of an algebraic group

Let G be an algebraic group. We may associate to G a Lie algebra g = Lie(G); we explain

this briefly below.

We recall that a k-derivation of a k-algebra A is a k-linear map δ : A → A such

that δ(ab) = δ(a)b + aδ(b) and we write Der(A) for the space of all k-derivations of A.

We recall that G acts on k[G] as k-algebra isomorphisms by (g · f)(x) = f(g−1x). We

define g to be the subspace of Der(k[G]) consisting of k-derivations δ of k[G] such that

g · (δ(f)) = δ(g · f) for all g ∈ G. The space Der(k[G]) has a natural structure as a Lie

algebra and g is a Lie subalgebra.

One can show that there is a vector space isomorphism from g to T1(G) (the tangent

space of G at the identity), obtained by evaluation at the identity. Therefore, we may

identify g with T1(G).

Let φ : G → H be a homomorphism of algebraic groups and let g and h be the Lie

algebras of G and H respectively. Then φ is a morphism of algebraic varieties so, by

identifying g and h with T1(G) and T1(H), we can take the derivative of φ at the identity

to get a linear map dφ1 : g → h. We write dφ = dφ1 and call it the derivative of φ. The

derivative of φ is a homomorphism of Lie algebras.

Let G be an algebraic group and let H be a subgroup of G. Then h is a Lie subalgebra

of g and if H is a normal subgroup of G, then h is an ideal of g and Lie(G/H) ∼= g/h.

We note that the Lie algebra of GLn(k) is gln(k) so if G is a subgroup of GLn(k), then
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g is a Lie subalgebra of gln(k). Also for a finite dimensional vector space V over k, we

may identify Lie GL(V ) with gl(V ).

Let ρ : G→ GL(V ) be a representation of G. Then dρ : g→ gl(V ) is a representation

of the Lie algebra g. In particular, the action of G on V induces an action of g on V .

Suppose V is a G-module so that it is also a g-module. For X ∈ g and v ∈ V we write

X · v for the image of v under X, cg(v) = {X ∈ g : X · v = 0} and g · v = {X · v : X ∈ g}.

1.3 The conjugation and adjoint actions

Let G be an algebraic group and let g be the Lie algebra of G. We recall that G acts

on itself by conjugation; for x ∈ G we define Intx : G → G by Intx(y) = xyx−1 and we

write x · y for Intx(y). The derivative of Int y is denoted by Adx : g→ g. We can define

a map Ad : G → GL(g); this is a representation of G called the adjoint representation

and we call the associated action of G the adjoint action. We note that if G is a subgroup

of GLn(k) (so g is a Lie subalgebra of gln(k)), then the adjoint action of G is given by

Adx(Y ) = xY x−1, where the product on the right hand side is matrix multiplication. We

can take the derivative of Ad and we get the adjoint representation ad : g→ gl(g).

Let M and N be normal subgroups of G and write m = LieM and n = LieN . The

conjugation action of G on itself induces an action of G on G/M . Suppose this action

factors through G/N . The adjoint action of G on g induces an action of G on g/m and

this action factors through G/N . Further, the action of G/N on g/m induces an action of

g/n on g/m – this action is the one induced by the adjoint action of g on itself. Therefore,

objects such as (G/N) · (X + m), cg/n(X + m) (for X ∈ g) are defined as in §1.1 and §1.2.

Let x ∈ G and let ϕx : G → G · x be the orbit map in the conjugation action.

The map y → ϕx(y)y
−1 = (x, y) = xyx−1y−1 from G to itself has derivative given by

Adx− id : g→ g. Therefore, its kernel is cg(x) = {Y ∈ g : x · Y = Y }. Since translation

is an isomorphism, we conclude that ker(dϕx)1 = cg(x).

Let X ∈ g and let ϕX : G → G · X be the orbit map in the adjoint action. The

derivative of ϕX at the identity is given by (dϕX)1(Y ) = [Y,X]. Therefore, ker(dϕX)1 =

cg(X).

Now let m be a G-submodule of g and consider the action of G on g/m induced by

the adjoint action of G on g. Let π : g→ g/m be the natural map. For any Y ∈ g we can

identify TY (g) = g and TY+m(g/m) = g/m. Then we have dπY = π. Let X ∈ g and let

ϕX+m : G → G · (X + m) be the orbit map of X + m ∈ g/m. We have the factorization

ϕX+m = πϕX , which gives rise to the factorization (dϕX+m)1 = π(dϕX)1. Therefore, we

have (dϕX+m)1(Y ) = [Y,X] + m and ker(dϕX+m)1 = cg(X + m).
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1.4 More on algebraic groups

Let V be a finite dimensional vector space over k and let f : V → V be an endomorphism

of V . We recall that f is said to be semisimple if V has a basis of eigenvectors of f .

We say f is nilpotent if fm = 0 for some m ∈ Z≥1 and we say f is unipotent if f − 1 is

nilpotent.

Let G be an algebraic group. An element x ∈ G is said to be semisimple if ρ(x) is

semisimple for any representation ρ : G → GL(V ). Similarly, x is said to be unipotent if

ρ(x) is unipotent for any representation ρ : G→ GL(V ).

An element X of the Lie algebra of G is said to be semisimple if dρ(X) is semisimple

for any representation ρ : G → GL(V ). Similarly, X is said to be nilpotent if dρ(X) is

nilpotent for any representation ρ : G→ GL(V ).

We say that G is a torus if it is isomorphic to a direct product of copies of Gm. If

G ∼= Gm× · · · ×Gm = Gr
m is a torus, then the rank of G is defined to be r. We note that

all elements of a torus are semisimple. Let V be a module for a torus G. Then we have

a decomposition V =
⊕

γ∈Γ Vγ, where Γ is a finite subset of Hom(G,Gm) whose elements

are called the weights of G on V and Vγ = {v ∈ V : g · v = γ(g)v for all g ∈ G}.
Now let G be any algebraic group. A maximal torus of G is a subgroup of G which is

maximal subject to being a torus. All maximal tori of G are conjugate in G. The rank of

G, denoted by rankG, is the rank of a maximal torus of G.

Given subgroups H and K of G the commutator subgroup (H,K) is the subgroup of

G generated by commutators (h, k) = hkh−1k−1, where h ∈ H and k ∈ K. The derived

series of G is defined as usual and we say G is solvable if the derived series terminates.

The descending central series of G is defined by

G(0) = G and G(i+1) = (G(i), G) for i ≥ 0

and we say G is nilpotent if G(m) = {1} for some m ∈ Z≥1.

Let g be the Lie algebra of G. The descending central series of g is defined by

g(0) = g and g(i+1) = [g(i), g] for i ≥ 0

and we say g is nilpotent if g(m) = {0} for some m ∈ Z≥1. We note that if G is nilpotent,

then g is nilpotent.

A Borel subgroup of G is a maximal connected solvable subgroup of G. All Borel

subgroups of G are conjugate in G. A parabolic subgroup of G is a subgroup which

contains a Borel subgroup.
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We say that G is unipotent if every element of G is unipotent. It is known that if G is

unipotent, then G is nilpotent. The unipotent radical Ru(G) of G is the maximal normal

connected unipotent subgroup of G. We say that G is reductive if Ru(G) = {1}. We note

that G/Ru(G) is reductive for any G.

We say that G is simple if it has no non-trivial proper connected normal subgroups.

1.5 The classification of simple algebraic groups

In this section, we give a brief outline of the classification of the simple algebraic groups.

They are classified by their root system and fundamental group; we discuss this below.

Let G be a simple algebraic group and T a maximal torus of G. The set Ξ =

Hom(T,Gm) has the structure of an abelian group, where addition is defined by (χ +

χ′)(t) = χ(t)χ′(t); it is called the character group of T and is isomorphic to Zr, where r

is the rank of G. We may therefore consider the real vector space E = Ξ⊗Z R.

The adjoint action of G on its Lie algebra g induces an action of T on g. Since T is

a torus we get a decomposition g = cg(T ) ⊕
⊕

β∈Ψ gβ, where cg(T ) = {X ∈ g : t · X =

X for all t ∈ T}, Ψ ⊆ Ξ and gβ = {X ∈ g : t ·X = β(t)X for all t ∈ T}. It turns out that

cg(T ) = t = LieT and that Ψ ⊆ Ξ is a root system, which we call the root system of G

with respect to T . We note that Ψ depends on the choice of T ; however, this dependence

does not effect the isomorphism class of Ψ because all maximal tori of G are conjugate in

G.

We denote the weight lattice of Ψ by Λ and the root lattice of Ψ by Λr. We have the

inclusions Λr ⊆ Ξ ⊆ Λ and Λ/Λr is a finite abelian group. The fundamental group of G is

defined to be π(G) = Λ/Ξ. There are only finitely many possibilities for the fundamental

group of G.

Now we may state the classification of simple algebraic groups.

Theorem 1.5.1 Let G and G′ be simple algebraic groups having isomorphic root systems

and isomorphic fundamental groups. Then G and G′ are isomorphic, unless the root

system is of type Dr and the fundamental group has order 2, in which case there may be

two isomorphism types.

Further, given an irreducible root system Ψ and a quotient π of Λ/Λr, there exists a

simple algebraic group G with root system Ψ and fundamental group π.

Let G be a simple algebraic group, T a maximal torus of G and Ψ the root system

of G with respect to T . Let B ⊇ T be a Borel subgroup of G. The Lie algebra b of B

is a Borel subalgebra of g and we have b = t ⊕
⊕

β∈Ψ+ gβ, where Ψ+ ⊆ Ψ is a system of

positive roots of Ψ. Let Π be the corresponding set of simple roots.
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We recall the height of a root β =
∑

α∈Π bαα ∈ Ψ+ is given by ht(β) =
∑

α∈Π bα. The

standard (strict) partial order ≺ on Ψ+ is defined by: α ≺ β if β − α is a sum of positive

roots. Write % =
∑

α∈Π cαα for the highest root of Ψ. Then we say that p = char k > 0 is

bad for G if p divides cα for some α ∈ Π. We say that p is good for G if it is not bad for

G. The Coxeter number of G is h = ht(%) + 1.

Let G be a simple algebraic group, the isomorphism class of its root system is called

the type of G. Therefore, the simple algebraic groups G and G′ are said to be of the same

type if they have isomorphic root systems. An isogeny σ : G → G′ is an epimorphism

with finite kernel. If σ : G → G′ is an isogeny, then G and G′ have the same type and

kerσ is contained in the centre Z(G) of G.

If G is a simple algebraic group and the fundamental group of G is trivial, then G is

said to be simply connected. If G and G′ are simple algebraic groups of the same type

with G′ simply connected, then there is an isogeny σ : G′ → G called the covering map

of G′. If the fundamental group of G is Λ/Λr, then G is called adjoint.

We now describe the various possibilities for a simple algebraic group G, when p is

zero or good for G. If G is of type A, B, C or D, then we say G is classical and if G is

of type E, F or G, then we say G is exceptional. We note that if G is not of type A and

G′ is a simply connected simple algebraic group of the same type as G, then the covering

map G′ → G is separable, so that g′ ∼= g.

For G of type Ar, the fundamental group is Zr+1 – the cyclic group of order r + 1.

The simply connected group is the special linear group SLr+1(k) and the adjoint group

is PGLr+1(k). There may be other possibilities for G which are neither simply connected

nor adjoint. We recall that the Lie algebra of SLn(k) is given by sln(k) = {X ∈ gln(k) :

trX = 0}, where trX denotes the trace of X. Let G be a simple group of type Ar. We

note that if p does not divide r + 1, then the covering map SLr+1(k)→ G is separable so

that g = sln(k). If p divides r + 1, then the covering map may not be separable and g

may be different from sln(k).

If G is of type Br, then p is good unless p = 2 and the fundamental group of G is Z2.

If G is simply connected, then it is the spin group Spin2r+1(k) and if G is adjoint, then

it is the special orthogonal group SO2r+1(k). For n ∈ Z≥1 we consider the orthogonal

group On(k) = {x ∈ GLn(k) : xJxt = J}, where xt denotes the transpose of x, and J

is the matrix whose (i, j)th entry is 1 if i + j = n + 1 and 0 otherwise. We consider

SOn(k) = On(k) ∩ SLn(k). The Lie algebra of SOn(k) is given by son(k) = {X ∈ gln(k) :

xJ = −Jxt}.
When G is of type Cr, p = 2 is the only bad prime for G and the fundamental group

of G is Z2. The symplectic group Sp2r(k) is the simply connected possibility for G and
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the projective symplectic group PSp2r(k) is the adjoint possibility for G. For n ∈ Z≥1 we

consider the symplectic group Sp2n(k) = {x ∈ GL2n(k) : xJxt = J}, where J is the matrix

whose (i, j)th entry is 1 if i+ j = 2n+1 and i ≤ n, −1 if i+ j = 2n+1 and i ≥ n+1, and

0 otherwise. The Lie algebra of Sp2n(k) is given by sp2n(k) = {X ∈ gl2n(k) : xJ = −Jxt}.
If G is of type Dr, then p is good for G unless p = 2. The fundamental group of G is

of order 4; if r is odd, then it is isomorphic to Z4 and if r is even, then it is isomorphic

to Z2 × Z2. If r is odd there are three possibilities for G. If G is simply connected, then

it is the spin group Spin2r(k), if G is neither simply connected nor adjoint, then it is

the special orthogonal group SO2r(k) and if G is adjoint, then it is the projective special

orthogonal group PSO2r(k). If r is even the there is one further possibility for G which

is neither simply connected nor adjoint – namely the half spin group HSpin2r(k).

Now consider G of exceptional type. If G is of type E6, then 2 and 3 are the bad

primes for G and the fundamental group of G is Z3 so G is either simply connected or

adjoint. If G is of type E7, then 2 and 3 are the bad primes for G and the fundamental

group of G is Z2 so G is either simply connected or adjoint. If G is of type E8, then 2, 3

and 5 are the bad primes for G and the fundamental group of G is trivial so there is only

one possibility for G. If G is of type F4 or G2, then 2 and 3 are the bad primes for G and

the fundamental group of G is trivial so there is only one possibility for G.

1.6 More on simple algebraic groups

Let G be a simple algebraic group, let T be a maximal torus of G and let Ψ be the root

system of G with respect to T .

Let H be a subgroup of G. We say H is (T -)regular if it is normalized by T . In

this case the adjoint action of G on g induces an action of T on h. Then we have

h = (t ∩ h) ⊕
⊕

β∈Ψ(H) gβ, where Ψ(H) ⊆ Ψ. We call Ψ(H) the set of roots of H with

respect to T . Similarly, a subalgebra of g is called regular if it is normalized by T . If h

is a regular subalgebra of g, then we have h = (t ∩ h) ⊕
⊕

β∈Ψ(h) gβ, where Ψ(h) ⊆ Ψ is

called the set of roots of h with respect to T . Clearly, if H is a regular subgroup of G,

then h = LieH is a regular subalgebra of g and Ψ(H) = Ψ(h). In fact, if char k is zero or

good for G, then any regular subalgebra of g is the Lie algebra of a regular subgroup of

G.

Let B ⊇ T be a Borel subgroup of G and write U for the unipotent radical of B. We

have that Ψ+ = Ψ(B) = Ψ(U) is a set of positive roots of Ψ. Also we have a semidirect

product decomposition B = UT .

For β ∈ Ψ we have the root subgroup Uβ of G; this is a one dimensional subgroup of

G with an isomorphism uβ : Ga → Uβ such that tuβ(s)t
−1 = uβ(β(t)s) for all t ∈ T . We
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recall the Chevalley commutator relations in G. For β 6= ±γ:

(uβ(s), uγ(t)) =
∏

iβ+jγ∈Ψ:i,j>0

uδ(cβ,γ,i,js
itj) (1.6.1)

where cβ,γ,i,j ∈ k. For each β ∈ Ψ we choose a generator eβ for the root subspace gβ. We

recall the following relations for the adjoint action. For β 6= ±γ:

uβ(t) · eγ = eγ +
∑

γ+iβ:i>0

bβ,γ,it
ieγ+iβ (1.6.2)

where bβ,γ,i ∈ k. Finally, we recall the Chevalley commutator relations in g. For β 6= ±γ,
if β + γ ∈ Ψ, then

[eβ, eγ] = aβ,γeβ+γ, (1.6.3)

where aβ,γ ∈ k and if β + γ /∈ Ψ, then [eβ, eγ] = 0. Further, if γ − aβ, . . . , γ + bβ is the β

string through γ, then we can choose the eβ so that aβ,γ = ±(a+ 1).

The Chevalley commutator relations imply that if char k is zero or good for G, then

U (l) =
∏

ht(β)>l

Uβ,

so that, for l < m, we may identify U (l)/U (m) as a variety with∏
l<ht(β)≤m

Uβ.

The terms of the descending central series of u have an analogous description.

Now let G be a connected reductive algebraic group. Then G can be decomposed as

a commuting product G = Z(G)G1 · · ·Gs such that each Gi is simple and Gi ∩
∏

j 6=iGj

is finite for each i, and Z(G) is the centre of G. The Gi are the minimal non-trivial

connected normal subgroups of (G,G) so the above decomposition of G is unique and we

call the Gi the simple components of G. Given a maximal torus T of G we may form the

root system Ψ of G as in the case where G is simple. The irreducible components Ψi of

Ψ are the root systems of Gi with respect to T ∩Gi.

In the sequel we consider a simple algebraic group G. We note here that all our

results could be given an appropriate restatement with G reductive; they can be proved

by a reduction to the simple components.

Let P be a parabolic subgroup of G containing the Borel subgroup B of G. Let Ψ+ be
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the system of positive roots of Ψ determined by B and Π the corresponding set of simple

roots. We write Pu for the unipotent radical of P . Let J = {α ∈ Π : −α ∈ Ψ(P )} and let

ΨJ = ZJ ∩ Ψ. Then ΨJ is the root system of the reductive group P/Pu. In particular,

the rank of each of the simple components of P/Pu is less than rankG.

1.7 Some general results on actions of algebraic groups

In this section we give some general results that we shall require later in the thesis.

Let G be an algebraic group G, suppose G acts on the variety V and let v ∈ V . The

following formula is a consequence of [11, Thm. AG.10.1].

dimG · v + dimCG(v) = dimG. (1.7.1)

The proposition below follows easily from [11, Prop. 6.7].

Proposition 1.7.1 Let v ∈ V and let ϕv : G → G · v be the orbit map. The following

are equivalent:

(i) ϕv is separable, i.e. (dϕv)1 : g→ Tv(G · v) is surjective.

(ii) The kernel of (dϕv)1 is contained the Lie algebra of CG(v).

Further, the latter condition holds if and only if dim ker(dϕv)1 = dimCG(v).

Proof: The equivalence follows immediately from [11, Prop. 6.7]. The final statement in

the proposition is true, because the kernel of (dϕv)1 always contains LieCG(v). �

Now we apply Proposition 1.7.1 to the action of G on itself by conjugation. Let

x ∈ G, and let ϕx : G → G · x be the orbit map. We recall from §1.3 that we have

ker(dϕx)1 = cg(x).

Proposition 1.7.2 Let x ∈ G. The following are equivalent:

(i) ϕx is separable.

(ii) cg(x) = LieCG(x).

Further, the latter condition holds if and only if dim cg(x) = dimCG(x).

Next we apply Proposition 1.7.1 to the action of G on g/m, where m is a G-submodule

of g. Let X ∈ g, and let ϕX+m : G→ G · (X + m) be the orbit map. We recall from §1.3

that we have (dϕX)1(g) = [g, X] + m and ker(dϕx)1 = cg(X + m). Therefore, we have

16



Proposition 1.7.3 Let m be a G-submodule of g and let X ∈ g. The following are

equivalent:

(i) ϕX+m is separable, i.e. [g, X] + m = TX(G · (X + m)).

(ii) cg(X + m) = LieCG(X + m).

Further, the latter condition holds if and only if dim cg(X + m) = dimCG(X + m).

The following lemma about a module for a torus is easy to prove.

Lemma 1.7.4 Suppose G is a torus and let V be a module for G. Let λ1, . . . , λl be linearly

independent weights of G on V . Let v1, . . . , vl be eigenvectors of G with weights λ1, . . . , λl

respectively and let x = v1 + · · ·+ vl. Then G · x = {t1v1 + · · ·+ tlvl : t1, . . . , tl ∈ k×}. In

particular, dimG · x = l.

Let G be an algebraic group and V a variety on which G acts. The subvarieties Vi

(i ∈ Z≥0) of V are defined by Vi = {v ∈ V : dimG ·v = i}. The irreducible components of

the Vi are called the sheets of G on V . There are finitely many sheets of G on V and if G

acts on V with finitely many orbits, then the sheets coincide with the orbits. The reader

is referred to [12] for more information on sheets. We can prove the following rigidity

result about the sheets of G on V . This result generalizes the lemma in [62].

Proposition 1.7.5 Let G be a connected algebraic group and let V and W be G-varieties.

Let Z be an irreducible algebraic variety and Φ : Z × V → W a morphism such that for

every z ∈ Z, the map v 7→ Φ(z, v) is an isomorphism of G-varieties. Then for every sheet

S of V the image Φ(z, S) is independent of z ∈ Z.

Proof: It is clear that for every z ∈ Z the isomorphism Φz : v → Φ(z, v) maps Vi to Wi.

Therefore, we may assume that V = Vi and W = Wi. Moreover, the irreducibility of Z

implies that the Φzs map a given irreducible component of V into the same irreducible

component of W . Therefore, we may assume that V and W are irreducible. The result

now follows. �

1.8 Algebraic groups over finite fields

In this section we assume char k = p > 0 and recall some results about algebraic groups

defined over finite fields. We refer the reader to [19, §3] as a general reference for algebraic

groups defined over finite fields and to [11, 18.6 and 18.7] for information about split

groups.
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Let G be an algebraic group over k and assume that G is defined and split over the

finite field of p elements Fp. We recall that G being split over Fp means that there exists

a maximal torus T of G defined over Fp and such that isomorphism T ∼= Gr
m (r = rankG)

is defined over Fp. Let q be a power of p and denote by G(q) the finite group consisting of

Fq-rational points of G. The groups constructed by Chevalley in [18], known as Chevalley

groups are of this form; for this reason G(q) is also called a Chevalley group. We write F

for the Frobenius morphism such that G(q) = GF = {g ∈ G : F (g) = g}. The Frobenius

morphism induces a map on g, which by an abuse of notation we also denote by F .

By Proposition 1.1.1 we may assume G is a closed subgroup of GLn(k). Then we may

further assume that F is given by F (xij) = (xqij) so that G(q) consists of the matrices in

G with entries in Fq.
We recall that a subvariety S of G or g is F -stable if and only if it is defined over Fq,

[19, Prop. 3.3]. If S is F -stable we write SF = {s ∈ S : F (s) = s} this is equal to the

Fq-rational points of S, which we denote by S(q).

Let B be an F -stable Borel subgroup of G – such B exists by [19, 3.15]. Then the

unipotent radical U of B and its Lie algebra u are F -stable and U(q) is a Sylow p-subgroup

of G(q).

Let T ⊆ B be an F -stable maximal torus of G and write Ψ for the root system of

G with respect to T . Since T is split (as it is contained in an F -stable Borel subgroup),

we may choose the isomorphisms uβ : k → Uβ so that the action of F is given by

F (uβ(t)) = uβ(t
q), for each β ∈ Ψ. Then F acts on gβ and this action is given by

F (aeβ) = aqeβ.

Let H be an F -stable subgroup of G and M an F -stable normal subgroup of H. Then

F acts on both H/M and h/m in a natural way. Let X ∈ h. We recall that the set

H1(F,CH(X +m)) is defined to be the set of equivalence classes of CH(X +m) under the

relation ∼, where x ∼ y if there exists z ∈ CH(X + m) such that x = zyF (z)−1. The

following proposition combines parts of [67, I, 2.7 and 2.8].

Proposition 1.8.1

(i) The orbits of H(q) in (H · (X+m))F are in correspondence with the elements of the

set H1(F,CH(X + m)).

(ii) There is a bijection between H1(F,CH(X+m)) and H1(F,CH(X+m)/CH(X+m)0).

In particular, if CH(X + m) is connected, then (H · (X + m))F is a single H(q)-orbit.
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1.9 The unipotent and nilpotent varieties

Let G be a simple algebraic group with r = rankG and let g be the Lie algebra of G.

Assume that char k is zero or good for G. The unipotent variety U of G is defined to be

the variety of all unipotent elements of G and the nilpotent variety N of g is defined to

be the variety of all nilpotent elements of g. Both U and N are irreducible varieties.

R.W. Richardson proved in [56] that U splits up into finitely many G-orbits. Since

U is irreducible, it follows from the general theory of algebraic groups that one of the

G-orbits is open in U . This open orbit U r is called the regular unipotent orbit and x ∈ U r

is called regular unipotent.

Similarly, G acts on N with finitely many orbits ([56]) and therefore, with an open

orbit N r. We call N r the regular nilpotent orbit and X ∈ N r is called regular nilpotent.

Let B be a Borel subgroup of G with unipotent radical U . We write u for the Lie

algebra of U . Let Ψ+ be the system of positive roots determined by B and Π the corre-

sponding set of simple roots.

It follows from the results in [57] that U r ∩ U is a single B-orbit which is open in

U . For x ∈ U r ∩ U we have that dimCG(x) = r and dimCB(x) = r. An element

x =
∏

β∈Ψ+ uβ(λβ) ∈ U is regular unipotent if and only if λα 6= 0 for all α ∈ Π, see [68] or

[67, III, 1.13].

We also have that N r ∩ u is a single B-orbit which is open in u. If X ∈ u is regular

nilpotent, then dimCG(X) = dimCB(X) = r. Further, by [70, 3.7] B is the unique

Borel subgroup of G with X ∈ b. Finally, we note that X =
∑

β∈Ψ+ aβeβ ∈ u is regular

nilpotent if and only if aα 6= 0 for all α ∈ Π see [64] or [67, III, 3.5].

1.10 Unipotent normal subgroups of B

Let G be a simple algebraic group, let B be a Borel subgroup of G and T ⊆ B a maximal

torus of G. Let U be the unipotent radical of B and u its Lie algebra. Write Ψ for the

root system of G with respect to T and Ψ+ for the system of positive roots determined

by B. We recall Ψ+ is partially ordered by ≺ as defined in §1.5.

A subset I of Ψ+ is called an ideal if α ∈ I, β ∈ Ψ+ and α+β ∈ Ψ+ implies α+β ∈ I.
Given an ideal I of Ψ+ an element α ∈ I is called a generator if it is a minimal element of

I with respect to ≺. We write Γ(I) for the set of generators of I; Γ(I) forms an anti-chain

in Ψ+, that is α ⊀ β for all α, β ∈ Γ(I). Further, the map I 7→ Γ(I) is a bijection between

the set of all ideals of Ψ+ and the set of anti-chains in Ψ+. We refer the reader to [50, §1
and §2] for a more detailed account of ideals, anti-chains, etc.

Let N be a unipotent normal subgroup of B. Then N is determined by the ideal
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Ψ(N) of Ψ+. The set of generators of Ψ(N) is given by Γ(Ψ(N)) = Ψ(N) \ Ψ((U,N)).

Conversely, an ideal I of Ψ+ gives rise to the unipotent normal subgroup NI =
∏

β∈I Uβ

of B. Therefore, the sets of unipotent normal subgroups of B, ideals of Ψ+ and antichains

in Ψ+ are in bijective correspondence.

Any B-submodule of u is the Lie algebra of a unipotent normal subgroup of B. There-

fore, we have a correspondence between B-submodules of u, ideals of Ψ+ and antichains

in Ψ+ given by the maps

n 7→ Ψ(n) 7→ Γ(Ψ(n)) = Ψ(n) \Ψ([u, n]).

1.11 Calculating dim cu(X + m)

Let G be a simple algebraic group, B a Borel subgroup of G, U the unipotent radical of

B and u the Lie algebra of U . In this section we discuss a method for calculating the

dimension of the centralizer cu(X + m) where X ∈ u and m is a B-submodule of u.

Let T ⊆ B be a maximal torus of G, let Ψ be the root system of G with respect to T

and let Ψ+ be the system of positive roots determined by B. We choose generators eβ of

the root spaces gβ so that if β, γ ∈ Ψ with β 6= ±γ, β + γ ∈ Ψ and γ − aβ, . . . , γ + bβ

is the β-string through γ, then [eβ, eγ] = ±(a + 1)eβ+γ (see the discussion after (1.6.3)).

By using these relations we reduce the calculation of dim cu(X + m) to linear algebra, as

explained below.

Let m be a B-submodule of u and let X ∈ u. An arbitrary element Y ∈ u can be

written as Y =
∑

β∈Ψ+ yβeβ. Write X + m =
∑

β∈Ψ+\Ψ(m) xβeβ + m. Using the Chevalley

commutator relations (1.6.3), we may calculate [Y,X] + m =
∑

β∈Ψ+\Ψ(m) zβ(yγ)eβ + m,

where zβ is linear in the yγ. Therefore, we see that dim cu(X+m) is equal to the dimension

of the solution space of the system of linear equations zβ = 0, for β ∈ Ψ+ \Ψ(m). Let E

be the (dim u − dim m) × dim u matrix corresponding to this system of equations. Then

dim cu(X + m) is equal to the rank of E; this rank is easily calculated by row reducing E.

Now suppose we have a sequence u = m0 ⊇ · · · ⊇ mN = {0} of B-submodules of u

with dim mi+1 = dim mi−1 and we want to calculate dim cu(X+mi) for each i = 1, . . . , N .

For each i we can find the matrix Ei = E as above. To reduce the amount of computation

one can row reduce each Ei in turn, using the row reduced matrix obtained from Ei−1 to

calculate a row reduced matrix from Ei.

Now suppose X =
∑

β∈∆ eβ (∆ ⊆ Ψ+) is a sum of root vectors. Then we can consider

X ∈ u for any field k. It is clear from the discussion above that the dimension of cu(X+m)

depends only on the characteristic of k and not on the specific field k. We use the notation

dimp cu(X + m) to denote the dimension of cu(X + m) if char k = p. We now explain how

20



one can try to work out dimp cu(X + m) for p > 0 from dim0 cu(X + m). It is clear that

we have dimp cu(X + m) ≤ dim0 cu(X + m) and we have equality if we do not “divide”

by p when row reducing the matrix E (as above) in characteristic zero. Therefore, by

row reducing E in characteristic zero and keeping track of which primes we “divide” by

during this reduction, we can deduce dimp cu(X+m) = dim0 cu(X+m) for all but finitely

many values of p.

1.12 Semisimple automorphisms

Let G be an algebraic group. In this section, we define what it means for an automorphism

of G to be semisimple. We also give some examples which will be important in §4.4.

Let Θ be an automorphism of G. We write θ for the derivative of Θ at the identity. For

a Θ-stable subset S ofG, we denote the fixed points of Θ in S by SΘ = {x ∈ S : Θ(x) = x}.
Similarly, for θ-stable S ⊆ g, we write Sθ = {X ∈ S : θ(X) = X}.

Let Θ be an automorphism of G. We say Θ is a semisimple automorphism if there is

an embedding G ↪→ GLn(k) (for some n) such that Θ is induced from conjugation by a

diagonal matrix in GLn(k).

We note that if Θ is a semisimple automorphism of G with finite order |Θ|, then char k

does not divide |Θ|.
In the following paragraph we assume that char k 6= 2 and give three semisimple

automorphisms that we shall require in §4.4. We refer the reader to [69, §11, pp. 169] for

more details. For the reader’s convenience we give explicit descriptions of the derivatives

of these automorphisms.

There exists a semisimple automorphism Θ of GLn(k) with GLn(k)
Θ = On(k), its

derivative θ is given by θ(xij) = (−xn+1−j,n+1−i). There is a semisimple automorphism

Θ of GL2n(k) such that GL2n(k)
Θ = Sp2n(k), its derivative θ is given by θ(xij) =

(εxn+1−j,n+1−i) where ε = (−1)b
|i−j|

n c+1. Further there exists a semisimple automorphism

Φ of O2n(k) such that O2n(k)
Φ = O2n−1(k), its derivative φ is given by φ(xij) = (yij),

where yij = xin if j = n + 1, yij = xi,n+1 if j = n, yij = xnj if i = n + 1, yij = xn+1,j if

j = n and yij = xij otherwise.

1.13 Prehomogeneous spaces

Let G be an algebraic group and V a G-module. We say V is a prehomogeneous space for

G provided G acts on V with a dense orbit.

We now give two results about prehomogeneous spaces. The first is elementary and

sometimes used without reference.
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Lemma 1.13.1 Let G be an algebraic group and H a normal subgroup of G. Let V be

a G-module and W a G-submodule of V . Suppose h · v − v ∈ W for all h ∈ H, v ∈ V

(so that the action of G on V/W factors through G/H). Suppose V is a prehomogeneous

space for G. Then V/W is a prehomogeneous space for G/H.

Proof: If v ∈ V is a representative of a dense G-orbit in V , then v + W ∈ V/W is a

representative of a dense G-orbit in V/W and thus a representative of a dense (G/H)-

orbit in V/W . �

We use the following result in §4.4.

Theorem 1.13.2 Let G be an algebraic group, Θ a semisimple automorphism of G with

finite order and n a θ-stable G-submodule of g. Suppose there exists X ∈ nθ such that

G ·X is dense in n and the orbit map G→ G ·X is separable. Then GΘ ·X is dense in

nθ and the orbit map GΘ → GΘ ·X is separable.

Proof: It follows from Proposition 1.7.3 that the separability of the orbit map G→ G ·X
implies that TX(G ·X) = [g, X]. We prove the following series of inclusions

TX(GΘ ·X) ⊆ TX((G ·X)θ) ⊆ (TX(G ·X))θ = [g, X]θ ⊆ [gθ, X] ⊆ TX(GΘ ·X).

The last inclusion is clear. To show [g, X]θ ⊆ [gθ, X] we let [Y,X] ∈ [g, X]θ. One

easily checks that if Z = 1
|Θ|
∑|Θ|−1

i=0 θi(Y ), then θ(Z) = Z and [Y,X] = [Z,X] ∈ [gθ, X].

From TX(G · X) = [g, X] it follows immediately that (TX(G · X))θ = [g, X]θ. Since

(G ·X)θ ⊆ G ·X we get that TX((G ·X)θ) ⊆ TX(G ·X). Therefore, to show TX((G ·X)θ) ⊆
(TX(G · X))θ it suffices to show that TX((G · X)θ) is fixed by θ. But (G · X)θ ⊆ nθ, so

TX((G ·X)θ) ⊆ TX(nθ) = nθ. Since nθ is GΘ-stable, we have that GΘ ·X ⊆ (G ·X)θ which

implies the first inclusion.

Since G ·X is dense in n we have TX(G ·X) = n. The series of inclusions above then

implies that TX(GΘ ·X) = nθ and thus that GΘ ·X is dense in nθ. The series of inclusions

also implies that TX(GΘ ·X) = [gθ, X] which by Proposition 1.7.3 implies the orbit map

GΘ → GΘ ·X is separable. �

Let G be an algebraic group, g the Lie algebra of G and n a G-submodule of g. Below

we give a basic strategy for showing that n is a prehomogeneous space for G.

Using (1.7.1), we see that it suffices to show that dimCG(X) = dimG − dim n for

some X ∈ n. Since LieCG(X) ⊆ cg(X), it suffices to show dim cg(X) = dim g− dim n for

some X ∈ n.
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Remark 1.13.3 We make the observation that if we can find such an X, then we have

dim cg(X) = dimCG(X). Then by Proposition 1.7.3, the orbit map g 7→ g ·X from G to

G ·X is separable.

Choose a faithful representation g→ gln(k) for some n. We choose this representation

so that we have natural vector space isomorphisms g ∼= kdim g; so there is some A ⊆
{1, . . . , n} × {1, . . . , n} such that the map (yij) → (ya : a ∈ A) is an isomorphism. Then

we consider g ⊆ gln(k). Let X ∈ n, to find cg(X) we need to look at those Y ∈ g for

which [Y,X] = 0. Let Y = (yij) ∈ g ⊆ gln(k) and consider the yij (for (i, j) ∈ A) as

variables. We see that the condition [Y,X] = 0 is equivalent to a system of dim n linear

equations in the dim g variables yij. The dimension of their solution space is dim cg(X).

To prove that G admits a dense orbit in n, it therefore suffices to find X for which these

equations are independent.
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Chapter 2

Relative Springer isomorphisms

In this chapter we define and prove the existence of relative Springer isomorphisms; this

is done in §2.2. First in §2.1 we discuss Springer isomorphisms. We remind the reader

that in this chapter we use the notation given in the introduction.

2.1 Springer isomorphisms

For char k > 2h− 2 we have a logarithm map from U to N , i.e. we may identify U and N
with their images under the respective adjoint representations of G and g and log : U → N
can be defined formally by its power series expansion, see for example [49, §5.7]. This

logarithm map and its inverse exp : N → U are inverse G-equivariant isomorphisms of

varieties.

For char k ≤ 2h−2 the situation is not so straightforward. For char k ≥ h a “logarithm

map” still exists. A statement of this result can be found in [61, Prop. 5.2], the proof is

attributed to J.-P. Serre. In [65] T.A. Springer proved that if G is simply connected, then

there exists a G-equivariant morphism of varieties U → N which is a homeomorphism

on the underlying topological spaces. This has subsequently been strengthened to the

following result (see [10, Cor. 9.5.4] or [38, 6.20]).

Theorem 2.1.1 If G is of type A assume the covering map SLn(k)→ G is separable.

(i) There exists a G-equivariant isomorphism of varieties φ : U → N .

(ii) φ can be chosen to commute with F .

An isomorphism as in Theorem 2.1.1 is called a Springer isomorphism and gives a

good substitute for the logarithm map for small p.

We now give a brief discussion of how one can prove Springer isomorphisms exist. We

note that the proof given by P. Bardsley and R.W. Richardson in [10] uses a different

argument. Assume for now that G is not of type A – we note that for Propositions 2.1.2
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and 2.1.3, we can drop this assumption. Let Ĝ be an adjoint group of the same type as G

and let σ : G → Ĝ be the covering map. One can check that σ induces an isomorphism

of varieties from the unipotent variety U of G to the unipotent variety Û of Ĝ. Since G

is not of type A, σ is separable, so dσ : g → ĝ is an isomorphism of Lie algebras and

therefore induces an isomorphism of varieties from the nilpotent variety N of G to the

nilpotent variety N̂ of ĝ. It is therefore easy to see that there exists a G-equivariant

isomorphism of varieties U → N if and only if there exists a Ĝ-equivariant isomorphism

of varieties Û → N̂ . So we may assume that G is adjoint. We now have the following

result of Springer from [63].

Proposition 2.1.2 Assume G is adjoint.

(i) Let x ∈ U be regular unipotent. Then CG(x) = CU(x) is connected.

(ii) Let X ∈ u be regular nilpotent. Then CG(X) = CU(X) is connected.

One can use this to prove the following, see [63].

Proposition 2.1.3 Assume G is adjoint. Let x ∈ U be regular unipotent. There exists

a regular nilpotent element X ∈ LieCG(x) and for any such X we have that CG(x) =

CG(X).

Therefore, given x and X as in Proposition 2.1.3 we may define an isomorphism of

varieties. φ : G · x→ G ·X. It is known that the codimension of the complement of G · x
in U is 2 see [68]; similarly the codimension of the complement of G · X in N is 2 ([63]

and [68]). It is known that U is a normal variety, see [67, III, 2.7]. It is also known that,

under our assumptions, N is a normal variety, see [40, 8.5] – this was proved for char 0 by

B. Kostant, then extended to most p by F.D. Veldkamp and these restrictions on p were

removed by M. Demazure. Therefore, the isomorphism φ : G · x → G ·X extends to an

isomorphism φ : U → N , see for example [40, Corollary 8.3].

For G of type A, if the covering map SLn(k) → G is separable, then we may assume

that G = SLn(k). One can easily check that the map y 7→ y−1 is a Springer isomorphism.

Recall that U is the unipotent radical of an F -stable Borel subgroup B of G. Suppose

x ∈ U is regular nilpotent and let φ be a Springer isomorphism. By G-equivariance of φ

we have that φ(x) is regular nilpotent. Now CG(x)0 ⊆ B, therefore, by G-equivariance

of φ, we have that CG(φ(x))0 ⊆ B. Therefore, by the discussion at the end of §1.9 we

see that φ(x) ∈ u and thus B · φ(x) is dense in u. Thus, we have the following standard

corollary of Theorem 2.1.1.
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Corollary 2.1.4

(i) There exists a B-equivariant isomorphism φ : U → u.

(ii) φ can be taken to commute with F .

Proof: The above discussion implies that a Springer isomorphism φ : U → N induces a

B-equivariant isomorphism φ : U → u.

We can remove the assumption on G of type A because the covering map SLn(k)→ G

induces an isomorphism from Un(k) onto its image. �

Let x ∈ U be regular. Then any B-equivariant isomorphism φ : U → u is determined

by φ(x). One can check that φ(x) must be a regular nilpotent element of LieCB(x) =

LieCG(x). Therefore, we see that φ is the restriction of a Springer isomorphism φ : U →
N . In light of the above discussion, an isomorphism as in Corollary 2.1.4 is also called a

Springer isomorphism.

The proof of the existence of Springer isomorphisms shows that they are not unique.

We now discuss a parametrization of Springer isomorphisms due to J.-P. Serre. Given

a subvariety V of G (respectively g) we write V r for the variety of regular unipotent

elements (respectively regular nilpotent elements) in V .

Let x ∈ U r and fix X ∈ (LieCG(x))r. It is clear from the proof of the existence of

Springer isomorphisms that for each y ∈ CU(x)r there is a unique Springer isomorphism

φy,X : U → u with φy,X(y) = X. Moreover, every Springer isomorphism is of the form

φy,X for some y ∈ CG(x)r. Therefore, the Springer isomorphisms are parameterized by

CG(x)r. In [62] J.-P. Serre proved that this parametrization is algebraic in the following

sense.

Proposition 2.1.5 There exists an algebraic morphism Φ : CG(x)r × U → N such that

Φ(y, z) = φy,X(z) for all y ∈ CG(x)r and z ∈ U .

Serre then uses a lemma less general than Proposition 1.7.5 to deduce.

Corollary 2.1.6 The bijection

G-classes of U → G-classes of N

given by a Springer isomorphism φ is independent of the choice of φ.

In the two examples below we describe all Springer isomorphisms when G is of classical

type.
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Example 2.1.7 Consider the case G = SLn(k). Let a = (a1, . . . , an−1) ∈ kn−1 with

a1 6= 0 and define a map ψ : N → U by ψ(Y ) = 1 + a1Y + . . . an−1Y
n−1. One can check

that ψ−1 is a Springer isomorphism and that any Springer isomorphism is of this form.

Example 2.1.8 Let G = {x ∈ SLn(k) : xJxt = J} be a simple group of type B, C or

D as described in §1.5. Let G̃ = SLn(k) and let Ũ and Ñ denote the unipotent variety

of G̃ and nilpotent variety of g̃ respectively. We consider which Springer isomorphisms

Ũ → Ñ restrict to a Springer isomorphism U → N .

Let ψ : Ñ → Ũ , defined by ψ(Y ) = 1+a1Y + . . . an−1Y
n−1 where a = (a1, . . . , an−1) ∈

kn−1 with a1 6= 0, (as in the previous example). For ψ to induce a G-equivariant isomor-

phism N → U we require that:

if Y J = −JY t, then ψ(Y )Jψ(Y )t = J. (2.1.1)

Now we see that if Y J = −JY t, then Y iJ = (−1)iJ(Y t)i for any i. Therefore, (2.1.1) is

equivalent to (
1 +

N−1∑
i=1

aiY
i

)(
1 +

N−1∑
i=1

(−1)iaiY
i

)
= 1. (2.1.2)

We see that the conditions imposed by (2.1.2) allow a free choice for ai if i is odd and,

for i even, determine the value of ai from the values of aj for j < i.

One can check that if a satisfies (2.1.2), then ψ−1 does restrict to a Springer isomor-

phism U → N and also that all Springer isomorphisms are of this form.

As a concrete example of such ψ we may take the Cayley map which is defined by

ψ(Y ) = (1− Y )(1 + Y )−1, see [67, III, 3.14].

2.2 Relative Springer isomorphisms

The principal result of this section is

Theorem 2.2.1 Let φ : U → u be a Springer isomorphism and let M be a unipotent

normal subgroup of B. Then there exists a B-equivariant isomorphism φ̃ : U/M → u/m

such that the diagram

U
φ−−−→ uyπM

yπm

U/M
φ̃−−−→ u/m

commutes, where πM , πm denote the natural maps.
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We call a map φ̃ as in Theorem 2.2.1 a relative Springer isomorphism. This terminology

is justified by the commutative diagram above. We note that if φ̃ : U/M → u/m is an

isomorphism such that the above diagram commutes, then φ̃ is B-equivariant so we could

drop this requirement in the statement. The existence of relative Springer isomorphisms

is crucial for Chapters 3 and 4 where we consider the adjoint orbits of U and B in u.

We now present some results which we require to prove Theorem 2.2.1. Some of our

results concern the action of U on itself by conjugation and have natural analogues for

the adjoint action of U on u. We do not state (or prove) these analogous results but do

refer to them later in this section. We refer to these results by adding a ′ after the number

– so for example, the analogous result to Proposition 2.2.5 is referred to as Proposition

2.2.5′.

We begin with the following lemma.

Lemma 2.2.2 Let M , N be unipotent normal subgroups of B and suppose the action of

U on U/M factors through U/N . Then for y ∈ U , CU(yM) is connected if and only if

CU/N(yM) is connected.

Proof: Let πN : U → U/N be the natural map. It is clear that πN(CU(yM)) = CU/N(yM).

Therefore, πN induces a bijection between the subgroups of CU(yM) containing N and

the subgroups of CU/N(yM). It follows that

|CU(yM) : CU(yM)0| = |CU/N(yM) : CU/N(yM)0|

and the result follows. �

We now consider the centralizer in U and B of a regular unipotent element. The

following two easy lemmas are used to prove Proposition 2.2.5.

Lemma 2.2.3 Let x =
∏

α∈Π uα(1) ∈ U and let M be a unipotent normal subgroup of B.

Then we have the factorization

CB(xM) = CT (xM)CU(xM).

Proof: Let b ∈ CB(xM) and write b = tu with t ∈ T and u ∈ U . The Chevalley

commutator relations (1.6.1) imply that

u · xM = x
∏

ht(γ)≥2

uγ(λγ)M
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where λγ ∈ k. Then

b · xM = (t · x)
∏

ht(γ)≥2

uγ(γ(t)λγ)M.

Since b ∈ CB(xM), we have γ(t)λγ = 0 for all γ ∈ Ψ+ with ht(γ) ≥ 2, which implies

λγ = 0, so that u ∈ CU(xM). �

Lemma 2.2.4 Assume G is adjoint. Let x =
∏

α∈Π uα(1) ∈ U and let M be a unipotent

normal subgroup of B. Then CT (xM) is connected.

Proof: We work by induction on dimM . If Ψ(M) ∩ Π = ∅, then one can see that

CT (xM) = CT (x) = {1}, the latter equality holds, because x ∈ U is regular unipotent

so CG(x) ⊆ U (by 2.1.2). So suppose |Ψ(M) ∩ Π| ≥ 1. Let N ⊆ M be a unipotent

normal subgroup of B with codimension 1 in M . If |Ψ(M) ∩ Π| = |Ψ(N) ∩ Π|, then

we see that CT (xM) = CT (xN). So suppose |Ψ(M) ∩ Π| = |Ψ(N) ∩ Π| + 1 and let

β ∈ (Ψ(M)\Ψ(N))∩Π. Consider the subgroup S = {y ∈ T : y ·uα(1) = uα(1) for all α ∈
Π\{β}}. One can check that S is a torus of rank 1 and that CT (xM) = CT (xN)S. Hence

CT (xM) is connected. �

It follows from the discussion in §1.9 that x ∈ U as in Lemmas 2.2.3 and 2.2.4 is

regular unipotent. Therefore, we get

Proposition 2.2.5 Assume G is adjoint. Let x ∈ U be regular unipotent and let M be a

unipotent normal subgroup of B. If CU(xM) is connected, then CB(xM) is connected.

Lemma 2.2.6 below says that the existence of relative Springer isomorphisms is in-

dependent of the isogeny class of G. We now introduce the notation required for its

statement.

Let σ : G → Ĝ be an isogeny. We write dσ : g → ĝ for the derivative of σ at the

identity. For a subgroup H of G we write Ĥ for the image of H under σ; likewise we

write ĥ = dσ(h). We note that for a unipotent normal subgroup M of B, σ induces an

isomorphism between M and M̂ . Similarly, dσ induces an isomorphism between m and

m̂.

Let φ : U → u be a Springer isomorphism and define

φ̂ = (dσ)φσ−1 : Û → û.
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Then one can see φ̂ is a Springer isomorphism. Assume we have a relative Springer

isomorphism φ̃ : U/M → u/m. Then we may define

˜̂
φ = (dσ)φ̃σ−1 : Û/M̂ → û/m̂

where by an abuse of notation σ : U/M → Û/M̂ is the isomorphism induced from σ. One

can check that
˜̂
φ is a relative Springer isomorphism.

We have proved one direction of the following lemma and the converse is similar.

Lemma 2.2.6 Let φ : U → u be a Springer isomorphism and let M be a unipotent normal

subgroup of B. Then φ induces a relative Springer isomorphism φ̃ : U/M → u/m if and

only if φ̂ induces a relative Springer isomorphism
˜̂
φ : Û/M̂ → û/m̂.

We show in Corollary 2.2.13 that for a unipotent normal subgroup M of B, the ex-

istence of a relative Springer isomorphism U/M → u/m is equivalent to CU(xM) and

CU(X + m) being connected, where x ∈ U is regular unipotent and X ∈ u is regular

nilpotent. We require the following two propositions.

Proposition 2.2.7 Let M be a unipotent normal subgroup of B and let y ∈ B. Then

CB/M(yM) contains an abelian subgroup of dimension r = rank(G).

Proof: Since G is simple, CG(T ) = T , thus CB(T ) = T . Therefore, by [11, 11.10],⋃
b∈B bTb

−1 is dense in B, i.e. the semisimple elements of B are dense in B.

Consider the natural map πM : B → B/M . It is clear that, if z ∈ B is semisimple,

then zM ∈ B/M is semisimple. It follows that the semisimple elements of B/M are dense

in B/M .

Any semisimple element zM ∈ B/M lies in some maximal torus S of B/M . Therefore,

CB/M(zM) contains an abelian subgroup of dimension r – namely S.

Now we adapt Springer’s proof that CG(y) contains an abelian subgroup of dimension

r from [63] (see also [38, Thm. 1.14]) to give the result.

Put R = B/M and let S be a maximal torus of R. Set Vn = R/S × Sn and define a

morphism fn : Vn → Rn by

fn(xS, s1, . . . , sn) = (xs1x
−1, . . . , xsnx

−1).

The image Yn of fn consists of n-tuples of elements belonging to a common maximal

torus. Since these elements commute pairwise the same is seen to be true of any n-tuple

belonging to the closure Zn of Yn. Since R and S are irreducible so is Vn and therefore so

are Yn and Zn.
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In the case n = 1, we have that Y1 is the just the set of semisimple elements of R. We

said above that the semisimple elements of R are dense in R so we have that Z1 = R.

Now define a projection pn : Rn → Rn−1 by pn(x1, . . . , xn) = (x1, . . . , xn−1) and a

section sn : Rn−1 → Rn by sn(x1, . . . , xn−1) = (x1, . . . , xn−1, 1), where 1 denotes the

identity of R. Clearly sn(Yn−1) ⊆ Yn which forces sn(Zn−1) ⊆ Zn. It is also clear that

pn(Yn) ⊆ Yn−1 forcing pn(Zn) ⊆ Zn−1. In fact we have equality here because Zn−1 =

pn(sn(Zn−1)) ⊆ pn(Zn).

Therefore, we have constructed irreducible varieties Zn together with surjective mor-

phisms pn : Zn → Zn−1. If (x1, . . . , xn−1) ∈ Yn−1 these elements lie in a common maximal

torus S ′, so we see that the variety of n-tuples of the form (x1, . . . , xn−1, x) with x ∈ S ′

are in the fibre p−1
n (x1, . . . , xn−1). It now follows from [11, AG Thm. 10.1] that each fibre

of pn has dimension at least r.

Now let x ∈ R be arbitrary and consider all possible n-tuples (x1, . . . , xn) (n ≥ 0) for

which (x, x1, . . . , xn) ∈ Zn+1. Such n-tuples exist: for n = 0 we can take the empty tuple

and use the fact that Z1 = R. Choose such an n-tuple with the centralizer C in CR(x) of

the set {x1, . . . , xn} minimal. Now we let z be such that (x, x1, . . . , xn, z) ∈ Zn+2. Clearly,

C ⊇ CG(x, x1, . . . , xn, z) This means z ∈ C and C centralizes z. The variety of all such z

corresponds to the fibre p−1
n+1(x, x1, . . . , xn) which has dimension at least r and is included

in the abelian subgroup Z(C) of CR(x). �

Corollary 2.2.8 Let M be a unipotent normal subgroup of B and let x ∈ U be regular

unipotent. Then CB/M(xM)0 is abelian and dimCB/M(xM) = r.

Proof: The action of B on U/M factors through B/M and if x ∈ U is regular, then

B·(xM) = (B/M)·(xM) is dense in U/M . Therefore, using (1.7.1) we see that CB/M(xM)

has dimension r. By Proposition 2.2.7, CB/M(xM) has an abelian subgroup of dimension

r. It follows that CB/M(xM)0 is abelian. �

Proposition 2.2.9 Assume G is adjoint. Let x ∈ U be regular unipotent, let X ∈
LieCB(x) be regular nilpotent and let M be a unipotent normal subgroup of B. Assume

CU(xM) and CU(X + m) are connected. Then CB(xM) = CB(X + m).

Proof: Since CB/M(xM) is abelian, by Corollary 2.2.8, Lemma 2.2.2, Proposition 2.2.5

and the assumption that CU(xM) is connected, the adjoint action of B/M on its Lie

algebra is trivial. Since X ∈ LieCB(x), which implies X + m ∈ LieCB/M , we get

CB/M(xM) ⊆ CB/M(X + m).
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Now CU(X + m) is connected by assumption, so CB(X + m) is connected by Proposition

2.2.5. Thus CB/M(X + m) is also connected by Lemma 2.2.2′. Also

dimCB/M(xM) = dimCB/M(X + m) = r

(by Corollaries 2.2.8 and 2.2.8′), so we have that

CB/M(xM) = CB/M(X + m).

Hence, we get CB(xM) = CB(X + m). �

We now prove

Proposition 2.2.10 Let φ : U → u be a Springer isomorphism, let x ∈ U be regu-

lar unipotent, let M be a unipotent normal subgroup of B and set X = φ(x). Assume

CB(xM) = CB(X + m). Then there exists a relative Springer isomorphism φ̃ : U/M →
u/m.

Proof: We have CB(x) = CB(X) and our sketch of a proof of Theorem 2.1.1 implies that

the isomorphism φ : B · x→ B ·X extends to an isomorphism φ : U → u. By assumption

CB(xM) = CB(X + m), so we have an isomorphism φ̃ : B · (xM)→ B · (X + m).

We write

Λ = k[U ] = k[Tβ : β ∈ Ψ+]

for the ring of regular functions of U . By an abuse of notation we also write Λ = k[u] for

the ring of regular functions of u. Then we have

Λ′ = k[B · x] = Λ[T−1
α : α ∈ Π]

and by another abuse of notation we write Λ′ = k[B ·X].

The isomorphism φ : B ·x→ B ·X induces an isomorphism of k-algebras φ∗ : Λ′ → Λ′.

The fact that φ extends to φ : U → u means that φ∗ sends Λ onto Λ.

We also have

ΛM = k[U/M ] = k[Tβ : β ∈ Ψ+ \Ψ(m)]

and ΛM = k[u/m]. Then

Λ′
M = k[B · (xM)] = ΛM [T−1

α : α ∈ Π \Ψ(m)]
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and Λ′
M = k[B · (X + m)]. The isomorphism φ̃ : B · (xM) → B · (X + m) induces an

isomorphism of k-algebras φ̃∗ : Λ′
M → Λ′

M . We get the commutative diagram

Λ′ φ∗−−−→ Λ′xi xi
Λ′
M

φ̃∗−−−→ Λ′
M

where i denotes the natural inclusion. Therefore, as φ∗ sends Λ onto Λ, it follows that φ̃∗

sends ΛM onto ΛM and thus induces an isomorphism ΛM → ΛM . Hence, we see that φ̃

extends to an isomorphism φ̃ : U/M → u/m. �

We need the notation introduced in Definition 2.2.11 below for the proof of Proposition

2.2.12.

Definition 2.2.11 Let φ : U → u be a Springer isomorphism. For y ∈ U and t ∈ k we

define

ytφ = φ−1(tφ(y)).

Let M be a unipotent normal subgroup of B and suppose φ̃ : U/M → u/m is a relative

Springer isomorphism. For y ∈ U and t ∈ k we define

(yM)t
φ̃

= φ̃−1(tφ̃(yM)).

We note that in the notation of Definition 2.2.11 we have (yM)t
φ̃

= ytφM .

Proposition 2.2.12 Let M be a unipotent normal subgroup of B and let φ : U → u be a

Springer isomorphism. Assume there exists a relative Springer isomorphism φ̃ : U/M →
u/m. Then, CU(yM) is connected for all y ∈ U and CU(Y +m) is connected for all Y ∈ u.

Proof: For zM ∈ U/M and t ∈ k, if zM ∈ CU/M(yM), then the B-equivariance (and

therefore U/M -equivariance) of φ̃ implies that (zM)t
φ̃
∈ CU/M(yM) for any t ∈ k. For

t = 0 we have (zM)0
φ̃

= M and for t = 1 we have (zM)1
φ̃

= zM . So M, zM ∈ {(zM)t
φ̃

: t ∈
k}, also {(zM)t

φ̃
: t ∈ k} is isomorphic to A1 as an algebraic variety. Therefore, as A1 is

connected, we see that zM ∈ CU/M(yM)0 and hence that CU/M(yM) is connected. Thus

by Lemma 2.2.2 we see that CU(yM) is connected and we have proved the first part.

The second part of the proposition now follows from the first applied to φ̃−1(Y + m),

noting that CU(Y + m) = CU(φ̃−1(Y + m)) by B-equivariance of φ̃. �

Using Propositions 2.2.9, 2.2.10 and 2.2.12 we can now easily deduce

34



Corollary 2.2.13 Let x ∈ U be regular unipotent, X ∈ u be regular nilpotent, M a

unipotent normal subgroup of B and φ : U → u a Springer isomorphism. There exists a

relative Springer isomorphism φ̃ : U/M → u/m if and only if CU(xM) and CU(X + m)

are connected.

We now introduce a class of unipotent normal subgroups M of B, called QNT-

subgroups, for which we can show that CU(xM) and CU(X + m) are connected for x

regular unipotent and X regular nilpotent.

Definition 2.2.14 An enumeration β1, . . . , βN of Ψ+, such that

(i) βj ⊀ βi for i < j,

(ii) {β1, . . . , βr} = Π and

(iii) ht(βi) < 2 ht(βj)− 1 for r < i < j

is called a QNT-enumeration.

Given a QNT-enumeration β1, . . . , βN of Ψ+ we may form a sequence of subgroups

Mi =
N∏

j=i+1

Uβj
.

Property (i) of Definition 2.2.14 ensures that Mi is a unipotent normal subgroup of B

for all i. The importance of property (ii) will become apparent in the proof of Theorem

2.2.18. We have

mi = LieMi =
N⊕

j=i+1

gβj
.

Definition 2.2.15 Given a QNT-enumeration of Ψ+ the sequence of subgroup Mi as

defined above is called a QNT-sequence of subgroups. A subgroup M of U is called a

QNT-subgroup if it lies in a QNT-sequence of subgroups.

Remark 2.2.16 We give an explanation of the terminology QNT-subgroup. In [25, Defn.

4.1] NT-subgroups were defined. An enumeration β1, . . . , βN of Ψ+ is called an NT-

enumeration if ht(βi) ≤ ht(βi+1) for i = 1, . . . , N − 1. The sequence of subgroups Mi

as defined above is then called an NT-sequence. A subgroup M of U is called an NT-

subgroup if it lies in some NT-sequence of subgroups. One easily sees that if M is an

NT-subgroup, then M is a QNT-subgroup. The terminology NT-subgroup introduced in
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[25] was chosen, because in the case G = SLn(k) and U = Un(k), NT-subgroups look

“Near Triangular”. The “Q” in QNT was chosen to mean “Quite”.

In Theorem 2.2.18 we prove that CU(xM) is connected for x ∈ U regular unipotent if

M is a QNT-subgroup of U . Our starting point is Proposition 2.1.2. First we prove the

following technical lemma.

Lemma 2.2.17 Let x ∈ U be regular unipotent. Then

dimCU(l)(x) = |{γ ∈ Ψ+ : ht(γ) = l + 1}|.

Proof: Using Corollary 2.1.4 we note that it suffices to show that

dimCU(l)(X) = |{γ ∈ Ψ+ : ht(γ) = l + 1}|

for X ∈ u regular nilpotent. We note that

U (l) ·X ⊆ {Y ∈ u : Y −X ∈ u(l+1)}.

The variety on the right hand side of the above expression has dimension |{γ ∈ Ψ+ :

ht(γ) ≥ l+ 2}| and dimU (l) = |{γ ∈ Ψ+ : ht(γ) ≥ l+ 1}|. Therefore, using (1.7.1) we see

that

dimCU(l)(X) ≥ |{γ ∈ Ψ+ : ht(γ) = l + 1}|.

It follows from 1.7.3 that dim cu(l)(X) ≥ dimCU(l)(X). Therefore, it suffices to show that

dim cu(l)(X) = |{γ ∈ Ψ+ : ht(γ) = l + 1}|.

This is contained in [64, §2]. �

Theorem 2.2.18 Let x ∈ U be regular unipotent and let M be a QNT-subgroup of U .

Then CU(xM) is connected.

Proof: We may assume x =
∏

α∈Π uα(1). Let U = M0 ⊇ · · · ⊇ MN = {1} be a QNT-

sequence of subgroups of U and suppose that M = Mi. We work by (reverse) induction

on i to show that CB(xMi) is connected, the base case i = N being Proposition 2.1.2.

So suppose 0 ≤ i < N and CU(xMi+1) is connected, let β = βi+1 and suppose

ht(β) = l. If l = 1, then one can see that CU(xMi) = CU(xMi+1), so assume that l ≥ 2.
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By considering the Chevalley commutator relations (see [66, Prop. 8.2.3]) and condi-

tion (ii) for a QNT-enumeration we see that the action of U on U/Mi factors through

U/U (2l−3). Then by Lemma 2.2.2 we have that CU/U(2l−3)(xMi+1) is connected.

The Chevalley commutator relations imply that

U (l−2) · x ⊆

y ∈ U : y = x
∏

ht(γ)≥l

uγ(λγ) , λγ ∈ k

 .

We denote the variety on the right hand side of the above expression by Al; it is a closed,

irreducible subset of U . Clearly we have

dimAl = |{γ ∈ Ψ+ : ht(γ) ≥ l}|

and we also have

dimU (l−2) = |{γ ∈ Ψ+ : ht(γ) ≥ l − 1}|.

Therefore, by Lemma 2.2.17 and (1.7.1) we see that

dimU (l−2) · x = dimAl.

Since U (l−2) is a unipotent group U (l−2) · x is closed in Al by [11, Prop. 4.10]. Thus, the

irreducibility of Al implies that

U (l−2) · x = Al.

Therefore, we may find

v =
∏

l−1≤ht(γ)≤2l−3

uγ(µγ) ∈ U (l−2)

such that

v · xU (2l−2) = xuβ(1)U
(2l−2).

For t ∈ k define

v(t) =
∏

l−1≤ht(γ)≤2l−3

uγ(µγt).

Since U (l−2)/U (2l−3) is abelian,

V = {v(t)U (2l−3) : t ∈ k}

is a subgroup of U (l−2)/U (2l−3) isomorphic to Ga. We note that the action of U (l−2)
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on U/U (2l−2) factors through U (l−2)/U (2l−3) By considering the Chevalley commutator

relations we see that

V · xU (2l−2) = {yU (2l−2) : y = xuβ(λ), λ ∈ k}.

Let yU (2l−3) ∈ CU/U(2l−3)(xMi). Then

y · xMi+1 = xuβ(µ)Mi+1

for some µ ∈ k. There exists w ∈ V such that

w · xuβ(µ)Mi+1 = xMi+1.

So that

wyU (2l−3) ∈ CU/U(2l−3)(xMi+1).

Therefore,

CU/U(2l−3)(xMi) ⊆ V CU/U(2l−3)(xMi+1).

Hence, as V,CU/U(l−1)(xMi+1) ⊆ CU/U(l−1)(xMi) are connected, we see that

CU/U(2l−3)(xMi) = V CU/U(2l−3)(xMi+1)

is connected. Thus, by Lemma 2.2.2 CU(xMi) is connected. �

Using Theorems 2.2.18 and 2.2.18′, and Corollary 2.2.13 we can easily deduce

Corollary 2.2.19 Let φ : U → u be a Springer isomorphism and let M be a QNT-

subgroup of U . There exists a relative Springer isomorphism φ̃ : U/M → u/m.

In Remark 2.2.20 and Proposition 2.2.21 we give methods for deducing the existence

of a relative Springer isomorphism from the existence of other relative Springer isomor-

phisms.

Remark 2.2.20 Let P be a parabolic subgroup of G containing B. We denote the

unipotent radical of P by Pu and write pu for the Lie algebra of Pu. We write π : P → P/Pu

for the natural map and dπ : p→ p/pu for its derivative. The image B̂ = π(B) is a Borel

subgroup of the reductive group P̂ = π(P ) and Û = π(U) is the unipotent radical of

B̂. For a unipotent normal subgroup M of B containing Pu we write M̂ = π(M) and

m̂ = dπ(m).
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Let ψ : Û → û be a Springer isomorphism, let M be a unipotent normal subgroup of

B and suppose there exists a relative Springer isomorphism ψ̃ : Û/M̂ → û/m̂. We have

isomorphisms

Û/M̂ ∼= U/M and û/m̂ ∼= u/m.

So we get a B-equivariant isomorphism of varieties U/M → u/m. Now one can deduce

(using a strengthened version of Proposition 2.2.12, which can be proved in the same way)

that CU(xM) and CU(X+m) are connected. Hence, by Corollary 2.2.13 given a Springer

isomorphism φ : U → u we get a relative Springer isomorphism U/M → u/m.

Since the rank of each of the simple components P̂ is less than the rank of G, the above

discussion leads to an inductive method for proving the existence of relative Springer

isomorphisms.

Proposition 2.2.21 Let φ : U → u be a Springer isomorphism and let M1, M2 be

unipotent normal subgroups of B. Suppose there exist relative Springer isomorphisms

φ̃i : U/Mi → u/mi (for i = 1, 2). Then there exists a relative Springer isomorphism

φ̃ : U/(M1 ∩M2)→ u/(m1 ∩m2).

Proof: Let x ∈ U be regular unipotent. It is easy to see that CB(x(M1 ∩ M2)) =

CB(xM1)∩CB(xM2). Similarly, CB(X + (m1 ∩m2)) = CB(X + m1)∩CB(X + m2), where

X = φ(x). Since, φ̃i : U/Mi → u/mi are relative Springer isomorphisms, for i = 1, 2, we

have CB(xMi) = CB(X+mi), for i = 1, 2. Hence, CB(x(M1∩M2)) = CB(X+(m1∩m2)).

Therefore, there exists a relative Springer isomorphism φ̃ : U/(M1 ∩M2)→ u/(m1 ∩m2),

by Proposition 2.2.10. �

We are now in a position to prove Theorem 2.2.1.

Proof of Theorem 2.2.1: First suppose G is of type A and let M be a unipotent normal

subgroup of B. By Lemma 2.2.6 we may assume that G = SLn(k) for some n. Then we

may assume U = Un(k). The map x → x − 1 from U to u is a Springer isomorphism

which induces a relative Springer isomorphism for any unipotent normal subgroup of B.

Therefore, by Corollary 2.2.13 we see that CU(xM) and CU(X +m) are connected, where

x ∈ U is regular unipotent, X ∈ u is regular nilpotent and M is a unipotent normal

subgroup of B. Thus, given any Springer isomorphism φ : U → u, we may use Corollary

2.2.13 to deduce that there exists a relative Springer isomorphism φ̃ : U/M → u/m.

Now suppose G is a classical group not of type A. By Lemma 2.2.6 we may assume

G = Spn(k) or G = SOn(k) for some n. Then we may consider G ⊆ H = SLn(k) and

U = G ∩ V where V = Un(k). The Cayley map X 7→ (1−X)(1 +X)−1 from u to U is a
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B-equivariant isomorphism of varieties (see [67, III, 3.14] or Example 2.1.8). Therefore, its

inverse is a Springer isomorphism φ : U → u. Also the inverse of the Cayley map defines

a Springer isomorphism ψ : V → v such that φ = ψ|U . Now let M be any unipotent

normal subgroup of B. Then M be can written as U ∩ N for some unipotent normal

subgroup N of Bn(k) – this can be checked using [69, §11]. By the first part of this proof,

we have a relative Springer isomorphism ψ̃ : V/N → v/n. Also we have isomorphisms

U/M → UN/N and u/m→ (u + n)/n. Then we get the following commutative diagram

UN/N
ψ̃−−−→ (u + n)/nx x

U/M
φ̃−−−→ u/m

where φ̃ is induced from ψ̃. It is straightforward to check that φ̃ is a relative Springer

isomorphism. As in the type A case we may deduce that given any Springer isomorphism

we get relative Springer isomorphisms for all unipotent normal subgroups M of B.

For G of exceptional type we made an (inductive) check that relative Springer isomor-

phisms U/M → u/m exist as described below.

Suppose P is a parabolic subgroup of G. Then P/Pu is a reductive group each of whose

simple components has rank less than that of G. Therefore, the discussion in Remark

2.2.20 implies that we may inductively assume relative Springer isomorphisms exist if M

contains Pu. By Corollary 2.2.19 we also have that relative Springer isomorphisms exist

if M is a QNT-subgroup. This gives us a set of subgroups S for which relative Springer

isomorphisms exist. Using Proposition 2.2.21, we may take intersections of subgroups in

S to get subgroups for which relative Springer isomorphisms exist. By writing a procedure

in the computer algebra language GAP4 [22] we checked that for G of exceptional type

we get all unipotent normal subgroups of B in this way. Although this check was done by

computer we demonstrate in Example 2.2.22 below that it would be possible to do this

by hand. �

Example 2.2.22 In this example we demonstrate how one can show relative Springer

isomorphisms exist. We consider an example in the case G is of type E6. We use the

notation from [13, Planche V] for the roots of the root system of type E6. We recall

the terminology of ideals of Ψ and generators from §1.10. Given a unipotent normal

subgroup M of B we recall that Ψ(M) is an ideal of Ψ and we write Γ(Ψ(M)) for its set

of generators.

We consider the unipotent normal subgroup M of B where Γ(Ψ(M)) = {00110
1
,11100

1
}.
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Clearly, M cannot be dealt with using Remark 2.2.20 and one sees that 11111
0

/∈ Ψ(M) so

that M is not a QNT-subgroup. However, one can check that M = M1 ∩M2 where M1

has one generator, namely 00000
1

and M2 has generators 00110
1

and 11100
0

. We can use Remark

2.2.20 to deduce that (for a Springer isomorphism φ : U → u) we have a relative Springer

isomorphism φ̃1 : U/M1 → u/m1. We can check that M2 is a QNT-subgroup so that

we have a relative Springer isomorphism φ̃2 : U/M2 → u/m2, by Corollary 2.2.19. Then

we may use Proposition 2.2.21 to deduce that there is a relative Springer isomorphism

φ̃ : U/M → u/m.

By considering the commutative diagram in the statement of Theorem 2.2.1 we get

the following corollary.

Corollary 2.2.23 Let φ : U → u be a Springer isomorphism and let M be a unipotent

normal subgroup of B. Then φ(M) = m.

One can easily see that if φ : U → u is a Springer isomorphism which commutes with

F and M is a unipotent normal subgroup of B, then the relative Springer isomorphism

φ̃ : U/M → u/m commutes with F . So we have:

Proposition 2.2.24 Let M be a unipotent normal subgroup of B. There exist relative

Springer isomorphisms φ̃ : U/M → u/m which commute with F .

Corollary 2.1.6 states the bijection between the G-orbits in U and N induced by a

Springer isomorphism is independent of the choice of Springer isomorphism. We now

consider the analogous question for the bijection between the B-orbits in U/M and u/m

induced by a relative Springer isomorphism. In Theorem 2.2.26 below we show that

the bijection between the sheets of B on U/M and u/m induced by a relative Springer

isomorphism is independent of the choice of relative Springer isomorphism. In particular,

this applies to the case M = {1}.
Let x ∈ U r and fix X ∈ (LieCG(x))r. We recall that for each y ∈ CU(x)r there

is a unique Springer isomorphism φy,X : U → u with φy,X(y) = X and every Springer

isomorphism is of the form φy,X for some y ∈ CG(x)r. Given a Springer isomorphism

φy,X and a unipotent normal subgroup M of U , we write φ̃y,X : U/M → u/m for the

corresponding relative Springer isomorphism.

Proposition 2.2.25 There exists a morphism of algebraic varieties Φ̃ : CU(x)r×U/M →
u/m such that Φ̃(y, zM) = φ̃y,X(zM) for every y ∈ CU(x)r and z ∈ U .
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Proof: The proof that Φ (in Proposition 2.1.5) exists given in [62] shows that the map

(y, z) 7→ φy,X(z) from CG(x)r×G ·x to G ·X extends to Φ : CG(x)r×U → N . This means

that the map (y, z) 7→ φy,X(z) from CU(x)r×B ·x to B ·X extends to Φ : CU(x)r×U → u.

Now we may apply arguments similar to those in the proof of Theorem 2.2.1 to show

that the map (y, z) 7→ φ̃y,X(zM) from CU(x)r × B · (xM) to B · (X + m) extends to

Φ̃ : CU(x)r × U/M → u/m. �

We now easily deduce Theorem 2.2.26 from Propositions 2.2.25 and 1.7.5.

Theorem 2.2.26 The bijection between the sheets of B on U/M and u/m given by a

relative Springer isomorphism φ̃ is independent of the choice of φ̃. In particular, if B acts

on U/M with finitely many orbits, then the bijection between the orbits of B in U/M and

u/m induced by φ̃ is independent of φ̃.

Remark 2.2.27 We do not know an example of two relative Springer isomorphism which

induce different bijections on the B-orbits in U/M and u/m. Some calculations for small

rank type A cases (where B acts with infinitely many orbits) show that the bijection of

B-orbits is independent in these cases.
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Chapter 3

The adjoint action of U on u

In this chapter we study the adjoint orbits of U in u. We show that any such orbit contains

a unique so-called minimal representative and we present an algorithm for calculating all

minimal representatives, which only requires linear algebra. We require the existence of

relative Springer isomorphisms for Proposition 3.1.2, which is crucial in this chapter. We

remind the reader that in this chapter we use the notation given in the introduction.

3.1 Orbit maps and centralizers

In this section we consider orbits and centralizers in the action of U on a quotient U/M

of U and a quotient u/m of u, where M is a unipotent normal subgroup of B.

We begin by giving the following immediate consequence of [11, Prop. 4.10].

Lemma 3.1.1 Let M be a unipotent normal subgroup of B.

(i) For y ∈ U , the orbit U · (yM) is closed.

(ii) For Y ∈ u, the orbit U · (Y + m) is closed.

The following proposition strengthens Proposition 2.2.12; it follows from Corollary

2.2.13 and Theorem 2.2.1.

Proposition 3.1.2 Let M be a unipotent normal subgroup of B.

(i) For y ∈ U , the centralizer CU(yM) is connected.

(ii) For Y ∈ u, the centralizer CU(Y + m) is connected.

In Proposition 3.1.4 below we show that the orbit map U → U · (X + m) is separable

for any X ∈ u. We require Proposition 3.1.3 to prove Proposition 3.1.4. In the proofs

of these two propositions we frequently use the equivalent conditions for the separability

of an orbit map given in Propositions 1.7.2 and 1.7.3; this reference is not made in the

proofs.
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Proposition 3.1.3 Let M be a unipotent normal subgroup of B and let x ∈ U . The orbit

map U/M → (U/M) · xM is separable.

Proof: Let φ : U → u be a Springer isomorphism and let φ̃ : U/M → u/m be the

corresponding relative Springer isomorphism. We begin by showing that φ̃−1(cu/m(xM)) =

CU/M(xM). Let Y + m ∈ cu/m(xM). Then xM ∈ CU/M(Y + m) = CU/M(φ̃−1(Y + m))

by U/M -equivariance of φ̃. Therefore, φ̃−1(Y + m) ∈ CU/M(xM), which implies the

inclusion φ̃−1(cu/m(xM)) ⊆ CU/M(xM). A similar argument gives the reverse inclusion.

In particular, we have dim cu/m(xM) = dimCU/M(xM) so that the orbit map U/M →
(U/M) · xM is separable. �

Proposition 3.1.4 Let M be a unipotent normal subgroup of B.

(i) Let x ∈ U . The orbit map U → U · (xM) is separable.

(ii) Let X ∈ u. The orbit map U → U · (X + m) is separable.

Proof: Let x ∈ U . By Proposition 3.1.3, dimCU/M(xM) = dim cu/m(xM). It is clear that

dimCU(xM) = dimCU/M(xM)+dimM and dim cu(xM) = dim cu/m(xM)+dimM . Thus

dimCU(xM) = dim cu(xM) and the orbit map U → U · (xM) is separable, which proves

part (i).

Let φ : U → u be a Springer isomorphism and let φ̃ : U/M → u/m be the correspond-

ing relative Springer isomorphism. Let X ∈ u. The isomorphism φ̃ transforms the orbit

map U → U · φ̃−1(X + m) to the orbit map U → U · (X + m). Since the former map is

separable, so is the latter map. �

The following corollary is proved using arguments from the proof of Proposition 3.1.3.

Corollary 3.1.5 Let φ : U → u be a Springer isomorphism and M a unipotent normal

subgroup of B.

(i) Let x ∈ U . Then φ(CU(xM)) = cu(xM).

(ii) Let X ∈ u. Then φ(CU(X + m)) = cu(X + m).

Proof: Part (i) follows from arguments in the proof of Proposition 3.1.3.

For part (ii) set x = φ−1(X). Proposition 3.1.4 implies LieCU(xM) = cu(xM) and

LieCU(X + m) = cu(X + m). Hence,

φ(CU(X + m)) = φ(CU(xM)) = cu(xM) = LieCU(xM) = LieCU(X + m) = cu(X + m),

the first and fourth equalities holding by U -equivariance of φ and the second from part

(i). �

44



3.2 Minimal representatives

In this section we show that each U -orbit in u contains a minimal representative. We

note that some of the results in this section generalize results of A. Vera-López and J.M.

Arregi from [74].

Fix an enumeration β1, . . . , βN of Ψ+ such that βj ⊀ βi for i < j and define B-

submodules of u by

mi =
N⊕

j=i+1

gβj
.

for i = 0, . . . , N . Then we define ui = u/mi.

We study the orbits of U in u by considering the action of U on successive ui.

Remark 3.2.1 We note that we could consider the U -orbits in any B-submodule n of u

in a similar way. One just chooses an enumeration of Ψ(n) rather than an enumeration

of Ψ+.

Suppose X ∈ u and consider the variety

X + keβi
+ mi = {X + λeβi

+ mi : λ ∈ k} ⊆ ui.

We consider which elements of X+keβi
+mi are U -conjugate in ui. We have the following

lemma, the existence of relative Springer isomorphisms and therefore Proposition 3.1.2

are crucial to its proof.

Lemma 3.2.2 Let X + mi−1 ∈ ui−1. Either

(i) all elements of X + keβi
+ mi are U-conjugate or

(ii) no two elements of X + keβi
+ mi are U-conjugate.

Proof: Let λ ∈ k, and consider the orbit map

ψλ : CU(X + mi−1)→ CU(X + mi−1) · (X + λeβi
+ mi) ⊆ X + keβi

+ mi.

By Proposition 3.1.2, CU(X + mi−1) is connected, thus the image of ψλ is connected.

Further, the image of ψλ is closed by Lemma 3.1.1. Therefore, since X + keβi
+ mi is

isomorphic to A1 as an algebraic variety, we have that imψλ is equal to either {X+λeβi
+

mi} or X + keβi
+ mi. �

Lemma 3.2.2 allows us to make the following definition.
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Definition 3.2.3 Let X ∈ u.

(i) If Lemma 3.2.2(i) holds, then we say i is an inert point of X.

(ii) If Lemma 3.2.2(ii) holds, then we say i is a ramification point of X.

We now define a partial order ≤i (i = 0, 1, . . . , N) on ui.

Definition 3.2.4 Let X, Y ∈ u and let X + mi =
∑i

j=1 ajeβj
+ mi and Y + mi =∑i

j=1 bjeβj
+ mi. Then X + mi <i Y + mi provided there exists l ≤ i such that aj = bj for

j < l and al = 0, bl 6= 0.

The partial order ≤i induces a reflexive, transitive relation on u; we also write ≤i for

this relation. If S is any subset of ui, one can see that S contains ≤i-minimal elements. A

minimal element
∑

j∈J ajeβj
+ mi ∈ S (J ⊆ {1, . . . , i}, aj 6= 0 for all j ∈ J) has as few as

possible non-zero aj, in the sense that there is no Y +mi ∈ S, i′ ≤ i and J ′ $ J∩{1, . . . , i′}
such that Y + mi′ =

∑
j∈J ′ ajeβj

+ mi′ . Similarly, a subset S of u contains ≤i-minimal

elements, which have a description similar to the above.

We note that for X,Y ∈ u, if j ≤ i and X ≤i Y , then X ≤j Y . In particular, if S is a

subset of u (respectively ui) and X (respectively X + mi) is a ≤i-minimal element of S,

then X (respectively X + mj) is a ≤j-minimal element of S.

The next proposition implies that each U -orbit in u contains a unique minimal element

(with respect to the enumeration β1, . . . , βN of Ψ).

Proposition 3.2.5 Let U · (Z + mi) be an orbit of U in ui. There exists a unique ≤i-
minimal element of U · (Z + mi).

Proof: We work by induction on i. If i = 0, then the result is trivial. So assume i > 0

and U · (Z + mi−1) contains a unique ≤i−1-minimal element. Let X =
∑i

j=1 ajeβj
and

Y =
∑i

j=1 bjeβj
be such that X +mi and Y +mi are ≤i-minimal elements of U · (Z +mi).

Then X + mi−1 and Y + mi−1 are ≤i−1-minimal elements of U · (Z + mi−1). Therefore, by

induction X+mi−1 = Y +mi−1 is the unique ≤i−1-minimal representative of U ·(Z+mi−1)

and so aj = bj for j ≤ i − 1. Now if ai 6= bi, then i is an inert point of X so that

X ′+mi =
∑i−1

j=1 ajeβj
+mi ∈ U · (Z+mi). Now X ′+mi ≤i X+mi and X ′+mi ≤i Y +mi.

Therefore, ≤i-minimality of X + mi and Y + mi forces X + mi = X ′ + mi = Y + mi. �

We note that the minimal representatives of the U -orbits in ui do depend on the chosen

order of Ψ+. Also we note that, if X + mi is the minimal representative of its U -orbit in

ui, then X + mi−1 is the minimal representative of its U -orbit in ui−1.

We now describe when an element of ui is the ≤i-minimal element of its U -orbit.
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Lemma 3.2.6 Let X ∈ u. Then X + mi =
∑i

j=1 ajeβj
+ mi is the unique ≤i-minimal

element of its U-orbit in ui if and only if aj = 0 whenever j is an inert point of X.

Proof: We work by induction on i to show that, if X+mi =
∑i

j=1 ajeβj
+mi is the unique

≤i-minimal element of its U -orbit in ui, then aj = 0 whenever j is an inert point of X.

The case i = 0 is trivial.

Let i > 0 and let X +mi =
∑i

j=1 ajeβj
+mi ∈ ui be the unique ≤i-minimal element of

its U -orbit in ui. Then X + mi−1 is the ≤i−1-minimal representative of its U -orbit, so by

induction, aj = 0 whenever j ≤ i− 1 is an inert point of X. If i is a ramification point of

X, then trivially aj = 0 whenever j ≤ i is an inert point of X. If i is an inert point of X,

then X + mi is in the same U -orbit as
∑i−1

j=1 ajeβj
+ mi and thus ≤i-minimality of X + mi

implies that ai = 0.

We now work by induction on i to show that, if X+mi =
∑i

j=1 ajeβj
+mi ∈ ui satisfies

aj = 0 whenever j ≤ i is an inert point of X, then X+mi is the ≤i-minimal representative

of its U -orbit. The base case i = 0 is trivial.

Let i > 0 and suppose X + mi =
∑i

j=1 ajeβj
+ mi ∈ ui satisfies aj = 0 whenever j ≤ i

is an inert point of X. Let Y + mi =
∑i

j=1 bjeβj
+ mi ∈ ui be the ≤i-minimal element

of U · (X + mi). Then Y + mi−1 is ≤i−1-minimal in U · (X + mi−1), so by induction

Y + mi−1 = X + mi−1. If ai 6= bi, then i must be an inert point of X and therefore ai = 0

by assumption. Thus ≤i-minimality of Y + mi implies bi = 0 so X + mi = Y + mi is

≤i-minimal. �

In Proposition 3.2.8 we describe the variety U · (X + mi); in particular, we give its

dimension. We use the following notation in the Proposition 3.2.8.

Definition 3.2.7 Let X ∈ u. The number of inert points of X less than or equal to i is

denoted by ini(X).

Proposition 3.2.8 Let X ∈ u. Then U · (X + mi) is isomorphic as a variety to Aini(X).

In particular, dimU · (X + mi) = ini(X) and dimCU(X + mi) = N − ini(X).

Proof: We work by induction on i. If i = 0, then the result is trivial. Let i > 0 and let

π : ui → ui−1 be the natural map. We recall from the discussion at the end of §1.7 that

for any Y + mi ∈ ui we can identify TY+mi
(ui) = ui and then we have dπY+mi

= π.

First suppose i is a ramification point of X. Then we see that the restriction π :

U · (X + mi)→ U · (X + mi−1) is a bijective morphism. It follows from Proposition 3.1.4

that TX+mj
(U · (X + mj)) = [u, X] + mj (for j = i − 1, i) and therefore that dπX+mi

=

π : [u, X] + mi → [u, X] + mi−1 is surjective. Hence, π : U · (X + mi) → U · (X + mi−1)
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is separable and thus an isomorphism, (this can be proved in the same way as [66, Thm.

5.3.2(iii)]) so that U · (X + mi) ∼= Aini(X).

So suppose i is an inert point of X. Then we can define a map

θ : U · (X + mi)→ U · (X + mi−1)× A1

by

θ

(
i−1∑
j=1

bjeβj
+ ceβi

+ mi

)
=

(
i−1∑
j=1

bjeβj
+ mi−1, c

)
.

We can see that θ is an isomorphism and it follows that U · (X + mi) ∼= Aini(X).

We now trivially have the equality dimU · (X + mi) = ini(X) and the equality

dimCU(X + mi) = N − ini(X) follows from (1.7.1). �

3.3 An algorithm for calculating minimal representatives

We retain the notation from the previous section. Our results of the previous section lead

to an algorithm for determining the U -orbits in u, by finding all minimal representatives

of the U -orbits in u. We outline this algorithm below.

0th step: There is one U -orbit in u0, its ≤0-minimal representative is 0 + m0.

ith step: Suppose we know the ≤i−1-minimal representatives of all the U -orbits in ui−1. We

wish to determine the ≤i-minimal representatives of all the U -orbits in ui.

By Lemma 3.2.6, X + mi =
∑i

j=1 ajeβj
+ mi is the ≤i-minimal representative of its

U -orbit, if X + mi−1 is the ≤i−1-minimal representative of its U -orbit and ai = 0 in

case i is an inert point of X. Using Proposition 3.1.4 we see that we can determine

whether i is an inert or ramification point of X by calculating dim cu(X+mi) – this

can be reduced to linear algebra, as explained in §1.11.

Therefore, we can determine all the ≤i-minimal representatives of U -orbits in ui

by calculating dim cu(X + mi) for each X such that X + mi−1 is a ≤i−1 minimal

representative of its U -orbit in ui−1.

After the Nth step we will have calculated all the orbits of U in u.

We illustrate this algorithm when G is of type B2 and A3 in the examples below.

Example 3.3.1 We illustrate the calculation of the U -orbits in u when G is of type B2.

We note that this example was given in [16, p. 29]. Since the structure of the U -orbits
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is quite simple in this case, the algorithm of Bürgstein and Hesellink (presented in [16])

gives the same result as our algorithm, see Remark 3.3.3. We consider G = Sp4(k) =

{x ∈ GL4(k) : xtJx = J}, where

J =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 .

We take the upper triangular matrices in G to be the Borel subgroup B and T to be

the diagonal matrices in G. Then u consists of the strictly upper triangular matrices in

g, i.e. matrices of the form 
0 a b c
0 0 d b
0 0 0 −a
0 0 0 0

 .

Using the notation of [13, Planche II] the positive roots of G are

β1 = 01, β2 = 10, β3 = 11, β4 = 12.

We use the above enumeration of Ψ+. Then the mi are as depicted below where we only

show the (1, 2)th, (1, 3)th, (1, 4)th and the (2, 3)th entries.

m0 =
k k k
k

, m1 =
0 k k
k

, m2 =
0 k k

0
,

m3 =
0 0 k

0
, m4 =

0 0 0
0

.

So for example, m2 consists of matrices of the form
0 0 b c
0 0 0 b
0 0 0 0
0 0 0 0

 .

Figure 3.1 is a tree which illustrates the calculation of the U -orbits in u, using the al-

gorithm described above. The ith row (i = 0, 1, 2, 3, 4) shows the minimal representatives
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of the U -orbits in ui. We only show the (1, 2)th, (1, 3)th, (1, 4)th and the (2, 3)th entries

of these minimal representatives. The entry k× means that one can take any non-zero

element of k and the entry ∗ means that the entry is factored out. An edge is drawn

between minimal representatives of the form X + mi−1 and X + mi. So there are two

edges coming from a minimal representative X + mi−1 if i is a ramification point of X

and one edge if i is an inert point of X.

The most interesting feature of the tree is that there are two edges coming from

0 0 ∗
k×

,

meaning that 4 is a ramification point of

0 0 0
λ

for any λ ∈ k×. This is because “Uβ2 has been used to make the coefficient of eβ3 zero so

it cannot also be used to make the coefficient of eβ4 zero”.
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Example 3.3.2 We now give an example of part of the calculation of the U -orbits in u

in case G is of type A3. We take G = SL4(k), U = U4(k) and T to consist of the diagonal

matrices in G. Then u consists of strictly upper triangular matrices in gl4(k). Using the

notation from [13, Planche I] the positive roots of G are

β1 = 100, β2 = 010, β3 = 001, β4 = 110, β5 = 011, β6 = 111.

We use the above enumeration of Ψ+. The submodules mi are then as depicted below

where we show only the entries above the diagonal:

m0 =
k k k

k k
k
, m1 =

0 k k
k k

k
, m2 =

0 k k
0 k

k
, m3 =

0 k k
0 k

0
,

m4 =
0 0 k

0 k
0
, m5 =

0 0 k
0 0

0
, m6 =

0 0 0
0 0

0
.

Due to space restrictions we only show, in Figure 3.2 the branch of the tree illustrating

the calculation of the U -orbits (as explained in the previous example) from the 2nd row

of the tree beginning with

k× ∗ ∗
0 ∗
∗
.

The most interesting point in the tree is at

k× 0 ∗
0 ∗

k×
,

where there are two edges, meaning that 5 is a ramification point of

λ 0 ∗
0 0

µ

for any λ, µ ∈ k×. This is because “Uβ2 has been used to make the coefficient of eβ4 zero

so it cannot also be used to make the coefficient of eβ5 zero”.
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Remark 3.3.3 We note that the orbits of U on u are more complicated when the rank of

G is large. There exist instances where there is a subset J ⊆ {1, . . . , i−1} and aj, bj ∈ k×

(j ∈ J) such that i is an inert point of
∑

j∈J ajeβj
and a ramification point of

∑
j∈J bjeβj

,

see [74, §3 Ex. 1].
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Chapter 4

The adjoint action of B on u

In this chapter we discuss the adjoint B-orbits in u. We show as in the previous chapter,

that each B-orbit contains a unique minimal representative and give an algorithm for

calculating all such representatives. We also describe the geometry of a B-orbit in u.

Further, we discuss an algorithm which determines whether B acts on a B-submodule

of u with a dense orbit. We also consider the question of when u(l) is a prehomogeneous

space for B. We remind the reader that in this chapter we use the notation given in the

introduction.

4.1 Minimal representatives

We choose an enumeration β1, . . . , βN of Ψ+ and define mi and ui as in §3.2. We study

the B-orbits in u by considering the B-orbits in successive uis.

Remark 4.1.1 As in Remark 3.2.1 we note that we could consider the B-orbits in any

B-submodule n of u in a similar way.

We define a partial order ≤Bi on ui as follows.

Definition 4.1.2 Let X, Y ∈ u and let X + mi =
∑i

j=1 ajeβj
+ mi and Y + mi =∑i

j=1 bjeβj
+ mi. Then X + mi <

B
i Y + mi provided there exists l ≤ i such that aj = bj

for j < l, and al = 0, bl 6= 0, or al = 1, bl 6= 0, 1 and βl is linearly independent of

{βj : j < l and aj 6= 0}.

This partial order is defined so that X + mi =
∑i

j=1 ajeβj
+ mi is ≤Bi -minimal in

its B-orbit in ui if it is ≤i-minimal in its U -orbit and “as many as possible coefficients

are normalized to 1”. This means that if al 6= 0, and βl is linearly independent of

{βj : j < l and aj 6= 0} (so that al can be normalized to 1), then al = 1.

We can now prove the following analogue of Proposition 3.2.5.
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Proposition 4.1.3 Let B · (Z + mi) be an orbit of B in ui. There exists a unique ≤Bi -

minimal element of B · (Z + mi).

Proof: This can be proved by induction as for Proposition 3.2.5. We only need to note

that if, in the induction step, i is a ramification point of X and X+mi =
∑i

j=1 ajeβj
+mi

is in the same B-orbit as X + λeβi
+ mi (for some λ 6= 0), then βi is linearly independent

of {βj : j < i and aj 6= 0} and so we may assume ai = 1, by Lemma 1.7.4. �

In the next two results we consider the centralizer of a minimal representative of a

B-orbit in ui. We require the following definition.

Definition 4.1.4 Let X =
∑

β∈Ψ+ aβeβ. The support of X is defined to be supp(X) =

{β ∈ Ψ+ : aβ 6= 0} and we write suppi(X) = supp(X) ∩ {β1, . . . , βi}. We denote by

liri(X) the maximal size of a linearly independent subset of suppi(X).

Proposition 4.1.5 Let X + mi ∈ ui be the ≤Bi -minimal representative of its B-orbit.

Then we have the factorization CB(X + mi) = CU(X + mi)CT (X + mi).

Proof: Let J = {j : βj ∈ suppi(X)} and write X + mi =
∑

j∈J ajeβj
+ mi. Let b ∈

CB(X + mi). We may write b = ut where u ∈ U and t ∈ T . We have t · (X + mi) =∑
j∈J βj(t)ajeβj

+ mi. Suppose t /∈ CT (X + mi) and let j ∈ J be minimal such that

βj(t) 6= 1. Since aj 6= 0, j is a ramification point of X by Lemma 3.2.6. But

u · (X + (βj(t)− 1)ajeβj
+ mj) = X + mj

which implies that j is an inert point of X. This contradiction means that t ∈ CT (X+mi).

Therefore, we also have u ∈ CU(X + mi) and hence b ∈ CU(X + mi)CT (X + mi). �

Proposition 4.1.6 Let X + mi ∈ u be the minimal representative of its B-orbit. Then

dimCB(X + mi) = N + r − ini(X)− liri(X) and dimB · (X + mi) = ini(X) + liri(X).

Proof: Given the factorization CB(X + mi) = CU(X + mi)CT (X + mi), the equality

dimCB(X + mi) = N + r − ini(X) − liri(X) follows from Lemma 1.7.4 and Proposition

3.2.8. Then (1.7.1) implies that dimB · (X + mi) = ini(X) + liri(X). �

In Proposition 4.1.10 we describe the geometry of B · (X + mi) for X ∈ u. We require

a separability condition which we get from the next two lemmas.
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Lemma 4.1.7 Suppose for any linearly independent subset ∆ of Ψ+ we have [t, Y ] =⊕
β∈∆ gβ, where Y =

∑
β∈∆ eβ. Then for any X ∈ u and i = 1, . . . , N , the orbit map

B → B · (X + mi) is separable.

Proof: Suppose the condition in the statement of the proposition holds and let X ∈
u. We may assume X + mi is the ≤Bi -minimal representative of its B-orbit. Using

Proposition 1.7.3 it suffices to prove that dim([b, X] + mi) = dimB · (X + mi). It is

straightforward to prove the above equality of dimensions, using Proposition 4.1.6 and

the proof of Proposition 3.2.8. �

We recall that the weight lattice of Ψ is denoted by Λ and the root lattice of Ψ is

denoted by Λr. We refer the reader to [37, 13.1] for the cardinality of |Λ/Λr|.

Lemma 4.1.8 Suppose p does not divide |Λ/Λr|. Let ∆ be a linearly independent subset

of Ψ and Y =
∑

β∈∆ eβ. Then [t, Y ] =
⊕

β∈∆ gβ.

Proof: The condition on p means that we may choose a basis {Zα : α ∈ Π} of t such that

[Zα, eβ] = δα,βeβ for α, β ∈ Π. It follows that the dimension of [t, Y ] is the dimension of

the Fp-vector space ∑
β∈∆

Zβ ⊗Z Fp.

Since ∆ is a linearly independent subset of Ψ and p is good for G, [67, 4.3] implies that the

dimension of the above space is |∆|. The result now follows, because [t, Y ] ⊆
⊕

β∈∆ gβ.

�

Remark 4.1.9 We note that under the assumption that p is good for G, the only cases

where p divides |Λ/Λr| are when G is of type Ar and p divides r + 1. In this case

we may replace G by GLr+1(k) and B by Br+1(k) without affecting u or B · X. With

B = Br+1(k), X ∈ u and m a B-submodule of u, we see that CB(X + m) consists of the

invertible elements of cb(X + m). It follows from Proposition 1.7.3 that the orbit map

B → B · (X + m) is separable.

In the statement of Proposition 4.1.10 we also use the notation A1
0 = A1 \ {0} and An

0

is the direct product of n copies of A1
0.

Proposition 4.1.10 Let X + mi =
∑i

j=1 ajeβj
∈ ui be the ≤Bi -minimal representative in

it B-orbit. Then B · (X + mi) is isomorphic as a variety to Aini(X) × Aliri(X)
0 .
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Proof: As discussed in Remark 4.1.9 if G is of type Ar and p divides r+1 we may replace

B by Br+1(k). Therefore, by Lemmas 4.1.7 and 4.1.8 and Remark 4.1.9, we may assume

that the orbit maps B → B ·(X+mj) are separable for j = 1, . . . , i. We work by induction

on i. The base case i = 0 is trivial so assume i ≥ 1 and the result holds for i − 1. Let

π : ui → ui−1 be the natural map.

If i is an inert point of X or i is a ramification point of X and βi is linearly dependent

on suppi−1(X), then the separability of the orbit maps B → B · (X + mj) means we may

argue as in Proposition 3.2.8. Further, if i is a ramification point of X, and βi is linearly

independent of suppi−1(X) and ai = 0, then we can argue as in Proposition 3.2.8.

So suppose i is a ramification point of X, βi is linearly independent of suppi−1(X) and

ai = 1. Let Y =
∑i−1

j=1 ajeβj
. A consequence of the above discussion is that the restriction

of π to B ·(Y +mi) is an isomorphism. This implies that there exists f ∈ k[B ·(X+mi−1)]

such that for any
∑i

j=1 bjeβj
+ mi ∈ B · (Y + mi) we have f(

∑i−1
j=1 bjeβj

+ mi−1) = bi. We

can define a map

θ : B · (X + mi)→ B · (X + mi−1)× A1
0

by

θ

(
i−1∑
j=1

bjeβj
+ ceβi

+ mi

)
=

(
i−1∑
j=1

bjeβj
+ mi, c− f(

i−1∑
j=1

bjeβj
+ mi−1)

)
.

One can check that this is an isomorphism so that B · (X + mi) ∼= Aini(X) × Aliri(X)
0 . �

4.2 An algorithm for calculating minimal representatives

The algorithm given in Section §3.2, to determine the adjoint U -orbits in u, has a natural

modification to give an algorithm that calculates the minimal representatives of the B-

orbits in u. We outline this algorithm below.

0th step: There is one B-orbit in u0, its ≤B0 -minimal representative is 0 + m0.

ith step: Suppose we know the ≤Bi−1-minimal representatives of all the B-orbits in ui−1. We

wish to determine the ≤Bi -minimal representatives of all the B-orbits in ui.

By Lemma 3.2.6, X + mi =
∑i

j=1 ajeβj
+ mi is the ≤Bi -minimal representative of

its B-orbit, if X + mi−1 is the ≤Bi−1-minimal representative of its B-orbit, ai = 0 in

case i is an inert point of X, and ai = 0, 1 in case i is an ramification point of X

and βi is linearly independent of suppi−1(X). Using Proposition 3.1.4 we see that

we can determine whether i is an inert or ramification point of X by calculating

dim cu(X + mi) – this can be reduced to linear algebra, as explained in §1.11. We

58



can determine whether βi is linearly independent of suppi−1(X) by calculating the

rank of the matrix whose rows correspond to the elements of suppi−1(X) ∪ {βi}.

Therefore, we can determine all the ≤Bi -minimal representatives of U -orbits in ui

by calculating dim cu(X + mi) and possibly the rank of the matrix whose rows

correspond to a set of roots, for each X such that X + mi−1 is a ≤Bi−1 minimal

representative of its B-orbit in ui−1.

After the Nth step we will have calculated all the orbits of B in u.

Remark 4.2.1 It is easy to see how one can determine the minimal representatives of

the U -orbits in u from the minimal representatives of the B-orbits in u. It is therefore

more efficient to calculate the minimal representatives of the B-orbits then determine the

minimal representatives of the U -orbits, than to calculate the U -orbits directly.

In Example 3.3.1 we get the following minimal representatives of the 7 B-orbits. We

use the same notation as in the example.

0 0 0
0

0 0 1
0

0 1 0
0

0 0 0
1

0 0 1
1

1 0 0
0

1 0 0
1

4.3 Algorithmic testing for dense orbits

In this section we describe an algorithm, called DOOBS (Dense Orbits of Borel Subgroups),

which determines whether B acts on a B-submodule n of u with a dense orbit. We begin

by introducing some notation.

Let n be a B-submodule of u and choose an enumeration β1, . . . , βm of Ψ(n) (m =

dim n) so that βj ⊀ βi for i < j. We define B-submodules mi of n by mi =
⊕m

j=i+1 gβj
for

i = 0, . . . ,m. Then we define the quotients ni = n/mi.

DOOBS considers the action of B on successive nis; at each stage it finds a represen-

tative Xi + mi (with supp(Xi) linearly independent) of a dense B-orbit in ni or decides

that ni is not a prehomogeneous space for B.

We note that Remarks 3.2.1 and 4.1.1 mean that we can apply the results of §3.2 and

§4.1 in this setting.

We now give an outline of how DOOBS works. In this outline we do not justify why

the algorithm makes the decisions it does; this is covered in Theorem 4.3.1 below.

0th step: DOOBS considers the action of B on n0 = {0}. Trivially B acts on n0 with a dense

orbit, the algorithm chooses 0+m0 as a representative of a dense orbit and therefore

sets X0 = 0.
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ith step: DOOBS has chosen the representative Xi−1 + mi−1 of a dense B-orbit in ni−1 with

supp(Xi−1) linearly independent. The algorithm considers the action of B on ni.

• First DOOBS considers the U -orbit of Xi−1 +mi. It determines whether i is an

inert point of Xi−1 by calculating dim cu(Xi−1 + mi). If this is the case, then it

decides B · (Xi−1 + mi) is dense in ni and so sets Xi = Xi−1.

• If i is a ramification point of Xi−1, then DOOBS determines whether βi is

linearly independent of supp(Xi−1). If this is the case, then it decides that

Xi−1 + eβi
+ mi is a representative of a dense B-orbit in ni and so sets Xi =

Xi−1 + eβi
.

• If DOOBS decides that neither B · (Xi−1 +mi) nor B · (Xi−1 +eβi
+mi) is dense

in ni, then it decides that B does not act on ni (and therefore on n) with a

dense orbit and stops.

(m+ 1)th step: DOOBS has chosen a representative of a dense orbit in nm = n so it concludes that

B does act on n with a dense orbit and finishes.

In Theorem 4.3.1 below we justify that DOOBS does correctly decide whether B acts

on n with a dense orbit.

Theorem 4.3.1 DOOBS correctly decides whether B acts on n with a dense orbit. More-

over, if B does act on n with a dense orbit, then DOOBS find a representative of this orbit.

Proof: We prove, by induction on i, that if B acts on ni with a dense orbit, then DOOBS

finds a representative Xi of this dense orbit.

The base case i = 0 is trivial so assume that i ≥ 1 and the induction hypothesis holds

for i− 1. If B does not act on ni−1 with a dense orbit, then clearly B does not act on ni

with a dense orbit. Therefore, we may assume that DOOBS has found the representative

Xi−1 of a dense B-orbit in ni−1. We note that if B does act on ni with a dense orbit, then

there must be a representative of the form Xi−1 + λeβi
+ mi for some λ ∈ k.

If i is an inert point of Xi−1, then by Proposition 4.1.6 we have that

dim(B · (Xi−1 + mi)) = dim(B · (Xi−1 + mi−1)) + 1.

So the B-orbit of Xi + mi = Xi−1 + mi is dense in ni.

If i is a ramification point of Xi−1 and βi is linearly independent of supp(Xi−1), then

by Proposition 4.1.6 we have that

dim(B · (Xi−1 + eβi
+ mi)) = dim(B · (Xi−1 + mi−1)) + 1.
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Therefore, Xi = Xi−1 + eβi
is a representative of a dense B-orbit in ni.

Finally, suppose i is an ramification point of Xi−1 and βi is not linearly independent

of supp(Xi−1). Then Xi−1 + λeβi
+ mi is the ≤Bi -minimal representative of its B-orbit for

any λ ∈ k. Also, by Proposition 4.1.6 we have that

dim(B · (Xi−1 + λeβi
+ mi)) = dim(B · (Xi−1 + mi−1)) < dim ni

for any λ ∈ k. Hence, ni is not a prehomogeneous space for B. �

We now give the following corollary of Theorem 4.3.1.

Corollary 4.3.2 Suppose n is a prehomogeneous space for B. Then there is a linearly

independent subset ∆ ⊆ Ψ(n) such that X =
∑

β∈∆ eβ is a representative of the dense

B-orbit in n. Moreover we have

(i) dimU ·X = dim n− |∆|;

(ii) dimT ·X = |∆|;

(iii) |U ·X ∩ T ·X| = 1.

Proof: Parts (i) and (ii) follow directly from the proof of Theorem 4.3.1. We see that the

X found by DOOBS is the minimal representative of its B-orbit so that (iii) follows from

Proposition 4.1.5. �

We have programmed DOOBS in the computer algebra language GAP4 ([22]). We

briefly explain how this was achieved. The program is available on the author’s website

http://web.mat.bham.ac.uk/S.M.Goodwin/DOOBS.html.

The functions for Lie algebras in GAP4 are used to define the required mathematical

objects. Checking if a set of roots is linearly independent is easily achieved by calculating

the rank of the matrix whose rows correspond to these roots. The method for calculating

the dimension of centralizers in u is that described in §1.11. Using the language of §1.11,

DOOBS calculates dim0 cu(X) and keeps track of the values of p > 0 for which we know

dimp cu(X) = dim0 cu(X). The values of p for which dimp cu(X) < dim0 cu(X) are output

at the end of the calculation as characteristic restrictions. Further, the algorithm was

programmed to try to keep the entries in the matrices Ei (see §1.11) small.

We have used the version of DOOBS programmed in GAP4 to classify all instances

when n is a prehomogeneous space for B when rank(G) ≤ 8. The results are available
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at http://web.mat.bham.ac.uk/S.M.Goodwin/DOOBS.html. We explain how this was

achieved and the format of the results obtained below.

We wrote a program in GAP4 which computes, for a given G, all B-submodules of u,

then runs DOOBS on each submodule in turn. Our program outputs two files: the first

is a LATEX file which can be used to create a dvi or pdf file that can be read easily; the

second is a text file which one can read into GAP4 and is then easy to search through.

In all cases the only characteristic restrictions given by the program were a subset of the

bad primes for G.

4.4 When u(l) is a prehomogeneous space for B

In this section we consider the question of when a term u(l) of the descending central series

of u is a prehomogeneous space for B. A classification of all instances when B acts on

u(l) with a dense orbit is given in Theorem 4.4.7 below. We note that in this section we

sometimes relax our assumption that G is simple by allowing G = GLn(k) or On(k).

We begin by considering the case where G is of classical type; in Theorem 4.4.6 we

show that in this case B always acts on u(l) with a dense orbit. We begin by introducing

some notation that we require to prove a technical lemma, which we use to prove Theorem

4.4.6.

Let G = GL2n(k), T the maximal torus of diagonal matrices and B = B2n(k) the

Borel subgroup of upper triangular matrices. Let Ψ be the root system of G with respect

to T and Π the base of Ψ corresponding to B. Write Π = {α1, . . . , α2n−1}. For i ≤ j,

we denote αi + · · · + αj by ij. We describe B-submodules n of u by giving the set of

generators Γ(Ψ(n)), see §1.10. For example u is described by {11, . . . , (2n − 1)(2n − 1)}
and u(l) is described by {1(l + 1), . . . , (2n− 1− l)(2n− 1)}.

For each l ≥ 0, we define a B-submodule nl of u. For l even nl has generators

{i(i+ l) : 1 ≤ i ≤ n− l − 1}

∪{i(i+ l + 1) : n− l ≤ i ≤ n− 1}

∪{i(i+ l) : n+ 1 ≤ i ≤ 2n− l − 1}.
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For example, for n = 5 and l = 2, nl consists of matrices of the form

· · · ∗ ∗ ∗ ∗ ∗ ∗ ∗
· · · · ∗ ∗ ∗ ∗ ∗ ∗
· · · · · · ∗ ∗ ∗ ∗
· · · · · · · ∗ ∗ ∗
· · · · · · · · ∗ ∗
· · · · · · · · ∗ ∗
· · · · · · · · · ∗
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·


.

For l odd nl has generators.

{i(i+ l) : 1 ≤ i ≤ n− l − 1}

∪{i(i+ l + 1) : n− l ≤ i ≤ n− l + 3

2
}

∪{i(i+ l + 1) : n− l − 1

2
≤ i ≤ n− 1}

∪{i(i+ l) : n+ 1 ≤ i ≤ 2n− l − 1}.

For example, for n = 7 and l = 3, nl consists of matrices of the form

· · · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
· · · · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
· · · · · · ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
· · · · · · · · ∗ ∗ ∗ ∗ ∗ ∗
· · · · · · · · · · ∗ ∗ ∗ ∗
· · · · · · · · · · ∗ ∗ ∗ ∗
· · · · · · · · · · · ∗ ∗ ∗
· · · · · · · · · · · ∗ ∗ ∗
· · · · · · · · · · · · ∗ ∗
· · · · · · · · · · · · · ∗
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·



.

Lemma 4.4.1 Assume char k 6= 2. Let Θ be the semisimple automorphism of G such

that GΘ = O2n(k). For each l ≥ 0, there exists X ∈ nθl such that B ·X = nl and the orbit

map B → B ·X is separable.
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Proof: Let l ≥ 0. To simplify notation in this proof we write a = n− l − 1, b = n + l+3
2

,

c = n− 3l+3
2

, and d = n− l+1
2

. We use the strategy described at the end of §4.4.

First we consider the case when l is even. We define X = (xij) ∈ nl as follows:

xi,i+l+1 = 1 if 1 ≤ i ≤ a

xi,i+l+2 = 1 if a ≤ i ≤ n

xi,i+l+1 = 1 if n+ 1 ≤ i ≤ 2n− l − 1

xij = 0 otherwise.
For example, for n = 5 and l = 2 we have

X =



· · · 1 · · · · · ·
· · · · 1 1 · · · ·
· · · · · · 1 · · ·
· · · · · · · 1 · ·
· · · · · · · · 1 ·
· · · · · · · · 1 ·
· · · · · · · · · 1
· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·


.

We let Y = (yij) ∈ b be arbitrary and consider the equations for the yij in [Y,X] = 0.

We show that these equations are independent by induction on n the base case n = 0

being trivial.

First we consider the case where n ≤ l+ 1. We consider the occurrences of the y1js in

the equations in [Y,X] = 0. They occur only in the top row and each entry of the top row

of [Y,X] = 0 contains a distinct y1j. Therefore, these equations must be independent of

the other equations, so we may neglect the equations in the top row. By symmetry we may

also neglect the equations in the rightmost column of [Y,X] = 0. The remaining equations

are equivalent to the analogous equations we get when considering the corresponding case

for GL2n−2(k) which are independent by induction.

Now suppose n ≥ l+ 2. Again we consider the equations of the top row of [Y,X] = 0.

Each such equation contains a y1j but y1a occurs twice. Further, the only occurrences of

the y1js are in the top row. Now the occurrences of y1a are as y1a − yl+2,n = 0 in the

(1, n)th entry of [Y,X] = 0 and y1a − yl+2,n+1 = 0 in the (1, n+ 1)th entry of [Y,X] = 0.

The only other occurrence of yl+2,n and yl+2,n+1 is in the (l + 2, n + l + 2)th entry of

[Y,X] = 0 where we have yl+2,n + yl+2,n+1 − ∗ = 0 where ∗ does not involve yl+2,n or

yl+2,n+1. As char k 6= 2, it follows that the equations on the top row of [Y,X] = 0 must

be independent of the other equations and so we may neglect them. We may now apply

induction as in the previous case.
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Therefore, by induction the equations in [Y,X] = 0 are independent.

Next we consider the case where l is odd. We define X = (xij) ∈ nl as follows:

xi,i+l+1 = 1 if 1 ≤ i ≤ a

xi,i+l+2 = 1 if a ≤ i ≤ n− l+3
2

xi,i+l+2 = 1 if n− l−1
2
≤ i ≤ n

xi,i+l+1 = 1 if n+ 1 ≤ i ≤ 2n− l − 1

xcb = 1

xd,n+ 3l+5
2

= 1

xij = 0 otherwise.
For example, for n = 7 and l = 3 we have

X =



· · · · 1 · · · · 1 · · · ·
· · · · · 1 · · · · · · · ·
· · · · · · 1 1 · · · · · ·
· · · · · · · · 1 · · · · ·
· · · · · · · · · · · · · 1
· · · · · · · · · · 1 · · ·
· · · · · · · · · · · 1 · ·
· · · · · · · · · · · 1 · ·
· · · · · · · · · · · · 1 ·
· · · · · · · · · · · · · 1
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·



.

We let Y = (yij) ∈ b be arbitrary and consider the equations for the yij in [Y,X] = 0.

As in the l even case, we show that these equations are independent by induction on n,

the base case n = 0 being trivial.

First we consider the case where n ≤ l + 1. We look at the top row of [Y,X] = 0.

Apart from the (1, b)th entry each equation in the top row contains a y1j. Moreover, there

is only one occurrence of each y1j. The (1, b)th entry is yl+3,b = 0 and this is the only

occurrence of yl+3,b in [Y,X] = 0. Therefore, we may neglect the equations in the top

row and by symmetry those in the rightmost column of [Y,X] = 0. Thus we may apply

induction as in the proof of the l even case.

Now we consider the case l + 2 ≤ n ≤ 3l+3
2

. As in the previous case each equation in

the top row of [Y,X] = 0 contains a y1j apart from the one in the (1, b)th entry. Again

this entry is yl+2,b = 0 and this is the only occurrence of yl+2,b. We see that y1a occurs

twice in the top row and each other y1j occurs once. We may deal with the y1a as in the
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proof of the l even case. Therefore, we may neglect the equations in the top row and

rightmost column and apply induction.

Now we consider the case n ≥ 3l+5
2

. We look at the equations in the top row of

[Y,X] = 0, we see that each of these contains a y1j. Both y1a and y1c occur twice. The

y1a can be dealt with as in the proof of the l even case. We see that y1c occurs in the

(1, d)th entry of [Y,X] = 0 as y1c − yl+2,d = 0 and in the (1, b)th entry as y1c − yl+2,b = 0.

Now there is only one other occurrence of yl+2,d and yl+2,b in the (l + 2, n+ 3l+5
2

)th entry

of [Y,X] = 0 where they occur as yl+2,d + yl+2,b − ∗ = 0 where ∗ does not involve yl+2,d

or yl+2,b. As char k 6= 2 it follows that the equations on the top row of [Y,X] = 0 must

be independent of the other equations and so we may neglect them. We may now apply

induction.

Therefore, by induction the equations in [Y,X] = 0 are independent.

In both cases these arguments show that B ·X = nl by the strategy described at the

end of §4.4. We note that using the action of the maximal torus of diagonal matrices, we

may assume X ∈ nθl . The separability of the orbit map follows from Remark 1.13.3. �

Remark 4.4.2 Let Φ be the semisimple automorphism of O2n(k) such that O2n(k)
Φ =

O2n−1(k). We note the X ∈ nθl we get from the proof of Lemma 4.4.1 are elements of

(nθl )
φ.

We also require the following easy lemma.

Lemma 4.4.3 Let G = GLn(k) and let B be a Borel subgroup of G. For each l ≥ 0 there

exists X ∈ u(l) with B ·X = u(l) and such that the orbit map B → B ·X is separable.

Proof: We take B to consist of the upper triangular matrices in G. From [35, Prop. 2.1],

we know we can take X = (xij) ∈ u(l) defined by xi,i+l+1 = 1 for 1 ≤ i ≤ n − l − 1 and

xij = 0 otherwise. The separability of the orbit map follows from considering cb(X) and

Remark 1.13.3. �

The following remarks are required in the proof of Theorem 4.4.6, X is as in the proof

of Lemma 4.4.3.

Remark 4.4.4 We use the notation of the proof of Lemma 4.4.3. Assume n = 2m is

even and Θ is such that GΘ = Sp2m(k). Then we may assume that X ∈ (u(l))θ.

Remark 4.4.5 Let H = On(k), G = SOn(k) and let C be a Borel subgroup of H, and

B = C ∩G a Borel subgroup of G. Write U for the unipotent radical of B and V for the

unipotent radical of C. We have u(l) = v(l) for each l, and B has index 2 in C. It follows

that B acts on u(l) with a dense orbit if and only if C acts on v(l) with a dense orbit.
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Theorem 4.4.6 Let G be a simple classical group. Then B admits a dense orbit in each

member u(l) of the descending central series of u.

Proof: The type A case follows from Lemma 4.4.3 and the fact that k is algebraically

closed.

Next we consider the type C case. Let G = Sp2m(k), H = GL2m(k) and let Θ be

the semisimple automorphism of H such that HΘ = G. Let C be a Borel subgroup of

H consisting of the upper triangular matrices in H and B = CΘ a Borel subgroup of G.

We note that (v(l))θ = u(l) for each l. We may now use Theorem 1.13.2 and Lemma 4.4.3

with Remark 4.4.4 to deduce that for each l there exists X ∈ u(l) such that B ·X = u(l).

Now we consider the type D case. Let G = O2m(k), H = GL2m(k) and let Θ be the

semisimple automorphism of H such that HΘ = G. Let C be a Borel subgroup of H

consisting of the upper triangular matrices in H and B = CΘ a Borel subgroup of G. We

now require the technical Lemma 4.4.1. We emphasize that the C-submodules nl of cu

from Lemma 4.4.1 are such that nθl = u(l) for each l. Therefore, using Lemma 4.4.1 and

Theorem 1.13.2, we deduce that for each l there exists X ∈ u(l) such that B ·X = u(l).

Now using Remark 4.4.5 we pass from O2m(k) to SO2m(k).

Finally, we consider the type B case. Let G = O2m+1(k), H = O2m+2(k) and let Φ

be the semisimple automorphism of H such that HΦ = G. Let C be a Borel subgroup of

H consisting of the upper triangular matrices in H and B = CΦ a Borel subgroup of G.

We note that we have (v(l))φ = u(l) for each l. From the proof of the type D case above

and Remark 4.4.2 we see there is X ∈ u(l) such that C ·X = v(l). Further using Theorem

1.13.2 we see that the orbit map C → C ·X is separable so we apply Theorem 1.13.2 to

get B ·X = u(l) as required. As in the type D case we pass from O2m+1(k) to SO2m+1(k)

using Remark 4.4.5. �

The computer calculations explained in §4.3 give five instances where u(l) is a not a

prehomogeneous space for B for G of exceptional type, see also [35, Prop. 2.6] and [28,

Thm. 8.1]. Therefore, we get

Theorem 4.4.7 u(l) is a prehomogeneous space for B unless G is of type F4, E6 or E7

and l = 2 or G is of type E8 and l = 2 or 4.
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Chapter 5

Conjugacy classes in U(q)

In this chapter we use the results of Chapter 3 and 4 along with Proposition 1.8.1 to

deduce results about the conjugacy classes of U(q) and the conjugacy classes of B(q) in

U(q). Also in §5.3 we prove a result about the number of conjugacy classes in a unipotent

normal subgroup of B. We remind the reader that in this chapter we use the notation

given in the introduction.

5.1 The U(q)-conjugacy classes

Using Propositions 1.8.1 and 3.1.2 we get

Proposition 5.1.1 Let M be a unipotent normal subgroup of B. The orbits of U(q) in

U(q)/M(q) are in correspondence with the F -stable orbits of U in u/m.

In particular, the conjugacy classes of U(q) are in correspondence with the F -stable

adjoint orbits of U in u.

Proof: By Proposition 2.2.24 the U(q)-orbits in U(q)/M(q) correspond to the orbits of

U(q) in u(q)/m(q). Then, by Propositions 1.8.1 and 3.1.2, we see that the orbits of U(q)

in u(q)/m(q) are in correspondence with the F -stable orbits of U in u/m.

The second part of the statement is the case where M is the trivial group. �

As in §3.2, we choose an enumeration β1, . . . , βN of Ψ+ such that βj ⊀ βi for i < j,

we define B-submodules mi of u by

mi =
N⊕

j=i+1

gβj
.

and set ui = u/mi, for i = 0, . . . , N .

We now consider the F -stable orbits of U in ui.

69



Lemma 5.1.2 Let X+mi ∈ ui be the ≤i-minimal representative of its U-orbit in ui. The

orbit U · (X + mi) is F -stable if and only if X + mi ∈ ui(q).

Proof: It is clear that if X + mi ∈ ui(q), then U · (X + mi) is F -stable.

IfX+mi is ≤i-minimal in U ·(X+mi), then F (X+mi) is ≤i-minimal in F (U ·(X+mi)).

Therefore, if U · (X + mi) is F -stable, then the uniqueness in Proposition 3.2.5 implies

that X + mi ∈ ui(q). �

By Lemma 5.1.2, the conjugacy classes of U(q) correspond to the minimal represen-

tatives of the U -orbits in u of the form
∑

β∈Ψ+ aβeβ with aβ ∈ Fq for all β ∈ Ψ+. For

instance, in Example 3.3.1 (with F (xij) = (xqij)) we have

1 + (q − 1) + (q − 1) + (q − 1) + (q − 1)2 + (q − 1) + (q − 1)2 = 2q2 − 1

U(q)-conjugacy classes.

Our next proposition gives the size of a U(q)-orbit in u(q).

Proposition 5.1.3 Let X + mi ∈ ui(q). Then we have |U(q) · (X + mi)| = qini(X) and

|CU(q)(X + mi)| = qN−ini(X).

Proof: We work by induction on i, the base case i = 0 being trivial.

Assume by induction that |U(q) · (X + mi−1)| = qini−1(X). Consider the natural map

π : (U · (X + mi))
F → (U · (X + mi−1))

F . Let Y + mi−1 ∈ (U · (X + mi−1))
F and consider

its preimage π−1(Y + mi−1) ⊆ (U · (X + mi))
F . One can see that |π−1(Y + mi−1)| = q if i

is an inert point of X and |π−1(Y + mi−1)| = 1 if i is a ramification point of X. It follows

that |U(q) · (X + mi)| = qini(X).

An application of the formula |CU(q)(X)| = |U(q)|/|U(q) · X| then gives the equality

|CU(q)(X + mi)| = qN−ini(X). �

5.2 The B(q)-conjugacy classes in U(q)

We choose an enumeration β1, . . . , βN and define mi and ui as in the previous section.

We have the following analogue of Lemma 5.1.2 which can be proved in exactly the

same way.

Lemma 5.2.1 Let X + mi ∈ ui be the ≤Bi -minimal representative of its U-orbit in ui.

The orbit U · (X + mi) is F -stable if and only if X + mi ∈ ui(q).
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It is not always the case that CB(X+mi) is connected forX ∈ u so it is not the case that

the B(q)-conjugacy classes in U(q) correspond to the F -stable B-orbits in u. However,

the following proposition implies that, if X + mi ∈ ui is the ≤Bi -minimal representative of

its B-orbit, then to decide how (B · (X + mi))
F splits into B(q)-orbits one only needs to

consider CT (X + mi).

Proposition 5.2.2 Let X + mi ∈ ui(q) be the ≤Bi -minimal representative of its B-orbit.

Then the orbits of B(q) in (B · (X + mi))
F are in correspondence with the elements of

H1(F,CT (X + mi)/CT (X + mi)
0).

Proof: By Propositions 4.1.5 and 3.1.2, we see that

CB(X + mi)
0 = CU(X + mi)CT (X + mi)

0.

Therefore, we have an isomorphism CB(X+mi)/CB(X+mi)
0 ∼= CT (X+mi)/CT (X+mi)

0.

The result now follows from Proposition 1.8.1. �

We give an example of when the F -stable points of the B-orbit of X ∈ u do not form

a single B(q)-orbit.

Example 5.2.3 Let G = SL2(k) and assume char k 6= 2. Let F be defined by F (xij) =

(xqij), let B be the subgroup of upper triangular matrices in G and let T be the subgroup

of diagonal matrices. Let

X =

(
0 1
0 0

)
.

The B-orbit of X is {λX : λ ∈ k×} and the centralizer of X in T is CT (X) = {±1}.
We also have CT (X)0 = {1}, so that CT (X) is disconnected.

One can see that (B ·X)F splits into two B(q)-orbits, namely

B(q) ·X = {λX : λ = µ2 for some µ ∈ F×q }

and

B(q) · νX = {λνX : λ = µ2 for some µ ∈ F×q }

where ν ∈ Fq is not a square.

We can also give the sizes of the B(q)-orbits in u(q).
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Proposition 5.2.4 Let X + mi ∈ ui(q) be the ≤Bi -minimal representative of its B-orbit.

Then

|(B · (X + mi))
F | = (q − 1)liri(X)qini(X)

and

|B(q) · (X + mi)| = (q − 1)liri(X)qini(X)/|H1(F,CT (X + mi))|.

Proof: We begin by proving the first equality by induction on i. The case i = 0 is trivial

so assume i ≥ 1 and the equality holds for i− 1.

If i is an inert point of X, or i is a ramification point of X and βi is linearly dependent

on suppi−1(X), then we can argue as in Proposition 5.1.3. So suppose i is a ramification

point of X and liri(X) = liri−1(X) + 1. We may assume the coefficient of eβi
is non-

zero otherwise we may again argue as in Proposition 5.1.3. Consider the natural map

π : (B · (X + mi))
F → (B · (X + mi−1))

F . It follows from Lemma 1.7.4 and Lemma

5.2.1 that the fibre of X + mi−1 has size q − 1. Therefore, the fibre of Y + mi−1 has

size q − 1 for any Y with Y + mi in the same B(q)-orbit as X + mi. Now suppose

Y + mi ∈ (B · (X + mi))
F \ (B(q) · (X + mi)). Then there exists t ∈ T such that

t · (Y + mi) ∈ U · (X + mi). The factorization of CB(Y + mi) given in Proposition 4.1.5

implies that t · (Y + mi) is F -stable. It follows that t induces a bijection between the

B(q)-orbits of X + mi and Y + mi. Therefore, we have |π−1(Y + mi−1)| = q − 1. Hence,

by induction, we have

|(B · (X + mi))
F | = (q − 1)liri(X)qini(X).

The second equality in the statement of the proposition now follows from Proposition

5.2.2, and the argument above which said that if Y + mi ∈ (B · (X + mi))
F is not in the

B(q)-orbit of X + mi, then there is some t ∈ T such that t induces a bijection between

B(q) · (X + mi) and B(q) · (Y + mi). �

5.3 Counting conjugacy classes in U(q)

In this section we change notation by setting q0 = q, i.e. under an identification G ⊆
GLn(k), F is given by F (xij) = (xq0ij ). The reader should note that we will use q in this

section to denote some power of q0.

We consider the number of conjugacy classes of N(q) where N is a subgroup of U

normalized by T ; by a mild abuse of notation we call such N a regular subgroup of U .

We recall from §1.6 that

N =
∏

β∈Ψ(N)

Uβ.
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We now introduce the notation we require. For each s ∈ Z≥1 we note that F s : G→ G

is a Frobenius morphism. Given a regular subgroup N of U and a power q = qs0 of q0

we have N(q) = NF s
and n(q) = nF

s
. Since N is a product of root subgroups (and n

is a direct sum of root subspaces), we note that |N(q)| = |n(q)| = qdimN . We denote by

k(N(q)) the number of conjugacy classes of N(q).

In [59] G.R. Robinson considered the number of conjugacy classes of algebra subgroups

of Un(q). The main result in loc. cit. implies that for any regular subgroup N of Un(k)

the zeta function

ζN(t) = exp

∑
s∈Z≥0

k(N(qs0))

s
ts


(in C[[t]]) is a rational function in t whose numerator and denominator may be assumed

to be elements of 1 + tZ[t]. The main result of this section is the following generalization

of Robinson’s result.

Theorem 5.3.1 Let N be a regular subgroup of U . The zeta function

ζN(t) = exp

∑
s∈Z≥0

k(N(qs0))

s
ts


(in C[[t]]) is a rational function in t, whose numerator and denominator may be assumed

to be elements of 1 + tZ[t].

In particular, we can apply Theorem 5.3.1 in the case N = U .

Remark 5.3.2 As in the remark in [59] we note that ζN(t) being a rational function

implies the existence of a recurrence relation for the values of k(N(q)). In particular,

once k(N(q)) is known for a certain finite number of values of q it can be calculated for

all q.

Remark 5.3.3 We note that our proof of Theorem 5.3.1 applies in more general settings.

For example, if M and N are regular subgroups of U with N normalized by M , then we

can prove an analogous result to Theorem 5.3.1 for the number of M -orbits in N .

In the remainder of this section we present a proof of Theorem 5.3.1; we begin by

discussing a theorem of B. Dwork which we require for the proof.

Let V be a variety over k that is defined over Fq0 . For a power q of q0, we write V (q)

for the Fq-rational points of V . In [20] Dwork proved
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Theorem 5.3.4 The zeta function

ζ(V ; t) = exp

(
∞∑
s=1

|V (qs0)|
s

ts

)

is a rational function of t.

We now give an elementary argument using Theorem 5.3.4 to show that ζN(t) is a

rational function of t. Then we show that the numerator and denominator of ζN(t) can

be assumed to be elements of 1 + tZ[t].

Consider the commuting variety of N

C(N) = {(x, y) ∈ N ×N : xy = yx};

it is defined over Fq for any power q = qs0 of q0 and its Fq-rational points are

C(N)(q) = {(x, y) ∈ N(q)×N(q) : xy = yx}.

We have

|C(N)(q)| =
∑

x∈N(q)

|CN(q)(x)|.

Also the Burnside formula gives

k(N(q)) =
1

|N(q)|

 ∑
x∈N(q)

|CN(q)(x)|

 . (5.3.1)

Therefore, writing c(q) = |C(N)(q)|, k(q) = k(N(q)) and m = dimN we have

k(q) =
c(q)

qm
.

We can apply Theorem 5.3.4 to the variety C(N). Therefore,

ζ(C(N); t) = exp

(
∞∑
s=1

c(qs0)

s
ts

)

is a rational function of t. We have

ζN(t) = exp

(
∞∑
s=1

k(qs0)

s
ts

)
= exp

(
∞∑
s=1

c(qs0)

s

(
t

qm0

)s)
= ζ

(
C(N);

t

qm0

)
.

74



It follows immediately that ζN(t) is a rational function in t.

We now prove that we may assume the numerator and denominator of ζN(t) are

elements of 1 + tZ[t].

We may write

ζN(t) =
c
∏a

i=1(1− λit)mi

d
∏b

j=1(1− µjt)nj

, (5.3.2)

where c and d are non-zero complex numbers, the λi and µj are uniquely determined,

pairwise distinct, complex numbers, and the mi and nj are positive integers. Evaluating

both sides of the above expression for ζN(t) at t = 0 gives c = d, so we may suppose that

c = d = 1.

Now

ζ ′N(t)

ζN(t)
=

d

dt
log ζN(t) =

∞∑
s=1

k(N(qs0))t
s−1

=
d

dt

(
a∑
i=1

mi log(1− λit)

)
− d

dt

(
b∑

j=1

nj log(1− µjt)

)

=
a∑
i=1

−miλi
1− λit

+
b∑

j=1

njµj
1− µjt

=
a∑
i=1

−miλi

(
∞∑
l=0

λlit
l

)
+

b∑
j=1

njµj

(
∞∑
l=0

µljt
l

)

=
∞∑
l=0

(
a∑
i=1

−miλ
l+1
i +

b∑
j=1

njµ
l+1
j

)
tl.

This series of equalities implies that

k(N(qs0)) =
a∑
i=1

−miλ
s
i +

b∑
j=1

njµ
s
j . (5.3.3)

for each integer s.

The next lemma is well-known, see for example [59, Lem. 2.2].

Lemma 5.3.5 Let {α1, . . . , αt} be (distinct) elements of some Dedekind domain R, and

let π be any ideal of R. Suppose that there are non-zero elements m1, . . . ,mt of R such

that for each s ∈ Z≥1 we have
∑t

i=1miα
s
i ≡ 0 mod πs. Then αi ∈ π for each i.

Now we prove:
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Lemma 5.3.6 Let m1,m2, . . . ,mn be non-zero integers, and let α1, α2, . . . , αn be distinct

non-zero complex numbers. Suppose that for each positive integer s, we have

n∑
i=1

miα
s
i ∈ Z.

Then the αis are all algebraic integers, and mi = mi′ whenever αi and αi′ are algebraically

conjugate.

Proof: We first prove that the αis are algebraic numbers. Let V be the Van der Monde

matrix with (i, j) entry αi−1
j . Let D be the diagonal matrix with ith diagonal entry αi.

Let m be the n-long column vector with ith entry mi. For s ≥ 0, let xs be the vector

V Dsm, which is integral by hypothesis.

Since themis are non-zero (and the αis are distinct), we see that {Dsm : 0 ≤ s ≤ n−1}
is a basis for Cn, hence so is {xs : 0 ≤ s ≤ n − 1}. Since xn is integral, and each xs is

integral, we see that xn is a Q-combination of {xs : 0 ≤ s ≤ n−1}. Set T = V DV −1. Then

{xs : 0 ≤ s ≤ n− 1} is a Q-basis for Qn with respect to which (the linear transformation

represented by) T has a rational matrix. Its eigenvalues are therefore algebraic numbers.

But the eigenvalues of T are {αi : 1 ≤ i ≤ n}, so the αi are algebraic numbers, and are

closed under algebraic conjugation.

Now there is a least positive integer h such that hαi is an algebraic integer for each i.

We note that
∑n

i=1mi(hαi)
s is an integer multiple of hs for each integer s, so by Lemma

5.3.5, we deduce that hαi is an algebraic integer multiple of h for each i. Hence, each αi

is already an algebraic integer.

The final claim follows by induction on the minimal value of |mi| since {αi} is closed

under algebraic conjugation. �

Lemma 5.3.6 implies that the λi and µj in (5.3.2) are algebraic integers. Elementary

Galois theory then implies that we may assume the numerator and denominator of ζN(t)

are elements of 1 + tZ[t].
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classes of the Sylow p-subgroups of GL(n, q), Bull. Austral. Math. Soc. 52 (1995),
no. 3, 431–439.

82


