

Edinburgh Research Explorer

Discovery and exploitation of general reductions: a constraint
based approach

Citation for published version:
Ginsbach, P & O'Boyle, M 2017, Discovery and exploitation of general reductions: a constraint based
approach. in CGO 2017 Proceedings of the 2017 International Symposium on Code Generation and
Optimization. IEEE, Austin, Texas, USA, pp. 269-280, International Symposium on Code Generation and
Optimization (CGO) 2017, Austin, Texas, United States, 4/02/17. DOI: 10.1109/CGO.2017.7863746

Digital Object Identifier (DOI):
10.1109/CGO.2017.7863746

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
CGO 2017 Proceedings of the 2017 International Symposium on Code Generation and Optimization

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/77616327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/CGO.2017.7863746
https://www.research.ed.ac.uk/portal/en/publications/discovery-and-exploitation-of-general-reductions-a-constraint-based-approach(7469b7fd-6ee6-4962-866c-bade978ee51f).html

Discovery and Exploitation of General
Reductions: A Constraint Based Approach

Philip Ginsbach
School of Informatics

University of Edinburgh, UK
philip.ginsbach@ed.ac.uk

Michael F. P. O’Boyle
School of Informatics

University of Edinburgh, UK
mob@inf.ed.ac.uk

Abstract
Discovering and exploiting scalar reductions in programs
has been studied for many years. The discovery of more
complex reduction operations has, however, received less
attention. Such reductions contain compile-time unknown
parameters, indirect memory accesses and dynamic control
flow, which are challenging for existing approaches.

In this paper we develop a new compiler based approach
that automatically detects a wide class of reductions. This
is based on a constraint formulation of the reduction idiom
and has been implemented as an LLVM pass. We use a
custom constraint solver to identify program subsets that
adhere to the constraint specification. Once discovered, we
automatically generate parallel code to exploit the reduction.

This approach is robust and was evaluated on C versions
of well known benchmark suites: NAS, Parboil and Rodinia.
We detected 84 scalar reductions and 6 histograms, outper-
forming existing approaches. We show that the exploitation
of histograms gives significant performance improvement.

Categories and Subject Descriptors D.3.4 [Software]:
Programming Languages—Processors, Optimization

General Terms Performance, Experimentation, Measure-
ment

Keywords computational idioms, reduction operations,
constraint solver, compiler analysis, parallelization

1. Introduction
The reduction idiom occurs widely in numerical applications
[18]. This includes standard HPC workloads based on linear
algebra as well as emerging machine learning and computer
vision applications and embedded benchmarks [6].

The typical reduction operation successively applies an
arithmetic operator to an array of numeric values, in order
to compute, for example, the sum of a set of floating point
numbers. These scalar reductions are prevalent but rarely
constitute performance bottlenecks. There is a larger class of
reductions, sometimes referred to as irregular reductions or
histograms [19]. Such reductions are typically more intense
computationally and can be more profitably exploited.

Discovering and exploiting scalar reductions in programs
has been studied for many years [27]. The treatment of more
general reduction operations has received less attention. The
reason is that these irregular reductions intrinsically contain
indirect memory accesses, which poses a great challenge
to compilers that use data dependence [24] or polyhedral
representation [5] as the basis for their analysis.

Most prior work on generalized reductions has focused
on the exploitation rather than discovery [15], examining
the trade-offs in implementation [37] or exploitation of
novel hardware [36]. Early work focused on well structured
Fortran and paid little attention to automatic compiler-based
detection. More recent work has attempted to find reductions
in more complex C code with partial reduction variables
[20]. This is based on update chains in the dependence graph
and requires hardware speculation support, but is unable to
detect histogram reductions. In [21], a complex system is
proposed to allow structure privatization, yet it also only
exploits scalar reductions. The difficulty in automatically
detecting reductions has led to language or annotation based
approaches where it is the responsibility of the user to mark
reductions in the program [6, 9].

In this paper we develop a new compiler based approach
that automatically detects a wide class of reductions. Such
reductions can span large sections of code, contain general
control-flow, have non-linear access to arrays and include
histograms.

Rather than implementing a bespoke detection algorithm,
we introduce a novel constraint based representation of these
generalized reductions. This is formulated in a constraint
language that allows easy extensions to cover other idioms.
We then develop a customized constraint solver to identify
satisfying subsets that constitute a reduction operation. We
use a careful enumeration strategy to reduce the theoretic
combinatorial complexity of detection. This is implemented
as an LLVM [25] pass after lowering to SSA-form.

We applied our approach to C/C++ versions of three
well known benchmark collections: NAS [31], Parboil [33]
and Rodinia [7]. These are non-trivial code bases and vary
considerably in terms of code structure and complexity. We

compare our approach to state of the art polyhedral and data
dependence approaches and find 84 scalar reductions and
6 histograms. Only our approach finds general histogram
reductions.

This paper focuses on the detection of reductions and
assumes later compiler stages are responsible for mapping
them to existing tuned libraries. However, to illustrate the
potential performance of our scheme, we also developed and
implemented a code generation pass that generates parallel
reduction code using pthread. Using this scheme, we achieve
significant speedups on those benchmark programs that have
reductions as their main performance bottleneck.

This paper makes the following contributions:
• Detection of more general reductions than previous work.
• Works in the presence of general control-flow, arrays

with non-linear access functions, and complex operations
within the reduction program scope.
• First constraint based formulation of general reductions,

allowing decoupling from the detection algorithm.
• When implemented in LLVM and applied to large scale

benchmark suites, it detects more reductions than existing
approaches.
• Demonstrates that general reductions can give significant

performance improvement.

2. Motivation
Figure 1 shows a standard scalar reduction. Rather than
sequentially scanning a and accumulating it into sum, it is
possible to calculate private partial sums in parallel before
they are added together to form the final value. Such simple
reductions frequently occur and can be readily detected.
However, such reductions rarely dominate execution in a
program.

1 sum = 0;
2 for(i = 0; i < n; i++)
3 sum += a[i];

Figure 1: Sum Reduction

Figure 2 in contrast shows a more complex section of
code that constitutes a performance bottleneck of a standard
benchmark program (Embarrassingly Parallel of the NAS
Parallel Benchmarks). At first glance it is not obvious that
this computation can be treated as a reduction. However, It
can be parallelized in a similar way as the simple sum using
privatization.

As in the case of the simple sum, the parallelization
of this code requires the computation of partial results in
a separate memory location before merging together the
partial results. The whole process is illustrated in Figure 3.
Here we privatize the scalar variables sx, sy and the array
q. We can then accumulate partial results in these local
copies by partitioning the iteration space 0. . . NK across
the individual threads. Finally we synchronize and merge

1 for (i = 0; i < NK; i++) {
2 x1 = 2.0 * x[2*i] - 1.0;
3 x2 = 2.0 * x[2*i+1] - 1.0;
4 t1 = x1 * x1 + x2 * x2;
5 if (t1 <= 1.0) {
6 t2 = sqrt(-2.0 * log(t1) / t1);
7 t3 = (x1 * t2);
8 t4 = (x2 * t2);
9 l = MAX(fabs(t3), fabs(t4));

10 q[l] = q[l] + 1.0;
11 sx = sx + t3;
12 sy = sy + t4;
13 }
14 }

Figure 2: Complex Reduction

together partial results. This is done by adding together the
local copies of sx, sy and by performing an element wise
addition of the local copies of q.

Figure 3: Illustration of a complex parallel reduction

The reason existing schemes do not detect such complex
reductions can be better understood by considering Figure 4,
which denotes the compiler representation of this program.
The histogram update occurs in the 3rd basic block with
the load, assign and store operations but it is by no means
obvious that it is a safe reduction

In fact, accurately detecting reductions is non-trivial. If
in the original program, shown in Figure 2, the condition on
line 5 was changed to t1<=sx, there would be no longer
a legal reduction as there is now a control dependence on
an intermediate result. This is turn would manifest as an
additional data dependence edge from block 3 to block 2
in Figure 4. Furthermore the code segment can only be
classified as a reduction because all the function calls that
are present are pure. Such details have to be checked to
ensure correctness. What is needed is a way to specify these
conditions exactly and to then automatically identify code
regions that meet the constraints.

3. Approach
There are three fundamental issues to address in exploiting
reductions: detection, replacement and profitability. In this
article we focus on the reliable detection of reductions based
on a constraint specification. For evaluation purposes we
have also implemented a preliminary code generation phase
that generates parallel code using pthread. In future work we
intend to rely on specific DSLs or libraries as more efficient

Figure 4: A subset of the Data Flow, Control Flow and
Control Dependences of Figure 2

code generation backends. Profitability heuristics are critical
in practice to determine whether or not to apply parallelizing
code transformations. We use a simple approach based on
profiling information to determine whether or not to apply
our optimization.

Our method for the detection of reduction operations is
based on a novel constraint based description language for
computational idioms and a generic solver algorithm that
searches in single static assignment compiler IR code for
subsets that satisfy them. This decoupling of specification
and detection enables us to build an extensible system that
can process complex reductions beyond the capabilities of
established approaches.

In the next sub-sections we first motivate and describe our
constraint based specification approach. We describe how
the reduction idiom can be specified in this system. We then
derive a generic backtracking algorithm that can be used to
generate detection functionality directly from the constraint
description. This is followed by a brief outline of how this
is integrated in the LLVM compiler infrastructure. Finally,
in the following section, we give an overview of our code
generation approach.

3.1 Constraint Based Formulation
In this section we describe how both scalar and generalized
reductions can be formulated using constraints.

3.1.1 Scalar Reductions
Informally, we require the following conditions to hold in a
piece of source code for it to contain a scalar reduction:
1. The code is contained in a for loop and the iteration space

is known in advance (not necessarily at compile time).
2. There is a scalar value x that is updated in every iteration.
3. One or multiple values a1, . . . , an are read from arrays

and the indices are affine in the loop iterator.
4. The updated value x′ is computed as a term only of x,

the array values a1, . . . , an and values that are constant
within the loop.
The definition is broader than usual. In particular, we

allow the reduction to encompass multiple arrays and we
allow complex computations inside the reduction, not just
a scalar binary operator.

Example Figure 2 already demonstrated the need for this
broader definition. It contains two scalar reductions, one to
sx and one to sy. The main loop contains control flow in
the form of a conditional statement. The branch condition is
however only dependent on values that are read affinely from
the array x and the constants 1.0 and 2.0. In the same
way the new values of sx and sy are only dependent of
the respective old values, values that are read affinely from
the array x and the constants 1.0 and 2.0. This is due to
the fact that all functions used in the computation are pure
functions. The values of sx and sy are not unconditionally
updated in the C code, but the second condition is still true
due to the introduction of PHI nodes in the SSA intermediate
representation.

3.1.2 Generalized Reductions or Histograms
Histogram reductions can be defined similarly to the above
definition.
1. The code is contained in a for loop and the iteration space

is known in advance (not necessarily at compile time).
2. One or multiple values a1, . . . , an are read from arrays

and the indices are affine in the loop iterator.
3. A value idx is computed as a term only of the array

values a1, . . . , an and values that are constant within the
loop.

4. A value x is read from an array at index idx and a
modified value x′ is written at the same index

5. The updated value x′ is computed as a term only of x,
the array values a1, . . . , an and values that are constant
within the loop.
These definitions now need be formulated precisely in a

constraint language in a form that can automatically verified
by a constraint solver. So we developed a formal language to
achieve this.

Figure 5 shows the first condition regarding the type
of loop structure allowed formulated in this language. The
fourth condition of scalar reductions as well as the third and
fifth condition of histograms can also be formulated using
graph constraints. Each of these conditions specify a set

A for loop is a tuple

(entry, exit, loop begin, loop jump, test,

loop body, backedge, iterator, next iter,

iter begin, iter step, iter end)

∈ LLVM::Value12

such that the following holds:

entry
sese−−−→
cfg

exit ∧

entry = branch(loop begin) ∧
loop jump = branch(test,loop body,exit) ∧

loop body
sese−−−→
cfg

backedge ∧

backedge = branch(loop begin) ∧

loop jump
dominate−−−−−−→

cfg
exit ∧

test = int comparison(iterator,iter end) ∧
(iter end ∈ constant ∨

iter end
dominate−−−−−−→

cfg
entry) ∧

iterator = Φ(next iterator,iter begin) ∧
(iter begin ∈ constant ∨

iter begin
dominate−−−−−−→

cfg
entry)) ∧

next iter = add(iterator,iter step) ∧
(iter step ∈ constant ∨

iter step
dominate−−−−−−→

cfg
entry).

The symbols ∨ and ∧ correspond to the logical disjunction
and conjunction and the atomic constraints here are:
• x sese−−−→

cfg
y: two values x and y span a single entry single

exit region in the control flow graph
• x = branch(y): the value x is an unconditional branch

instruction with target y
• x = branch(y, z, w): the value x is a conditional

branch instruction with targets z or w depending on y

• x dominate−−−−−−→
cfg

y: x dominates y in the control flow graph

• x = int comparison(y, z): x is a comparison with
arguments y and z
• x ∈ constant: x is a compile time constant or function

argument
• x = add(y, z): x is an addition with arguments y and z
• x = Φ(y, z): x is a PHI node with incoming values y and
z

Figure 5: Constraint Formulation of For Loops

of allowed input values in an expression that computes a
single output. This corresponds to a generalized concept of
graph domination: Every path to the output value in both
the control dominance graph and the data flow graph has to
pass through at least one of the specified input values. As
opposed to the control flow graph that is usually considered
for graph dominations, the data flow and control dominance
graph have no distinguished origin. Instead, each read from
memory and each impure function call has to be allowed as a
potential origin in the above definition of generalized graph
domination.

The other conditions that we use to specify the reduction
idiom can be specified using the same basic constraints as
well. Due to space we omit further details.

There are some additional necessary conditions that we
can not currently express in our constraint language. These
include the associativity of the update operation as well as
the check for array aliasing. Associativity is established in
a post processing step, aliasing problems could be avoided
with simple runtime checks.

3.2 Solving Constraints
Instead of hand crafting detection routines to identify code
that fits these specifications, we want an algorithm that
is generic and takes a constraint formulation as an input
argument. We can then embed the specification language as
a domain specific language in C++ and provide the detection
functionality in the LLVM framework.

The constraint based idiom specifications consist of two
parts. One component is a set I of labels that represent the
different elements of the idiom. The other component is a
boolean predicate c on LLVM::ValueI that is specified in
terms of constraints.

For a given functionF , determining the subsets of LLVM
IR that match the constraint specification is equivalent to
enumerating the following set.

{x ∈ values(F)I | c(x) = true}

Here values(F) is the set of all instructions, constants,
function arguments, basic block labels and global variables
that are used in the function F . Therefore elements of
values(F)I are I-tuples of such values.

With the constraint formulation it is easy to evaluate the
predicate c for a given element of values(F)I . All that is
required is to check the atomic constraints, all of which can
be easily evaluated. This means that we can essentially just
enumerate all values in values(F)I and filter out those that
do not satisfy the predicate.

This, however, is exponential in the complexity of the
specification. It is far from the best solution, as there are
more efficient solutions for specific computational idioms
such as loops. Instead, we need a smarter approach that
utilizes knowledge about the composition of the predicate
to deliver a more efficient algorithm.

3.3 Detection Algorithm
The main idea is that idioms are made up in a modular
fashion. Instead of testing every appropriately sized tuple of
LLVM IR values for adherence to the idiom specification,
we accumulate the idiom piece by piece and discard the
partial solutions if we “get stuck”. This approach is called
backtracking and essentially implements a depth first search.

Given the constraint specifications consist of a set of
labels I and a binary predicate c, we proceed with the steps
shown in Figure 6.

1. There is no canonical order on the set I . We can choose
some enumeration i1, . . . , in such that I = {i1, . . . , in}.
The exact choice of this enumeration does not affect the
functionality but will be very important for the runtime
behavior of this method, as described later.

2. For each k = 1 . . . n we define a binary predicate ck on
LLVM::Value{i1,...,ik}. We do this by starting with the
constraint description of c and replacing all the atomic
constraints that depend on ik+1, . . . , in with constant
true.

3. We can now use the following simple recursive algorithm
to output all detections.

1: procedure DETECT(F , k ← 0, x← ∅)
2: if k = n then
3: YIELD(x)
4: else
5: Y ← {y ∈ F | ck+1(x1, . . . , xk, y) = true}
6: for y ∈ Y do
7: DETECT(F , k + 1, (x1, . . . , xk, y))

Figure 6: Detection Procedure

This has transformed our problem into a depth first tree
traversal on the search for leaves that have distance n to the
root. Leaves of a different distance to the root are therefore
‘dead ends’ and should be avoided. This can be achieved by
a well chosen enumeration of I in the first step.

This result corresponds to how one would intuitively
identify loops, first looking for the loop header, which is
characterized a conditional branch instruction; then looking
for the end of the loop body and verifying that it branches
back to the loop header etc.

3.4 Implementation in LLVM
We implemented this detection algorithm in the LLVM
compiler infrastructure. Constraints are specified directly in
C++ using an embedded domain specific language, as shown
with an example in Figure 7. The implementation is based
on an abstract Constraint interface. An implementation
of this interface has to provide a next solution function
that is used to iterate over the set in line 5 of the DETECT
algorithm. In the future such specifications may be read from
external files at runtime, avoiding the need for recompilation
to experiment with analysis passes.

The core algorithm is implemented easily as most of
the actual implementation complexity is contained in the
implementations of the Constraint interface. Besides all
the atomic constraints, this includes the implementations
ConstraintAnd and ConstraintOr that are used to
logically combine constraints (c.f. the ∧ and ∨ operators in
the description language). The detection compiler pass runs
in a matter of seconds on all the benchmark programs that
we tested.

4. Code Generation
For each reduction that is found, all input arrays and closure
variables are identified and packed into a structure together
with the histogram array and some additional parameters. A
function is generated that takes a pointer to this structure as
its only parameter. Depending on the amount of processors
in the system and the recursion depth, the function decides
whether to bisect its workload recursively. If it decides not
to recurse, it simply executes the histogram sequentially.
Otherwise it uses pthread create to offload half of its
workload into another thread. For this, it copies its parameter
array but replaces the histogram array with a newly allocated
copy. After both threads finished their work, the copy is
merged with the original histogram element wise and the
copy is deallocated.

In general, the size of the histogram array can not be
statically determined. When necessary, we therefore use
dynamic boundary checking in the branched off threads and
reallocate the histogram array when needed. This introduces
some overhead but proved acceptable in many benchmark
programs.

Most of this was automated as an LLVM pass following
the constraint based detection phase, but manual corrections
are still needed for some complex reductions. Optimal code
generation was not the main focus of this research and more
sophisticated methods for the parallelization of reductions
could be added. In the future we intend to use dedicated
DSLs and optimized numeric library functions for more
efficient code generation.

5. Experimental Setup
5.1 Benchmarks
We applied our prototype idiom detection pass to versions
of the NAS Parallel Benchmarks written in C. We used the
SNU NPB implementation by the Seoul National University
which contains the original 8 NAS benchmarks plus two of
the newer unstructured components UA and DC.

We furthermore evaluated our approach on all Parboil and
Rodinia benchmark programs. This constitutes 40 programs
in total of varying length. The EP program in NPB for
instance is only a single file of 324 lines in length. Leukocyte
in Rodinia by contrast contains over 50 files. For each of
the individual benchmark programs, we counted how many
distinct scalar and histogram reductions were found.

1 class ConstraintSESE : public ConstraintAnd<unsigned>
2 {
3 public:
4 struct Labels
5 {
6 unsigned precursor;
7 unsigned begin;
8 unsigned end;
9 unsigned successor;

10 };
11
12 ConstraintSESE(FunctionWrapper& w, Labels& l)
13 : ConstraintAnd<unsigned>
14 (ConstraintCFGEdge (w, l.precursor, l.begin),
15 ConstraintCFGEdge (w, l.end, l.successor),
16 ConstraintCFGDominate (w, l.begin, l.end),
17 ConstraintCFGPostdom (w, l.end, l.begin),
18 ConstraintCFGDominateStrict(w, l.precursor, l.begin),
19 ConstraintCFGPostdomStrict (w, l.successor, l.end),
20 ConstraintCFGBlocked (w, l.begin, l.end, l.precursor),
21 ConstraintCFGBlocked (w, l.successor, l.begin, l.end)) { }
22 };

Figure 7: Example Constraint Embedded in C++

5.2 Alternative Approaches
To provide a useful comparison we evaluated against two
competitive existing approaches, Polly-Reduction and icc.
The first is a recently published approach that extends the
polyhedral framework to handle reductions, the second is a
mature state-of-the-art industrial compiler. As an additional
comparison, we investigated whether the methodology from
[28] can be applied as a parallelization technique.

Polly-Reduction The authors of [12] develop a compiler
analysis and transformation method that detects reductions
in static control flow parts of programs. This technique is
implemented within Polly, an LLVM extension based on
the polyhedral model. The polyhedral model is extremely
powerful when applicable and as Polly is also LLVM based,
this allows for a comparison against another approach that
uses the same IR and compiler infrastructure.

We compiled the sequential versions of the benchmark
programs with version 3.9 of the clang compiler with Polly
built in and gathered all the SCoPs that Polly reported
when using the compiler options -O3 -mllvm -polly
-mllvm -polly-export. We then manually searched
the reported SCoPs for reduction operations and counted
each of them as a hit for Polly. This gives us an optimistic
estimate as to what coverage a polyhedral based approach to
reduction operations can achieve [12].

Intel icc The Intel icc compiler is a mature compiler
with support for auto-parallelization and vectorization. It
uses data dependences rather than the polyhedral model as
its fundamental analysis tool. It is therefore less powerful
than polyhedral approaches but more robust. We compiled
the benchmarks with -parallel -qopt-report. For
each reduction, we checked in the generated report whether
icc considered the loop to be parallelizable. We also included
in the detection results all those loops that icc considered
possible but inefficient.

5.3 Platform
To determine the runtime coverage and performance results,
we evaluated the benchmarks on a 64 core machine with
four AMD Opteron(tm) 6376 processors and one terabyte
of RAM.

6. Results
This section first presents the number of reductions found
by the various schemes. This is followed by an analysis
of how significant each reduction is. Finally we show the
performance impact of our scheme.

6.1 Discovery
We applied our approach to the three benchmark suites and
the results are shown in Figures 8a, 8b and 8c. Across the
suites, our detection algorithm was able to identify 84 scalar
reductions and 6 histogram reductions. The compile time
cost of our detection algorithm was on average 3.77 seconds
per benchmark program.

Reductions were detected in nearly all of the individual
NAS benchmarks with UA having the highest number, 11.
Reductions were less prevalent in Parboil with 5 out of 11
benchmarks having reductions. There were 7 reductions in
Cutcp, the most in Parboil. Surprisingly, the more complex
Rodinia benchmarks contained more identifiable reductions
than Parboil. Our program detected reductions in 15 out of
the 19 benchmarks, 9 of them in the particlefilter program.

The LLVM scalar evolution analysis pass as well as the
LRPD test from [28] were generally not able to capture the
more complex reductions that we found. Scalar evolution is
fundamentally limited to scalar reductions and was hence
unable to capture information about any of the histogram
reductions. The methodology from [28] on the other hand
does not capture complex control flow, as is for example
present in the tpacf program. Furthermore benchmarks such
as EP contained pure function calls to sqrt and log, but

BT CG DC EP FT IS LU MG SP UA

0

2

4

6

8

10

12 histogram reductions
scalar reductions

icc reductions
Polly+reductions

(a) Reductions detected in NAS

bf
s

cu
tc

p

hi
st

o

lb
m

m
ri

-g
ri

dd
in

g

m
ri

-q

sa
d

sg
em

m

sp
m

v

st
en

ci
l

tp
ac

f

0

2

4

6

8 histogram reductions
scalar reductions

icc reductions
Polly+reductions

(b) Reductions detected in Parboil

ba
ck

pr
op

bf
s

b+
tr

ee

cf
d

he
ar

tw
al

l

ho
ts

po
t

ho
ts

po
t3

D

km
ea

ns

la
va

M
D

le
uk

oc
yt

e

lu
d

m
um

m
er

gp
u

m
yo

cy
te

nn nw pa
rt

ic
le

fil
te

r

pa
th

fin
de

r

sr
ad

st
re

am
cl

us
te

r

0

2

4

6

8

10 histogram reductions
scalar reductions

icc reductions
Polly reductions

(c) Reductions detected in Rodinia

Figure 8: Reductions detected in the individual benchmark suites

[28] is restricted to arithmetic operators. In general, [28] is
mostly focused on exploitation of reductions and does not
do into much detail for the detection.

There were some regions that we were able to identify
as reductions manually that our system did not find. This
was generally the case when the reduction loop was not the
innermost loop, e.g. in the following code segment from SP.

1 for (k = 1; k <= nz2; k++) {
2 for (j = 1; j <= ny2; j++) {
3 for (i = 1; i <= nx2; i++) {
4 for (m = 0; m < 5; m++) {
5 add = rhs[k][j][i][m];
6 rms[m] = rms[m] + add*add;
7 }
8 }
9 }

10 }

Histogram reductions are rarer than scalar reductions.
However our algorithm was able to detect 3 in NAS, 2 in
Parboil and 1 in Rodinia. All of them eventually updated
their bins using an addition operator but they often contained

complex expressions to compute the index for the update
in a given iteration. The most interesting example of this
was tpacf from the Parboil benchmarks. In this reduction,
the index is computed via a binary search in an additional
array. On the other hand the performance bottleneck of IS is
a plain histogram without any complications.

1 for(i=0; i<NUM_KEYS; i++)
2 key_buff_ptr[key_buff_ptr2[i]]++;

Polly+Reductions was able to find just 2 scalar reductions
in the NAS benchmarks (BT and SP), 1 in Parboil (sgemm)
and 1 in Rodina (leukocyte). It was unable to detect any of
the histogram reductions. This was expected, as the indirect
memory access that is present in histograms contradicts the
affine memory access condition that the polyhedral model
relies on.

In contrast, the Intel icc compiler was more successful
than Polly in detecting reductions: 25 out of 38 in NAS, 3
out of 11 in Parboil and 23 out of 38 in Rodinia. These were
all scalar reductions; no histograms were detected.

BT CG DC EP FT IS LU MG SP UA

0
2
4
6
8

10
12
14
16
18
20

reduction SCoPs
other SCoPs

Figure 9: SCoPs in NAS

bf
s

cu
tc

p

hi
st

o

lb
m

m
ri

-g
ri

dd
in

g

m
ri

-q

sa
d

sg
em

m

sp
m

v

st
en

ci
l

tp
ac

f

0

1

2

reduction SCoPs
other SCoPs

Figure 10: SCoPS in Parboil

ba
ck

pr
op

bf
s

b+
tr

ee
cf

d
he

ar
tw

al
l

ho
ts

po
t

ho
ts

po
t3

D
km

ea
ns

la
va

M
D

le
uk

oc
yt

e
lu

d
m

um
m

er
gp

u
m

yo
cy

te
nn nw pa

rt
ic

le
fil

te
r

pa
th

fin
de

r
sr

ad
st

re
am

cl
us

te
r

0

1

2

3

4

5
reduction SCoPs

other SCoPs

Figure 11: SCoPs in Rodinia

Polly+Reduction Polly+Reduction struggled with some of
the more complex code bases of the Rodinia and Parboil
benchmarks. This was not always due to limitations of the
underlying polyhedral model. Instead it was often the result
of not statically known iteration spaces and the use of flat

array structures. Figures 9,10,11 show the number of static
control-flow regions (SCoPs) that baseline Polly finds. As
the reduction pass of Polly requires SCoPS, these provide
a natural upper bound on the number of reductions. On
23 of the 40 benchmarks, Polly found no SCoPs at all.
This corresponded to 40% of NPB, 63.6% of the Parboil
Benchmarks and 63.2% of Rodinia.

The vast majority of the SCoPs that Polly detected were
in stencil computations. The stencil based programs LU,
BT, SP and MG in the NAS Parallel Benchmarks alone
accounted for 37 of the 62 SCoPs that were found across
all benchmarks (59.6%). In the NAS Parallel Benchmarks
and the Parboil Benchmarks, Polly was only able to identify
three scalar reductions contained in SCoPs.

These results are not entirely surprising, as Polly and
the polyhedral model were not created for the purpose of
optimizing reductions in particular. They do however imply
that reduction detection based on Polly is severely limited.

icc The Intel icc compiler is more robust and does not
require static control flow as a precondition for its analysis.
On the well structured NAS benchmarks, it performs well
but fails to detect any reductions in IS.

Surprisingly it too does not detect reductions in SP while
Polly does. On closer inspection, this is again due to a deep
perfectly nested loop where the reduction iterator is in the
middle of the loop nest. (as shown earlier in section 6.1).
This is an unusual coding style and was not picked up by icc
analysis. On the less well structured Parboil benchmarks, it
fails to detect many of the scalar reductions in cutcp. This is
because these reductions use the functions fmin and fmax
that our system recognizes as pure. On the other hand these
function calls prevent icc from successful parallelization. It
is clear that icc does not attempt to detect histograms and
missed all instances of them.

6.2 Runtime Coverage
Detecting large numbers of reductions is encouraging, but
does not address whether or not such detection is useful.
To measure this, we profiled each program and examined
how much time was spent in the different types of reduction
regions. The two different classes of reductions behaved
very differently. While we found more scalar reductions
than histogram reductions, histogram reductions were more
likely to constitute performance bottlenecks, as shown in
Figures 12, 13 and 14. In the individual benchmark programs
that contained histogram reductions, they accounted for an
average of 68% of the runtime. Scalar reductions on the other
hand were generally irrelevant to program runtime, with the
exception of the sgemm benchmark (cf. Figures 12, 13 14).

From this we can conclude that if we wish to exploit
reductions for performance reasons, then we should focus on
histograms and exclude scalar reductions. Given that Polly
and icc were not able to detect histograms, this is a limitation
of their approaches.

BT CG DC EP FT IS LU MG SP UA

0
0.2
0.4
0.6
0.8

1

scalar reductions
histogram reductions

Figure 12: Runtime Coverage in NAS

bf
s

cu
tc

p

hi
st

o

lb
m

m
ri

-g
ri

dd
in

g

m
ri

-q

sa
d

sg
em

m

sp
m

v

st
en

ci
l

tp
ac

f

0
0.2
0.4
0.6
0.8

1

scalar reductions
histogram reductions

Figure 13: Runtime Coverage in Parboil

ba
ck

pr
op

bf
s

b+
tr

ee
cf

d
he

ar
tw

al
l

ho
ts

po
t

ho
ts

po
t3

D
km

ea
ns

la
va

M
D

le
uk

oc
yt

e
lu

d
m

um
m

er
gp

u
m

yo
cy

te
nn nw pa

rt
ic

le
fil

te
r

pa
th

fin
de

r
sr

ad
st

re
am

cl
us

te
r

0
0.2
0.4
0.6
0.8

1

histogram reductions

Figure 14: Runtime Coverage of Rodinia

EP IS histo tpacfkmeans

1

2

5

10

20

50

100

200

sp
ee

du
p

vs
se

qu
en

tia
lb

as
el

in
e

smalloriginal parallel version
smallreduction parallelism

Figure 15: Speedup Potential in Reduction Operations

6.3 Performance
The speedups that we achieved by exploiting histograms is
detailed in figure 15. We only evaluated this for benchmarks
with significant runtime coverage of histogram reductions.
Our speedup is compared against the parallel benchmark
versions shipped by the original implementers. Since those
versions are not restricted in the scope of parallelism that
they exploit, it would be expected that they perform better
than our reduction based parallel versions. The baseline is
the sequential version of the benchmark programs.

In EP we achieve 62% speedup over the whole program.
On this benchmark program, our approach is limited by
the coverage of the parallelized reduction operation. Linear
speedup on the 64 cores of our computer would have resulted
in 1/((1−0.46)+0.46/64)−1 = 83% speedup. The original
parallel version on the other hand uses coarser parallelism
and outperforms our reduction based parallelization.

On the IS benchmark, our automatic reduction based
parallelization results in 2.9x speedup, compared to 6.3x
speedup of the original parallel version. The discrepancy
comes from the fact that the original version uses additional
knowledge about the distribution of the histogram indices
that is not available to our method. It can therefore sort them
into disjunct bins before executing the actual histogram and
thereby avoid array privatization. A smarter code generation
approach could narrow this gap and we will explore this in
future work.

The array privatization is a limiting factor to speedup in
the histo benchmark. The parallel version provided by the
implementers achieves no speedup against sequential on our
system, we achieve a moderate speedup of 2.2771x.

Our parallelizing transformation pass currently fails on
the kmeans benchmark. This is due to multiple histogram
updates in a nested loop. The original parallel version is
entirely based on reduction parallelism, so we expect to
achieve similar performance when our system is extended to
capture this reduction properly. We therefore included this
as speedup achievable by reduction parallelism.

On tpacf we achieve an almost linear speedup of 35.7x.
The original parallel version of this program is implemented
poorly using a critical section, resulting in slowdown versus
sequential execution on our highly parallel machine.

7. Related Work
Discovering and exploiting scalar reductions in programs
has been studied for many years based on dependence anal-
ysis and idiom detection [13, 27, 34]. Early work focused on
well structured Fortran and paid little attention to automatic
compiler-based detection, a notable exception being [34]. In
[28], the authors went beyond previous static approaches and
developed a dynamic test to speculatively exploit reduction
parallelism. Alongside this data dependence based approach,
there also exists a large body of work exploring the mapping
of reductions in a polyhedral setting [22, 26, 30].

The treatment of more general reduction operations has
received less attention. Work has focused on exploitation
rather than discovery [15–17], examining the trade-offs
in implementation [37] or exploitation of novel hardware
[29, 36] In [10], they use dynamic profile analysis to guide
manual analysis and show there is potential for finding gen-
eralized reductions. In [23] they explore the use of dynamic
analysis further, but state that detecting reductions on arrays
is challenging.

More recently, extensions to the polyhedral framework
have been proposed, allowing it to capture some reduction
computations [8, 14, 32]. Such efforts are described in [12].
The authors discuss and implement a reduction-enabled
scheduling approach as part of Polly and use the Polybench
benchmark suite to evaluate it, achieving speedups of up
to 2.21x. However as shown in our evaluation section, such
schemes are fragile in the presence of non static control flow.

The difficulty in automatically detecting reductions has
led to language or annotation based approaches where it is
the user’s responsibility to mark reductions in the program
[11]. An annotation approach is described in [6], based on
the Platform-Neutral Compute Intermediate Language [4].
This used the code generator in [35] to generate CUDA and
OpenCL code for multiple compute platforms.

There has also been recent work following on from [28]
in using more aggressive speculation and dynamic analysis
to exploit reduction parallelism [1]. The authors of [20]
present an approach for the parallelization of a wide class of
scalar reductions. They start from the observation that many
reductions in real benchmark programs are not detected by
current static analysis approaches. They propose a hardware
assisted speculative parallelization approach for likely run-
time reductions, denominated ‘partial reduction variables’.
Candidates for speculative parallelization are determined by
searching for update-chains in the data flow graph. The ap-
proach was evaluated on some of the SPEC2000 benchmarks
with the use of a simulator. They achieve up to 46% speedup
by including speculative reductions. This approach based on
update chains in the dependence graph requires hardware
speculation support to check dependences but is unable to
detect histogram reductions.

Privateer introduced in [21], is a complex system fea-
turing compiler support and a runtime to enable specula-
tive parallelization. The core approach is the privatization
of memory for each thread and an exception mechanism
with recovery routines for accesses that violate parallelism.
The authors explicitly allow for reduction parallelism that
involves only a single scalar associative and commutative
operator. The implementation approach is to first profile the
program for hot loops and then to classify all variables ac-
cessed in those loops into different groups. A transformation
pass then identifies corresponding malloc and free calls
and replaces them by thread local allocations. In a similar
way all load and store instructions are replaced by lo-

cal accesses. At runtime, the system uses manual page table
switching and memory protection to minimize runtime over-
head. The evaluation is done on a limited set of five bench-
mark programs, yielding a geometric mean speedup of 11.4x
on a 24 core machine. The runtime overhead on these five
programs varies between < 1% and > 50%. Despite this
complexity they only exploit simple scalar reductions.

While constraint sytems are the basis for a well estab-
lished form of program analysis [2], they have not been
used in idiom detection. In [3], it describes a compiler based
parallelization approach for heterogeneous computing that
is based on an idiomatic intermediate representation called
KIR. This intermediate representation is based on the con-
cept of diKiernels, which constitute algorithmic building
blocks and are used to automatically generate OpenMP and
OpenHMPP code. The authors propose a system that de-
tects diKernels in conventional compiler IR and concate-
nates them to form contiguous sections of KIR. Individual
examples of diKernels are scalar reductions and irregular as-
signments. It is not clear how such an approach would work
on general ’C’ programs.

8. Conclusion
This paper develops a new compiler based method for the
automatic detection of a wide class of reduction operations.
The approach is based on a constraint formulation and a
custom constraint solver that has been implemented in an
LLVM pass. With this customized constraint solver we can
identify program subsets that adhere to a given constraint
specification.

By representing reductions in a constraint language, we
are able to separate specification from detection, providing
a modular and extendable approach to idiom recognition.
Once reductions are discovered, we automatically generate
parallel code to exploit the reduction.

This approach is robust and was evaluated on C versions
of three well known benchmark suites: NAS, Parboil and
Rodinia. We detected more reductions than the existing
approaches and were alone in being able to detect computa-
tionally intense histogram reductions. Such reductions were
shown to give significant performance improvement.

Future work will extend the constraint formulation to
consider other commonly occurring computational idioms
and target domain specific languages for code generation.
Once the number of idioms detected begins to grow, a smart
profitability analysis will be needed and will also be the
subject of future work.

9. Acknowledgements
This work was supported by grant EP/L01503X/1 for the
University of Edinburgh School of Informatics Centre for
Doctoral Training in Pervasive Parallelism as well as grant
EP/K008730/1 from the UK Engineering and Physical Sci-
ences Research Council (EPSRC) and ARM Ltd.

References
[1] M. A. Aguilar and R. Leupers. Unified identification of

multiple forms of parallelism in embedded applications. In
2015 International Conference on Parallel Architecture and
Compilation (PACT), pages 482–483. IEEE, 2015.

[2] A. Aiken. Introduction to set constraint-based program analy-
sis. Science of Computer Programming, 35(2):79–111, 1999.

[3] J. M. Andin. Compilation Techniques for Automatic Extrac-
tion of Parallelism and Locality in Heterogeneous Architec-
tures. PhD thesis, University of A Corua, 2015.

[4] R. Baghdadi, A. Cohen, T. Grosser, S. Verdoolaege,
A. Lokhmotov, J. Absar, S. Van Haastregt, A. Kravets, and
A. Donaldson. PENCIL Language Specification. Research
Report RR-8706, INRIA, May 2015.

[5] M.-W. Benabderrahmane, L.-N. Pouchet, A. Cohen, and
C. Bastoul. The polyhedral model is more widely applica-
ble than you think. In International Conference on Compiler
Construction, pages 283–303. Springer, 2010.

[6] M. K. Chandan Reddy and A. Cohen. Reduction drawing:
Language constructs and polyhedral compilation for reduc-
tions on GPUs. In Proceedings of the 25rd International Con-
ference on Parallel Architectures and Compilation, PACT ’16,
2016.

[7] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron. Rodinia: A benchmark suite for hetero-
geneous computing. In Proceedings of the 2009 IEEE Inter-
national Symposium on Workload Characterization (IISWC),
IISWC ’09, pages 44–54, Washington, DC, USA, 2009. IEEE
Computer Society.

[8] L. Chi-Chung, P. Sadayappan, and R. Wenger. On optimizing
a class of multi-dimensional loops with reduction for parallel
execution. Parallel Processing Letters, 7(02):157–168, 1997.

[9] J. Ciesko, S. Mateo Bellido, X. Teruel, and V. Beltran. Scal-
ing irregular array-type reductions in ompss. In BSC Doc-
toral Symposium (2nd: 2015: Barcelona), pages 138–140.
Barcelona Supercomputing Center, 2015.

[10] D. Das and P. Wu. Experiences of using a dependence profiler
to assist parallelization for multi-cores. In Parallel & Dis-
tributed Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE International Symposium on, pages 1–8. IEEE,
2010.

[11] S. J. Deitz, B. L. Chamberlain, and L. Snyder. High-level
language support for user-defined reductions. The Journal of
Supercomputing, 23(1):23–37, 2002.

[12] J. Doerfert, K. Streit, S. Hack, and Z. Benaissa. Polly’s
polyhedral scheduling in the presence of reductions. CoRR,
abs/1505.07716, 2015.

[13] A. L. Fisher and A. M. Ghuloum. Parallelizing complex scans
and reductions. In ACM SIGPLAN Notices, volume 29, pages
135–146. ACM, 1994.

[14] G. Gupta and S. V. Rajopadhye. Simplifying reductions. In
POPL, volume 6, pages 30–41, 2006.

[15] E. Gutiérrez, O. Plata, and E. L. Zapata. A compiler method
for the parallel execution of irregular reductions in scalable
shared memory multiprocessors. In Proceedings of the 14th

International Conference on Supercomputing, ICS ’00, pages
78–87, New York, NY, USA, 2000. ACM.

[16] E. Gutiérrez, O. Plata, and E. L. Zapata. Optimization tech-
niques for parallel irregular reductions. Journal of systems
architecture, 49(3):63–74, 2003.

[17] E. Gutiérrez, O. Plata, and E. L. Zapata. An analytical model
of locality-based parallel irregular reductions. Parallel Com-
puting, 34(3):133–157, 2008.

[18] M. W. Hall, J.-A. M. Anderson, S. P. Amarasinghe, B. R.
Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam. Maximizing
multiprocessor performance with the suif compiler. IEEE
Computer, 29(12):84–89, 1996.

[19] H. Han and C.-W. Tseng. Improving compiler and run-time
support for irregular reductions using local writes. In Inter-
national Workshop on Languages and Compilers for Parallel
Computing, pages 181–196. Springer, 1998.

[20] L. Han, W. Liu, and J. M. Tuck. Speculative parallelization
of partial reduction variables. In Proceedings of the 8th An-
nual IEEE/ACM International Symposium on Code Genera-
tion and Optimization, CGO ’10, pages 141–150, New York,
NY, USA, 2010. ACM.

[21] N. P. Johnson, H. Kim, P. Prabhu, A. Zaks, and D. I. August.
Speculative separation for privatization and reductions. In
Proceedings of the 33rd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’12,
pages 359–370, New York, NY, USA, 2012. ACM.

[22] P. Jouvelot and B. Dehbonei. A unified semantic approach
for the vectorization and parallelization of generalized reduc-
tions. In Proceedings of the 3rd international conference on
Supercomputing, pages 186–194. ACM, 1989.

[23] M. Kim. Dynamic program analysis algorithms to assist
parallelization. 2012.

[24] D. J. Kuck, R. H. Kuhn, D. A. Padua, B. Leasure, and
M. Wolfe. Dependence graphs and compiler optimizations.
In Proceedings of the 8th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, pages 207–
218. ACM, 1981.

[25] C. Lattner and V. Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In Code
Generation and Optimization, 2004. CGO 2004. International
Symposium on, pages 75–86. IEEE, 2004.

[26] M. F. O’Boyle. Program and data transformations for efficient
execution on distributed memory architectures. 1992.

[27] B. Pottenger and R. Eigenmann. Idiom recognition in the po-
laris parallelizing compiler. In Proceedings of the 9th interna-
tional conference on Supercomputing, pages 444–448. ACM,
1995.

[28] L. Rauchwerger and D. A. Padua. The lrpd test: Speculative
run-time parallelization of loops with privatization and reduc-
tion parallelization. IEEE Transactions on Parallel and Dis-
tributed Systems, 10(2):160–180, 1999.

[29] V. T. Ravi, W. Ma, D. Chiu, and G. Agrawal. Compiler and
runtime support for enabling generalized reduction computa-
tions on heterogeneous parallel configurations. In Proceed-
ings of the 24th ACM international conference on supercom-
puting, pages 137–146. ACM, 2010.

[30] X. Redon and P. Feautrier. Scheduling reductions. In Proceed-
ings of the 8th international conference on Supercomputing,
pages 117–125. ACM, 1994.

[31] S. Seo, G. Jo, and J. Lee. Performance characterization of the
nas parallel benchmarks in opencl. In Workload Characteriza-
tion (IISWC), 2011 IEEE International Symposium on, pages
137–148. IEEE, 2011.

[32] K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello,
J. Ramanujam, and P. Sadayappan. A framework for enhanc-
ing data reuse via associative reordering. In ACM SIGPLAN
Notices, volume 49, pages 65–76. ACM, 2014.

[33] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W.
Chang, N. Anssari, G. D. Liu, and W.-m. W. Hwu. Par-
boil: A revised benchmark suite for scientific and commer-
cial throughput computing. Center for Reliable and High-
Performance Computing, 127, 2012.

[34] T. Suganuma, H. Komatsu, and T. Nakatani. Detection and
global optimization of reduction operations for distributed
parallel machines. In Proceedings of the 10th international
conference on Supercomputing, pages 18–25. ACM, 1996.

[35] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez,
C. Tenllado, and F. Catthoor. Polyhedral parallel code gener-
ation for cuda. ACM Trans. Archit. Code Optim., 9(4):54:1–
54:23, Jan. 2013.

[36] H. X., R. V., and A. G. Porting irregular reductions on
heterogeneous cpu-gpu configurations. In Proceedings of the
18th IEEE International Conference on High Performance
Computing, 2011.

[37] H. Yu and L. Rauchwerger. An adaptive algorithm selec-
tion framework for reduction parallelization. IEEE Transac-
tions on Parallel and Distributed Systems, 17(10):1084–1096,
2006.

