Edinburgh Research Explorer

Rigidity of quantum steering and one-sided device-independent
verifiable quantum computation

Citation for published version:

Gheorghiu, A, Wallden, P & Kashefi, E 2017, 'Rigidity of quantum steering and one-sided device-
independent verifiable quantum computation' New Journal of Physics, vol. 19, no. 2, 023043. DOI:
10.1088/1367-2630/aa5cff

Digital Object Identifier (DOI):
10.1088/1367-2630/aa5cff

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
New Journal of Physics

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75 ACCESS

Download date: 05. Apr. 2019


https://doi.org/10.1088/1367-2630/aa5cff
https://www.research.ed.ac.uk/portal/en/publications/rigidity-of-quantum-steering-and-onesided-deviceindependent-verifiable-quantum-computation(62dde105-782a-4196-8541-f6fa96cf3632).html

IOPScience

Home

Search Collections Journals About Contactus My IOPscience

iopscience.iop.org

Rigidity of quantum steering and one-sided device-independent verifiable quantum

computation

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2017 New J. Phys. 19 023043
(http://iopscience.iop.org/1367-2630/19/2/023043)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 129.215.224.16
This content was downloaded on 23/02/2017 at 17:08

Please note that terms and conditions apply.

You may also be interested in:

Robustness and device independence of verifiable blind quantum computing
Alexandru Gheorghiu, Elham Kashefi and Petros Wallden

Measures and applications of quantum correlations
Gerardo Adesso, Thomas R Bromley and Marco Cianciaruso

Optimal quantum networks and one-shot entropies
Giulio Chiribella and Daniel Ebler

Self-testing through EPR-steering
Ivan Supi and Matty J Hoban

Device-independent two-party cryptography secure against sequential attacks
Jdrzej Kaniewski and Stephanie Wehner

Quantum steering: a review with focus on semidefinite programming
D Cavalcanti and P Skrzypczyk

Device-independent quantum key distribution secure against collective attacks
Stefano Pironio, Antonio Acin, Nicolas Brunner et al.

An invitation to quantum incompatibility
Teiko Heinosaari, Takayuki Miyadera and Mario Ziman

Quantum state discrimination and its applications
Joonwoo Bae and Leong-Chuan Kwek



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/19/2
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/1367-2630/17/8/083040
http://iopscience.iop.org/article/10.1088/1751-8113/49/47/473001
http://iopscience.iop.org/article/10.1088/1367-2630/18/9/093053
http://iopscience.iop.org/article/10.1088/1367-2630/18/7/075006
http://iopscience.iop.org/article/10.1088/1367-2630/18/5/055004
http://iopscience.iop.org/article/10.1088/1361-6633/80/2/024001
http://iopscience.iop.org/article/10.1088/1367-2630/11/4/045021
http://iopscience.iop.org/article/10.1088/1751-8113/49/12/123001
http://iopscience.iop.org/article/10.1088/1751-8113/48/8/083001

10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
21 October 2016

REVISED
15 December 2016

ACCEPTED FOR PUBLICATION
27 January 2017

PUBLISHED
21 February 2017

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

NewJ. Phys. 19 (2017) 023043 https://doi.org/10.1088/1367-2630/aa5cff

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Rigidity of quantum steering and one-sided device-independent
verifiable quantum computation

Alexandru Gheorghiu', Petros Wallden' and Elham Kashefi"’

' School of Informatics, University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, United Kingdom
> CNRSLTCI, Departement Informatique et Reseaux, Telecom ParisTech, Paris CEDEX 13, France

E-mail: a.gheorghiu@sms.ed.ac.uk

Keywords: quantum steering, self-testing, rigidity, delegated quantum computation, device independence

Abstract

The relationship between correlations and entanglement has played a major role in understanding
quantum theory since the work of Einstein et al (1935 Phys. Rev. 47 777-80). Tsirelson proved that Bell
states, shared among two parties, when measured suitably, achieve the maximum non-local
correlations allowed by quantum mechanics (Cirel’son 1980 Lett. Math. Phys. 4 93—100). Conversely,
Reichardt et al showed that observing the maximal correlation value over a sequence of repeated
measurements, implies that the underlying quantum state is close to a tensor product of maximally
entangled states and, moreover, that it is measured according to an ideal strategy (Reichardt et al 2013
Nature 496 456—60). However, this strong rigidity result comes at a high price, requiringa large
number of entangled pairs to be tested. In this paper, we present a significant improvement in terms of
the overhead by instead considering quantum steering where the device of the one side is trusted. We
first demonstrate a robust one-sided device-independent version of self-testing, which characterises
the shared state and measurement operators of two parties up to a certain bound. We show that this
bound is optimal up to constant factors and we generalise the results for the most general attacks. This
leads us to a rigidity theorem for maximal steering correlations. As a key application we give a one-
sided device-independent protocol for verifiable delegated quantum computation, and compare it to
other existing protocols, to highlight the cost of trust assumptions. Finally, we show that under
reasonable assumptions, the states shared in order to run a certain type of verification protocol must
be unitarily equivalent to perfect Bell states.

1. Introduction

Quantum steering correlations first appeared in the seminal paper of Einstein et al [1] to support their argument
that quantum mechanics is incomplete. It was later formally introduced by Schrédinger [4]. The observation
made, was that measurements performed on one half of a bipartite entangled state can steer the state of the other
half. This means that the reduced state of one side can be correlated with the classical outcome of the other party
in a way that is possible only if the two parties shared entanglement (assuming the correctness of quantum
mechanics). A similar effect occurs when examining purely classical correlations, which led Bell to derive his
inequalities and reveal the non-local character of quantum mechanics [5]. The study of correlations that
characterise quantum systems has developed much since then, and now includes the already mentioned non-
local and steering correlations and quantum discord correlations [6—8]. Observing these correlations, given
suitable assumptions, is an indication that a particular system behaves quantum mechanically and is used to
verify the quantumness of that system. Since these correlations are specific to quantum systems, it is also
anticipated that they could be the source of certain new practical applications.

In particular, the existence of non-local correlations, apart from revealing a counter intuitive feature of
nature, has led to the development of device-independent protocols for quantum key distribution (QKD),
quantum random number generation (QRNG) and verified delegated quantum computation (VDQC)

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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[3,9-16]. In these applications two parties, Alice and Bob, do not trust their devices throughout the run of the
protocol. Instead, by obtaining non-local correlations between the classical outputs of their devices, they can test
their devices and obtain the correct functionality. This is achieved by confirming that the states they were sharing
were entangled and measured in such a way that the resulting correlations could not have come from any
classical system. Thus, the two parties either obtain a correct and secure result or detect that the devices are
working incorrectly (thus being insecure) and abort. Such protocols are highly desired for practical
implementation as they provide a higher level of security, unachievable by classical systems. However, there are
certain practical issues that hinder their development such as the need for high detection thresholds, high fidelity
transmission channels, space-like separation and a high overhead [13, 17].

The practical limitations of device-independent protocols has motivated the revival of research into
quantum steering, which has simpler trust assumptions, where the state of one (trusted) side is steered by
operations on the other (untrusted) side. The existing research involves the characterisation of steering
correlations both analytically and geometrically [ 18—20], their relationship to other types of correlations [21, 22]
and their application to cryptographic tasks such as QKD and QRNG [23, 24]. Experiments testing quantum
steering inequalities [25] (loophole-free) and testing local but steerable states [26] have also been performed. In
the case of QKD, Branciard et al showed in [23], that there is a natural correspondence between the trust
assumptions of the protocol and the types of correlations between the two parties. Using this correspondence,
Branciard et al introduced one-sided device-independent QKD, which uses steering correlations in order to distil a
shared secret key. In the cryptographic setting, such correlations allow only one device to be untrusted leading to
areduction in the overall experimental requirements of the protocol. To be precise, they showed that in typical
device-independent settings, the detection efficiency of Alice and Bob should be above 91.1%, whereas their
one-sided protocol lowers that to 65.9%. A similar relation between trust assumptions and correlations is
exploited for QRNG as well [24]. In this case it was shown that a detection efficiency of 50% is sufficient for
random number generation in the steering setting, versus 70.7% in the device-independent setting.

For VDQC, we will show that using steering correlations leads to a reduction in communication, compared
to the device independent setting. However, the VDQC case presents a complication. Firstly, the setting of
VDQC is slightly different than that of QKD and QRNG. In the latter two, Alice and Bob are two parties that are
working together towards a common objective (obtaining a shared key or certified randomness), using possibly
untrusted quantum devices. In VDQG, Alice is a client who is delegating a difficult computation to Bob, an
untrusted quantum server. She does not have the resources to perform the quantum computation herself, and
while Bob does, he cannot be trusted to do so. So Alice needs a way to verify that Bob is performing the correct
quantum computation. To do this, she utilises a quantum device in her local lab which she may or may not trust.
Regardless of this, Bob is always assumed to be unstrusted. This is an important distinction from the
collaborative setting of QKD and QRNG. Moreover, approaches to QKD and QRNG rely on using abound on
the correlations of the parties’ devices in order to derive a bound for a quantity of interest, such as key rate,
mutual information, entropy etc [15, 27-31]. In contrast to this, existing protocols for device-independent
VDQC use the bound on correlations to recover the underlying quantum state used in the protocol, as well as the
operations being performed on this quantum state [9—12]. This allows for the correctness certification (referred
to here as verification) of an arbitrary universal quantum computation strictly from the non-local correlations.
To achieve this one needs, at the same time, to obtain close to maximal non-local correlations and not only
recover a characterisation of one Bell pair but of a tensor product of Bell pairs. Such a result is possible due to the
rigidity of repeated CHSH games, manifesting non-local correlations, as shown in [9]. In this context, rigidity
means that if two non-communicating devices playing CHSH games are achieving the optimal win rate, then
they share a state which is close to a tensor product of maximally entangled states and, moreover, their strategy is
fixed and uniquely determined. In general, we define rigidity as the ability to derive a robust bound on the
distance between a real state (the state shared by Alice and Bob) and many copies of some target state (such asa
tensor product of Bell pairs) as well as between target measurements and real measurements, from a bound on
correlations. This is similar to the concept of self-testing, except that for self-testing one only wants to obtain a
single copy of the target state from observed correlations. For instance, it is possible to self-test a Bell state and its
associated measurements using the CHSH game. So, one way to arrive at rigidity is to consider multiple CHSH
games and combine the self-testing results’. However, in general, it is necessary to play a large number of games
in order to certify few Bell states. For this reason the existing device-independent VDQC protocols have
impractically large communication complexity [9, 10, 12].

There is an additional aspect to be mentioned. As stated, in the VDQC setting we have a trusted client, also
referred to as verifier, and an untrusted server, also referred to as prover. This is the standard cryptographic
scenario when considering verification of computation, whether it is quantum or classical [32, 33]. The
asymmetry in trust is precisely the same as in the steering scenario which is why VDQC is the most natural

This needs to be done in a non-trivial way since the games might not be independent from each other, in general.
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Figure 1. Steps towards rigidity.

application for steering correlations. While it is definitely possible to introduce such an asymmetry in QKD, for
example, the typical setting is to have the parties involved be identical in all respects.

In this paper, we relax the trust assumptions and derive a rigidity result for quantum steering correlations,
showing that it leads to a reduced overhead compared to the setting of non-local correlations. The result proves
that observing steering correlations close to their maximal value, implies a tensor product structure of Bell pairs
and fixed measurement operators for the untrusted party, up to local isometry. The only assumptions made in
deriving this result are the correctness of quantum mechanics and the fact that one party is completely trusted,
having a complete characterisation of her Hilbert space and measurement operators. In particular, the rigidity
result makes no independent and identically distributed (i.i.d.) assumption regarding the shared state or strategy
of the untrusted party. In analogy to one-sided device-independent QKD and QRNG, this leads us to a one-sided
device-independent VDQC protocol, having improved round complexity over the device-independent
versions. More generally, the rigidity result is relevant in its own right since it is applicable to any protocol that
uses steering correlations.

The structure of this paper is organised as follows. In section 2 we give our main result, which is that using
maximal steering correlations we determine, up to alocal isometry, a tensor product of Bell pairs and the
operations of the untrusted party. To derive this result, we first give a procedure to characterise a single Bell pair
from observed correlations (single-shot rigidity), in the i.i.d. setting in section 2.1. This is done by making a
protocol for self-testing from steering correlations which gives us abound on the distance of one shared state
from a perfect Bell pair. We also prove the optimality of this bound. We then remove the i.i.d. assumption in
section 2.2, thus showing that one can extract a Bell pair from the observed statistics even in the fully adversarial
(one-sided) setting. Then, in section 2.3 we use the previous result in order to determine a tensor product
structure of Bell pairs and the measurement operators of the untrusted party. These steps are shown in figure 1.
Note that rigidity does not follow directly from repeatedly applying the single-shot result as this would require
independence. Instead, we use an approach similar to that of [9], by defining a quantum steering game and
showing that high win rates in this game determine the states and strategies of the players, up to local isometry.

Lastly, in section 3 we briefly discuss existing approaches to VDQC (section 3.1) and then use the rigidity of
quantum steering to construct a one-sided device-independent verification protocol (section 3.2). We also show
that for the types of protocols we have considered, the required entangled states should be close to Bell pairs
(section 3.3).

2. State and strategy certification via steering

While quantum steering has been studied extensively in the context of verifying entanglement, it is important to
elaborate on the subtle difference between verifying entanglement and verifying maximal entanglement and
how this relates to the verification of quantum computation. It has already been shown that it is possible to
verify, from steering correlations, that a state shared by two parties is entangled. In fact, this type of verification
can be done in a fully device-independent way (under certain assumptions), and has been tested experimentally
[34, 35]. However, it should be noted that these results use steering correlations as a witness for quantum
entanglement. The purpose of a witness is to separate between entangled and non-entangled states and its
existence is proven through the violation of a steering inequality, in analogy to a Bell inequality. In our setting,
we do not just require correlations that violate a steering inequality, rather we require the correlations to saturate
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the maximum achievable value. This enables us to certify the state and strategies used in producing these
correlations, which in turn, can be used for verifying quantum computations. To our knowledge, there are no
other results which treat the case of saturated steering correlations.

The setting that we will consider is similar to the one used in [21, 23]. This involves two parties, Alice and
Bob, where Alice has a trusted measurement device, while Bob has an untrusted measurement device. They
share an unknown joint quantum state, |1/), which without loss of generality can be assumed to be pure. Alice
instructs Bob to perform a measurement on their joint state. For example, if the shared state is
[¢.) = (|00) + [11)) / V2, Alice can instruct Bob to measure the Z observable on his qubit and report the
outcome. The measurement steers Alice’s qubit to a particular quantum state. She can then measure her state to
confirm that her qubit was indeed steered to the expected state. We shall refer to a collection of such
measurements as a steering game consisting of rounds of single measurements performed by Alice and Bob. They
win around of the game if Bob’s reported outcome matches that of Alice. We elaborate more on this in
section 2.3.

The correlations between their outcomes are called steering correlations if they cannot be explained by a local
hidden state model. This happens when the expected value for the correlation of their outcomes obeys certain
steering inequalities. However, whenever a steering inequality violation is observed, Alice can conclude that her
state was indeed steered by Bob via their shared entanglement. In the rest of this section we prove that violating
the steering inequalities maximally (up to order O (¢)) leads to recovering a tensor product of Bell pairs with
measurement operators close to ideal and we quantify this ‘closeness’. Proving this rigidity result is done as
follows. First, building on the work regarding self-testing the singlet [36] by McKague et al, we derive a robust
self-testing protocol of a single Bell state, where one side is trusted, while the other is not. This is achieved by
using maximal steering correlations in order to fully characterise, up to abound of order O ({/€), the quantum
state shared between the two parties. Importantly, in [36] it is assumed that the quantum states are i.i.d. We also
make this assumption in our self-testing result (section 2.1), however we remove it later on (section 2.2). We
show that the bound for self-testing is tight up to constant factors. Then, we remove the i.i.d. assumption,
arriving at a new bound for characterising the shared state in the completely adversarial setting, from the
observed correlations. The way in which we remove the i.i.d. assumption is not specific to steering and can be
applied to the non-local setting as well, thus complementing the work from [36]. Using this result, and a game-
based argument we show that saturating the steering inequalities enables us to recover the quantum state of a
tensor products of Bell pairs and characterise the untrusted measurement operators acting on these states, thus
proving the rigidity of quantum steering (section 2.3). Throughout this paper we use || |¢) || = /(¥|¥) asthe

P-normand TD(p, 0) = %Tr(| p — ol)astrace distance. Additionally, for the trace distance of pure states we

willwrite TD(|#), |$)) = TD(|¢) (¢, |6) (¢ D).

2.1. One-sided device-independent self-testing (i.i.d.)

We start by proving a one-sided device-independent version of robust self-testing, whereby the measurement
statistics allow us to determine the existence of a single Bell pair. Specifically, as in [36], successfully self-testing a
maximally entangled state between Alice and Bob means:

+ There exist local bases (local isometry) in which their shared state can be viewed as a Bell pair, possibly in
tensor product with some additional state.

+ We can infer the existence of local (physical) observables on Alice and Bob’s side, which act non-trivially on
the shared state.

This is similar to the works of [11, 36—42] and in fact we adopt a similar notation to that of [36]. The main
difference with respect to those works, is that in our case we trust Alice’s measurements. The specific observables
we consider for her are Pauli X and Y. We will find that Bob must also measure these observables to saturate the
correlations of measurement outcomes. The Bell state under consideration is the XY-determined Bell state

[1y) = (]01) 4 |10))/~/2. The result can be generalised for any pair of non-commuting observables and any
Bell state. It should be mentioned that a Bell state has a local hidden variable model for Pauli basis measurements
by both parties, but it does not have alocal hidden state model. This highlights the difference between non-local
and steering correlations and emphasises the importance of trusting Alice’s system in order characterise the
shared state and Bob’s measurements. The reason for our choice of observables and state is so that we can easily
use this result for a VDQC protocol, presented in the next section, that uses XY-plane states, as explained in
section 3. Note that Alice and Bob need to perform multiple measurements in order to approximate the
expectation values of their observables. Since we do not trust Bob, we cannot in general assume the independence
of his measurements. However, we will make an i.i.d. assumption in the beginning, to prove our main self-
testing theorem. We then remove the assumption by modelling the measurement process as a martingale and
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using the Azuma—Hoeffding inequality [43, 44], as is also done in [ 11, 15]. A schematic illustration of our setting
can be found in figure 2.

We start by proving a theorem analogous to theorem 1 of [36]. Just as in [36], the primed observables denote
untrusted operators. The shared state, which is also assumed to be untrusted is denoted as | ). The
independence (i.i.d.) assumption means that Alice and Bob share the same state |1)) in each round of
measurements. Furthermore, the untrusted measurement observables of Bob can be assumed to be the same
each time. This is because his observables can include action on his private ancilla. Since Alice’s side is trusted, we
assume that she has a single qubit measurement device and so, in each round of measurement, her part of |1} isa
single qubit state. Given this setting, the theorem is stated as follows:

Theorem 1. Suppose that from the observed correlations of measurements performed by Alice and Bob and knowing
that Alice is measuring the { X, Y} observables (denoted Xy, Y,), one can deduce the existence of local observables
{Xs, Y3} on Bob’s side, with eigenvalues 41, which act on a bipartite state |1)) such that:

1(Xa — XY ] < o 1)
1(Ya — YR l) I < 2
(X5 Y5 + YeXp) 1) I < 7o ©)
Then there exists a local isometry ® = I @ ®pand astate |junk)g such that
1D MANG 1)) — ljunk)s Ma Ny (v )as ] < & @

with My, Ny € {1, X, Y}, N € {I, Xp, Y}, € = 3% + 7 /4 + 27, |¢s) = (J01) + [10))/+/2.

Proof sketch. The proofrelies on finding an isometry which, given conditions (1)—(3), maps |) to an almost
perfect Bell state. Similar to [36], M, and Nj are the physical observables of Alice and Bob which act on the
shared state. The isometry we considered is illustrated in figure 3, where P = % (X + Y) and the control gates

act on the target state when the control qubit is in the | - ) state instead of the | 1) state, and act as identity when
the control is in the |+, ) state instead of the | 0) state. Here, | +,) and | - ) are the two eigenstates for the Pauli Y
operator, corresponding to the 41 and —1 eigenvalues, respectively. The fact that we are using these states and
the P operator is a consequence of shifting everything to the XY-plane of the Bloch sphere instead of the more
familiar XZ-plane. It should be noted that M, is trusted and acts on Alice’s part of the shared state, whereas Nj,
acting on Bob’s part of |¢/), is untrusted. However, the action of Ny, is equivalent to the honest N acting on the
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ancilla introduced by ®. Having the isometry, we write out its action on the state My N}, 1)) and use
inequalities (1)—(3) together with the trace preserving properties of the operators and triangle inequalities to
prove condition (4). The full proof of theorem 1 can be found in appendix A. O
Our next result is to show that conditions (1)—(3) are satisfied if an almost maximal violation of a particular
steering inequality occurs. As mentioned before, the requirement for maximal violation is in contrast to
previous work on entanglement detection. In that case, one uses the steering inequality as an entanglement
witness to separate the Hilbert space of possible shared states into a subspace of entangled states manifesting
steering correlations and its complement. Violating the inequality determines that the shared state lies in the
subspace of entangled steerable states. For example, similar to the works of [45, 46], assuming Bob measures
local observables Xj and Yy, one could consider the inequality:

(W] XaXp + YaYy [¥)] < V2.

This inequality holds, whenever there is alocal hidden state model for Bob’s system. If this is not the case, then
the state is steerable. In our case, we do not simply require a violation of this inequality, but we require a (close to)
maximal violation. For the above inequality, the maximum achievable violation allowed by quantum mechanics
is 2, which also corresponds to its mathematical maximum. Requiring maximal saturation is represented as:

(Y] XaXp + YaYp [¥)] 22— €
for some small e. Given that this inequality holds we have:

Theorem 2. Suppose Alice measures the observables X, Y, and that Bob measures the observables X}, and Yy, with
eigenvalues +1, on the state |1)), such that

[(D1(XaXp + YaYp)lP)| 22—,
where 0 < ¢ < 1. Then the conditions of theorem I are satisfied with v, = \/2¢ and y, = 4./e.

Proof sketch. The proof reduces to expanding inequality 2 and using the properties of the observables, to arrive
at the bounds of conditions (1)—(3) from the previous theorem. Concretely, we see that the correlation of local
observables that we consider:

[(|(XaXp + YaYp)|) |

is simply a sum of two expectation values which are upper bounded by unity (because the observables have +1
eigenvalues). Hence, to saturate the absolute value of this quantity, it must be the case that both expectation
values are saturated i.e. lower bounded by 1 — ¢ or upper bounded by —1 + ¢. We will only examine the first
case since the second is analogous, so we will drop the absolute value of the expression and simply consider:

(V] XaXp + YaYp [th) 22 — e

By expressing each expectation as a trace norm we arrive at conditions (1) and (2). To prove condition (3) we use
the Cauchy-Schwarz inequality and the commutators [X,, Y4]and [Xp, Y], respectively. The full proof can be
found in appendix B. O

Using the results of theorems 1 and 2, we find that strong correlations between Alice and Bob’s measurement
outcomes, given that we trust Alice to be measuring the X and Y observables, determine the shared state between
Alice and Bob as a Bell state, under local isometry ® = I, ® ®3. Additionally, notice that if the steering
correlations are O (¢) close to ideal (maximal), we can bound the shared state of Alice and Bob as being O (</€)
close to the ideal. The same asymptotic bound is achieved in the case of CHSH games, where both Alice and
Bob’s outcomes are untrusted. One could expect that the bound we obtained from the steering inequalities is not
atight bound and that it is possible to do better because we trust Alice’s measurements. We prove, that in fact this
is not the case and the O (/€) bound is actually tight:

Theorem 3. Suppose that Bob’s observables X}, and Y}, with eigenvalues 41, acting on a state |1), are such that:
[(DIXaXp + YaYp) )| 22 — ¢,
where 0 < € < 1. Then, up to constant factors, the bound of theorem 1 (i.e. inequality (4) with ¢ = O (J/€)) is tight.

Proof sketch. Theorem 3 essentially shows that the O (v€) bound for the closeness of | 1)) to the ideal Bell state
[1,) is optimal. The proof relies on finding a state and local observables for Bob such that the steering correlation
is saturated up to order O (¢), but the state is O (/€ ) deviated from the ideal Bell state. We consider such a state
which is exactly /€ -close to the ideal |1, ) Bell state and which saturates the correlation of observablesto 2 — ¢.
Furthermore, we consider local observables for Bob which are deviated, as a function of ¢, from the ideal
observables. Hence, these deviated observables tend to the ideal X and Y observables in the limit where ¢ — 0.
The specific state and Bob’s local observables are given in appendix C. O
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The exact bound for closeness can be computed by simply inserting the constants +; and +y, from theorem 2
in the calculation for £ of theorem 1. This yields a distance of ¢ = (3+/2 + 8) /€ + €/2.

This result has important consequences for the application we consider in the next section, the verification of
quantum computation. It essentially imposes a restriction on how good the fidelity of the entangled state is, as
resulting from the observed correlations. In VDQC we require a complete characterisation of the entangled
states that are used and in particular, we require them to be close to Bell pairs. This leads to the requirement of a
very tight saturation of the steering correlations. Contrast this to the QKD or QRNG settings where less than
maximally entangled states suffice [27, 28, 47—49].

It should be noted that we used the same notation for Bob’s observables in both theorems 2 and 1 since for
this particular case they coincide. In general, however, we would have to construct Bob’s observables in theorem
1 from the observed correlations, as is done in [36]. An important corollary to these three theorems is the
following:

Corollary 1. The results of theorems 1-3 hold if instead of X and Y, Alice measures the anti-commuting single-qubit
observables Ay and A, having eigenvalues +1 and Bob measures observables By, B, having eigenvalues +£1.

Proof. In the proof of theorem 1 we only made use of the anti-commutation properties of the X, Y observables
on Alice’s side as well as the action of the two operators on the eigenstates of Y. For general observables, Ay and A,
this translates to using their anti-commutation properties and the action of the two on the eigenstates of A}, for
example. Essentially the proof of theorem 1 only changes by relabelling X, as Ap and Y, as A;. On Bob’s side, the
situation is similar. By relabelling X as By and Y} as B, we again have conditions (1)—(3) for these observables,
which are then used to construct the isometry and prove the result of theorem 1.

For theorem 2, using the same relabelling we have the inequality:

[ (| AgBo + Ai1B |¢)| =2 — e.

Since the proof of theorem 2, like theorem 1, only relied on the anti-commutation properties and the action of
the observables on the eigenstates of one of them, the relabelling does not change anything and the results go
through as before.

Lastly, for theorem 3 we use that fact that the observables Ay and A, are linear combinations of Pauli
matrices. Depending on which Bell state is stabilised by the actions of these observables we can consider a state
thatis O (J/€)-deviated from that Bell state, similar to the state considered for the proof of theorem 3.
Analogously, we will have O (¢)-deviated observables for each Pauli matrix. For example, in the proof of
theorem 3 we considered the O (¢)-deviated versions of the X and Y observables. Bob’s observables will therefore
be linear combinations of these O (¢)-deviated Paulis so as to be O (¢)-close to Ay and A, respectively. O

The result of theorem 2 assumes ideal expectation values for the observables of Alice and Bob. Of course, in
practice, after performing a finite number of measurements we obtain an approximation of these expectation
values. This can be properly taken into account by considering independent random variables (since we are in
the i.i.d. setting) associated with the measurement process and using a Chernoff inequality to bound their
expectation values. We do not give a full derivation of this here, since we will give the more general derivation for
the non-i.i.d. case in the next section (for which the proof can be found in appendix D). Instead, we simply state
the result of this finite analysis: for a fixed ¢ > 0, we require atleast (1/¢2)log(1/¢) measurements in order to
certify that the closeness of each shared state is O (/€) to a perfect Bell pair. One can also compute the number of
measurements as a function of the desired trace distance for the Bell states. If we denote this distance as
D = ¢/, then the number of measurements must be at least (2c*/D*)log(c/D). In our case ¢ ~ 12.3, so that if
we wanted the trace distance to be, for example, D = 0.1, we would require atleast 2.2 x 10° measurements.

2.2.Removing the independence assumption

We proceed to remove the i.i.d. assumption from the previous statements. The following theorem essentially
states that if Alice and Bob are asked to perform a sequence of measurements, and we notice a close to maximal
steering inequality violation from their outcomes, we can conclude that the state shared in a typical round of
measurement is close to a Bell pair. By ‘typical round’ we mean a uniformly randomly chosen round. A similar
result is obtained in [50], with the essential differences that their non-i.i.d. result shows that at least one state is
close to an ideal Bell pair while both parties are untrusted. In our case, Alice is trusted throughout this process
and, without loss of generality, we can assume that she chooses the measurement settings for each round. The
notation Tr_;(-) indicates that we are tracing out everything apart from the quantum states that are measured in
round i. We also use the notation Tr_g(-), which generalises the previous notation for a set, R, of rounds (i.e.
tracing out all states except those which are used inrounds i € R).

7



10P Publishing

NewJ. Phys. 19 (2017) 023043 A Gheorghiuetal

Theorem 4. Suppose Alice and Bob are required to perform K rounds of measurement and also that:
« Prior to the measurements, the shared state of Alice and Bob is assumed to be o, which can be either pure or mixed.
The sstate o is thus the global state which will be used for all K rounds’.

« Alice chooses a random set of size K /2, consisting of distinct indices from I to K and denoted
Ry = {ili €g {1...K}},|Ro| = K/2. Wealso denote R, = {1...K}\ Ry, to be the complement of R,.

+ Wedenote p; = Tr,,-(Ef}?_ 1(0)) the reduced state of Alice and Bob in round i, and:
] X
pavg - E ;pz

as the averaged state. Here Eff?_ | denotes the action (measurements) of Alice and Bob on the state sigma up to
round i.

* Inroundi, let1; = 0iffi € Ry, otherwise r; = 1. Alice measures the observable A, on her half of p;. Aqand A, are
anti-commuting single-qubit observables having +1 eigenvalues.

* Inround i, Bob is asked to measure B,.. By and B, have %1 eigenvalues.

« Wedenote a; and b;, respectively, as the outcomes of their measurements in round i. We also denote Ci = a;b; as
their correlation for round i.

A0 o Al 1
Wedenote C* = mziGRo CiandC = X2

and Bob are asked to measure the first observable, or both are asked to measure the second, respectively.

Yier, C; as the averaged correlations for the cases where both Alice

If, for some given € > 0 and suitably chosen K = Q((1/€?)log(1/€)), itis the case that ¢+ ¢ > 2 — € (or
alternatively, C’ 4+ C' < =2 + ¢) then there exists alocal isometry © such that, for a randomly chosen p,, with
probability atleast1 — O (¢'/°):

TD (Trjun(@(E5(p))), £ (11 (141)) < O(eV/), )

where EAB is some combination of the Ay, Ay, By, By operators and & s the analogous combination of the ideal
operators (i.e. Ay, Ay, I and the ideal operators for Bob, which for the XY-plane case we considered, are I, X, Y ), asin
theorem 1, and where junk is Bob’s private system apart from the ancilla introduced by ®. Alternatively, we have that
there exists some state ;... such that:

TD(@(E*(p))s E™ (1) (1 1) Prum) < O(e/12). 6)

Proof sketch. The proofis broken down into several parts. First, we show that the average observed correlations
¢"and ¢! approximates the ideal quantum correlation for the averaged state. The averaged state can be thought
of as the state shared by Alice and Bob in each round of measurements, such that the average correlations of
outcomes from this state match those observed in the real experiment (i.e. C and C). Proving this step is done
along similar lines to the approaches of [11, 15]. The measurement process of Alice and Bob can be viewed as a
stochastic process with bounded increment, i.e. a martingale. The specific martingale we consider encodes the
correlations of their measurement outcomes. While the individual measurements need not be independent, we
can still prove that this observed correlation is, with high probability, close to the ideal quantum correlation. To
do this, we use the Azuma—Hoeffding inequality for martingales [43, 44]. We then use the result of theorem 2 to
show the closeness of the averaged state to an ideal Bell state. Lastly, we prove equation (5) by using an
optimisation argument together with properties of trace distance and density matrices. Equation (6) follows
from this through an application of the gentle measurement lemma [9]. The full proof s given in

appendix D. O

Asin thei.i.d case, forafixed ¢ > 0, we require Q((1/¢%)log(1/¢)) measurements however the closeness of
a typical state, to a perfect Bell pair, is of order O (¢!/°) in this case. For a better comparison we will also compute
the number of measurements as a function of the desired trace distance for a typical state. The proofs in
appendix D show that the exact number of measurements required is (8/¢2)log(1/ ¢), yielding a distance
D = c'/3¢1/%, where cis the constant from the i.i.d. bound. Thus, the number of measurements must be at least
(8c*/D'?)log(c?/D®). For our case, where ¢ ~ 12.3 if we again take D = 0.1, we would require at least 3.4 x 10'8
measurements. While this is too great for current experimental applications, the current bounds are most likely
not tight and can be improved. In fact, better numeric bounds have been obtained for thei.i.d. setting, as we

*In the ideal setting where everything is trusted, o would be a 2K -qubit state consisting of K Bell pairs.
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Figure 4. Comparison of i.i.d. and non-i.i.d. settings.

explain in section 2.4. To give an example, the result of [51], obtains a bound where c = 1.19 leading to

2.2 x 10" measurements. We show a comparative plot for the number of measurements required in the i.i.d.
setting, versus in the non-i.i.d. setting in figure 4. The graphs are represented as functions of the desired
(decreasing) trace distance.

It should be noted that in the proof of theorem 4, we did not use the fact that Alice is trusted except when
applying the self-testing result (theorem 2). Thus, a similar theorem can be proven in the case where both Alice
and Bob are untrusted. In that case, one could simply use the self-testing results of [ 12, 36, 41, 42] for thei.i.d.
setting, and then obtain a statement about the closeness of a typical state to the ideal one in the non-i.i.d. setting
using our techniques. For example, if we were to use theorem 2 from [36] we could once again establish from the
measurement statistics that a typical state shared by Alice and Bob is close to a Bell state. This result completes
the work of [36] for the non-i.i.d. setting.

It should additionally be noted that throughout this section we not only assumed that Alice’s device is trusted
but that it also measures the ideal Pauli operators. This could seem unreasonable from an experimental
perspective, however note that any (fixed) deviation on Alice’s measurement operator can be incorporated into
€. In other words, assume Alice’s ideal operator is A and the deviated one is 6A, such that:

TD(A ® B [)), A ® B |1)) < 6.

It is thus the case that the action of Alice’s operators is 6-close to the action of the ideal operators which produce e
saturation. Hence, § can be added to € and viewed as a contribution to the total variation from maximal
correlations. However, if such a deviation exists we should consider what happens when § < ¢ and when

6 > e,respectively. If § < ¢, then the error on Alice’s device is smaller than the precision to which we wish to
estimate the saturation of the correlations. Therefore, the saturation can still be considered of order O (¢) and
the bounds on the states follow as in the ideal case. However, if § > ¢ then the saturation cannot be estimated
within the desired precision. This means that there will be an intrinsic limitation on the determined closeness of
the shared states as given by a saturation of order O (6).

2.3.Rigidity of quantum steering
We now proceed to prove rigidity of quantum steering games in a manner similar to that of [9]. In this setting, we
assume that there is an unknown quantum state shared between Alice and Bob. By asking Alice and Bob to
perform repeated measurements we would like to show that this state is close to a tensor product of Bell pairs
possibly in tensor product with some additional state, up to local isometry. Additionally, we will show that Bob is
essentially performing the correct measurements (recall that we are assuming Alice’s measurements are trusted).
Self-testing allows us to certify one Bell state and the local observables of Bob in a one-shot manner. Intuitively, it
seems that we could perform sequential self-tests in order to certify multiple Bell pairs, thus recovering the
tensor product structure. For example, according to theorem 4 we can conclude that after K rounds of
measurement the reduced state in one of the rounds is, with high probability, close to a Bell state. We would then
simply repeat this procedure N times in order to recover N Bell pairs, each one selected at random from each set
of Krounds. This intuitive argument does not hold. As is also noted in [9], Bob’s strategy and the untrusted states
he prepares for a certain set of measurements can overlap with the states and strategy from another set. Thus, if
the reduced state for round i is close to a Bell pair, and the reduced state for round j is close to a Bell pair, we
cannot implicitly conclude that the reduced for both rounds i and j is close to two Bell pairs.

We resolve this, in a manner similar to [9], by first defining a steering game akin to the CHSH game. We will
then use theorem 4 to prove that the real strategy Alice and Bob use to play the steering game is close to the ideal

9
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strategy. Intuitively, the steering game is one in which we ask Alice and Bob to measure specific observables on
their shared state and check to see if their outcomes match. For example, to saturate inequality 2 we would ask
Alice and Bob to both measure the X observable or to both measure the Y observable. Since we trust Alice, we
know that she is behaving honestly, whereas Bob could deviate from the ideal strategy. Note that we are
assuming that there is a referee asking Alice and Bob to perform these measurements. Since Alice is trusted, we
could have her act as the referee and send the instructions to Bob. Indeed that will be the case when we consider
the verification setting. However, the two situations are equivalent. For this reason, in our formal treatment of
the game we shall consider Alice and Bob to be the players and that there exists a referee which instructs them on
what to do. The definition is as follows:

Definition 1. We say that a game consisting of players Alice and Bob is a K -round steering game with threshold
T < K iffthe following conditions are satisfied:

+ Alice and Bob share a joint unknown quantum state | ).
+ The game has K rounds.

+ Inround i, Alice is instructed by the referee to measure her half of |1)) with either the A, or A; two-outcome,
single-qubit, anti-commuting observables, having +1 eigenvalues and record her measurement outcome
(keeping it secret from Bob).

+ Alice’s measurement device is fully trusted to perform the correct measurement, moreover she has a complete
characterisation of the device’s Hilbert space.

+ Inround i, Bob is instructed by the referee to measure his half of |)) with either the By or B two-outcome
observables, having +1 eigenvalues and reports his outcome to Alice.

 Alice and Bob win the current round iff their outcomes are identical.

+ Alice and Bob win the game iff they win at least T'rounds.

Note that in the previous definition we match the conditions of theorem 4. Unlike Alice, Bob is untrusted
and so his observables are unknown to Alice (and the referee). Moreover, the state |1)) is unknown and we can
assume that it was prepared by Bob. We now define the correlation value of the game.

Definition 2. Let W be the number of rounds that Alice and Bob win in a K -round steering game. The
correlation value for the game is defined as the fraction W /K.

Itis useful to make the following observation: if we assume that Alice and Bob are measuring the same state,
| ), in each round, then the correlation value of the game would be:

%<¢| AoBy + AiB; |9).

In general, this might not be the case, since Bob is free to use any state in each round. In accordance with theorem
4, the correlation value of the game is then an estimate for the correlation of the averaged state. We use this fact to
conclude something about the correlation of the reduced state in a randomly chosen round. This fact will be
used to prove rigidity.

Alice and Bob will be asked to play multiple steering games. Following the notation of [9] we will denote p as
their shared state for all these games (unlike |1)) which is the state for one game) and for a specific game, j, we
denote the operator associated with Alice’s actions (measurements) as é’f and the operator associated with Bob’s

action as E? . Thus, for N steering games, the triplet S = (p, {Ef} , {E]B }) encodes the strategy of Alice and Bob,
where j < N.Theideal strategy, which we denote as Si4, is the one in which p,, is a tensor product of Bell states
and Alice and Bob perform the measurements they are instructed to perform in each round. We need to show
that S & Sj4. This was shown in [9] for CHSH games by extracting a tensor structure in the individual Hilbert
spaces of Alice and Bob from the tensor structure of their two spaces. In our case, because we trust Alice and her
device, we already have a characterisation of her strategy and Hilbert space. Therefore, we need only use this to
characterise Bob’s strategy. As in [9], we do this by exploiting the following symmetry property of the Bell state
M@ D) =1® (XMTX)|1),), forany2 x 2 matrix M. This essentially allows us to shift Bob’s
measurements to Alice’s side, thus eliminating any dependence of his outcomes on previous qubits and
establishing a tensor product structure. We will use this to create a strategy in which only Alice performs
measurements. In analogy to [9], we start by defining an e-structured steering game.

10
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Definition 3. We say that a K-round steering game is € -structured iff the game correlation value is greater
thanl — e.

Alternatively, we can set the winning threshold for the game to T = (1 — ¢)K. Thus, winning a steering
game is equivalent to having an e-structured steering game. Similarly, one can define an e-structured strategy.

Definition 4. A general strategy S for N K-round steering games is e-structured iff for an arbitrary game j < N
we have that Pr(game j is e-structured) > 1 — e.

Note that this means that the majority of steering games, in a strategy, are € -structured. Lastly, we adapta
definition from [9] to characterise the closeness of two strategies. It should be noted that we will define two
strategies as being close if the reduced actions of Alice and Bob on N randomly chosen rounds, in the two
strategies, are close to each other. This contrasts the definition from [9], where two strategies are considered
close if the actions of Alice and Bob for all rounds are close to each other. The reason for the difference is that we
are only interested in establishing a tensor product of N Bell states and that Alice and Bob are performing ideal
measurements on those N states. However, since we have N steering games, each consisting of K rounds, we will
have NK rounds in total. Showing that all of these are close to ideal would lead to a large overhead which we
would like to avoid.

Definition 5. Let S = (p, {£7}, {£}})and S = (p, {E'f} , {E’?} ) be two strategies for playing N sequential K-
round steering games. For € > 0, we say that strategy S e-simulates strategy S iff they both use the same Hilbert
spaces and for all j:

TD(Tr_r(£{F(p)), Tr_r(E1y () < 6,

where Ris a set of Nround indices, each chosen at random from the N steering games. Additionally:

EM = EMo P08,

&AB &AB &AB &AB
g =Moo . B

And:
AB A B oAB oA B

Whenever we have that S e-simulates S, or an isometric extension of S, we will write S ~ S. This leads us to
the main result:

Theorem 5. Let S = (p, {5?} , {5? }) be Alice and Bob’s e-structured strategy for playing N sequential K -round
steering games. Let Sy = (pig» {4 ib & i}) be Alice and Bob’s ideal strategy for playing N sequential steering
games. We have that S O (Ne'/®)-simulates an isometric extension of Sig.

Proof sketch. Firstly, it should be noted that for all j, E? =&A j- This is because Alice is trusted and always
playing according to the ideal strategy. The proof then consists of two steps. First we show that if the real strategy
S is e-structured, then S ~ S, where S, is a strategy in which Alice plays honestly and also guesses Bob’s
measurement outcomes. The guesses provided by Alice are taken to be Bob’s outcomes for each game while the
action on his subsystem is taken to be identity. The proof of this step relies on characterising the evolution of the
quantum state p in the two strategies and using theorem 4 together with the e-structured nature of the strategies.
We then show that S, ~ Sj4. To do this, note that in the guessing strategy we have effectively removed the
problem of adaptivity. Since there is no untrusted Bob in S, the original argument, of sequentially repeating
self-testing, goes through. This allows us to show that S, is close to a similar guessing strategy, denoted Sg, which
uses ideal Bell pairs. Lastly, this strategy is trivially close to the ideal one. We can then combine these results to
showthat S &~ Sjg. The full proofs are given in appendix E. O

Since N represents the number of Bell pairs we wish to certify, we see that in order to obtain a decreasing
error, we require ¢ = O (N~%). We also know from theorem 4 that given ¢, the number of games required is of
order K = Q((1/€?)log(1/€)). Therefore, we must have that K = Q(N'2log(N)). Since each steering game
comprises of K rounds, we have KN rounds in total, or 2(N'?log(N)) rounds of steering games. This becomes
important for use in VDQC.
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2.4. Comparison with other approaches

Before presenting the VDQC application, we briefly compare our approach to similar results. As mentioned, this
paper builds on the work of self-testing the singlet of McKague et al [36]. While we use similar techniques to
theirs, we assume that Alice is trusted and thus arrives at an improved bound for the closeness of |) to an ideal
Bell pair (O (V€) versus O (e1/4)). On the other hand, the results of [9] and [50] do arrive at an O (/€) bound for
self-testing. However, we know that their techniques cannot improve the asymptotic closeness, since we have
shown in theorem 3 that this bound is optimal up to constant factors.

When comparing the exact bounds, we obtained (32 + 8)Jé + ¢/2,whichissmaller compared to that
of [9], approximately 270 /€. The result of [50] obtained numerically an even smaller factor of v/2.2¢ by using a
semidefinite programme. Their technique could, in principle, be used to improve our approach as well. We also
mention the result of Supi¢ and Hoban [51], which appeared concurrently with our own. They also consider the
case of self-testing from steering correlations, obtaining an analytic bound of 13/¢ and a numeric bound
of 1.19-/€.

Furthermore, [50] also considers removing the i.i.d. assumption. Their approach is based on hypothesis
testing, however the end result is to show that at least one state, out of all measured states, was close to a perfect
Bell pair. In our case, theorem 4 establishes that a typical state, out of all measured states, was close to a perfect
Bell pair. This is necessary in order to prove the rigidity result and certify a tensor product of Bell pairs.

For the rigidity of steering correlations we employed similar techniques to those of [9] to show that the
strategy (consisting of states and measurements) associated with the real scenario is close to that of the ideal
scenario. This is done by considering intermediate strategies and showing that they are close to both the real and
the ideal one and therefore that the latter strategies are close to each other. The major difference with [9] is that
because Alice is trusted, in our case, there was no added overhead in proving the closeness of these strategies to
each other. This then lead to a reduced closeness bound.

3. Verified delegated quantum computation

The idea of VDQC is that a computationally weak verifier wants to delegate a computation to a powerful
(quantum) prover, and at the same time be able to verify the correctness of the result received. In characterising
VDQC protocols, we use the formalism of interactive proof systems[32, 52]. For our setting, the prover is
restricted to polynomial time quantum computations. Ideally we would like the verifier to be a fully classical
computer, however it is still an open problem if this is possible, when there is a single prover [53]. Instead, it is
known that if the verifier has some minimal quantum capabilities, he is able to verify the prover’s computation
[32, 54]. Alternatively, if there are multiple non-communicating provers sharing entanglement it is possible to
do verification with a fully classical verifier [9, 10, 12]. It should be noted that in certain cases not all the provers
are quantum computers. For example, in the protocols of [ 10, 11] there are two provers, one is a quantum
computer (or server) and the other is an untrusted measurement device. Thus, throughout this paper we will
refer explicitly to the provers by their role (i.e. quantum server, measurement device etc).

3.1. Existing approaches to VDQC

The first approaches to VDQC relied on having a classical verifier with a minimal quantum device. This device
could be either a constant size quantum computer [32], or a single qubit preparation device [54]. In both cases,
the verifier has both a classical and a quantum communication channel with the server. The quantum channel is
used only in an initial phase to send quantum states to the server. Verification of the computation is then
performed via classical communication only. Importantly, the quantum communication is offline, meaning it
can be performed before the verifier even decides what computation she would like to perform (she must,
however, fix the size of the computation to be performed). We will briefly explain one of these protocols, namely
the one by Fitzsimons and Kashefi [54], which we shall refer to as the FK protocol. The reason for choosing this
protocol is that many other VDQC protocols that were later developed have been based on FK[10, 11, 55—

58, 63]. Furthermore the FK protocol is currently the optimal protocol from the point of view of the client’s
quantum capability requirements. Hence it is a good starting point in further reducing the trust assumptions as
we intend to do in this section. We therefore use our results on quantum steering to modify one of the FK-based
protocols.

The FK protocol is expressed in the measurement-based quantum computing (MBQC) model of
computation and uses universal blind quantum computation (UBQC) [59] as a basis for verification. We
succinctly explain the basic ideas behind these concepts as further details can be found here [59, 60]. In MBQGC,
computation is achieved through a sequence of adaptive single-qubit measurements performed on a highly
entangled state known as a graph state. It is possible to make this graph state highly regular, by having all qubits
preparedin the |+) = % (]0) + |1)) state and entangling them using the controlled-Z operation into a
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Figure 6. FK verification protocol.

brickwork structure [54, 59]. The qubits are then measured in the basis { |[+4), | —¢ ) }, where
|44) = %( |0) 4 e |1)) and @is chosen adaptively from theset D = {0, 7/4,...,77/4}.

In the following we give the main idea behind UBQC. A trusted client sends to an untrusted quantum server
rotated qubits of the form |+4) with angles 6 chosen randomly from the set D. The server is then supposed to
entangle these qubits in a generic graph state structure and then measure them in the basis { |[+s), | —5 ) },

6 € D, asinstructed by the client. The measurement angles are selected and adapted in order to perform a
specific computation. Having no knowledge of the initial rotation angles (the 0’s), the measurement angles (the
&’s) will appear random to the server and so he will have no information about the computation being
performed, apart from an upper bound on its size (given by the number of qubits). We illustrate this in figure 5.
This blind computation procedure can be modified in order to perform verification as well, leading to the FK
protocol.

In this case, the client, now known as a verifier, will also send computational basis states { |0), |1) } to the
server, interleaved randomly with the rotated qubits. The purpose of these states, called dummy qubits, is to
isolate certain rotated qubits from the rest of the graph state qubits. Isolation is achieved because the controlled-
Z operation when used with a dummy and a rotated qubit will not perform entanglement. The isolated qubits
are called traps because the verifier will instruct the server to measure these qubits in their preparation basis (i.e.
the measurement angle ¢ will match the rotation angle @ for each trap qubit), thus yielding a deterministic
outcome. Because of blindness, the position of the traps is hidden from the server and so he is unaware if he is
performing a trap measurement or a computation measurement. This allows the verifier to test, on average, the
behaviour of the server and abort the protocol if he behaves maliciously. Schematically, this is shown in figure 6.

As mentioned, the FK protocol uses a verifier with a trusted preparation device, while the untrusted server is
performing entangling and measuring operations. We refer to this as a prepare and measure type of protocol.
There is another class of protocols that have the server prepare the graph state and send the qubits one by one to
the verifier who performs single qubit measurements [56, 61, 62]. In this case, the verifier has a trusted
measurement device instead of a preparation device. We refer to the latter class of protocols as measurement-only
type of protocols. The main drawback of this approach is that the quantum communication is online (occurs
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during the time that the quantum computation is performed). This means that the verifier must commit to the
computation she wishes to perform when the quantum communication commences. In contrast to this, the FK
protocolis offline and therefore the verifier does not need to make such a commitment. Instead, after the
quantum communication has occurred, she is free to choose any computation up to a fixed size and
communicate only classically with the server.

All of the approaches mentioned so far, relied on having a verifier with a trusted quantum device. It is also
possible to have a fully classical verifier, with no quantum device, if we allow for multiple entangled quantum
servers. Such is the case with the protocols presented in [9, 12]. Alternatively, the verifier can have an untrusted
measurement device and share entanglement with a single quantum server. This scenario is a device-independent
version of the the prepare and measure protocols. The two existing approaches are presented in [10, 11]. We will
briefly describe the operation of these device-independent protocols, since a slight modification of them will
lead to our one-sided device-independent protocol.

The setting of device-independent VDQC is the following:

+ The verifier has an untrusted measurement device. The device can measure the observables
(X', Y', Z', D', E!, F'}, where D' = %(X’ + 7, E= % X' +Y'),F= % (Y' 4+ Z'). The observables
are primed to indicate they are untrusted.

+ Theserver is instructed to initially prepare Bell states and send half of each state to the verifier.
+ The measurement device and the server are assumed to be non-communicating.

+ The verifier interacts only classically with both of these devices.
The verification protocol consists of the following two stages:

1. Verified state preparation—In this stage the verifier will use the shared entangled states with the server in
order to prepare single qubit states on the server’s side. These are the states which, in the FK protocol, were
sent to the server having been prepared by the trusted quantum device and which will later be used to
perform verified computation. In this case, because the measurement device is also untrusted, the verifier
will have to interact with the two devices in order to certify the preparation of correct states on the server’s
side. In the protocol of [ 10], this is done using the rigidity property of CHSH games, whereas the protocol of
[11] achieves this using a modified version of the Mayers—Yao self-test.

2. Verified computation—Having prepared the rotated states and dummy qubits on the server’s side, the
verifier proceeds to run the FK protocol as if she had sent the qubits to the server. It can be shown that the
server is still blind following the preparation stage. Since this stage results in the preparation of imperfect
states (e-close to the ideal), it was necessary to show that the FK protocol is robust to deviations in the initial
state.

Itis worth pointing-out here, that any deviation of the server on the correctly prepared input of the FK, is
detected by the verification mechanism of the FK protocol. In other words, the two stages can be separated, and
the verified preparation can happen any time earlier than the verified computation. The main disadvantage of
the device-independent protocols is the large round complexity in the state preparation stage, leading to an
overall large complexity compared to other approaches. The main reason behind this blow-up, is the number of
measurements that need to be performed in order to certify correct state preparation and additionally the
measurements that need to be performed to test the honesty of the two devices. A major factor for this increase,
is the need to certify the tensor product structure of Bell states shared, before the verifier uses them to prepare the
states for the FK on the server’s side. By allowing the verifier’s device to be trusted, we can eliminate this last set of
measurements and gain an advantage in terms of round complexity, leading to a one-sided device-independent
VDQC protocol. In this protocol, similar to the measurement-only protocols, the verifier has a trusted
measurement device. However, in our case, the (trusted) measurements can occur offline, since they are only
involved in the verified state preparation stage.

3.2. Verification based on steering correlations

The setting we have, is that the verifier trusts her measuring device, but the server and the shared state, prepared
by the server, are not trusted. Since our setting is identical, in terms of trust assumptions, to the one-sided
device-independent self-testing scenario, we will sometimes refer to the verifier as Alice and the server as Bob. If
Alice knew that the shared state with Bob is a tensor product of perfect Bell states, she could measure her side and
collapse the state of the server to the desired input of FK. But since the state is untrusted, we will use the results of
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the previous sections to characterise the shared state from steering correlations. If Alice observes a close to
maximal saturation of the steering correlations, she can conclude that the shared state is a tensor product of Bell
pairs. This follows from the rigidity result of theorem 5. The result is analogous to that of [9, 10] where the
rigidity of CHSH games is used in the same fashion. All of this is encapsulated in protocol 1.

Protocol 1. One-sided device-independent verification protocol.

Assumptions
The verifier wants to delegate a quantum computation described by the graph G and specific measurement angles from the set
{0, m/4...7m/4} chosen to define a desired computation. For the FK protocol, used in stage 2, the graph Gis encoded as a different graph,
G, having M qubits. The verifier has a trusted single-qubit measurement device.
Stage 1: Verified state preparation
1. Verifier instructs the server to prepare © (M'* log(M)) Bell pairs and send half of each pair to her.
2. Verifier measures a random subset of M qubits in the {|+), | —¢ ) } basis, where 6§ € {0, 7/4 ... 77 /4}, or the computational basis,
without instructing the server to measure them.
—For the remaining qubits (which are of order © (M'? log(M))) she again measures in the { |+4), | —¢ ) } or the computational basis, but
she also instructs the server to measure the corresponding entangled partner in the same basis.
—The server reports the measurement outcomes and if the results are not the same as the verifiers, the protocol is aborted.
Stage 2: Verified computation (Robust FK)
3. If the protocol is not aborted in the previous stage, the verifier runs the (robust) FK protocol (given in [10]) with the server, using graph G
(i.e. the qubits from the first step of Stage 1are treated as if they had been sent by the verifier to be entangled into the graph G and run the
FK protocol).

During the verified state preparation stage, the verifier confirms that all her measurement outcomes agree
with the measurement outcomes reported by the server. The number of measurement rounds, i.e.

O (M" log(M)), is chosen so that the results of theorems 4 and 5 lead to a decreasing error. As explained, the
theorems require us to have © (M'? log(M)) rounds of measurement per steering game, and since we have M
steering games we end up with © (M*? log(M)) rounds. Contrast this to the round complexities in the fully
device-independent scenarios which are of order O (M¢), where ¢ > 8192 for [9] and ¢ > 2048 for [10],
respectively. Even though these do not follow from tight bounds, it seems clear that the added trust of the
verifier’s measurement device leads to a significant reduction in complexity.

Next we examine the verified computation stage. As the input obtained from the previous stage is not exact,
but close in trace distance to the ideal state, we need to consider the robust version of the FK derived in [10].
Moreover, to obtain the optimal complexity, instead of using a dotted-complete graph as was done in [10, 54],
we will use the optimised resource construction introduced in [58], where the number of qubits in the encoded
graph, G, is linear in the number of qubits in the computation graph G. This leads us to the following:

Lemma 1. Protocol 1, for a computation of size M, utilises © (M3 log(M)) Bell pairs and has © (M'3 log(M))
round complexity (rounds of interaction between the server and the verifier). The probability that the verifier accepts
the outcome of the protocol, assuming honest behaviour by the server, is unity. If 1) is the probability that the verifier
accepts an incorrect outcome in the FK protocol (verified computation stage), the overall probability of accepting an
incorrect outcome for protocol 1 is 7 + X, for some constant X > 1 fixed by the verifier.

Proof. As mentioned, the FK protocol with the encoding (resource state) defined in [58], or using the resource
construction procedure of [63], has linear round complexity. Therefore, the round complexity of the verified
computation stage is © (M). The verified preparation stage requires © (M*? log(M)) Bell pairs which are used to
test the saturation of steering inequalities. Therefore, the overall round complexity is © (M'? log(M)). In the
honest run, the verified state preparation stage leads to preparing the ideal input, and therefore the probability of
accepting an honest run is unity. This is because in the honest setting, the server prepares ideal Bell pairs and all
states are measured correctly, leading to the correct rotated qubits on his side, which are then used in the FK
protocol. The FK protocol also has probability of acceptance unity, when the server behaves honestly [54].

On the other hand, a dishonest run involves deviations in both state preparation and verified computation
stages. In the first stage, a dishonest server would prepare states that are at most O (¢!/6)-deviated from the ideal
by theorem 4. Here, ¢ = ©(1/M?°), in order to have a decreasing error in simulating the ideal strategy. Thus, the
deviation per Bell pair is fixed however, the verifier can choose many measurement rounds for the steering
games in the state preparation stage, reducing the deviation in the overall (tensor product) state. Concretely, if
she chooses to run N2M° steering games, then € = X"12M~°, for some fixed \. The overall deviation, which is of
order Me!/6, will then be of order X2. This constitutes the deviation in the state preparation stage. As explained
in [10], the robustness of the FK protocol implies that if the computation stage has probability of acceptance,
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given dishonest behaviour, n7and there is a deviation of order « in the state preparation phase, then the overall
probability of accepting an incorrect outcome willbe 7 + /&. In our case, @ = X2, hence the probability
becomesn + XL O

The resulting protocol’s round complexity is an improvement, over the device-independent approaches of
[9, 10, 12]. The reason for this is that we benefited from the fact that Alice is trusted in the rigidity result. In
particular, while there is a cost for removing the i.i.d. assumption, in the semi-trusted setting we have no extra
cost to recover the tensor product structure from theorem 5. This leads to a better complexity when we extract
the tensor product structure of Bell pairs, than the complexity obtained in the completely untrusted (device-
independent) setting of [9]. On the other hand, in the case of FK where the verifier has a trusted preparation
device and sends qubits to the server, the round complexity and number of used quantum states are linear in the
size of the computation [58]. In our case, the main sources for overhead are:

+ Self-testing with i.1.d. states which gives a tight bound for the closeness of the state up order /€.

+ Gathering sufficient statistics in the non-i.i.d. setting to get a good estimate of the true quantum correlations
for the averaged state. This required 2((1/¢2)log(1/¢)) rounds of measurements.

+ Inferring the closeness of a typical state from the closeness of the averaged state, which gives abound of
order €!/°,

3.3. Verification from partially entangled states

It is known that if the source of quantum states is trusted, then classical-quantum correlations are sufficient for
verification [11, 54]. Alternatively, in online verification protocols (where computation and quantum
communication take place at the same time), it is possible to have an untrusted entanglement source and states
which are less than maximally entangled. Our setting is that of offline verification with an untrusted
entanglement source.

We have seen that in both device-independent verification and one-sided device-independent verification
we can characterise the tensor structure of Bell pairs between the verifier and the server from correlations. In
both cases, saturating an inequality involving correlations leads to a bound on the trace distance between the
shared state and perfect Bell pairs, up to an isometry. While this is sufficient, it does not seem necessary to use
Bell states. In fact in QKD and random number generation, as mentioned previously, other types of states can
alsobeused [27, 28, 47—-49] and so it is interesting to examine if this is also the case for verification. Here,
interestingly, we show that under reasonable assumptions about the verification protocol, the entangled states
must be unitarily equivalent to Bell states.

Quantum steering derives its name from the idea that with an entangled state one party could steer the state
of another party through local measurement. The person who performs the steering is untrusted which in our
case corresponds to the quantum server. The verifier, having a trusted measurement device, can check through
local measurement, if the server behaved honestly and steered the state correctly. We consider such steerable
states, p, , shared between Alice (the verifier) and Bob (the server), which could be useful for verification in the
one-sided device-independent scenario. Concretely, the specific type of verification we consider is one which is
offline, measurement-only and blind. This is akin to the setting of our steering-based verification protocol,
however we no longer assume the use of the FK protocol in the verified computation stage. Instead, we assume
independent verification, i.e. a black-box type verification protocol obeying the three conditions we previously
stated. Moreover, we assume that the verifier wishes to prepare a specific quantum input for her computation.
This input is assumed to be as general as possible. Given these conditions, we wish to know what properties are
required of a typical bipartite shared state p, . Since we are interested in blind verification, it must be the case
that Tty (p,5) = py = /2. Additionally, because the verifier needs to prepare her quantum input on the server’s
side, and this can consist of a varied set of states, we will also assume that p, , must be completely steerable (i.e. can
be steered to any state). We use the definition of complete steering from [64].

Definition 6. [64] A bipartite state, p, ;, shared by Alice and Bob is completely steerable by Bob iff for any positive
operators { g, }, satisfying 3 0, = Trx(p,), there exista POVM {E,}, such that g, = Try((E, ® I)p,p)-

Adding the blindness assumption to this, we follow up with the definition:

Definition 7. A bipartite state, p, 5, shared by Alice and Bob is totally steerable by Bob iff p, ; is completely
steerable by Bob and Try(B) = I/2.

Before proving our result, we state a useful lemma from [64], concerning completely steerable states:
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Lemma 2. [64] A bipartite state, p, is completely steerable by Bob iff exists a purification p,p such that
Pec = Pp ® po> where pge = Tra(papc) Pp = Trac(Papc)> Pe = Tras(Pspc)-

This is similar to QKD, where an adversary can have a purification of the state shared by Alice and Bob
however he is uncorrelated with Alice or Bob. This is due to the monogamy of entanglement. Our main theorem
concerning p, , will justify why this monogamy appears in the case of complete steerability as well. We note that
the monogamy of quantum steering has been studied in other works [65, 66].

Theorem 6. A bipartite state, p, , is totally steerable by Bob iff p, , is maximally entangled.

Proof sketch. The proof relies on considering p, ; in matrix form and expressing constraints on its matrix
elements usinglemma 2 and the fact that p, = I /2. Solving the system of constraints leads to a density matrix
which can easily be shown to correspond to a pure, maximally entangled state. The complete proofis given in
appendix F. O

This theorem reveals that the p, ; state is unitarily equivalent to a maximally entangled Bell state. Therefore,
the monogamy of this state is in fact due to the monogamy of Bell states. Importantly, it shows that two-qubit
states which are totally steerable are perfect Bell pairs. This implies that if we are to use total steerability in order
to perform verification, we must certify Bell states in particular, rather than any other steerable state. Hence, for
the case of offline, measurement-only, blind quantum verification, the quantum resources used for preparing
the quantum input, must be unitarily equivalent to Bell states. Intuitively, this can be understood as follows. The
verifier wishes to send a certain quantum input to the server. Since this input is as general as possible, the best
way to do this is via the general teleportation protocol using Bell states. This also introduces a natural one-time
padding to the states, which keeps the protocol blind. It is clear that in order to have perfect fidelity for the
teleportation, the shared states must be equivalent to perfect Bell pairs.

4, Conclusion

We have shown that, in analogy to the rigidity of non-local correlations via CHSH games, we can prove a rigidity
property of steering correlations. This allows us to establish a tensor product of Bell pairs in a setting of one
trusted party and one untrusted party. However, in the case of steering, the extra cost to obtain a tensor product
of Bell states is smaller than in the analogous situation for non-local correlations. While in both cases this
overhead is polynomial, the additional trust assumptions of the steering setting allowed for a significantly
reduced degree for this polynomial. We arrived at this result by first considering self-testing in the one-sided
device-independent setting, using quantum steering correlations. The self-testing result, which makes ani.i.d
assumption about the shared state, gives an optimal bound for the trace distance between this shared state and a
Bell pair. We then removed the i.i.d. assumption in a generic way which can be applied to any type of self-testing
result, allowing for the determination of a single Bell state (one-shot) in a fully adversarial setting. Combining
this with a game-based approach for characterising the states and strategies of the two parties, haslead to the
rigidity result. It should be noted, that the game-based approach is also used to prove the rigidity of non-local
correlations. However, in our setting, because we trust one of the parties it is simpler to obtain a characterisation
of the untrusted party’s strategy and the shared states. Thus, our result has reduced overhead compared the
analogous result for CHSH game rigidity.

We considered an application of rigidity to a verifiable quantum computation protocol. The reason for
choosing this particular application is that for verifiable quantum computation the quantum states themselves
should be recovered, and thus the necessity to obtain the full tensor product structure of Bell states. This is in
contrast to QKD and QRNG where one does not need to recover the quantum state explicitly, rather an
information theoretic quantity such as entropy, mutual information, key-rate etc. Using the rigidity of steering
correlations we constructed a one-sided device-independent protocol for verifiable delegated quantum
computation. The protocol we obtained has fewer requirements than the fully device-independent protocol thus
being closer to a practical application. Lastly, we have shown that a certain class of states which are useful for
verification, totally steerable states, are necessarily maximally entangled. This for example, rules-out the use of
local but steerable states [26] for verification. Since establishing the existence of the tensor product structure of
maximal entanglement requires the collection of a significant number of statistical samples, this result gives
some indication to the general difficulty of quantum verification.

17



10P Publishing

NewJ. Phys. 19 (2017) 023043 A Gheorghiuetal

Acknowledgments

We would like to thank Damian Markham for useful discussions. We also acknowledge discussions with Matty ]
Hoban on his and Ivan Supi¢’s independent work on self-testing using quantum steering [51], that appeared on
the arXiv shortly after our preprint. We would also like to thank Dominique Unruh and Kristiina Rahkema for
reading an earlier draft and suggesting improvements. AG and PW thank CNRS Telecom ParisTech for their
hospitality during a visit where this work started. EK acknowledges funding through EPSRC grants EP/
N003829/1 and EP/M013243/1.

Appendix A. Proof of theorem 1

In this section we give a complete proof of theorem 1 which characterises one-sided device-independent self-
testing. Consider the following isometry:

1 / i ! /
(1Y) = U+ YPIY)I+) + %XBU — YD) |—,). 7)

An illustration of this isometry is given in figure 3, where the upper partis Bob’s system and the lower part is
Alice’s system. It should be noted that the control gates act on the target when the control qubitisin the | — )
state, and act as identity when the control qubit is | +;,). This is in contrast to the standard convention in which
the control is a computational basis state. Here | +; ) and | —, ) are the eigenstates of the Pauli Y operator and
P= % (X + Y). Wecan clearly see that ® = I, ® ®p, where ®p is determined by the combination of X} and

Y} operators, from expression (7), which only act on Bob’s system. We proceed to show that when conditions
(1)—(3) are satisfied, we obtain condition (4). First, we show that:
I2MaNG (1)) — MaNs@([¥)II < 272

Because M, only acts on Alice’s system, whereas the isometry is local on Bob’s system, M4 trivially commutes to
the left so that ® (My N}, |4)) = My ® (N}, |¢)). Now consider the possible choices for Nj,. If Nj, = I, the
relation holds trivially. If N = Yg, since Y} is hermitian and unitary we have that:

1 i
Sy [¥) = U+ YplW) [Hy) = —Xa( = YpI¥)|—). (8)
At the same time, the ideal Pauli operator Y3, acting on Bob’s ancilla, has the following effect:
1 i
Ge(1y) = U+ Ypl) 1) = —X( = Ypl¥)|—). ©)
Thisisbecause Y |[+) = | 45 )and Y |—,) = —| —, ) and we notice that the two expressions are identical.

Lastly, when N, = X we have:
1
(X |v) = E(I + YR Xp [¥)1+)
i !/ !/ /
+ EXB(I = Yp)Xp [¥)|—).
And the action of the ideal operator yields:

XsB(|1)) = %(1 + YD1 —y) + %Xgu — Y1) +)- (10)

Thisisbecause X |+,) =i | —, )and X |—,) = (=i)| 4; ). Using the approximate anti-commutation of X
and Y3, as given by condition (3), we notice that commuting Xj to the leftin ® (X}, |¢)) will lead to the same
expression as for Xg®(|1))) up to 2+, error. Thus:

@ (MaNg [¥)) — MaNg®(|)]] < 27, (11)

We therefore, only need to examine the closeness of ®(|1))) to the ideal Bell state tensored with some junk state.
Start by considering the state:

16) = §<|¢>|+y> +Ya )] 4)
+iXy |) =) — iYaXa [9)|—=))). (12)

We will show that ®(|+)) ) and | ¢) are close in trace distance. Firstly, from conditions (1) and (2) using suitable
triangle inequalities and the unitarity of operators X, and Y, which do not increase trace distance, it can be
shown that:
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I(X5Ys — YaXa) ) [ < 2.
Expanding the trace distance of ®(|¢/) ) and | ¢) we have:

®(1)) — 6] = %nm@ — Yol +)

+iXg = XOIP)| = ) — iX5Yg — YaX) )| = ).
And using the above results it follows that:

12(¥) — 1) < 2.

Let us now rewrite | ¢b). Given that we trust Alice’s side of the |1)) state, we can express it as follows:
[¥) = ala)gl+y)a + b [B)s]—y)as

where |a> + |b]* = 1and the states |@) and | 3) are normalised. Here, the first part denotes Bob’s system, for
which we can make no assumptions, and the second part is Alice’s qubit. The reason for choosing Pauli-Y
eigenstates on Alice’s side is to simplify the calculation. We could have expanded her system in any basis since a
local unitary on her system does not change the result. Substituting this into the | ) and labelling the ancillary
qubit introduced by this isometry with the label ® we get:

|¢>=§(a | %o ads] 4 a4 b 1o [ads]— )
+ %ma L+ % 1ads] 4+ % + b 1+ la)s]— )
+ %XA(Q | =)o la)sl +y )a +bl—=y)o la)sl—y)a)

- %YAXAW | = )0 1ads] 1 o + b 1= o lads]— ). (13)

Using the following identities:
X|ty) =il=) X|=) =—il+)
Yity) =14y) YI=)=—1—)
Wereduce | ¢) to:

l¢) = %(a |+ ) lasl +, )4 + b 1+)0 la)s]—y)a)

+ %(a | %o ads] 5 % — b 1o ads|— )

- %(a = )0 lads] — W — b 1—)e lads|+0)
- %(a | =, 00 lads] = a + b 1—)o la)s|+). (14)

The terms with b coefficient cancel out and we are left with:
l¢) = a |a>B(|+y>tI>| +y a — I_y>‘1> | —y )a).

This state is equivalent to:

|¢) = a2 la)p |94 )aB-

We would like to equate this to |junk)g |1, )45, however, the state we have is unnormalized unless a = 1/ J2.
We therefore compute abound on |a| to determine the error introduced by the unnormalized state. Condition
(1) can be rewritten as:

1—71/2 < (Y] XaXg |9).
By expanding |1/), applying the operators X4, X} and using the facts that [a> + |b> = 1and that X}, is hermitian

and has +1 eigenvalues, we obtain:
J1=71/2 <ad2 <1 +41/2.
And since for small -, we know that /1 — 712/2 approaches1 — 712/4 and /1 + 712/2 approaches 1 + ’yf/4

we have that the norm of | ¢), can change from unity by an order of 712 / 4. Thus, it follows that:

1P (14)) — ljunk)s |9 )asll < 37 + 77 /4.
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Lastly, together with inequality (11) and a triangle inequality, we get:
|®(MaNg [¢0)) — |junk)s MaNp |¢)all < 371 + i /4 + 272 15)

Appendix B. Proof of theorem 2

Theorem 2 shows that saturating the correlation of observables on Alice and Bob’s side, with Alice being trusted,
leads to the necessary conditions of theorem 1 which imply that the shared state is close, up to local isometry, to a
Bell state. Similar to theorem 1 we start the proof by denoting By as X; and B, as Yj. Splitting equation (2), we
have:

(V] XaXp 1¥) + ($] YaYp |¢) > 2 — €. (16)
However, it is clear that:
—1 < (Y] XaXp [¥) <1
—1 < (Y| YaYg |9) <1
So, it follows that:
(V] XaXp 1) >
(Y] YaYg ) > 1 — .

This allows us to derive conditions (1) and (2), since:

1—¢€

1(Xa — XD = V21 = (¥] XaXh [&) < V26,
(Vs — YDIO) Il = V21 — (¥] YaYj |9) < 2e.

Hence, in theorem 1, 7, = J2€. Let us now denote:
S = XuXg + YaYg
Computing S* and using the fact that X, Y, = iZ, we obtain:
S? =2 +iZy[X}, Y.
Since [Xy, Y] = 2iZ4, we can alternatively write this as:

St=2+ %[XA, YAI[X), V1.

The Cauchy-Schwarz inequality together with inequality (16) give us:
(W] $* 1) = (W1 S 1) P > 2 = o)

Substituting S*:
(]2 + %[XA, VALK VA1) > 4 — de+ €2 > 4 — 4.
Hence:

(V|[Xa, Yal[Xp, YpIlth) > 4 — 8e.

Expanding the commutators yields:

(U XaYaXpYp 1Y) — (V] XaYaYpXp |9)
— (P YaXaXpY5 [¥) + (] YaXaYpXp [9)) > 4 — 8e.
By splitting into terms, as we did with inequality (16), we have that:

(V| XaYaXpYp |00) > 1 — 8¢, (17)
(Y] YaXaYpXp [9) > 1 — 8e, (18)
(] XaYaYpXp |9) < 8¢ — 1, (19)
(V] YaXaXpYp |90) < 86— 1. (20)

Now using the fact that X, Y, + Y4 X4 = 0, we have:

(XpYp + YpXp) )|
= (X Y5 + XaYa + YaXa + YEXDI|O).
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And using a triangle inequality, we have:
I(X5 Y5 + YeXp )l
SN Ya + XpYR) [) | + [(YaXa + YpXp) 1)1
Additionally:
I(XaYa + X5 YOl

=2+ (W1 Xa VA ViXG 19) + (0] YaXa X5 19).

And from inequalities (19) and (20) we get that:
|(XaYa + XpYp)|9) || < 4/€.

Similarly, using inequalities (17) and (18), we have:

(YaXa + YeXp)|9) || < 4/€.
Which leads to:

I(XpY5 + YpXp) W) |l < 8e.

Thus satisfying condition (3), with v, = 8./¢, and concluding the proof.

Appendix C. Proof of theorem 3

Theorems 1 and 2 show that if the correlation of local observables is saturated up to order O (¢), the shared state
is close, up to local isometry, to a Bell state up to order O (1/€). Theorem 3 shows that this bound is tight, up to
constant factors. We prove this theorem by contradiction. Assume the bound of theorem 1 is not tight and it is
possible to derive an asymptotically better bound for the shared state of Alice and Bob. In particular, this means
that there is no state |1)) which is O (+/€)-close to the |/, ) state and there are no observables By and B such that
inequality 3 is satisfied. However, letting ¢/ = ¢ /2, consider the following state:

lv) = %(x/l + Ve jo1) + 1 — Ve [10)).

We have that:

1) = )1l = 2 = (Pleby) — (ele) .

Notice that:

1
(W) = () = G+ Ve 1= Ve,
Substituting this into the previous expression, and taking the first order term we have:

1) = )1l = O(e.
Consider also the observables:
BO:( e \/1—]
Ji—¢ e
BIZ( 0 Ve - im}
Ve +i1—¢ 0

One can check that By = B{, B, = B,’, ByB{ = BB,/ = I and that the two matrices have eigenvalues 1.
Moreover, we can see thatas ¢/ — 0 we have that By — X and B; — Y. Importantly, we have that:

(V| XaBy |[¢) = (| YaBy [¢p) =1 — €.
And therefore:

(V[(XaBo + YaB)|yY) =2 — 26’ =2 — e.

Thus, inequality 3 is saturated. But this should not be possible under the assumption that the bound on |)’s
closeness to |1}, ) is not tight. Therefore, the assumption is false and the O (v/€) bound is tight for this type of
steering inequality. Note that this result still holds under local isometry since the isometry is, by definition,
distance preserving and so under the local isometry the state is still O (</€)-close to a Bell pair.
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Appendix D. Proof of theorem 4

Theorem 4 shows that from the observed outcomes of Alice and Bob, after K rounds of measurement, we can
conclude something about their shared quantum state in a single round, even without assuming independence.
Simply stated, if the shared state of Alice and Bob is o, we need not assume that o is a tensor product of identical
states. Nevertheless, denoting the state of round ias p; = Tr,i(E{}?_ 1(0)), from their shared correlations we can
deduce that p; is close in trace distance to a perfect Bell state (under a suitable isometry). The proof consists of a
number of steps:

1. Firstly, we show that the observed correlations of Alice and Bob’s, given fixed measurement settings, is a
good estimate for the true quantum correlation assuming they shared multiple copies of the averaged

1K
state p,, = Ezizl ;-

2. Secondly, we use the previous result to estimate the correlations for the two measurement settings under
consideration. We then use self-testing to show that if the correlations are close to the maximal value, the
averaged state is close to a Bell state, under a suitable local isometry.

3. Lastly, we prove that if the averaged state is close to a Bell state (possibly in tensor product with some mixed
state), then a typical state p, is also close to that pure state and we compute the exact bound for the trace
distance.

We start by proving the first step:

Lemma 3. Assume Alice and Bob are asked to perform n rounds of measurement of the two-outcome observables
with £1 eigenvalues, A and B, respectively. We denote the outcomes of their measurements as {a;} and { b;} and

C; = a;b; as their correlation forroundi. Additionally, let H; = {(aj, bj)|j < i} be the history of their measurement
outcomes up to, but not including round i. Finally, letting C; = E (é,-lHi) to be the conditional expectation value of
the correlation given the previous history of outcomes, we have that for any 6 > 0:

Pl‘[ lZCZ — lZél
ni— ni—

Proof. The variable C; represents the true correlation of the outcomes in round i, as determined by the shared
state of Alice and Bob. If the shared state in round iis p; then C; = Tr(AB p;). As mentioned, while we trust Alice
and know that she is indeed measuring the observable A, we can still assume that Bob is measuring the observable
Bin each round. This is because the observable Bis unrestricted (apart from being a two-outcome observable)
and can in principle act on Bob’s ancilla as well. Furthermore, we make no assumption about the state p;, since it
is prepared by Bob. Another way in which we can express C; is using its definition, which leads us to:

Ci = Pr(ai = bllHl) — Pr(a,- = b1|H1)

> 6] < exp(—6%n/8).

We now define the random variables:

i A
X = Z(Ci - C).
i=1
Notice that forany j < n, |Xj;1 — Xj| < 2 (because C:=4+1,-1<C <, E(Xj) < ooand:
EXjr1 — XjlHj+1) = Cjp1 — Cit1 = 0.

Therefore, {X;} forms a martingale. We can therefore apply the Azuma—Hoeffding inequality [43], in a manner
analogousto [11, 15]. Settingj = n, we have that forany ¢ > 0:

|

Forsome ¢ > 0,lett = nd. Thisyields:
Pr iiC — lié
ni=1 S i=1 l

Thus concluding the proof of lemma 3. O

Pr(|X,| > t) < exp(—t2/8n).

Expanding, we have that:

NG - C)
i=1

> t] < exp(—t%/8n).

> 5] < exp(—6%n/8).
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We move on to the second step:
Lemma 4. Suppose Alice and Bob are required to perform K rounds of measurement and also that:

« Prior to the measurements, the shared state of Alice and Bob is assumed to be 0.

« Alice chooses a random set of size K /2, consisting of indices from 1 to K and denoted Ry = {i|i €g {1...K}},
[Ro| = K/2. Wealso denote Ry = {1 ... K} \Ry, to be the complement of Ry.

+ Wedenote p; = TL,—(S{}?_ 1(0)) the reduced state of Alice and Bob in round i, and Pavg = %Z,K:l p; as the

averaged state. Here E{'},_| denotes the action (measurements) of Alice and Bob on the state  up to round i.

 Inroundi,letr; = 0iffi € Ry, otherwise r; = 1. Alice measures the observable A, on her half of p,. Ay and A, are
anti-commuting single-qubit observables having +1 eigenvalues.

* Inround i, Bob is asked to measure B,.. By and By have +1 eigenvalues.

« Wedenote a; and b;, respectively, as the outcomes of their measurements in round i. We also denote C: = a;b; as
their correlation for round i.

A0 1 A Al 1
« Wedenote C" = K_/ZZiGRo CiandC = X2

and Bob are asked to measure the first observable, or both are asked to measure the second, respectively.

Yier, C; as the averaged correlations for the cases where both Alice

If, for some given € > 0 and suitably chosen K = Q((1/¢%)1og(1/¢€)), it is the case that ¢+ ¢ >2— € (or,
alternatively, C "y <2+ €) then there exists an isometry ® and a mixed state Pjunk such that:

10 (E(ppg)) — E(10) (8 D il < O (),

) o AAB . o .
where EAB is some combination of the Ag, Ay, By, By operatorsand £ is the analogous combination of the ideal
operators I, X, Y, asin theorem 2.

Proof. We will prove the case ¢+ ¢ > 2 — e sincefor '+ ¢ < —2 + ¢ thederivation is similar.
Additionally, we only consider the case EA = I, since the other cases follow from the linearity of the operators.
The previous lemma, essentially shows us that the observed average correlation is a good estimate for the average
true correlation. Specifically, it is the case that C b, b € {0, 1},isclose to the quantum correlation Tr(A; B, pavg).
Consider now a state | () which is a purification of Pavg- We can then write the quantum correlation as

(C| ApBy |¢). Using these results, if our estimate of the true correlation is of precision (closeness) § > 0, then it
is the case that:

(Cl AoBo ) + (Cl AiBy [() =22 — € — 6.
With probability 1 — exp(—§2K/16).Let § = ¢ so that we have:
(C1 AoBy 1) + (Cl AiBy ) =2 — O(e).

Using theorem 2, it follows that there exists a local isometry ® and a state |junk) such that, with probability
1 — exp(—€2K/16), we have:

12C1¢)) — 1) ljunk) || < O(Je).
This also implies:
TD(2(I¢))s ¥4} ljunk)) < O(Ve).

As mentioned, we are only considering the case of I acting on the state | (). Of course, the argument proceeds
identically, when considering My Nj; |¢), asin theorem 1, leading to the £AB = T cases. It should be noted that
from the construction of ® (in theorem 1), in the case where the shared state is a purification of some mixed state
(asis the case with | () and Pavg)> the isometry does not act on the quantum states used for purification. Therefore,
we can trace out those states, and since this operation cannot increase trace distance we have that:

TD((b(pavg)> |1/}+> <¢+| pjunk) g O(’\/E)

With probability 1 — exp(—€2K/16). We can incorporate this probability into the trace distance, and we have
that:

TD(P (Pyg)> [¥4) (U] Pjuni) < O(VE) + exp(—e’K /16).
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Setting K = —(16/¢?)log(/€) = (8/¢?)log(1/¢) we are left with:
TD(P(Paeg)> 19 (Y| Pjuni) < O (V).

Analogously, we get:

TD(@(E(pe))s € (114) (14 ) pjums) < O(E).
Concluding the proof of lemma 4. O
The final step towards proving theorem 4 is to prove the following statement:

Lemma 5. Let p be a general quantum state which we can writeas p = %E?:l p,» forsomen > 0 and density
matrices p;. If it is the case that, for some pure state | §) and y > O:

TD(p, 1¢) (¢1) < v
Then for a uniformly at random chosen i €g {1 ... n}, with probability at least 1 — ~'/3 we have that:
TD(p; |9) (8]) < O(4'/2).

Proof. Starting with the bound on the trace distance and the relation between trace distance and fidelity (when
one state is pure), we obtain:

1-— Fz(p, I¢> <TD(p, [9) (o)) <
y<I{(o] plo)| = Fz(p, I¢>
< %ZFz(pl’ th’ (21)

i

where the second inequality follows from convexity and for convenience we defined g, = F?(p;, |¢)). This gives
alower bound on the average g; (average fidelity squared). To provide an upper bound on the average g;, we do
the following. Welet p be the fraction of ’s such that g, < 1 — v — ¢, where § € [0, 1 — ~].Since g; < 1it
follows:

1
A=y =8 p+1-(1=p)>=37; 22)
From equations (21) and (22) it follows that

1 —
p.

A=y=8-p+1-0-p)=>
T
v+ 6

Now, using the fact that TD(p;, |¢) (¢|) < /1 — g;, we note that with probability (1 — p) we have that

q; > 1 — v — 6 and thus for these cases TD(p;, |¢) (¢]) < /v + 6.Bychoosing 6 = ~*/3 — ~ we have that
with probability atleast 1 — ~'/3:

TD(p, 16)(8)) < T+ 7 = 7177

We can now use these lemmas to prove theorem 4.

Proof of theorem 4. We have the same assumptions as in lemma 4 and from it we know that after
K = Q((1/€?)1og(1/¢)) rounds of measurements, if the observed correlations are saturated up to order € we
have:

TD (R (E(pyg))s & (1) () piumd) < O(VE).

We would now like to apply lemma 5, however because of Pjunk We do not have a pure state in the trace distance
expression. Therefore, we trace out the junk subsystem, and since tracing out can only decrease trace distance we
have that:

TD (Trjun (@ (E48(p,))) & (1) (441)) < O(o).

Ifwe denote p = Trjunc (P (E48 (Pavg)))> We can now apply lemma 5. Note that Trjyp (P (E2B()))is alinear map,
since it is the composition of linear maps. Therefore, it is the case that:
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K
Trjunk(q) ((C/‘AB (Pavg) ) = ZTrjunk((I) (EAB(pi) ).

i=1

Hence, for arandomly chosen p;, with probability atleast 1 — O (¢!/):
TD (Trjunic (R (E*5(9))), £ (114) (121)) < O(€179).

Thus we have shown that, under a suitably chosen local isometry and tracing out any additional systems we can
‘extract’ a single Bell pair from the two device’s shared state. If we want to also have a closeness relation for

D (E48(p,)), which includes all of Bob’s private subsystem, we can use a corollary of the gentle measurement
lemma:

Corollary 2. [9, 10] Let p be a state on Hy; ® H,, and let 7 be a pure state on Hj. If for some § > 0,
Tr(nTr(p)) = 1 — 6, then

TD(p, © ® Tri(p)) < 246 + 6.
This leads to:

TD(@(E¥(p)), & (104) (4 D) Prumd) < O€/12),
where pjunk = Trfjunk((b(gAB(pi)))- —

Appendix E. Proof of theorem 5

As mentioned, we prove theorem 5 by showing that the actual strategy S of Alice and Bob is close to a strategy S,
in which Alice guesses Bob’s outcomes, which in turn is close to the ideal strategy Sg.

Lemma6. Let S = (p, {E1}, {EP)) be Alice and Bob’s e-structured strategy for playing N sequential K -round
steering games in which Alice plays honestly. Let S, = (p, {E2Y, {GPY) be Alice and Bob’s e-structured strategy for
playing N sequential K -round steering games, in which Alice plays asin S but also guesses Bob’s outcomes.
Specifically, Bob’s operator will be G2, which yields Alice’s guesses for Bob’s outcomes. We have that S

O (Ne'/®)-simulates S,.

Proof. Without loss of generality, it can be assume that the initial state p is a pure state. Also note that Alice’s
action is given by { £} in both strategies, since she is always honest. We have that S, = (p, (&Y, (GP)), where
G? denotes the guessing operator for Bob’s outcome in game i. Because Alice is trusted and playing honestly, her
guessing strategy for Bob will be to provide the same outcomes as her measurement outcomes. This, of course,
ensures that the steering correlations are saturated. Concretely, G leaves Bob’s system unchanged but gives the
same outcome as 5;“. Denote as giAB = 5{»“ o Q,B the action of Alice and Bob on the state of the ith game, in
strategy S, and similarly £'® = &£ o &7 theaction of Alice and Bob on the state of the ith game, corresponding
to the true strategy S. Note that we can assume the same Hilbert space in both strategies. The reason for this is
that Alice’s side is trusted in the two strategies, so her Hilbert space is determined and fixed. On Bob’s side,
assume we have Hilbert space Hp in strategy S. In strategy S, we are ignoring Bob’s outcomes and replacing
them with Alice’s guesses. Therefore, we can assume any Hilbert space on Bob’s side, so without loss of generality
we assume it is Hp. Thus strategies S and S, use the same Hilbert space.

Wedenote Gi'7 = G{*¥ 0 G547 o ... G and similarly £/ = &{Po 2P o ... £/’ Additionally, according to
definition 5, Ris a set of random indices, each index taken from a different steering game. We can write
R={rjie {1..N}, k;=(@G— 1)K + r, r &g {1...K}}.Essentially, x; is the selected random round for
the ith steering game, out of the total number of rounds in the N games. Thus, 1 < x; < NK. Lastly, we denote
R; = {ki|ll < i < j}tobethefirstjrandom indices (i.e. the randomly selected rounds up to game j). We would
like to compute a bound for:

TD(Tr_g,(E1 (0))s Tr_r,(G1f (0))).

We do this inductively, starting with the first steering game. Theorem 4 tells us that for a K-round steering game,
if we observe a steering inequality saturation of order O (¢) the reduced state in a randomly chosen round will be
O (€'/) close to a Bell state. Since we know that strategies S and S, are e-structured, it follows that for the first
steering game we have that:

TD(Tr_g ((E{5(0))), &1 (1) (1)) < O(V/9),
TD(Tr & (2(GE(0))), G1 (1) (14 1)) < O(€1/9),
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. . ~AB A AB . . A AB .
where @ is the isometry of theorem 1, £, and G, are the ideal operators (note thatin fact G, = Gi*f since

Alice is honest). However, since I ® M |¢,) = (XMTX) ® I |4)..), for any operator M, in & IAB we can ‘shift’
Bob’s action to Alice’s side and so we are left with an operator which is ideal on Alice’s side (conjugation by X is
not a problem, since XXX = Xand XYX = —Y)and acts as identity on Bob’s side. This is precisely the Q?B

operator, hence & f‘B =g f‘B. Therefore, both Tr_g (® (E28(p)))and Tr_ r(P (G*3(p))) are close to the same
state, and through a simple application of the triangle inequality it follows:

TD(Tr_g (D(E{E())), Tr_r (P(G{E(p)))) < O('/9).

The specific isometry we have considered acts locally in each round (i.e., in each round it only acts on the reduced
state of that round and introduces one ancilla qubit). Thus, it is possible in this case to commute the isometry
with the tracing out operation, and then remove it completely from the inequality, since it is distance preserving.
Of course, the tracing out operation will be acting on a different system (the non-isometrized system), requiring
a different notation. In order to avoid complicating the notation, we use the same expression for the tracing out
operation, and it is to be understood that we trace out all systems apart from the ones used in round 1. We
therefore have:

TD(Tr_g (E(p)), Tr-r(G*(p))) < O(e/9).
This is the base case of our induction. Assume now the following holds:
TD(Tr_g, ({2 ,(p))s Trx, (G2 1(0))) < (j — DO(/S). (23)
We would like to show:
TD(Tr_r ((p), Tr_r (Gi¥(0))) < jO(1/5).

For the set of rounds from game j we can again apply theorem 4, and use the closeness bound for the state from
round ;. Note that for the first game, the shared state of Alice and Bob was |)), while the state in game j need not
be a pure state. We can, however, still apply theorem 4, regardless of the action of previous games, since the
theorem assumes that Alice and Bob share some state o which can be either pure or mixed. Moreover, as before,
we will have that & ﬁf = Q ﬁf, hence the reduced state in round K; from strategy S is O (¢176)-close to the state in
round x; from strategy S,. This together with equation (23) and a triangle inequality lead to:

TD(Tr_g, (E1%(0)), Tr_r (GI2(0))) < JO(eV/9).
Since thisis true forall j < N, we get:
TD(Tr_r(E1N(p)) Tr-r(GiN(p))) < O(Ne'/).
Hence, strategy S O (Ne'/6)-simulates strategy S,. O

Lemma?7.Let S, = (p, {E1'}, {GF'}) be Alice and Bob’s € -structured strategy for playing N sequential K -round
steering games, in which Alice plays asin S but also guesses Bob’s outcomes. Specifically, Bob’s operator will be G,
which yields Alice’s guesses for Bob’s outcomes. Let Siq = (pyy, {EM}, {EL;}) be theideal strategy in which p,yisa
tensor product of Bell pairs and Alice and Bob play N sequential K -round steering games ideally (i.e. they measure
the same operators on their shared state). We have that Sy O (Ne' /6)-simulates an isometric extension of Sig,

or S, = Sig.

Proof. We shall first consider another guessing strategy S'g = (P> (&Y}, {GP}). This strategy is identical to S,
except for the fact that it uses the ideal state (the tensor product of Bell states) as opposed to the real state, p. Note
that p,; must lie in the same Hilbert space as p. Without loss of generality, we can use some isometry to take a
tensor product of Bell states and map it to the Hilbert space of pand denote that state as p,. It is easy to see that
S~ Sg. On the one hand, both strategies use the same operators for Alice and Bob (and in fact will produce
identical statistics). On the other hand, since Alice is effectively guessing for Bob and the action on his subsystem
is identity, there is no adaptivity in his strategy or outcomes. Combining this with the fact that the strategies are
e-structured, means that we can extract individual Bell pairs from each steering game and hence:

TD(Tr_r(G{'¥ (), Trr(G¥(pi0))) < O(Nel/®).

We now show Sg ~ Siq. First note that, as before, { £} corresponds to the ideal strategy for Alice and appears in
both Sg and Syq since she is always honest. Additionally, as mentioned in the previous proof, because she is
playing honestly according to the ideal strategy, her guesses for Bob’s outcomes will be exactly her own
measurement outcomes. This mimics the ideal strategy. In the ideal strategy Alice and Bob measure the same
operators on their shared state. Moreover, both strategies are using the ideal state p,4. This directly implies that:
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TD(Tr_r(G%(pi)> Tr-r(ELP N (pi0))) < O(Ne'/9)

Alternatively, we could have used the fact that Sg and Sy use the same state and both strategies are e-structured,
as in the previous lemma, to prove the same thing. Thus, it follows that strategy S, O(Ne 1/6)_simulates an
isometric extension of strategy Sig, or S; ~ Siq. O

It is worth mentioning that in the case of steering, unlike CHSH, the outcomes are deterministic, so Alice can
guess perfectly for Bob. This led to a simplified rigidity proof compared to the one for CHSH games from [9].
Finally, we prove theorem 5.

Proof. From lemmas 6 and 7 we have that S ~ S, and that S, ~ Sjq4. Since inlemma 7 we have shown that S,

O (Ne!/®)-simulates an isometric extension of Siq we can consider an isometric extension of S;q, denoted S’y
that has the same Hilbert space as strategy S. Using a triangle inequality it follows that S ~ Sly. Thus S

O (Ne'/®)-simulates an isometric extension of the ideal strategy Siq. O

Appendix F. Proof of theorem 6

Itis clear that a maximally entangled Bell state satisfies the properties of total steerability. We therefore focus on
proving that a totally steerable state is maximally entangled. From the two constraints of definition 7 we will
express the most general form of p, ;. We start by considering |1)4p¢) as the 4-qubit purification of p, ;. All other
purifications are equivalent to this one, so this suffices for our purposes. Writing | ¢4 pc) in the computational
basis, we have:

15
[Uupc) = > ai li).
i=0

Of course, we have the additional constraint:
15

> olail? = 1.

i=0
By re-expressing the constraints from definition 7 and lemma 2:
Ppc = P @ Po>
pp=1/2

as constraints on the amplitudes of | ¢4 gc) we will have a large bilinear system of equations. From this system we
will arrive at the following set of equations:

ax=f- ayss k€{0,1,...6},
k3 =—f*-any1, ke {0,1,...6},
Agkpr = €9 - ago, k€ {0, 1,2, 3},

ag=¢e" - ags, ke{0,1,2, 3},

where the parameters we introduced are f € Cand ¢,, ¢, € [0, 27]. Computing the matrix elements of p, 5, we
arrive at the most general form, given by:

IfE f f eClfP
IR T A Y
21fP+D| f* e 1 —f
AP —f* — ISP
It can be easily checked that Tr(piB) = land therefore p, is a pure state. But since p, = /2, we have that p,

is a pure entangled state. We know that all pure entangled states are non-local. Moreover, the condition
pp = I/2 alsoimplies that the state is maximally non-local and hence a Bell state.

PaB
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