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Abstract
The relationship between correlations and entanglement has played amajor role in understanding
quantum theory since thework of Einstein et al (1935Phys. Rev. 47 777–80). Tsirelson proved that Bell
states, shared among twoparties, whenmeasured suitably, achieve themaximumnon-local
correlations allowed by quantummechanics (Cirel’son 1980 Lett.Math. Phys. 4 93–100). Conversely,
Reichardt et al showed that observing themaximal correlation value over a sequence of repeated
measurements, implies that the underlying quantum state is close to a tensor product ofmaximally
entangled states and,moreover, that it ismeasured according to an ideal strategy (Reichardt et al 2013
Nature 496 456–60). However, this strong rigidity result comes at a high price, requiring a large
number of entangled pairs to be tested. In this paper, we present a significant improvement in terms of
the overhead by instead considering quantum steeringwhere the device of the one side is trusted.We
first demonstrate a robust one-sided device-independent version of self-testing, which characterises
the shared state andmeasurement operators of two parties up to a certain bound.We show that this
bound is optimal up to constant factors andwe generalise the results for themost general attacks. This
leads us to a rigidity theorem formaximal steering correlations. As a key applicationwe give a one-
sided device-independent protocol for verifiable delegated quantumcomputation, and compare it to
other existing protocols, to highlight the cost of trust assumptions. Finally, we show that under
reasonable assumptions, the states shared in order to run a certain type of verification protocolmust
be unitarily equivalent to perfect Bell states.

1. Introduction

Quantum steering correlations first appeared in the seminal paper of Einstein et al [1] to support their argument
that quantummechanics is incomplete. It was later formally introduced by Schrödinger [4]. The observation
made, was thatmeasurements performed on one half of a bipartite entangled state can steer the state of the other
half. Thismeans that the reduced state of one side can be correlatedwith the classical outcome of the other party
in away that is possible only if the two parties shared entanglement (assuming the correctness of quantum
mechanics). A similar effect occurs when examining purely classical correlations, which led Bell to derive his
inequalities and reveal the non-local character of quantummechanics [5]. The study of correlations that
characterise quantum systems has developedmuch since then, and now includes the alreadymentioned non-
local and steering correlations and quantumdiscord correlations [6–8]. Observing these correlations, given
suitable assumptions, is an indication that a particular systembehaves quantummechanically and is used to
verify the quantumness of that system. Since these correlations are specific to quantum systems, it is also
anticipated that they could be the source of certain new practical applications.

In particular, the existence of non-local correlations, apart from revealing a counter intuitive feature of
nature, has led to the development of device-independent protocols for quantumkey distribution (QKD),
quantum randomnumber generation (QRNG) and verified delegated quantum computation (VDQC)
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[3, 9–16]. In these applications two parties, Alice andBob, do not trust their devices throughout the run of the
protocol. Instead, by obtaining non-local correlations between the classical outputs of their devices, they can test
their devices and obtain the correct functionality. This is achieved by confirming that the states theywere sharing
were entangled andmeasured in such away that the resulting correlations could not have come from any
classical system. Thus, the two parties either obtain a correct and secure result or detect that the devices are
working incorrectly (thus being insecure) and abort. Such protocols are highly desired for practical
implementation as they provide a higher level of security, unachievable by classical systems.However, there are
certain practical issues that hinder their development such as the need for high detection thresholds, high fidelity
transmission channels, space-like separation and a high overhead [13, 17].

The practical limitations of device-independent protocols hasmotivated the revival of research into
quantum steering, which has simpler trust assumptions, where the state of one (trusted) side is steered by
operations on the other (untrusted) side. The existing research involves the characterisation of steering
correlations both analytically and geometrically [18–20], their relationship to other types of correlations [21, 22]
and their application to cryptographic tasks such asQKDandQRNG [23, 24]. Experiments testing quantum
steering inequalities [25] (loophole-free) and testing local but steerable states [26] have also been performed. In
the case ofQKD, Branciard et al showed in [23], that there is a natural correspondence between the trust
assumptions of the protocol and the types of correlations between the two parties. Using this correspondence,
Branciard et al introduced one-sided device-independentQKD,which uses steering correlations in order to distil a
shared secret key. In the cryptographic setting, such correlations allow only one device to be untrusted leading to
a reduction in the overall experimental requirements of the protocol. To be precise, they showed that in typical
device-independent settings, the detection efficiency of Alice and Bob should be above 91.1%, whereas their
one-sided protocol lowers that to 65.9%. A similar relation between trust assumptions and correlations is
exploited forQRNGaswell [24]. In this case it was shown that a detection efficiency of 50% is sufficient for
randomnumber generation in the steering setting, versus 70.7% in the device-independent setting.

For VDQC,wewill show that using steering correlations leads to a reduction in communication, compared
to the device independent setting.However, theVDQC case presents a complication. Firstly, the setting of
VDQC is slightly different than that ofQKDandQRNG. In the latter two, Alice and Bob are two parties that are
working together towards a commonobjective (obtaining a shared key or certified randomness), using possibly
untrusted quantumdevices. InVDQC,Alice is a client who is delegating a difficult computation to Bob, an
untrusted quantum server. She does not have the resources to perform the quantum computation herself, and
while Bob does, he cannot be trusted to do so. So Alice needs away to verify that Bob is performing the correct
quantum computation. To do this, she utilises a quantumdevice in her local labwhich shemay ormay not trust.
Regardless of this, Bob is always assumed to be unstrusted. This is an important distinction from the
collaborative setting ofQKDandQRNG.Moreover, approaches toQKDandQRNG rely on using a bound on
the correlations of the parties’ devices in order to derive a bound for a quantity of interest, such as key rate,
mutual information, entropy etc [15, 27–31]. In contrast to this, existing protocols for device-independent
VDQCuse the bound on correlations to recover the underlying quantum state used in the protocol, as well as the
operations being performed on this quantum state [9–12]. This allows for the correctness certification (referred
to here as verification) of an arbitrary universal quantum computation strictly from the non-local correlations.
To achieve this one needs, at the same time, to obtain close tomaximal non-local correlations andnot only
recover a characterisation of one Bell pair but of a tensor product of Bell pairs. Such a result is possible due to the
rigidity of repeated CHSHgames,manifesting non-local correlations, as shown in [9]. In this context, rigidity
means that if two non-communicating devices playingCHSHgames are achieving the optimal win rate, then
they share a statewhich is close to a tensor product ofmaximally entangled states and,moreover, their strategy is
fixed and uniquely determined. In general, we define rigidity as the ability to derive a robust bound on the
distance between a real state (the state shared byAlice and Bob) andmany copies of some target state (such as a
tensor product of Bell pairs) as well as between targetmeasurements and realmeasurements, from a bound on
correlations. This is similar to the concept of self-testing, except that for self-testing one onlywants to obtain a
single copy of the target state fromobserved correlations. For instance, it is possible to self-test a Bell state and its
associatedmeasurements using theCHSHgame. So, oneway to arrive at rigidity is to considermultiple CHSH
games and combine the self-testing results3. However, in general, it is necessary to play a large number of games
in order to certify fewBell states. For this reason the existing device-independent VDQCprotocols have
impractically large communication complexity [9, 10, 12].

There is an additional aspect to bementioned. As stated, in theVDQC settingwe have a trusted client, also
referred to as verifier, and an untrusted server, also referred to as prover. This is the standard cryptographic
scenariowhen considering verification of computation, whether it is quantumor classical [32, 33]. The
asymmetry in trust is precisely the same as in the steering scenariowhich is whyVDQC is themost natural

3
This needs to be done in a non-trivial way since the gamesmight not be independent from each other, in general.
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application for steering correlations.While it is definitely possible to introduce such an asymmetry inQKD, for
example, the typical setting is to have the parties involved be identical in all respects.

In this paper, we relax the trust assumptions and derive a rigidity result for quantum steering correlations,
showing that it leads to a reduced overhead compared to the setting of non-local correlations. The result proves
that observing steering correlations close to theirmaximal value, implies a tensor product structure of Bell pairs
andfixedmeasurement operators for the untrusted party, up to local isometry. The only assumptionsmade in
deriving this result are the correctness of quantummechanics and the fact that one party is completely trusted,
having a complete characterisation of herHilbert space andmeasurement operators. In particular, the rigidity
resultmakes no independent and identically distributed (i.i.d.) assumption regarding the shared state or strategy
of the untrusted party. In analogy to one-sided device-independentQKDandQRNG, this leads us to a one-sided
device-independent VDQCprotocol, having improved round complexity over the device-independent
versions.More generally, the rigidity result is relevant in its own right since it is applicable to any protocol that
uses steering correlations.

The structure of this paper is organised as follows. In section 2we give ourmain result, which is that using
maximal steering correlationswe determine, up to a local isometry, a tensor product of Bell pairs and the
operations of the untrusted party. To derive this result, wefirst give a procedure to characterise a single Bell pair
fromobserved correlations (single-shot rigidity), in the i.i.d. setting in section 2.1. This is done bymaking a
protocol for self-testing from steering correlations which gives us a bound on the distance of one shared state
from a perfect Bell pair.We also prove the optimality of this bound.We then remove the i.i.d. assumption in
section 2.2, thus showing that one can extract a Bell pair from the observed statistics even in the fully adversarial
(one-sided) setting. Then, in section 2.3we use the previous result in order to determine a tensor product
structure of Bell pairs and themeasurement operators of the untrusted party. These steps are shown infigure 1.
Note that rigidity does not follow directly from repeatedly applying the single-shot result as this would require
independence. Instead, we use an approach similar to that of [9], by defining a quantum steering game and
showing that highwin rates in this game determine the states and strategies of the players, up to local isometry.

Lastly, in section 3we briefly discuss existing approaches toVDQC (section 3.1) and then use the rigidity of
quantum steering to construct a one-sided device-independent verification protocol (section 3.2).We also show
that for the types of protocols we have considered, the required entangled states should be close to Bell pairs
(section 3.3).

2. State and strategy certification via steering

While quantum steering has been studied extensively in the context of verifying entanglement, it is important to
elaborate on the subtle difference between verifying entanglement and verifyingmaximal entanglement and
how this relates to the verification of quantum computation. It has already been shown that it is possible to
verify, from steering correlations, that a state shared by twoparties is entangled. In fact, this type of verification
can be done in a fully device-independent way (under certain assumptions), and has been tested experimentally
[34, 35]. However, it should be noted that these results use steering correlations as awitness for quantum
entanglement. The purpose of awitness is to separate between entangled and non-entangled states and its
existence is proven through the violation of a steering inequality, in analogy to a Bell inequality. In our setting,
we do not just require correlations that violate a steering inequality, rather we require the correlations to saturate

Figure 1. Steps towards rigidity.
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themaximumachievable value. This enables us to certify the state and strategies used in producing these
correlations, which in turn, can be used for verifying quantum computations. To our knowledge, there are no
other results which treat the case of saturated steering correlations.

The setting thatwewill consider is similar to the one used in [21, 23]. This involves two parties, Alice and
Bob, where Alice has a trustedmeasurement device, while Bob has an untrustedmeasurement device. They
share an unknown joint quantum state, ∣yñ, whichwithout loss of generality can be assumed to be pure. Alice
instructs Bob to perform ameasurement on their joint state. For example, if the shared state is
∣ (∣ ∣ )f ñ = ñ + ñ+ 00 11 2 , Alice can instruct Bob tomeasure theZ observable on his qubit and report the
outcome. Themeasurement steers Alice’s qubit to a particular quantum state. She can thenmeasure her state to
confirm that her qubit was indeed steered to the expected state.We shall refer to a collection of such
measurements as a steering game consisting of rounds of singlemeasurements performed byAlice and Bob. They
win a round of the game if Bob’s reported outcomematches that of Alice.We elaboratemore on this in
section 2.3.

The correlations between their outcomes are called steering correlations if they cannot be explained by a local
hidden statemodel. This happenswhen the expected value for the correlation of their outcomes obeys certain
steering inequalities. However, whenever a steering inequality violation is observed, Alice can conclude that her
state was indeed steered by Bob via their shared entanglement. In the rest of this sectionwe prove that violating
the steering inequalitiesmaximally (up to order ( )O ) leads to recovering a tensor product of Bell pairs with
measurement operators close to ideal andwe quantify this ‘closeness’. Proving this rigidity result is done as
follows. First, building on thework regarding self-testing the singlet [36] byMcKague et al, we derive a robust
self-testing protocol of a single Bell state, where one side is trusted, while the other is not. This is achieved by
usingmaximal steering correlations in order to fully characterise, up to a bound of order ( )O , the quantum
state shared between the two parties. Importantly, in [36] it is assumed that the quantum states are i.i.d.We also
make this assumption in our self-testing result (section 2.1), however we remove it later on (section 2.2).We
show that the bound for self-testing is tight up to constant factors. Then, we remove the i.i.d. assumption,
arriving at a newbound for characterising the shared state in the completely adversarial setting, from the
observed correlations. Theway inwhichwe remove the i.i.d. assumption is not specific to steering and can be
applied to the non-local setting aswell, thus complementing thework from [36]. Using this result, and a game-
based argumentwe show that saturating the steering inequalities enables us to recover the quantum state of a
tensor products of Bell pairs and characterise the untrustedmeasurement operators acting on these states, thus
proving the rigidity of quantum steering (section 2.3). Throughout this paper we use ∣∣∣ ∣∣ ∣y y yñ = á ñ as the
l2-norm and ( ) (∣ ∣)r s r s= -TD , Tr1

2
as trace distance. Additionally, for the trace distance of pure states we

will write (∣ ∣ ) (∣ ∣ ∣ ∣)y f y y f fñ ñ = ñá ñáTD , TD , .

2.1.One-sided device-independent self-testing (i.i.d.)
We start by proving a one-sided device-independent version of robust self-testing, whereby themeasurement
statistics allowus to determine the existence of a single Bell pair. Specifically, as in [36], successfully self-testing a
maximally entangled state betweenAlice and Bobmeans:

• There exist local bases (local isometry) inwhich their shared state can be viewed as a Bell pair, possibly in
tensor product with some additional state.

• Wecan infer the existence of local (physical) observables onAlice and Bob’s side, which act non-trivially on
the shared state.

This is similar to theworks of [11, 36–42] and in fact we adopt a similar notation to that of [36]. Themain
difference with respect to thoseworks, is that in our case we trust Alice’smeasurements. The specific observables
we consider for her are PauliX andY.Wewillfind that Bobmust alsomeasure these observables to saturate the
correlations ofmeasurement outcomes. The Bell state under consideration is theXY-determined Bell state
∣ (∣ ∣ )y ñ = ñ + ñ+ 01 10 2 . The result can be generalised for any pair of non-commuting observables and any
Bell state. It should bementioned that a Bell state has a local hidden variablemodel for Pauli basismeasurements
by both parties, but it does not have a local hidden statemodel. This highlights the difference between non-local
and steering correlations and emphasises the importance of trusting Alice’s system in order characterise the
shared state and Bob’smeasurements. The reason for our choice of observables and state is so that we can easily
use this result for a VDQCprotocol, presented in the next section, that usesXY-plane states, as explained in
section 3. Note that Alice and Bob need to performmultiplemeasurements in order to approximate the
expectation values of their observables. Sincewe donot trust Bob,we cannot in general assume the independence
of hismeasurements. However, wewillmake an i.i.d. assumption in the beginning, to prove ourmain self-
testing theorem.We then remove the assumption bymodelling themeasurement process as amartingale and

4
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using the Azuma–Hoeffding inequality [43, 44], as is also done in [11, 15]. A schematic illustration of our setting
can be found in figure 2.

We start by proving a theorem analogous to theorem1 of [36]. Just as in [36], the primed observables denote
untrusted operators. The shared state, which is also assumed to be untrusted is denoted as ∣yñ. The
independence (i.i.d.) assumptionmeans that Alice and Bob share the same state ∣yñ in each round of
measurements. Furthermore, the untrustedmeasurement observables of Bob can be assumed to be the same
each time. This is because his observables can include action on his private ancilla. Since Alice’s side is trusted, we
assume that she has a single qubitmeasurement device and so, in each round ofmeasurement, her part of ∣yñ is a
single qubit state. Given this setting, the theorem is stated as follows:

Theorem1. Suppose that from the observed correlations ofmeasurements performed by Alice and Bob and knowing
that Alice ismeasuring the {X , }Y observables (denoted XA, YA), one can deduce the existence of local observables
{ ¢XB, }¢YB on Bob’s side, with eigenvalues1, which act on a bipartite state ∣yñ such that:

∣∣( )∣ ∣∣ ( )y g- ¢ ñX X , 1A B 1

∣∣( )∣ ∣∣ ( )y g- ¢ ñY Y , 2A B 1

∣∣( )∣ ∣∣ ( )y g¢ ¢ + ¢ ¢ ñX Y Y X . 3B B B B 2

Then there exists a local isometry F = Ä FI B and a state ∣ ñjunk B such that

∣∣ ( ∣ ) ∣ ∣ ∣∣ ( )y y eF ¢ ñ - ñ ñ+M N M Njunk 4A B B A B AB

with { }ÎM N I X Y, , ,A B , { }¢ Î ¢ ¢N I X Y, ,B B B , e g g g= + +3 4 21 1
2

2, ∣ (∣ ∣ )y ñ = ñ + ñ+ 01 10 2 .

Proof sketch.The proof relies onfinding an isometry which, given conditions(1)–(3), maps ∣yñ to an almost
perfect Bell state. Similar to [36],MA and ¢NB are the physical observables of Alice and Bobwhich act on the

shared state. The isometry we considered is illustrated infigure 3, where ( )= +P X Y1

2
and the control gates

act on the target state when the control qubit is in the ∣- ñy state instead of the ∣ ñ1 state, and act as identity when
the control is in the ∣+ ñy state instead of the ∣ ñ0 state. Here, ∣+ ñy and ∣- ñy are the two eigenstates for the PauliY
operator, corresponding to the+1 and−1 eigenvalues, respectively. The fact that we are using these states and
theP operator is a consequence of shifting everything to theXY-plane of the Bloch sphere instead of themore
familiarXZ-plane. It should be noted thatMA is trusted and acts onAlice’s part of the shared state, whereas ¢NB,
acting onBob’s part of ∣yñ, is untrusted.However, the action of ¢NB is equivalent to the honestNB acting on the

Figure 2. Setting for i.i.d. self-testing.

Figure 3. Local isometryΦ.

5
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ancilla introduced byΦ. Having the isometry, wewrite out its action on the state ∣y¢ ñM NA B and use
inequalities(1)–(3) together with the trace preserving properties of the operators and triangle inequalities to
prove condition (4). The full proof of theorem1 can be found in appendix A. ,

Our next result is to show that conditions(1)–(3) are satisfied if an almostmaximal violation of a particular
steering inequality occurs. Asmentioned before, the requirement formaximal violation is in contrast to
previouswork on entanglement detection. In that case, one uses the steering inequality as an entanglement
witness to separate theHilbert space of possible shared states into a subspace of entangled statesmanifesting
steering correlations and its complement. Violating the inequality determines that the shared state lies in the
subspace of entangled steerable states. For example, similar to theworks of [45, 46], assuming Bobmeasures
local observables ¢XB and ¢YB, one could consider the inequality:

∣ ∣ ∣ ∣ y yá ¢ + ¢ ñX X Y Y 2 .A B A B

This inequality holds, whenever there is a local hidden statemodel for Bob’s system. If this is not the case, then
the state is steerable. In our case, we do not simply require a violation of this inequality, butwe require a (close to)
maximal violation. For the above inequality, themaximumachievable violation allowed by quantummechanics
is 2, which also corresponds to itsmathematicalmaximum. Requiringmaximal saturation is represented as:

∣ ∣ ∣ ∣ y yá ¢ + ¢ ñ -X X Y Y 2A B A B

for some small ò. Given that this inequality holds we have:

Theorem2. Suppose Alicemeasures the observables XA, YA and that Bobmeasures the observables ¢XB and ¢YB with
eigenvalues1, on the state ∣yñ, such that

∣ ∣( )∣ ∣ y yá ¢ + ¢ ñ -X X Y Y 2 ,A B A B

where < <0 1. Then the conditions of theorem 1 are satisfiedwith g = 21 and g = 42 .

Proof sketch.The proof reduces to expanding inequality 2 and using the properties of the observables, to arrive
at the bounds of conditions(1)–(3) from the previous theorem. Concretely, we see that the correlation of local
observables that we consider:

∣ ∣( )∣ ∣y yá ¢ + ¢ ñX X Y YA B A B

is simply a sumof two expectation values which are upper bounded by unity (because the observables have±1
eigenvalues). Hence, to saturate the absolute value of this quantity, itmust be the case that both expectation
values are saturated i.e. lower bounded by -1 or upper bounded by - +1 .Wewill only examine the first
case since the second is analogous, sowewill drop the absolute value of the expression and simply consider:

∣ ∣ y yá ¢ + ¢ ñ -X X Y Y 2 .A B A B

By expressing each expectation as a trace normwe arrive at conditions (1) and (2). To prove condition (3)we use
theCauchy–Schwarz inequality and the commutators [ ]X Y,A A and [ ]¢ ¢X Y,B B , respectively. The full proof can be
found in appendix B. ,

Using the results of theorems 1 and 2, wefind that strong correlations betweenAlice and Bob’smeasurement
outcomes, given thatwe trust Alice to bemeasuring theX andY observables, determine the shared state between
Alice and Bob as a Bell state, under local isometry F = Ä FIA B. Additionally, notice that if the steering
correlations are ( )O close to ideal (maximal), we can bound the shared state of Alice and Bob as being ( )O
close to the ideal. The same asymptotic bound is achieved in the case of CHSHgames, where bothAlice and
Bob’s outcomes are untrusted.One could expect that the boundwe obtained from the steering inequalities is not
a tight bound and that it is possible to do better becausewe trust Alice’smeasurements.We prove, that in fact this
is not the case and the ( )O bound is actually tight:

Theorem3. Suppose that Bob’s observables ¢XB and ¢YB with eigenvalues1, acting on a state ∣yñ, are such that:

∣ ∣( )∣ ∣ y yá ¢ + ¢ ñ -X X Y Y 2 ,A B A B

where < <0 1. Then, up to constant factors, the bound of theorem 1 (i.e. inequality (4) with ( )e = O ) is tight.

Proof sketch.Theorem3 essentially shows that the ( )O bound for the closeness of ∣yñ to the ideal Bell state
∣y ñ+ is optimal. The proof relies onfinding a state and local observables for Bob such that the steering correlation
is saturated up to order ( )O , but the state is ( )O deviated from the ideal Bell state.We consider such a state
which is exactly  -close to the ideal ∣y ñ+ Bell state andwhich saturates the correlation of observables to -2 .
Furthermore, we consider local observables for Bobwhich are deviated, as a function of ò, from the ideal
observables. Hence, these deviated observables tend to the idealX andY observables in the limit where   0.
The specific state and Bob’s local observables are given in appendix C. ,
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The exact bound for closeness can be computed by simply inserting the constants g1 and g2 from theorem2

in the calculation for ε of theorem1. This yields a distance of ( )  e = + +3 2 8 2.
This result has important consequences for the applicationwe consider in the next section, the verification of

quantum computation. It essentially imposes a restriction on how good the fidelity of the entangled state is, as
resulting from the observed correlations. InVDQCwe require a complete characterisation of the entangled
states that are used and in particular, we require them to be close to Bell pairs. This leads to the requirement of a
very tight saturation of the steering correlations. Contrast this to theQKDorQRNG settingswhere less than
maximally entangled states suffice [27, 28, 47–49].

It should be noted that we used the same notation for Bob’s observables in both theorems 2 and 1 since for
this particular case they coincide. In general, however, wewould have to construct Bob’s observables in theorem
1 from the observed correlations, as is done in [36]. An important corollary to these three theorems is the
following:

Corollary 1.The results of theorems 1–3 hold if instead of X and Y , Alicemeasures the anti-commuting single-qubit
observables A0 and A1, having eigenvalues1and Bobmeasures observables B0, B1having eigenvalues1.

Proof. In the proof of theorem1we onlymade use of the anti-commutation properties of theX,Y observables
onAlice’s side aswell as the action of the two operators on the eigenstates ofY. For general observables,A0 andA1

this translates to using their anti-commutation properties and the action of the two on the eigenstates ofA1, for
example. Essentially the proof of theorem1only changes by relabellingXA asA0 andYA asA1. OnBob’s side, the
situation is similar. By relabelling ¢XB asB0 and ¢YB asB1 we again have conditions(1)–(3) for these observables,
which are then used to construct the isometry and prove the result of theorem1.

For theorem2, using the same relabellingwe have the inequality:

∣ ∣ ∣ ∣ y yá + ñ -A B A B 2 .0 0 1 1

Since the proof of theorem2, like theorem1, only relied on the anti-commutation properties and the action of
the observables on the eigenstates of one of them, the relabelling does not change anything and the results go
through as before.

Lastly, for theorem 3we use that fact that the observablesA0 andA1 are linear combinations of Pauli
matrices. Depending onwhich Bell state is stabilised by the actions of these observables we can consider a state
that is ( )O -deviated from that Bell state, similar to the state considered for the proof of theorem3.
Analogously, wewill have ( )O -deviated observables for each Paulimatrix. For example, in the proof of
theorem3we considered the ( )O -deviated versions of theX andY observables. Bob’s observables will therefore
be linear combinations of these ( )O -deviated Paulis so as to be ( )O -close toA0 andA1, respectively. ,

The result of theorem 2 assumes ideal expectation values for the observables of Alice andBob.Of course, in
practice, after performing afinite number ofmeasurements we obtain an approximation of these expectation
values. This can be properly taken into account by considering independent random variables (sincewe are in
the i.i.d. setting) associatedwith themeasurement process and using aChernoff inequality to bound their
expectation values.We do not give a full derivation of this here, sincewewill give themore general derivation for
the non-i.i.d. case in the next section (for which the proof can be found in appendixD). Instead, we simply state
the result of thisfinite analysis: for a fixed  > 0, we require at least ( ) ( ) 1 log 12 measurements in order to
certify that the closeness of each shared state is ( )O to a perfect Bell pair. One can also compute the number of
measurements as a function of the desired trace distance for the Bell states. If we denote this distance as

=D c , then the number ofmeasurementsmust be at least ( ) ( )c D c D2 log4 4 . In our case »c 12.3, so that if
wewanted the trace distance to be, for example,D= 0.1, wewould require at least ´2.2 109 measurements.

2.2. Removing the independence assumption
Weproceed to remove the i.i.d. assumption from the previous statements. The following theorem essentially
states that if Alice andBob are asked to perform a sequence ofmeasurements, andwe notice a close tomaximal
steering inequality violation from their outcomes, we can conclude that the state shared in a typical round of
measurement is close to a Bell pair. By ‘typical round’wemean a uniformly randomly chosen round. A similar
result is obtained in [50], with the essential differences that their non-i.i.d. result shows that at least one state is
close to an ideal Bell pair while both parties are untrusted. In our case, Alice is trusted throughout this process
and, without loss of generality, we can assume that she chooses themeasurement settings for each round. The
notation (·)-Tr i indicates that we are tracing out everything apart from the quantum states that aremeasured in
round i.We also use the notation (·)-Tr R , which generalises the previous notation for a set,R, of rounds (i.e.
tracing out all states except thosewhich are used in rounds Îi R).
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Theorem4. Suppose Alice and Bob are required to perform K rounds ofmeasurement and also that:

• Prior to themeasurements, the shared state of Alice and Bob is assumed to be s, which can be either pure ormixed.
The state s is thus the global state whichwill be used for all K rounds4.

• Alice chooses a random set of size K 2, consisting of distinct indices from 1 to K and denoted
{ ∣ { }}= ÎR i i K1 ...R0 , ∣ ∣ =R K 20 .We also denote { }⧹=R K R1 ...1 0, to be the complement of R0.

• Wedenote ( ( ))r s= - -Tri i i
AB
1, 1 the reduced state of Alice and Bob in round i, and:

år r=
=K

1

i

K

iavg
1

as the averaged state. Here  -i
AB
1, 1denotes the action (measurements) of Alice and Bob on the state sigma up to

round i.

• In round i, let =r 0i iff Îi R0, otherwise =r 1i . Alicemeasures the observable Ari
on her half of ri. A0 and A1 are

anti-commuting single-qubit observables having1 eigenvalues.

• In round i, Bob is asked tomeasure Bri
. B0 and B1have1 eigenvalues.

• Wedenote ai and bi, respectively, as the outcomes of theirmeasurements in round i.We also denote ˆ =C a bi i i as
their correlation for round i.

• Wedenote ˆ ˆ= å ÎC C
K i R i

0 1

2 0
and ˆ ˆ= å ÎC C

K i R i
1 1

2 1
as the averaged correlations for the cases where both Alice

and Bob are asked tomeasure the first observable, or both are asked tomeasure the second, respectively.

If, for some given  > 0 and suitably chosen (( ) ( )) = WK 1 log 12 , it is the case that ˆ ˆ + -C C 2
0 1

(or,

alternatively, ˆ ˆ + - +C C 2
0 1 ) then there exists a local isometry F such that, for a randomly chosen ri,with

probability at least ( )- O1 1 6 :

( ( ( ( ))) ˆ (∣ ∣)) ( ) ( )  r y yF ñá+ + OTD Tr , , 5AB
i

AB
junk

1 6

where AB is some combination of the A A B B, , ,0 1 0 1 operators and ̂
AB

is the analogous combination of the ideal
operators (i.e.A0, A1, I and the ideal operators for Bob, which for the XY-plane case we considered, are I X Y, , ), as in
theorem 1, andwhere junk is Bob’s private system apart from the ancilla introduced byΦ. Alternatively, we have that
there exists some state r̃junk such that:

( ( ( )) ˆ (∣ ∣) ˜ ) ( ) ( )  r y y rF ñá+ + OTD , . 6AB
i

AB
junk

1 12

Proof sketch.The proof is broken down into several parts. First, we show that the average observed correlations

Ĉ
0
and Ĉ

1
approximates the ideal quantum correlation for the averaged state. The averaged state can be thought

of as the state shared byAlice and Bob in each round ofmeasurements, such that the average correlations of

outcomes from this statematch those observed in the real experiment (i.e. Ĉ
0
and Ĉ

1). Proving this step is done
along similar lines to the approaches of [11, 15]. Themeasurement process of Alice and Bob can be viewed as a
stochastic process with bounded increment, i.e. amartingale. The specificmartingale we consider encodes the
correlations of theirmeasurement outcomes.While the individualmeasurements need not be independent, we
can still prove that this observed correlation is, with high probability, close to the ideal quantum correlation. To
do this, we use the Azuma–Hoeffding inequality formartingales [43, 44].We then use the result of theorem2 to
show the closeness of the averaged state to an ideal Bell state. Lastly, we prove equation (5) by using an
optimisation argument togetherwith properties of trace distance and densitymatrices. Equation (6) follows
from this through an application of the gentlemeasurement lemma [9]. The full proof is given in
appendixD. ,

As in the i.i.d case, for afixed  > 0, we require (( ) ( )) W 1 log 12 measurements however the closeness of
a typical state, to a perfect Bell pair, is of order ( )O 1 6 in this case. For a better comparisonwewill also compute
the number ofmeasurements as a function of the desired trace distance for a typical state. The proofs in
appendixD show that the exact number ofmeasurements required is ( ) ( ) 8 log 12 , yielding a distance

=D c1 3 1 6, where c is the constant from the i.i.d. bound. Thus, the number ofmeasurementsmust be at least
( ) ( )c D c D8 log4 12 2 6 . For our case, where »c 12.3 if we again takeD= 0.1, wewould require at least ´3.4 1018

measurements.While this is too great for current experimental applications, the current bounds aremost likely
not tight and can be improved. In fact, better numeric bounds have been obtained for the i.i.d. setting, as we

4
In the ideal settingwhere everything is trusted, s would be a K2 -qubit state consisting of K Bell pairs.
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explain in section 2.4. To give an example, the result of [51], obtains a boundwhere c= 1.19 leading to
´2.2 1014 measurements.We show a comparative plot for the number ofmeasurements required in the i.i.d.

setting, versus in the non-i.i.d. setting infigure 4. The graphs are represented as functions of the desired
(decreasing) trace distance.

It should be noted that in the proof of theorem4,we did not use the fact that Alice is trusted except when
applying the self-testing result (theorem2). Thus, a similar theorem can be proven in the case where bothAlice
and Bob are untrusted. In that case, one could simply use the self-testing results of [12, 36, 41, 42] for the i.i.d.
setting, and then obtain a statement about the closeness of a typical state to the ideal one in the non-i.i.d. setting
using our techniques. For example, if wewere to use theorem2 from [36]we could once again establish from the
measurement statistics that a typical state shared byAlice and Bob is close to a Bell state. This result completes
thework of [36] for the non-i.i.d. setting.

It should additionally be noted that throughout this sectionwe not only assumed that Alice’s device is trusted
but that it alsomeasures the ideal Pauli operators. This could seemunreasonable from an experimental
perspective, however note that any (fixed) deviation onAlice’smeasurement operator can be incorporated into
ò. In other words, assumeAlice’s ideal operator isA and the deviated one is dA, such that:

( ∣ ∣ )y d y dÄ ñ Ä ñ <A B A BTD , .

It is thus the case that the action of Alice’s operators is δ-close to the action of the ideal operators which produce ò
saturation.Hence, δ can be added to ò and viewed as a contribution to the total variation frommaximal
correlations.However, if such a deviation exists we should consider what happenswhen d andwhen

d > , respectively. If d , then the error onAlice’s device is smaller than the precision towhichwewish to
estimate the saturation of the correlations. Therefore, the saturation can still be considered of order ( )O and
the bounds on the states follow as in the ideal case. However, if d > then the saturation cannot be estimated
within the desired precision. Thismeans that therewill be an intrinsic limitation on the determined closeness of
the shared states as given by a saturation of order ( )dO .

2.3. Rigidity of quantum steering
Wenowproceed to prove rigidity of quantum steering games in amanner similar to that of [9]. In this setting, we
assume that there is an unknown quantum state shared betweenAlice and Bob. By asking Alice and Bob to
perform repeatedmeasurements wewould like to show that this state is close to a tensor product of Bell pairs
possibly in tensor product with some additional state, up to local isometry. Additionally, wewill show that Bob is
essentially performing the correctmeasurements (recall that we are assuming Alice’smeasurements are trusted).
Self-testing allows us to certify one Bell state and the local observables of Bob in a one-shotmanner. Intuitively, it
seems that we could perform sequential self-tests in order to certifymultiple Bell pairs, thus recovering the
tensor product structure. For example, according to theorem4we can conclude that afterK rounds of
measurement the reduced state in one of the rounds is, with high probability, close to a Bell state.Wewould then
simply repeat this procedureN times in order to recoverNBell pairs, each one selected at random fromeach set
ofK rounds. This intuitive argument does not hold. As is also noted in [9], Bob’s strategy and the untrusted states
he prepares for a certain set ofmeasurements can overlapwith the states and strategy fromanother set. Thus, if
the reduced state for round i is close to a Bell pair, and the reduced state for round j is close to a Bell pair, we
cannot implicitly conclude that the reduced for both rounds i and j is close to twoBell pairs.

We resolve this, in amanner similar to [9], by first defining a steering game akin to theCHSHgame.Wewill
then use theorem4 to prove that the real strategy Alice and Bob use to play the steering game is close to the ideal

Figure 4.Comparison of i.i.d. and non-i.i.d. settings.
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strategy. Intuitively, the steering game is one inwhichwe askAlice and Bob tomeasure specific observables on
their shared state and check to see if their outcomesmatch. For example, to saturate inequality 2wewould ask
Alice and Bob to bothmeasure theX observable or to bothmeasure theY observable. Sincewe trust Alice, we
know that she is behaving honestly, whereas Bob could deviate from the ideal strategy. Note thatwe are
assuming that there is a referee asking Alice and Bob to perform thesemeasurements. Since Alice is trusted, we
could have her act as the referee and send the instructions to Bob. Indeed that will be the case whenwe consider
the verification setting.However, the two situations are equivalent. For this reason, in our formal treatment of
the gamewe shall consider Alice and Bob to be the players and that there exists a refereewhich instructs themon
what to do. The definition is as follows:

Definition 1.We say that a game consisting of players Alice and Bob is a K -round steering gamewith threshold
T K iff the following conditions are satisfied:

• Alice andBob share a joint unknown quantum state ∣yñ.

• The game has K rounds.

• In round i, Alice is instructed by the referee tomeasure her half of ∣yñwith either the A0 or A1 two-outcome,
single-qubit, anti-commuting observables, having±1 eigenvalues and record hermeasurement outcome
(keeping it secret fromBob).

• Alice’smeasurement device is fully trusted to perform the correctmeasurement,moreover she has a complete
characterisation of the device’sHilbert space.

• In round i, Bob is instructed by the referee tomeasure his half of ∣yñwith either the B0 or B1 two-outcome
observables, having±1 eigenvalues and reports his outcome toAlice.

• Alice andBobwin the current round iff their outcomes are identical.

• Alice andBobwin the game iff theywin at leastT rounds.

Note that in the previous definitionwematch the conditions of theorem 4.Unlike Alice, Bob is untrusted
and so his observables are unknown toAlice (and the referee).Moreover, the state ∣yñ is unknown andwe can
assume that it was prepared by Bob.Wenowdefine the correlation value of the game.

Definition 2. LetW be the number of rounds that Alice and Bobwin in a K -round steering game. The
correlation value for the game is defined as the fractionW K .

It is useful tomake the following observation: if we assume that Alice and Bob aremeasuring the same state,
∣fñ, in each round, then the correlation value of the gamewould be:

∣ ∣f fá + ñA B A B
1

2
.0 0 1 1

In general, thismight not be the case, since Bob is free to use any state in each round. In accordancewith theorem
4, the correlation value of the game is then an estimate for the correlation of the averaged state.We use this fact to
conclude something about the correlation of the reduced state in a randomly chosen round. This fact will be
used to prove rigidity.

Alice and Bobwill be asked to playmultiple steering games. Following the notation of [9]wewill denote ρ as
their shared state for all these games (unlike ∣yñwhich is the state for one game) and for a specific game, j, we
denote the operator associatedwith Alice’s actions (measurements) as  j

A and the operator associatedwith Bob’s

action as  j
B. Thus, forN steering games, the triplet ( { } { })  r= , ,j

A
j
B encodes the strategy of Alice and Bob,

where j N . The ideal strategy, whichwe denote as id, is the one inwhich rid is a tensor product of Bell states
andAlice andBob perform themeasurements they are instructed to perform in each round.We need to show
that  » id. This was shown in [9] for CHSHgames by extracting a tensor structure in the individualHilbert
spaces of Alice and Bob from the tensor structure of their two spaces. In our case, because we trust Alice and her
device, we already have a characterisation of her strategy andHilbert space. Therefore, we need only use this to
characterise Bob’s strategy. As in [9], we do this by exploiting the following symmetry property of the Bell state
( )∣ ( )∣y yÄ ñ = Ä ñ+ +M I I XM XT , for any 2×2matrixM. This essentially allows us to shift Bob’s
measurements to Alice’s side, thus eliminating any dependence of his outcomes on previous qubits and
establishing a tensor product structure.Wewill use this to create a strategy inwhich only Alice performs
measurements. In analogy to [9], we start by defining an ò-structured steering game.
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Definition 3.We say that a K -round steering game is  -structured iff the game correlation value is greater
than -1 .

Alternatively, we can set thewinning threshold for the game to ( )= -T K1 . Thus, winning a steering
game is equivalent to having an ò-structured steering game. Similarly, one can define an ò-structured strategy.

Definition 4.Ageneral strategy  forNK-round steering games is ò-structured iff for an arbitrary game j N
wehave that ( ‐ )  -jPr game is structured 1 .

Note that thismeans that themajority of steering games, in a strategy, are  -structured. Lastly, we adapt a
definition from [9] to characterise the closeness of two strategies. It should be noted that wewill define two
strategies as being close if the reduced actions of Alice andBob onN randomly chosen rounds, in the two
strategies, are close to each other. This contrasts the definition from [9], where two strategies are considered
close if the actions of Alice and Bob for all rounds are close to each other. The reason for the difference is that we
are only interested in establishing a tensor product ofNBell states and that Alice and Bob are performing ideal
measurements on thoseN states. However, sincewe haveN steering games, each consisting ofK rounds, wewill
haveNK rounds in total. Showing that all of these are close to ideal would lead to a large overheadwhichwe
would like to avoid.

Definition 5. Let ( { } { })  r= , ,j
A

j
B and ¯ ( ¯ { ¯ } { ¯ })  r= , ,j

A
j
B

be two strategies for playingN sequentialK-

round steering games. For   0, we say that strategy ̄ ò-simulates strategy  iff they both use the sameHilbert
spaces and for all j:

( ( ( )) ( ¯ ( ¯ )))   r r- -TD Tr , Tr ,R j
AB

R j
AB

1, 1,

whereR is a set ofN round indices, each chosen at random from theN steering games. Additionally:

◦ ◦   = ... ,j
AB AB AB

j
AB

1, 1 2

¯ ¯ ◦ ¯ ◦ ¯   = ...j
AB AB AB

j
AB

1, 1 2

And:

◦ ¯ ¯ ◦ ¯     = = .j
AB

j
A

j
B

j
AB

j
A

j
B

Whenever we have that  ò-simulates ̄ , or an isometric extension of ̄ , wewill write ¯ » . This leads us to
themain result:

Theorem5. Let ( { } { })  r= , ,j
A

j
B be Alice and Bob’s ò-structured strategy for playing N sequential K -round

steering games. Let ( { } { })  r= , ,j
A

j
B

id id id id be Alice and Bob’s ideal strategy for playing N sequential steering

games.We have that  ( )O N 1 6 -simulates an isometric extension of id.

Proof sketch. Firstly, it should be noted that for all j,  =j
A

j
A
id . This is because Alice is trusted and always

playing according to the ideal strategy. The proof then consists of two steps. First we show that if the real strategy
 is ò-structured, then  » g , where g is a strategy inwhichAlice plays honestly and also guesses Bob’s
measurement outcomes. The guesses provided byAlice are taken to be Bob’s outcomes for each gamewhile the
action on his subsystem is taken to be identity. The proof of this step relies on characterising the evolution of the
quantum state ρ in the two strategies and using theorem4 together with the ò-structured nature of the strategies.
We then show that  »g id. To do this, note that in the guessing strategywe have effectively removed the
problemof adaptivity. Since there is no untrusted Bob in g , the original argument, of sequentially repeating

self-testing, goes through. This allows us to show that g is close to a similar guessing strategy, denoted ̂g , which
uses ideal Bell pairs. Lastly, this strategy is trivially close to the ideal one.We can then combine these results to
show that  » id. The full proofs are given in appendix E. ,

SinceN represents the number of Bell pairs wewish to certify, we see that in order to obtain a decreasing
error, we require ( ) = -O N 6 .We also know from theorem 4 that given ò, the number of games required is of
order (( ) ( )) = WK 1 log 12 . Therefore, wemust have that ( ( ))= WK N Nlog12 . Since each steering game
comprises ofK rounds, we have KN rounds in total, or ( ( ))W N Nlog13 rounds of steering games. This becomes
important for use inVDQC.
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2.4. Comparisonwith other approaches
Before presenting theVDQCapplication, we briefly compare our approach to similar results. Asmentioned, this
paper builds on thework of self-testing the singlet ofMcKague et al [36].While we use similar techniques to
theirs, we assume that Alice is trusted and thus arrives at an improved bound for the closeness of ∣yñ to an ideal
Bell pair ( ( )O versus ( )O 1 4 ). On the other hand, the results of [9] and [50] do arrive at an ( )O bound for
self-testing.However, we know that their techniques cannot improve the asymptotic closeness, sincewe have
shown in theorem 3 that this bound is optimal up to constant factors.

When comparing the exact bounds, we obtained ( )  + +3 2 8 2, which is smaller compared to that
of [9], approximately 270 . The result of [50] obtained numerically an even smaller factor of 2.2 by using a
semidefinite programme. Their technique could, in principle, be used to improve our approach aswell.We also
mention the result of Šupić andHoban [51], which appeared concurrently with our own. They also consider the
case of self-testing from steering correlations, obtaining an analytic bound of 13 and a numeric bound
of 1.19 .

Furthermore, [50] also considers removing the i.i.d. assumption. Their approach is based on hypothesis
testing, however the end result is to show that at least one state, out of allmeasured states, was close to a perfect
Bell pair. In our case, theorem4 establishes that a typical state, out of allmeasured states, was close to a perfect
Bell pair. This is necessary in order to prove the rigidity result and certify a tensor product of Bell pairs.

For the rigidity of steering correlationswe employed similar techniques to those of [9] to show that the
strategy (consisting of states andmeasurements) associatedwith the real scenario is close to that of the ideal
scenario. This is done by considering intermediate strategies and showing that they are close to both the real and
the ideal one and therefore that the latter strategies are close to each other. Themajor difference with [9] is that
because Alice is trusted, in our case, therewas no added overhead in proving the closeness of these strategies to
each other. This then lead to a reduced closeness bound.

3. Verified delegated quantumcomputation

The idea of VDQC is that a computationally weak verifierwants to delegate a computation to a powerful
(quantum) prover, and at the same time be able to verify the correctness of the result received. In characterising
VDQCprotocols, we use the formalismof interactive proof systems [32, 52]. For our setting, the prover is
restricted to polynomial time quantum computations. Ideally wewould like the verifier to be a fully classical
computer, however it is still an open problem if this is possible, when there is a single prover [53]. Instead, it is
known that if the verifier has someminimal quantum capabilities, he is able to verify the prover’s computation
[32, 54]. Alternatively, if there aremultiple non-communicating provers sharing entanglement it is possible to
do verificationwith a fully classical verifier [9, 10, 12]. It should be noted that in certain cases not all the provers
are quantum computers. For example, in the protocols of [10, 11] there are two provers, one is a quantum
computer (or server) and the other is an untrustedmeasurement device. Thus, throughout this paper wewill
refer explicitly to the provers by their role (i.e. quantum server,measurement device etc).

3.1. Existing approaches toVDQC
Thefirst approaches toVDQC relied on having a classical verifierwith aminimal quantumdevice. This device
could be either a constant size quantum computer [32], or a single qubit preparation device [54]. In both cases,
the verifier has both a classical and a quantum communication channel with the server. The quantum channel is
used only in an initial phase to send quantum states to the server. Verification of the computation is then
performed via classical communication only. Importantly, the quantum communication is offline, meaning it
can be performed before the verifier even decides what computation shewould like to perform (shemust,
however,fix the size of the computation to be performed).Wewill briefly explain one of these protocols, namely
the one by Fitzsimons andKashefi [54], whichwe shall refer to as the FK protocol. The reason for choosing this
protocol is thatmany other VDQCprotocols that were later developed have been based on FK [10, 11, 55–
58, 63]. Furthermore the FKprotocol is currently the optimal protocol from the point of view of the client’s
quantum capability requirements. Hence it is a good starting point in further reducing the trust assumptions as
we intend to do in this section.We therefore use our results on quantum steering tomodify one of the FK-based
protocols.

The FKprotocol is expressed in themeasurement-based quantum computing (MBQC)model of
computation and uses universal blind quantum computation (UBQC) [59] as a basis for verification.We
succinctly explain the basic ideas behind these concepts as further details can be found here [59, 60]. InMBQC,
computation is achieved through a sequence of adaptive single-qubitmeasurements performed on a highly
entangled state known as a graph state. It is possible tomake this graph state highly regular, by having all qubits
prepared in the ∣ (∣ ∣ )+ñ = ñ + ñ0 11

2
state and entangling themusing the controlled-Z operation into a
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brickwork structure [54, 59]. The qubits are thenmeasured in the basis {∣ ∣ }+ ñ - ñq q, , where

∣ (∣ ∣ ) ñ = ñ  ñq
q0 e 11

2
i and θ is chosen adaptively from the set { }p p= ¼D 0, 4, , 7 4 .

In the followingwe give themain idea behindUBQC.A trusted client sends to an untrusted quantum server
rotated qubits of the form ∣+ ñq with angles θ chosen randomly from the setD. The server is then supposed to
entangle these qubits in a generic graph state structure and thenmeasure them in the basis {∣ ∣ }+ ñ - ñd d, ,
d Î D, as instructed by the client. Themeasurement angles are selected and adapted in order to perform a
specific computation. Having no knowledge of the initial rotation angles (the θʼs), themeasurement angles (the
δʼs)will appear random to the server and so hewill have no information about the computation being
performed, apart from anupper bound on its size (given by the number of qubits).We illustrate this infigure 5.
This blind computation procedure can bemodified in order to perform verification aswell, leading to the FK
protocol.

In this case, the client, now known as a verifier, will also send computational basis states {∣ ∣ }ñ ñ0 , 1 to the
server, interleaved randomlywith the rotated qubits. The purpose of these states, called dummyqubits, is to
isolate certain rotated qubits from the rest of the graph state qubits. Isolation is achieved because the controlled-
Z operationwhen usedwith a dummy and a rotated qubit will not perform entanglement. The isolated qubits
are called traps because the verifier will instruct the server tomeasure these qubits in their preparation basis (i.e.
themeasurement angle δwillmatch the rotation angle θ for each trap qubit), thus yielding a deterministic
outcome. Because of blindness, the position of the traps is hidden from the server and so he is unaware if he is
performing a trapmeasurement or a computationmeasurement. This allows the verifier to test, on average, the
behaviour of the server and abort the protocol if he behavesmaliciously. Schematically, this is shown infigure 6.

Asmentioned, the FKprotocol uses a verifier with a trusted preparation device, while the untrusted server is
performing entangling andmeasuring operations.We refer to this as a prepare andmeasure type of protocol.
There is another class of protocols that have the server prepare the graph state and send the qubits one by one to
the verifier who performs single qubitmeasurements [56, 61, 62]. In this case, the verifier has a trusted
measurement device instead of a preparation device.We refer to the latter class of protocols asmeasurement-only
type of protocols. Themain drawback of this approach is that the quantum communication is online (occurs

Figure 5.UBQCprotocol.

Figure 6. FK verification protocol.
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during the time that the quantum computation is performed). Thismeans that the verifiermust commit to the
computation shewishes to performwhen the quantum communication commences. In contrast to this, the FK
protocol is offline and therefore the verifier does not need tomake such a commitment. Instead, after the
quantum communication has occurred, she is free to choose any computation up to afixed size and
communicate only classically with the server.

All of the approachesmentioned so far, relied on having a verifierwith a trusted quantumdevice. It is also
possible to have a fully classical verifier, with no quantumdevice, if we allow formultiple entangled quantum
servers. Such is the case with the protocols presented in [9, 12]. Alternatively, the verifier can have an untrusted
measurement device and share entanglement with a single quantum server. This scenario is a device-independent
version of the the prepare andmeasure protocols. The two existing approaches are presented in [10, 11].Wewill
briefly describe the operation of these device-independent protocols, since a slightmodification of themwill
lead to our one-sided device-independent protocol.

The setting of device-independent VDQC is the following:

• The verifier has an untrustedmeasurement device. The device canmeasure the observables
{ }¢ ¢ ¢ ¢ ¢ ¢X Y Z D E F, , , , , , where ( )¢ = ¢ + ¢D X Z1

2
, ( )= ¢ + ¢E X Y1

2
, ( )= ¢ + ¢F Y Z1

2
. The observables

are primed to indicate they are untrusted.

• The server is instructed to initially prepare Bell states and send half of each state to the verifier.

• Themeasurement device and the server are assumed to be non-communicating.

• The verifier interacts only classically with both of these devices.

The verification protocol consists of the following two stages:

1. Verified state preparation—In this stage the verifier will use the shared entangled states with the server in
order to prepare single qubit states on the server’s side. These are the states which, in the FK protocol, were
sent to the server having been prepared by the trusted quantumdevice andwhichwill later be used to
perform verified computation. In this case, because themeasurement device is also untrusted, the verifier
will have to interact with the two devices in order to certify the preparation of correct states on the server’s
side. In the protocol of [10], this is done using the rigidity property of CHSHgames, whereas the protocol of
[11] achieves this using amodified version of theMayers–Yao self-test.

2.Verified computation—Having prepared the rotated states and dummy qubits on the server’s side, the
verifier proceeds to run the FKprotocol as if she had sent the qubits to the server. It can be shown that the
server is still blind following the preparation stage. Since this stage results in the preparation of imperfect
states (ò-close to the ideal), it was necessary to show that the FKprotocol is robust to deviations in the initial
state.

It is worth pointing-out here, that any deviation of the server on the correctly prepared input of the FK, is
detected by the verificationmechanism of the FKprotocol. In otherwords, the two stages can be separated, and
the verified preparation can happen any time earlier than the verified computation. Themain disadvantage of
the device-independent protocols is the large round complexity in the state preparation stage, leading to an
overall large complexity compared to other approaches. Themain reason behind this blow-up, is the number of
measurements that need to be performed in order to certify correct state preparation and additionally the
measurements that need to be performed to test the honesty of the two devices. Amajor factor for this increase,
is the need to certify the tensor product structure of Bell states shared, before the verifier uses them to prepare the
states for the FKon the server’s side. By allowing the verifier’s device to be trusted, we can eliminate this last set of
measurements and gain an advantage in terms of round complexity, leading to a one-sided device-independent
VDQCprotocol. In this protocol, similar to themeasurement-only protocols, the verifier has a trusted
measurement device. However, in our case, the (trusted)measurements can occur offline, since they are only
involved in the verified state preparation stage.

3.2. Verification based on steering correlations
The settingwe have, is that the verifier trusts hermeasuring device, but the server and the shared state, prepared
by the server, are not trusted. Since our setting is identical, in terms of trust assumptions, to the one-sided
device-independent self-testing scenario, wewill sometimes refer to the verifier as Alice and the server as Bob. If
Alice knew that the shared state with Bob is a tensor product of perfect Bell states, she couldmeasure her side and
collapse the state of the server to the desired input of FK. But since the state is untrusted, wewill use the results of
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the previous sections to characterise the shared state from steering correlations. If Alice observes a close to
maximal saturation of the steering correlations, she can conclude that the shared state is a tensor product of Bell
pairs. This follows from the rigidity result of theorem 5. The result is analogous to that of [9, 10]where the
rigidity of CHSH games is used in the same fashion. All of this is encapsulated in protocol 1.

Protocol 1.One-sided device-independent verification protocol.

Assumptions

The verifierwants to delegate a quantum computation described by the graphG and specificmeasurement angles from the set

{ }p p0, 4 ... 7 4 chosen to define a desired computation. For the FK protocol, used in stage 2, the graphG is encoded as a different graph,

 , havingM qubits. The verifier has a trusted single-qubitmeasurement device.

Stage 1: Verified state preparation

1. Verifier instructs the server to prepare ( ( ))Q M Mlog13 Bell pairs and send half of each pair to her.

2. Verifiermeasures a random subset ofM qubits in the {∣ ∣ }+ ñ - ñq q, basis, where { }q p pÎ 0, 4 ... 7 4 , or the computational basis,

without instructing the server tomeasure them.

–For the remaining qubits (which are of order ( ( ))Q M Mlog13 ) she againmeasures in the {∣ ∣ }+ ñ - ñq q, or the computational basis, but

she also instructs the server tomeasure the corresponding entangled partner in the same basis.

–The server reports themeasurement outcomes and if the results are not the same as the verifiers, the protocol is aborted.

Stage 2: Verified computation (Robust FK)
3. If the protocol is not aborted in the previous stage, the verifier runs the (robust) FKprotocol (given in [10])with the server, using graph 
(i.e. the qubits from thefirst step of Stage 1are treated as if they had been sent by the verifier to be entangled into the graph  and run the

FK protocol).

During the verified state preparation stage, the verifier confirms that all hermeasurement outcomes agree
with themeasurement outcomes reported by the server. The number ofmeasurement rounds, i.e.

( ( ))Q M Mlog13 , is chosen so that the results of theorems 4 and 5 lead to a decreasing error. As explained, the
theorems require us to have ( ( ))Q M Mlog12 rounds ofmeasurement per steering game, and sincewe haveM
steering gameswe end upwith ( ( ))Q M Mlog13 rounds. Contrast this to the round complexities in the fully
device-independent scenarios which are of order ( )O Mc , where >c 8192 for [9] and >c 2048 for [10],
respectively. Even though these do not follow from tight bounds, it seems clear that the added trust of the
verifier’smeasurement device leads to a significant reduction in complexity.

Next we examine the verified computation stage. As the input obtained from the previous stage is not exact,
but close in trace distance to the ideal state, we need to consider the robust version of the FKderived in [10].
Moreover, to obtain the optimal complexity, instead of using a dotted-complete graph as was done in [10, 54],
wewill use the optimised resource construction introduced in [58], where the number of qubits in the encoded
graph,  , is linear in the number of qubits in the computation graphG. This leads us to the following:

Lemma1.Protocol 1, for a computation of size M , utilises ( ( ))Q M Mlog13 Bell pairs and has ( ( ))Q M Mlog13

round complexity (rounds of interaction between the server and the verifier). The probability that the verifier accepts
the outcome of the protocol, assuming honest behaviour by the server, is unity. If h is the probability that the verifier
accepts an incorrect outcome in the FK protocol (verified computation stage), the overall probability of accepting an
incorrect outcome for protocol 1 is h l+ -1, for some constant l > 1fixed by the verifier.

Proof.Asmentioned, the FK protocol with the encoding (resource state) defined in [58], or using the resource
construction procedure of [63], has linear round complexity. Therefore, the round complexity of the verified
computation stage is ( )Q M . The verified preparation stage requires ( ( ))Q M Mlog13 Bell pairs which are used to
test the saturation of steering inequalities. Therefore, the overall round complexity is ( ( ))Q M Mlog13 . In the
honest run, the verified state preparation stage leads to preparing the ideal input, and therefore the probability of
accepting an honest run is unity. This is because in the honest setting, the server prepares ideal Bell pairs and all
states aremeasured correctly, leading to the correct rotated qubits on his side, which are then used in the FK
protocol. The FKprotocol also has probability of acceptance unity, when the server behaves honestly [54].

On the other hand, a dishonest run involves deviations in both state preparation and verified computation
stages. In the first stage, a dishonest server would prepare states that are atmost ( )O 1 6 -deviated from the ideal
by theorem 4.Here, ( ) = Q M1 6 , in order to have a decreasing error in simulating the ideal strategy. Thus, the
deviation per Bell pair isfixed however, the verifier can choosemanymeasurement rounds for the steering
games in the state preparation stage, reducing the deviation in the overall (tensor product) state. Concretely, if
she chooses to run l M12 6 steering games, then  l= - -M12 6, for some fixedλ. The overall deviation, which is of
order M 1 6, will then be of order l-2. This constitutes the deviation in the state preparation stage. As explained
in [10], the robustness of the FKprotocol implies that if the computation stage has probability of acceptance,
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given dishonest behaviour, η and there is a deviation of orderα in the state preparation phase, then the overall
probability of accepting an incorrect outcomewill be h a+ . In our case, a l= -2, hence the probability
becomes h l+ -1. ,

The resulting protocol’s round complexity is an improvement, over the device-independent approaches of
[9, 10, 12]. The reason for this is that we benefited from the fact that Alice is trusted in the rigidity result. In
particular, while there is a cost for removing the i.i.d. assumption, in the semi-trusted settingwe have no extra
cost to recover the tensor product structure from theorem5. This leads to a better complexity whenwe extract
the tensor product structure of Bell pairs, than the complexity obtained in the completely untrusted (device-
independent) setting of [9]. On the other hand, in the case of FKwhere the verifier has a trusted preparation
device and sends qubits to the server, the round complexity and number of used quantum states are linear in the
size of the computation [58]. In our case, themain sources for overhead are:

• Self-testingwith i.i.d. states which gives a tight bound for the closeness of the state up order  .

• Gathering sufficient statistics in the non-i.i.d. setting to get a good estimate of the true quantum correlations
for the averaged state. This required (( ) ( )) W 1 log 12 rounds ofmeasurements.

• Inferring the closeness of a typical state from the closeness of the averaged state, which gives a bound of
order  1 6.

3.3. Verification frompartially entangled states
It is known that if the source of quantum states is trusted, then classical-quantum correlations are sufficient for
verification [11, 54]. Alternatively, in online verification protocols (where computation and quantum
communication take place at the same time), it is possible to have an untrusted entanglement source and states
which are less thanmaximally entangled. Our setting is that of offline verificationwith an untrusted
entanglement source.

We have seen that in both device-independent verification and one-sided device-independent verification
we can characterise the tensor structure of Bell pairs between the verifier and the server from correlations. In
both cases, saturating an inequality involving correlations leads to a bound on the trace distance between the
shared state and perfect Bell pairs, up to an isometry.While this is sufficient, it does not seemnecessary to use
Bell states. In fact inQKDand randomnumber generation, asmentioned previously, other types of states can
also be used [27, 28, 47–49] and so it is interesting to examine if this is also the case for verification.Here,
interestingly, we show that under reasonable assumptions about the verification protocol, the entangled states
must be unitarily equivalent to Bell states.

Quantum steering derives its name from the idea that with an entangled state one party could steer the state
of another party through localmeasurement. The personwho performs the steering is untrustedwhich in our
case corresponds to the quantum server. The verifier, having a trustedmeasurement device, can check through
localmeasurement, if the server behaved honestly and steered the state correctly.We consider such steerable
states, rAB, shared betweenAlice (the verifier) andBob (the server), which could be useful for verification in the
one-sided device-independent scenario. Concretely, the specific type of verificationwe consider is onewhich is
offline,measurement-only and blind. This is akin to the setting of our steering-based verification protocol,
howeverwe no longer assume the use of the FKprotocol in the verified computation stage. Instead, we assume
independent verification, i.e. a black-box type verification protocol obeying the three conditions we previously
stated.Moreover, we assume that the verifier wishes to prepare a specific quantum input for her computation.
This input is assumed to be as general as possible. Given these conditions, wewish to knowwhat properties are
required of a typical bipartite shared state rAB. Sincewe are interested in blind verification, itmust be the case
that ( )r r= = ITr 2A AB B . Additionally, because the verifier needs to prepare her quantum input on the server’s
side, and this can consist of a varied set of states, wewill also assume that rAB must be completely steerable (i.e. can
be steered to any state).We use the definition of complete steering from [64].

Definition 6. [64]Abipartite state, rAB, shared byAlice and Bob is completely steerable by Bob iff for any positive
operators { }sa , satisfying ( )s rå = Tra a A AB , there exist a POVM { }Ea , such that (( ) )s r= ÄE ITra A a AB .

Adding the blindness assumption to this, we follow upwith the definition:

Definition 7.Abipartite state, rAB, shared byAlice and Bob is totally steerable by Bob iff rAB is completely
steerable by Bob and ( ) =B ITr 2A .

Before proving our result, we state a useful lemma from [64], concerning completely steerable states:
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Lemma2. [64]Abipartite state, rAB is completely steerable by Bob iff exists a purification rABC such that
r r r= ÄBC B C , where ( )r r= TrBC A ABC , ( )r r= TrB AC ABC , ( )r r= TrC AB ABC .

This is similar toQKD,where an adversary can have a purification of the state shared byAlice andBob
however he is uncorrelatedwithAlice or Bob. This is due to themonogamy of entanglement. Ourmain theorem
concerning rAB will justify why thismonogamy appears in the case of complete steerability as well.We note that
themonogamy of quantum steering has been studied in other works [65, 66].

Theorem6.Abipartite state, rAB is totally steerable by Bob iff rAB is maximally entangled.

Proof sketch.The proof relies on considering rAB inmatrix form and expressing constraints on itsmatrix
elements using lemma 2 and the fact that r = I 2B . Solving the systemof constraints leads to a densitymatrix
which can easily be shown to correspond to a pure,maximally entangled state. The complete proof is given in
appendix F. ,

This theorem reveals that the rAB state is unitarily equivalent to amaximally entangled Bell state. Therefore,
themonogamy of this state is in fact due to themonogamy of Bell states. Importantly, it shows that two-qubit
states which are totally steerable are perfect Bell pairs. This implies that if we are to use total steerability in order
to perform verification, wemust certify Bell states in particular, rather than any other steerable state. Hence, for
the case of offline,measurement-only, blind quantumverification, the quantum resources used for preparing
the quantum input,must be unitarily equivalent to Bell states. Intuitively, this can be understood as follows. The
verifierwishes to send a certain quantum input to the server. Since this input is as general as possible, the best
way to do this is via the general teleportation protocol using Bell states. This also introduces a natural one-time
padding to the states, which keeps the protocol blind. It is clear that in order to have perfectfidelity for the
teleportation, the shared statesmust be equivalent to perfect Bell pairs.

4. Conclusion

Wehave shown that, in analogy to the rigidity of non-local correlations via CHSHgames, we can prove a rigidity
property of steering correlations. This allows us to establish a tensor product of Bell pairs in a setting of one
trusted party and one untrusted party. However, in the case of steering, the extra cost to obtain a tensor product
of Bell states is smaller than in the analogous situation for non-local correlations.While in both cases this
overhead is polynomial, the additional trust assumptions of the steering setting allowed for a significantly
reduced degree for this polynomial.We arrived at this result byfirst considering self-testing in the one-sided
device-independent setting, using quantum steering correlations. The self-testing result, whichmakes an i.i.d
assumption about the shared state, gives an optimal bound for the trace distance between this shared state and a
Bell pair.We then removed the i.i.d. assumption in a generic waywhich can be applied to any type of self-testing
result, allowing for the determination of a single Bell state (one-shot) in a fully adversarial setting. Combining
this with a game-based approach for characterising the states and strategies of the two parties, has lead to the
rigidity result. It should be noted, that the game-based approach is also used to prove the rigidity of non-local
correlations.However, in our setting, becausewe trust one of the parties it is simpler to obtain a characterisation
of the untrusted party’s strategy and the shared states. Thus, our result has reduced overhead compared the
analogous result for CHSHgame rigidity.

We considered an application of rigidity to a verifiable quantum computation protocol. The reason for
choosing this particular application is that for verifiable quantum computation the quantum states themselves
should be recovered, and thus the necessity to obtain the full tensor product structure of Bell states. This is in
contrast toQKDandQRNGwhere one does not need to recover the quantum state explicitly, rather an
information theoretic quantity such as entropy,mutual information, key-rate etc. Using the rigidity of steering
correlationswe constructed a one-sided device-independent protocol for verifiable delegated quantum
computation. The protocol we obtained has fewer requirements than the fully device-independent protocol thus
being closer to a practical application. Lastly, we have shown that a certain class of states which are useful for
verification, totally steerable states, are necessarilymaximally entangled. This for example, rules-out the use of
local but steerable states [26] for verification. Since establishing the existence of the tensor product structure of
maximal entanglement requires the collection of a significant number of statistical samples, this result gives
some indication to the general difficulty of quantumverification.
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AppendixA. Proof of theorem1

In this sectionwe give a complete proof of theorem1which characterises one-sided device-independent self-
testing. Consider the following isometry:

(∣ ) ( )∣ ∣ ( )∣ ∣ ( )y y yF ñ = + ¢ ñ + ñ + ¢ - ¢ ñ - ñI Y X I Y
1

2

i

2
. 7B y B B y

An illustration of this isometry is given infigure 3, where the upper part is Bob’s system and the lower part is
Alice’s system. It should be noted that the control gates act on the target when the control qubit is in the ∣- ñy

state, and act as identity when the control qubit is ∣+ ñy . This is in contrast to the standard convention inwhich
the control is a computational basis state. Here ∣+ ñy and ∣- ñy are the eigenstates of the PauliY operator and

( )= +P X Y1

2
.We can clearly see that F = Ä FIA B, where FB is determined by the combination of ¢XB and

¢YB operators, from expression (7), which only act on Bob’s system.We proceed to show that when conditions
(1)–(3) are satisfied, we obtain condition (4). First, we show that:

∣∣ ( ∣ ) (∣ )∣∣ y y gF ¢ ñ - F ñM N M N 2 .A B A B 2

BecauseMA only acts onAlice’s system,whereas the isometry is local on Bob’s system,MA trivially commutes to
the left so that ( ∣ ) ( ∣ )y yF ¢ ñ = F ¢ ñM N M NA B A B . Now consider the possible choices for ¢NB. If ¢ =N IB , the
relation holds trivially. If ¢ = ¢N YB B, since ¢YB is hermitian and unitarywe have that:

( ∣ ) ( )∣ ∣ ( )∣ ∣ ( )y y yF ¢ ñ = + ¢ ñ + ñ - ¢ - ¢ ñ - ñY I Y X I Y
1

2

i

2
. 8B B y B B y

At the same time, the ideal Pauli operatorYB, acting onBob’s ancilla, has the following effect:

(∣ ) ( )∣ ∣ ( )∣ ∣ ( )y y yF ñ = + ¢ ñ + ñ - ¢ - ¢ ñ - ñY I Y X I Y
1

2

i

2
. 9B B y B B y

This is because ∣ ∣+ ñ = + ñY y y and ∣ ∣- ñ = - - ñY y y andwe notice that the two expressions are identical.
Lastly, when ¢ = ¢N XB B we have:

( ∣ ) ( ) ∣ ∣

( ) ∣ ∣

y y

y

F ¢ ñ = + ¢ ¢ ñ + ñ

+ ¢ - ¢ ¢ ñ - ñ

X I Y X

X I Y X

1

2
i

2
.

B B B y

B B B y

And the action of the ideal operator yields:

(∣ ) ( )∣ ∣ ( )∣ ∣ ( )y y yF ñ = + ¢ ñ - ñ + ¢ - ¢ ñ + ñX I Y X I Y
i

2

1

2
. 10B B y B B y

This is because ∣ ∣+ ñ = - ñX iy y and ∣ ( )∣- ñ = - + ñX iy y . Using the approximate anti-commutation of ¢XB

and ¢YB, as given by condition (3), we notice that commuting ¢XB to the left in ( ∣ )yF ¢ ñXB will lead to the same
expression as for (∣ )yF ñXB up to g2 2 error. Thus:

∣∣ ( ∣ ) (∣ )∣∣ ( )y y gF ¢ ñ - F ñM N M N 2 . 11A B A B 2

We therefore, only need to examine the closeness of (∣ )yF ñ to the ideal Bell state tensoredwith some junk state.
Start by considering the state:

∣ (∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ) ( )

f y y

y y

ñ = ñ + ñ + ñ + ñ

+ ñ - ñ - ñ - ñ

Y

X Y X

1

2
i i . 12

y A y

A y A A y

Wewill show that (∣ )yF ñ and ∣fñare close in trace distance. Firstly, from conditions (1) and (2) using suitable
triangle inequalities and the unitarity of operatorsXA andYAwhich do not increase trace distance, it can be
shown that:

18

New J. Phys. 19 (2017) 023043 AGheorghiu et al



∣∣( )∣ ∣∣ y g¢ ¢ - ñX Y Y X 2 .B B A A 1

Expanding the trace distance of (∣ )yF ñ and ∣fñwehave:

∣∣ (∣ ) ∣ ∣∣ ∣∣( )∣ ∣

( )∣ ∣ ( )∣ ∣ ∣∣

y f y

y y

F ñ - ñ = ¢ - ñ + ñ

+ ¢ - ñ - ñ - ¢ ¢ - ñ - ñ

Y Y

X X X Y Y X

1

2
i i .

B A y

B A y B B A A y

Andusing the above results it follows that:

∣∣ (∣ ) ∣ ∣∣ y f gF ñ - ñ 2 .1

Let us now rewrite ∣fñ. Given that we trust Alice’s side of the ∣yñ state, we can express it as follows:

∣ ∣ ∣ ∣ ∣y a bñ = ñ + ñ + ñ - ña b ,B y A B y A

where ∣ ∣ ∣ ∣+ =a b 12 2 and the states ∣añand ∣bñare normalised. Here, the first part denotes Bob’s system, for
whichwe canmake no assumptions, and the second part is Alice’s qubit. The reason for choosing Pauli-Y
eigenstates onAlice’s side is to simplify the calculation.We could have expanded her system in any basis since a
local unitary on her systemdoes not change the result. Substituting this into the ∣fñand labelling the ancillary
qubit introduced by this isometry with the labelΦwe get:

∣ ( ∣ ∣ ∣ ∣ ∣ ∣ )

( ∣ ∣ ∣ ∣ ∣ ∣ )

( ∣ ∣ ∣ ∣ ∣ ∣ )

( ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

f a a

a a

a a

a a

ñ = + ñ ñ + ñ + + ñ ñ - ñ

+ + ñ ñ + ñ + + ñ ñ - ñ

+ - ñ ñ + ñ + - ñ ñ - ñ

- - ñ ñ + ñ + - ñ ñ - ñ

F F

F F

F F

F F

a b

Y a b

X a b

Y X a b

1

2
1

2
1

2
1

2
. 13

y B y A y B y A

A y B y A y B y A

A y B y A y B y A

A A y B y A y B y A

Using the following identities:

∣ ∣ ∣ ∣+ ñ = - ñ - ñ = - + ñX Xi iy y y y

∣ ∣ ∣ ∣+ ñ = + ñ - ñ = - - ñY Y .y y y y

We reduce ∣fñ to:

∣ ( ∣ ∣ ∣ ∣ ∣ ∣ )

( ∣ ∣ ∣ ∣ ∣ ∣ )

( ∣ ∣ ∣ ∣ ∣ ∣ )

( ∣ ∣ ∣ ∣ ∣ ∣ ) ( )

f a a

a a

a a

a a

ñ = + ñ ñ + ñ + + ñ ñ - ñ

+ + ñ ñ + ñ - + ñ ñ - ñ

- - ñ ñ - ñ - - ñ ñ + ñ

- - ñ ñ - ñ + - ñ ñ + ñ

F F

F F

F F

F F

a b

a b

a b

a b

1

2
1

2
1

2
1

2
. 14

y B y A y B y A

y B y A y B y A

y B y A y B y A

y B y A y B y A

The termswith b coefficient cancel out andwe are left with:

∣ ∣ (∣ ∣ ∣ ∣ )f añ = ñ + ñ + ñ - - ñ - ñF Fa .B y y A y y A

This state is equivalent to:

∣ ∣ ∣f a yñ = ñ ñ+a 2 .B AB

Wewould like to equate this to ∣ ∣yñ ñ+junk B AB, however, the state we have is unnormalized unless =a 1 2 .
We therefore compute a bound on ∣ ∣a to determine the error introduced by the unnormalized state. Condition
(1) can be rewritten as:

∣ ∣g y y- á ¢ ñX X1 2 .A B1
2

By expanding ∣yñ, applying the operatorsXA, ¢XB and using the facts that ∣ ∣ ∣ ∣+ =a b 12 2 and that ¢XB is hermitian
and has±1 eigenvalues, we obtain:

 g g- +a1 2 2 1 2 .1
2

1
2

And since for small g1we know that g-1 21
2 approaches g-1 41

2 and g+1 21
2 approaches g+1 41

2

wehave that the normof ∣fñ, can change fromunity by an order of g 41
2 . Thus, it follows that:

∣∣ (∣ ) ∣ ∣ ∣∣ y y g gF ñ - ñ ñ ++junk 3 4.B AB 1 1
2
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Lastly, togetherwith inequality (11) and a triangle inequality, we get:

∣∣ ( ∣ ) ∣ ∣ ∣∣ ( )y y g g gF ¢ ñ - ñ ñ + ++M N M Njunk 3 4 2 . 15A B B A B AB 1 1
2

2

Appendix B. Proof of theorem2

Theorem2 shows that saturating the correlation of observables onAlice and Bob’s side, with Alice being trusted,
leads to the necessary conditions of theorem 1which imply that the shared state is close, up to local isometry, to a
Bell state. Similar to theorem1we start the proof by denotingB0 as ¢XB andB1 as ¢YB. Splitting equation (2), we
have:

∣ ∣ ∣ ∣ ( )y y y yá ¢ ñ + á ¢ ñ -X X Y Y 2 . 16A B A B

However, it is clear that:

∣ ∣ y y- á ¢ ñX X1 1A B

∣ ∣ y y- á ¢ ñY Y1 1A B

So, it follows that:

∣ ∣ y yá ¢ ñ -X X 1A B

∣ ∣ y yá ¢ ñ -Y Y 1 .A B

This allows us to derive conditions (1) and (2), since:

∣∣( )∣ ∣∣ ∣ ∣ y y y- ¢ ñ = - á ¢ ñX X X X2 1 2 ,A B A B

∣∣( )∣ ∣∣ ∣ ∣ y y y- ¢ ñ = - á ¢ ñY Y Y Y2 1 2 .A B A B

Hence, in theorem 1, g = 21 . Let us nowdenote:

= ¢ + ¢S X X Y Y .A B A B

Computing S2 and using the fact that =X Y ZiA A A we obtain:

[ ]= + ¢ ¢S Z X Y2 i , .A B B
2

Since [ ] =X Y Z, 2iA A A, we can alternatively write this as:

[ ][ ]= + ¢ ¢S X Y X Y2
1

2
, , .A A B B

2

TheCauchy–Schwarz inequality together with inequality (16) give us:

∣ ∣ ∣ ∣ ∣ ∣ ( ) y y y yá ñ á ñ -S S 2 .2 2 2

Substituting S2:

∣ [ ][ ]∣    y yá + ¢ ¢ ñ - + -X Y X Y2
1

2
, , 4 4 4 4 .A A B B

2

Hence:

∣[ ][ ]∣ y yá ¢ ¢ ñ -X Y X Y, , 4 8 .A A B B

Expanding the commutators yields:

∣ ∣ ∣ ∣
∣ ∣ ∣ ∣ 

y y y y
y y y y

á ¢ ¢ ñ - á ¢ ¢ ñ

- á ¢ ¢ ñ + á ¢ ¢ ñ -

X Y X Y X Y Y X

Y X X Y Y X Y X 4 8 .

A A B B A A B B

A A B B A A B B

By splitting into terms, as we didwith inequality (16), we have that:

∣ ∣ ( )y yá ¢ ¢ ñ -X Y X Y 1 8 , 17A A B B

∣ ∣ ( )y yá ¢ ¢ ñ -Y X Y X 1 8 , 18A A B B

∣ ∣ ( )y yá ¢ ¢ ñ -X Y Y X 8 1, 19A A B B

∣ ∣ ( )y yá ¢ ¢ ñ -Y X X Y 8 1. 20A A B B

Nowusing the fact that + =X Y Y X 0A A A A , we have:

∣∣( )∣ ∣∣
∣∣( )∣ ∣∣

y
y

¢ ¢ + ¢ ¢ ñ

= ¢ ¢ + + + ¢ ¢ ñ

X Y Y X

X Y X Y Y X Y X .
B B B B

B B A A A A B B
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Andusing a triangle inequality, we have:

∣∣( )∣ ∣∣
∣∣( )∣ ∣∣ ∣∣( )∣ ∣∣

y
y y

¢ ¢ + ¢ ¢ ñ

+ ¢ ¢ ñ + + ¢ ¢ ñ

X Y Y X

X Y X Y Y X Y X .
B B B B

A A B B A A B B

Additionally:

∣∣( )∣ ∣∣

∣ ∣ ∣ ∣

y

y y y y

+ ¢ ¢ ñ

= + á ¢ ¢ ñ + á ¢ ¢ ñ

X Y X Y

X Y Y X Y X X Y2 .

A A B B

A A B B A A B B

And from inequalities (19) and (20)we get that:

∣∣( )∣ ∣∣ y+ ¢ ¢ ñX Y X Y 4 .A A B B

Similarly, using inequalities (17) and (18), we have:

∣∣( )∣ ∣∣ y+ ¢ ¢ ñY X Y X 4 .A A B B

Which leads to:

∣∣( )∣ ∣∣ y¢ ¢ + ¢ ¢ ñX Y Y X 8 .B B B B

Thus satisfying condition (3), with g = 82 , and concluding the proof.

AppendixC. Proof of theorem3

Theorems 1 and 2 show that if the correlation of local observables is saturated up to order ( )O , the shared state
is close, up to local isometry, to a Bell state up to order ( )O . Theorem 3 shows that this bound is tight, up to
constant factors.We prove this theoremby contradiction. Assume the bound of theorem1 is not tight and it is
possible to derive an asymptotically better bound for the shared state of Alice and Bob. In particular, thismeans
that there is no state ∣yñwhich is ( )O -close to the ∣y ñ+ state and there are no observablesB0 andB1 such that
inequality 3 is satisfied.However, letting  ¢ = 2, consider the following state:

∣ ( ∣ ∣ ) yñ = + ¢ ñ + - ¢ ñ
1

2
1 01 1 10 .

Wehave that:

∣∣∣ ∣ ∣∣ ∣ ∣y y y y y yñ - ñ = - á ñ - á ñ+ + +2 .

Notice that:

∣ ∣ ( ) y y y yá ñ = á ñ = + ¢ + - ¢+ +
1

2
1 1 .

Substituting this into the previous expression, and taking the first order termwe have:

∣∣∣ ∣ ∣∣ ( )y yñ - ñ = ¢+ O .

Consider also the observables:

 

 

 

 

= - ¢ - ¢

- ¢ ¢

= ¢ - - ¢

¢ + - ¢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

B

B

1

1

0 i 1

i 1 0
.

0

1

One can check that †=B B0 0 ,
†=B B1 1 ,

† †= =B B B B I0 0 1 1 and that the twomatrices have eigenvalues±1.
Moreover, we can see that as  ¢  0wehave that B X0 and B Y1 . Importantly, we have that:

∣ ∣ ∣ ∣ y y y yá ñ = á ñ = - ¢X B Y B 1 .A A0 1

And therefore:

∣( )∣  y yá + ñ = - ¢ = -X B Y B 2 2 2 .A A0 1

Thus, inequality 3 is saturated. But this should not be possible under the assumption that the bound on ∣yñʼs
closeness to ∣y ñ+ is not tight. Therefore, the assumption is false and the ( )O bound is tight for this type of
steering inequality. Note that this result still holds under local isometry since the isometry is, by definition,
distance preserving and so under the local isometry the state is still ( )O -close to a Bell pair.
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AppendixD. Proof of theorem4

Theorem4 shows that from the observed outcomes of Alice and Bob, afterK rounds ofmeasurement, we can
conclude something about their shared quantum state in a single round, evenwithout assuming independence.
Simply stated, if the shared state of Alice andBob isσ, we need not assume thatσ is a tensor product of identical
states. Nevertheless, denoting the state of round i as ( ( ))r s= - -Tri i i

AB
1, 1 , from their shared correlationswe can

deduce that ri is close in trace distance to a perfect Bell state (under a suitable isometry). The proof consists of a
number of steps:

1. Firstly, we show that the observed correlations of Alice and Bob’s, given fixed measurement settings, is a
good estimate for the true quantum correlation assuming they sharedmultiple copies of the averaged
state r r= å =K i

K
iavg

1
1 .

2. Secondly, we use the previous result to estimate the correlations for the two measurement settings under
consideration.We then use self-testing to show that if the correlations are close to themaximal value, the
averaged state is close to a Bell state, under a suitable local isometry.

3. Lastly, we prove that if the averaged state is close to a Bell state (possibly in tensor product with somemixed
state), then a typical state ri is also close to that pure state andwe compute the exact bound for the trace
distance.

We start by proving thefirst step:

Lemma3.AssumeAlice and Bob are asked to perform n rounds ofmeasurement of the two-outcome observables
with1 eigenvalues, A and B, respectively.We denote the outcomes of theirmeasurements as { }ai and { }bi and
ˆ =C a bi i i as their correlation for round i. Additionally, let {( )∣ }= <H a b j i,i j j be the history of theirmeasurement

outcomes up to, but not including round i. Finally, letting ( ˆ ∣ )=C E C Hi i i to be the conditional expectation value of
the correlation given the previous history of outcomes, we have that for any d > 0:

ˆ ( ) å å d d- -
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

n
C

n
C nPr

1 1
exp 8 .

i

n

i
i

n

i
1 1

2

Proof.The variableCi represents the true correlation of the outcomes in round i, as determined by the shared
state of Alice andBob. If the shared state in round i is ri then ( )r=C ABTri i . Asmentioned, while we trust Alice
and know that she is indeedmeasuring the observableA, we can still assume that Bob ismeasuring the observable
B in each round. This is because the observableB is unrestricted (apart frombeing a two-outcome observable)
and can in principle act on Bob’s ancilla as well. Furthermore, wemake no assumption about the state ri, since it
is prepared by Bob. Anotherway inwhichwe can expressCi is using its definition, which leads us to:

( ∣ ) ( ∣ )= = - ¹C a b H a b HPr Pr .i i i i i i i

Wenowdefine the randomvariables:

( ˆ )å= -
=

X C C .j
i

j

i i
1

Notice that for any j n, ∣ ∣ -+X X 2j j1 (because ˆ = C 1i ,  - C1 1i ), ( )  ¥E Xj and:

( ∣ )- = - =+ + + +E X X H C C 0.j j j j j1 1 1 1

Therefore, { }Xj forms amartingale.We can therefore apply theAzuma–Hoeffding inequality [43], in amanner
analogous to [11, 15]. Setting j=n, we have that for any >t 0:

(∣ ∣ ) ( )> -X t t nPr exp 8 .n
2

Expanding, we have that:

( ˆ ) ( )å - > -
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟C C t t nPr exp 8 .

i

n

i i
1

2

For some d > 0, let d=t n . This yields:

ˆ ( )å å d d- > -
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

n
C

n
C nPr

1 1
exp 8 .

i

n

i
i

n

i
1 1

2

Thus concluding the proof of lemma 3. ,
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Wemove on to the second step:

Lemma4. Suppose Alice and Bob are required to perform K rounds ofmeasurement and also that:

• Prior to themeasurements, the shared state of Alice and Bob is assumed to be s.

• Alice chooses a random set of size K 2, consisting of indices from 1 to K and denoted { ∣ { }}= ÎR i i K1 ...R0 ,
∣ ∣ =R K 20 .We also denote { }⧹=R K R1 ...1 0, to be the complement of R0.

• Wedenote ( ( ))r s= - -Tri i i
AB
1, 1 the reduced state of Alice and Bob in round i, and r r= å =K i

K
iavg

1
1 as the

averaged state. Here  -i
AB
1, 1 denotes the action (measurements) of Alice and Bob on the state s up to round i.

• In round i, let =r 0i iff Îi R0, otherwise =r 1i . Alicemeasures the observable Ari
on her half of ri. A0 and A1 are

anti-commuting single-qubit observables having1 eigenvalues.

• In round i, Bob is asked tomeasure Bri
. B0 and B1have1 eigenvalues.

• Wedenote ai and bi, respectively, as the outcomes of theirmeasurements in round i.We also denote ˆ =C a bi i i as
their correlation for round i.

• Wedenote ˆ ˆ= å ÎC C
K i R i

0 1

2 0
and ˆ ˆ= å ÎC C

K i R i
1 1

2 1
as the averaged correlations for the cases where both Alice

and Bob are asked tomeasure the first observable, or both are asked tomeasure the second, respectively.

If, for some given  > 0 and suitably chosen (( ) ( )) = WK 1 log 12 , it is the case that ˆ ˆ + -C C 2
0 1

(or,

alternatively, ˆ ˆ + - +C C 2
0 1 ) then there exists an isometryΦ and amixed state rjunk such that:

∣∣ ( ( )) ˆ (∣ ∣) ∣∣ ( )  r y y rF - ñá+ + O ,AB AB
avg junk

where AB is some combination of the A A B B, , ,0 1 0 1 operators and ̂
AB

is the analogous combination of the ideal
operators I X Y, , , as in theorem 2.

Proof.Wewill prove the case ˆ ˆ + -C C 2
0 1

since for ˆ ˆ + - +C C 2
0 1

the derivation is similar.
Additionally, we only consider the case  = IAB , since the other cases follow from the linearity of the operators.
The previous lemma, essentially shows us that the observed average correlation is a good estimate for the average

true correlation. Specifically, it is the case that Ĉ
b
, { }Îb 0, 1 , is close to the quantum correlation ( )rA BTr b b avg .

Consider now a state ∣zñwhich is a purification of ravg.We can thenwrite the quantum correlation as

∣ ∣z zá ñA Bb b . Using these results, if our estimate of the true correlation is of precision (closeness) d > 0, then it
is the case that:

∣ ∣ ∣ ∣ z z z z dá ñ + á ñ - -A B A B 2 .0 0 1 1

With probability ( )d- - K1 exp 162 . Let d = so that we have:

∣ ∣ ∣ ∣ ( )z z z zá ñ + á ñ -A B A B O2 .0 0 1 1

Using theorem2, it follows that there exists a local isometryΦ and a state ∣ ñjunk such that, with probability
( )- - K1 exp 162 , we have:

∣∣ (∣ ) ∣ ∣ ∣∣ ( )z yF ñ - ñ ñ+ Ojunk .

This also implies:

( (∣ ) ∣ ∣ ) ( )z yF ñ ñ ñ+ OTD , junk .

Asmentioned, we are only considering the case of I acting on the state ∣zñ. Of course, the argument proceeds
identically, when considering ∣z¢ ñM NA B , as in theorem 1, leading to the  ¹ IAB cases. It should be noted that
from the construction ofΦ (in theorem1), in the case where the shared state is a purification of somemixed state
(as is the case with ∣zñand ravg), the isometry does not act on the quantum states used for purification. Therefore,
we can trace out those states, and since this operation cannot increase trace distance we have that:

( ( ) ∣ ∣ ) ( )r y y rF ñá+ + OTD , .avg junk

With probability ( )- - K1 exp 162 .We can incorporate this probability into the trace distance, andwe have
that:

( ( ) ∣ ∣ ) ( ) ( ) r y y rF ñá + -+ + O KTD , exp 16 .avg junk
2
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Setting ( ) ( ) ( ) ( )   = - =K 16 log 8 log 12 2 we are left with:

( ( ) ∣ ∣ ) ( )r y y rF ñá+ + OTD , .avg junk

Analogously, we get:

( ( ( )) ˆ (∣ ∣) ) ( )  r y y rF ñá+ + OTD , .AB AB
avg junk

Concluding the proof of lemma 4. ,

Thefinal step towards proving theorem 4 is to prove the following statement:

Lemma5. Let r be a general quantum state whichwe canwrite as r r= å =n i
n

i
1

1 , for some >n 0 and density

matrices ri. If it is the case that, for some pure state ∣fñand g > 0:

( ∣ ∣) r f f gñáTD , .

Then for a uniformly at random chosen { }Îi n1 ...R , with probability at least g-1 1 3 we have that:

( ∣ ∣) ( )r f f gñá OTD , .i
1 3

Proof. Startingwith the bound on the trace distance and the relation between trace distance and fidelity (when
one state is pure), we obtain:

( ∣ ) ( ∣ ∣)
∣ ∣ ∣ ∣ ( ∣ )

( ∣ ) ≔ ( )

 


 å å

r f r f f g
g f r f r f

r f

- ñ ñá
- á ñ = ñ

ñ

F

F

n
F

n
q

1 , TD ,

1 ,

1
,

1
, 21

i
i

i
i

2

2

2

where the second inequality follows from convexity and for convenience we defined ( ∣ )r f= ñq F ,i i
2 . This gives

a lower bound on the average qi (average fidelity squared). To provide an upper bound on the average qi, we do
the following.We let p be the fraction of iʼs such that  g d- -q 1i , where [ ]d gÎ -0, 1 . Since q 1i it
follows:

( ) · · ( ) ( ) åg d- - + -p p
n

q1 1 1
1

. 22
i

i

From equations (21) and (22) it follows that

( ) · · ( )



g d g
g

g d

- - + - -

+

p p

p

1 1 1 1

.

Now, using the fact that ( ∣ ∣) r f fñá - qTD , 1i i , we note thatwith probability ( )- p1 wehave that

 g d- -q 1i and thus for these cases ( ∣ ∣) r f f g dñá +TD ,i . By choosing d g g= -2 3 we have that
with probability at least g-1 1 3:

( ∣ ∣) r f f d g gñá + =TD , .i
1 3

,

Wecan nowuse these lemmas to prove theorem 4.

Proof of theorem4.Wehave the same assumptions as in lemma 4 and from it we know that after
(( ) ( )) = WK 1 log 12 rounds ofmeasurements, if the observed correlations are saturated up to order òwe

have:

( ( ( )) ˆ (∣ ∣) ) ( )  r y y rF ñá+ + OTD , .AB AB
avg junk

Wewould now like to apply lemma 5, however because of rjunk wedo not have a pure state in the trace distance
expression. Therefore, we trace out the junk subsystem, and since tracing out can only decrease trace distancewe
have that:

( ( ( ( ))) ˆ (∣ ∣)) ( )  r y yF ñá+ + OTD Tr , .AB AB
junk avg

If we denote ( ( ( )))r r= FTr AB
junk avg , we can now apply lemma 5.Note that ( ( (·)))FTr AB

junk is a linearmap,
since it is the composition of linearmaps. Therefore, it is the case that:
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( ( ( ))) ( ( ( ))) år rF = F
=

Tr Tr .AB

i

K
AB

ijunk avg
1

junk

Hence, for a randomly chosen ri, with probability at least ( )- O1 1 6 :

( ( ( ( ))) ˆ (∣ ∣)) ( )  r y yF ñá+ + OTD Tr , .AB
i

AB
junk

1 6

Thuswe have shown that, under a suitably chosen local isometry and tracing out any additional systemswe can
‘extract’ a single Bell pair from the two device’s shared state. If wewant to also have a closeness relation for

( ( )) rF AB
i , which includes all of Bob’s private subsystem, we can use a corollary of the gentlemeasurement

lemma:

Corollary 2. [9, 10] Let r be a state on Ä1 2, and letπ be a pure state on1. If for some d 0,
( ( )) p r d-Tr Tr 12 , then

( ( )) r p r d dÄ +TD , Tr 2 .1

This leads to:

( ( ( )) ˆ (∣ ∣) ˜ ) ( )  r y y rF ñá+ + OTD , ,AB
i

AB
junk

1 12

where ˜ ( ( ( )))r r= F-Tr AB
ijunk junk . ,

Appendix E. Proof of theorem5

Asmentioned, we prove theorem5 by showing that the actual strategy  of Alice and Bob is close to a strategy g

inwhichAlice guesses Bob’s outcomes, which in turn is close to the ideal strategy id.

Lemma6. Let ( { } { })  r= , ,i
A

i
B be Alice and Bob’s ò-structured strategy for playing N sequential K -round

steering games inwhich Alice plays honestly. Let ( { } { })  r= , ,g i
A

i
B be Alice and Bob’s ò-structured strategy for

playing N sequential K -round steering games, inwhich Alice plays as in  but also guesses Bob’s outcomes.
Specifically, Bob’s operator will be i

B, which yields Alice’s guesses for Bob’s outcomes.We have that 
( )O N 1 6 -simulates g .

Proof.Without loss of generality, it can be assume that the initial state ρ is a pure state. Also note that Alice’s
action is given by { }i

A in both strategies, since she is always honest.We have that ( { } { })  r= , ,g i
A

i
B , where

i
B denotes the guessing operator for Bob’s outcome in game i. BecauseAlice is trusted and playing honestly, her

guessing strategy for Bobwill be to provide the same outcomes as hermeasurement outcomes. This, of course,
ensures that the steering correlations are saturated. Concretely, i

B leaves Bob’s systemunchanged but gives the
same outcome as i

A. Denote as ◦  =i
AB

i
A

i
B the action of Alice and Bob on the state of the ith game, in

strategy g and similarly ◦  =i
AB

i
A

i
B the action of Alice andBob on the state of the ith game, corresponding

to the true strategy  . Note thatwe can assume the sameHilbert space in both strategies. The reason for this is
that Alice’s side is trusted in the two strategies, so herHilbert space is determined and fixed. OnBob’s side,
assumewe haveHilbert spaceB in strategy  . In strategy g we are ignoring Bob’s outcomes and replacing
themwithAlice’s guesses. Therefore, we can assume anyHilbert space onBob’s side, sowithout loss of generality
we assume it isB. Thus strategies  and g use the sameHilbert space.

We denote ◦ ◦   = ...i
AB AB AB

i
AB

1, 1 2 and similarly ◦ ◦   = ...i
AB AB AB

i
AB

1, 1 2 . Additionally, according to
definition 5,R is a set of random indices, each index taken from a different steering game.We canwrite

{ ∣ { } ( ) { }}k k= Î = - + ÎR i N i K r r K1 ... , 1 , 1 ...i i R . Essentially, ki is the selected random round for
the ith steering game, out of the total number of rounds in theN games. Thus,  k NK1 i . Lastly, we denote

{ ∣ } k=R i j1j i to be thefirst j random indices (i.e. the randomly selected rounds up to game j).Wewould
like to compute a bound for:

( ( ( )) ( ( ))) r r- -TD Tr , Tr .R j
AB

R j
AB

1, 1,j j

Wedo this inductively, startingwith the first steering game. Theorem 4 tells us that for aK-round steering game,
if we observe a steering inequality saturation of order ( )O the reduced state in a randomly chosen roundwill be

( )O 1 6 close to a Bell state. Sincewe know that strategies  and g are ò-structured, it follows that for thefirst
steering gamewe have that:

( ( ( ( ))) ˆ (∣ ∣)) ( )  r y yF ñá- + + OTD Tr , ,R
AB AB
1 1

1 6
1

( ( ( ( ))) ˆ (∣ ∣)) ( )  r y yF ñá- + + OTD Tr , ,R
AB AB
1 1

1 6
1
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whereΦ is the isometry of theorem 1, ̂
AB
1 and ̂

AB
1 are the ideal operators (note that in fact ̂ =

AB AB
1 1 since

Alice is honest). However, since ∣ ( ) ∣y yÄ ñ = Ä ñ+ +I M XM X IT , for any operatorM, in ̂
AB
1 we can ‘shift’

Bob’s action toAlice’s side and sowe are left with an operator which is ideal onAlice’s side (conjugation byX is

not a problem, sinceXXX=X and = -XYX Y ) and acts as identity onBob’s side. This is precisely the ̂
AB
1

operator, hence ˆ ˆ =
AB AB
1 1 . Therefore, both ( ( ( ))) rF-Tr R

AB
11

and ( ( ( ))) rF-Tr R
AB
11

are close to the same
state, and through a simple application of the triangle inequality it follows:

( ( ( ( ))) ( ( ( )))) ( )  r rF F- - OTD Tr , Tr .R
AB

R
AB

1 1
1 6

1 1

The specific isometrywe have considered acts locally in each round (i.e., in each round it only acts on the reduced
state of that round and introduces one ancilla qubit). Thus, it is possible in this case to commute the isometry
with the tracing out operation, and then remove it completely from the inequality, since it is distance preserving.
Of course, the tracing out operationwill be acting on a different system (the non-isometrized system), requiring
a different notation. In order to avoid complicating the notation, we use the same expression for the tracing out
operation, and it is to be understood that we trace out all systems apart from the ones used in round 1.We
therefore have:

( ( ( )) ( ( ))) ( )  r r- - OTD Tr , Tr .R
AB

R
AB

1 1
1 6

1 1

This is the base case of our induction. Assumenow the following holds:

( ( ( )) ( ( ))) ( ) ( ) ( )  r r -- - - -- - j OTD Tr , Tr 1 . 23R j
AB

R j
AB

1, 1 1, 1
1 6

j j1 1

Wewould like to show:

( ( ( )) ( ( ))) ( )  r r- - jOTD Tr , Tr .R j
AB

R j
AB

1, 1,
1 6

j j

For the set of rounds from game jwe can again apply theorem 4, and use the closeness bound for the state from
round kj. Note that for the first game, the shared state of Alice andBobwas ∣yñ, while the state in game jneed not
be a pure state.We can, however, still apply theorem 4, regardless of the action of previous games, since the
theorem assumes that Alice and Bob share some stateσwhich can be either pure ormixed.Moreover, as before,

wewill have that ˆ ˆ =j
AB

j
AB

1, 1, , hence the reduced state in round kj from strategy  is ( )O 1 6 -close to the state in
round kj from strategy g . This together with equation (23) and a triangle inequality lead to:

( ( ( )) ( ( ))) ( )  r r- - jOTD Tr , Tr .R j
AB

R j
AB

1, 1,
1 6

j j

Since this is true for all j N , we get:

( ( ( )) ( ( ))) ( )  r r- - O NTD Tr , Tr .R N
AB

R N
AB

1, 1,
1 6

Hence, strategy  ( )O N 1 6 -simulates strategy g . ,

Lemma7. Let ( { } { })  r= , ,g i
A

i
B be Alice and Bob’s  -structured strategy for playing N sequential K -round

steering games, in which Alice plays as in  but also guesses Bob’s outcomes. Specifically, Bob’s operator will be i
B,

which yields Alice’s guesses for Bob’s outcomes. Let ( { } { })  r= , ,i
A

i
B

id id id be the ideal strategy inwhich rid is a
tensor product of Bell pairs andAlice and Bob play N sequential K -round steering games ideally (i.e. theymeasure
the same operators on their shared state).We have that g ( )O N 1 6 -simulates an isometric extension of id,
or  »g id.

Proof.We shall first consider another guessing strategy ˆ ( { } { })  r= , ,g i
A

i
B

id . This strategy is identical to g

except for the fact that it uses the ideal state (the tensor product of Bell states) as opposed to the real state, ρ. Note
that rid must lie in the sameHilbert space as ρ.Without loss of generality, we can use some isometry to take a
tensor product of Bell states andmap it to theHilbert space of ρ and denote that state as rid. It is easy to see that

ˆ »g g . On the one hand, both strategies use the same operators for Alice and Bob (and in fact will produce
identical statistics). On the other hand, since Alice is effectively guessing for Bob and the action on his subsystem
is identity, there is no adaptivity in his strategy or outcomes. Combining this with the fact that the strategies are
ò-structured,means that we can extract individual Bell pairs from each steering game and hence:

( ( ( )) ( ( ))) ( )  r r- - O NTD Tr , Tr .R N
AB

R N
AB

1, 1, id
1 6

Wenow show ̂ »g id. First note that, as before, { }i
A corresponds to the ideal strategy for Alice and appears in

both ̂g and id since she is always honest. Additionally, asmentioned in the previous proof, because she is
playing honestly according to the ideal strategy, her guesses for Bob’s outcomeswill be exactly her own
measurement outcomes. Thismimics the ideal strategy. In the ideal strategy Alice andBobmeasure the same
operators on their shared state.Moreover, both strategies are using the ideal state rid. This directly implies that:
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( ( ( )) ( ( ))) ( )  r r- - O NTD Tr , TrR N
AB

R N
AB

1, id id 1, id
1 6

Alternatively, we could have used the fact that ̂g and id use the same state and both strategies are ò-structured,
as in the previous lemma, to prove the same thing. Thus, it follows that strategy g ( )O N 1 6 -simulates an
isometric extension of strategy id, or  »g id. ,

It is worthmentioning that in the case of steering, unlike CHSH, the outcomes are deterministic, so Alice can
guess perfectly for Bob. This led to a simplified rigidity proof compared to the one for CHSHgames from [9].
Finally, we prove theorem5.

Proof. From lemmas 6 and 7we have that  » g and that  »g id. Since in lemma 7we have shown that g

( )O N 1 6 -simulates an isometric extension of id we can consider an isometric extension of id, denoted  ¢id
that has the sameHilbert space as strategy  . Using a triangle inequality it follows that  » ¢id. Thus 

( )O N 1 6 -simulates an isometric extension of the ideal strategy id. ,

Appendix F. Proof of theorem6

It is clear that amaximally entangled Bell state satisfies the properties of total steerability.We therefore focus on
proving that a totally steerable state ismaximally entangled. From the two constraints of definition 7wewill
express themost general formof rAB.We start by considering ∣y ñABC as the 4-qubit purification of rAB. All other
purifications are equivalent to this one, so this suffices for our purposes.Writing ∣y ñABC in the computational
basis, we have:

∣ ∣åy ñ = ñ
=

a i .ABC
i

i
0

15

Of course, we have the additional constraint:

∣ ∣å =
=

a 1.
i

i
0

15
2

By re-expressing the constraints fromdefinition 7 and lemma 2:

r r r= Ä ,BC B C

r = I 2B

as constraints on the amplitudes of ∣y ñABC wewill have a large bilinear systemof equations. From this systemwe
will arrive at the following set of equations:

· { }
· { }

· { }
· { }

*

= Î ¼
=- Î ¼

= Î
= Î

f

f

+

+ +

+ +

+

a f a k

a f a k

a a k

a a k

, 0, 1, 6 ,

, 0, 1, 6 ,

e , 0, 1, 2, 3 ,

e , 0, 1, 2, 3 ,

k k

k k

k k

k k

2 2 2

2 3 2 1

4 1
i

4 2

4
i

4 3

1

2

where the parameters we introduced are Îf and [ ]f f pÎ, 0, 21 2 . Computing thematrix elements of rAB, we
arrive at themost general form, given by:

(∣ ∣ )

∣ ∣ ∣ ∣

∣ ∣ ∣ ∣

*

*

* *

r =
+

-

-

- -

f

f

f

f

-

-

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟f

f f f f

f f

f f

f f f f

1

2 1

e

1 e

e 1

e

.AB 2

2 i 2

i

i

i 2 2

1

2

2

1

It can be easily checked that ( )r =Tr 1AB
2 and therefore rAB is a pure state. But since r = I 2B , we have that rAB

is a pure entangled state.We know that all pure entangled states are non-local.Moreover, the condition
r = I 2B also implies that the state ismaximally non-local and hence a Bell state.
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