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ABSTRACT (250 words max) 21 

We investigate patterns of historical assembly of tree communities across Amazonia using a newly 22 

developed phylogeny for the species-rich neotropical tree genus Inga. We compare our results with 23 

those for three other ecologically important, diverse and abundant Amazonian tree lineages, 24 

Swartzia, Protieae and Guatteria. Our analyses using phylogenetic diversity metrics demonstrate a 25 

clear lack of geographic phylogenetic structure and that local communities of Inga and regional 26 

communities of all four lineages are assembled by dispersal across Amazonia. The importance of 27 

dispersal in the biogeography of Inga and other tree genera in Amazonian and Guianan rain forests 28 

suggests that speciation is not driven by vicariance and that allopatric isolation, following dispersal, 29 

may be involved in the speciation process. A clear implication of these results is that over 30 

evolutionary timescales the metacommunity for any local or regional tree community in the Amazon 31 

is the entire Amazon basin.  32 

 33 

SIGNIFICANCE STATEMENT (120 words max) 34 

The Amazon is largely covered by contiguous rain forest. Nevertheless, previous studies have 35 

suggested that past geological and climatic events as well as limited seed dispersal may have 36 

restricted the movement of tree lineages across the Amazon. Using a phylogenetic approach, we 37 

show that dispersal into local communities and larger regions in the Amazon appears not to have 38 

been limited on evolutionary timescales. Rather, local communities have been assembled by 39 

lineages from across the Amazon. These results contrast with those from seasonally dry tropical 40 

forest, where closely related species are clustered in geographic space. Further, our results suggest a 41 

role for dispersal as an initiator for geographic isolation that may lead to speciation in Amazonian 42 

trees.  43 



3 
 

\body 44 

INTRODUCTION 45 

Amazonia is well known to have the most species-rich tree communities on the planet, with more 46 

than 300 species (≥10 cm diameter) found in a single hectare (1). These communities are assembled 47 

from the species pool of Amazonia, which is estimated to number 16,000 species (2). While some 48 

species are widespread across the Amazon basin (3), the majority are more restricted geographically 49 

(2), which has been the basis for schemes that divide the Amazon into floristic regions, including 50 

distinguishing the Guianan Shield flora from that of the Brazilian Shield or the western Amazon basin 51 

(4,5). The pattern of diverse local Amazonian tree communities assembled from a species pool that 52 

mostly comprises regionally restricted species begs the question of how the regional communities 53 

are assembled through time. Regional communities could result from extensive local in situ 54 

speciation (6-8) with little subsequent dispersal. This would predict a pattern of geographically 55 

structured phylogenies with closely related species found in the same region. However, an idea that 56 

has been little tested using phylogenies of Amazonian plant species (9) is that the assembly of 57 

regional rain forest tree communities has been heavily influenced by historical dispersal of species. 58 

This would predict a pattern for communities that lacked geographic phylogenetic structure, where 59 

species from a single genus found in a regional community would be phylogenetically scattered.  60 

Biogeographic studies of tree families that form important components of Amazonian forest, such as 61 

legumes (10), Annonaceae (11), Burseraceae (12), Chrysobalanaceae (13) and Meliaceae (14), have 62 

demonstrated that dispersal has been important in developing their distributions across continents 63 

and oceans (15,16). The existence of long-distance, transoceanic dispersal at the intercontinental 64 

scale suggests that there should be little to hinder dispersal across the flat, continuously forested 65 

Amazon Basin because of its lack of present-day physical barriers. Whilst there is debate of the role 66 

of potential historical dispersal barriers in the Amazon, such as forest fragmentation during 67 

Pleistocene climate changes (17-19) and a large freshwater lake (Pebas) or marine incursions that 68 
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occupied much of western Amazonia in the Miocene (20,21), these are far less substantial 69 

impediments to plant dispersal than major oceans. Once a species does successfully disperse to a 70 

new location, it would still need to establish a population. Establishment can be challenging given 71 

that any immigrant seed is numerically swamped by locally produced seeds (22), but large-scale 72 

resident mortality in rain forests may be sufficiently common due to drought mortality or landscape 73 

rearrangements from radical movement of river courses to allow for establishment of immigrant 74 

species (20,23). We therefore suggest that there has been ample opportunity for historical 75 

immigration to play a key role in the assembly of Amazonian tree communities, as proposed by Lavin 76 

(24) and Pennington & Dick (25), and it is this hypothesis that we test in this paper. 77 

We use a new phylogeny of Inga (Leguminosae (Fabaceae): Mimosoideae) that samples local and 78 

regional communities in Amazonia, including the Guiana Shield, plus the Inga community on Barro 79 

Colorado Island, central Panama, to investigate patterns of historical community assembly (Fig. 1). 80 

The neotropical tree genus Inga is species-rich (>300 species), widely distributed, and has 81 

consistently high local abundance (2,26) and species richness, with up to 43 species recorded in 25 82 

Ha (27). It is therefore an excellent exemplar to study community assembly in neotropical rain 83 

forests. Our phylogeny of Inga is novel in that it samples thoroughly across multiple, geographically 84 

dispersed, local Amazonian tree communities in the context of good phylogenetic coverage of an 85 

entire clade. We compare our Inga results at a regional scale with those for three other tree 86 

lineages, Swartzia (Leguminosae, Papilionoideae), Protieae (Burseraceae) and Guatteria 87 

(Annonaceae), which are also ecologically important, diverse and abundant in Amazonia, to 88 

investigate whether patterns in Inga are general for Amazonian tree communities. Finally, we 89 

contrast the picture of community assembly we uncover for Amazonian rain forest communities 90 

with patterns in the seasonally dry tropical forest biome, which has greater physical barriers to 91 

dispersal and different ecological barriers to establishment. 92 

 93 
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RESULTS 94 

Our phylogeny for Inga, which is based on eight molecular markers and includes 210 accessions of 95 

124 species, resolves relationships amongst major clades and shows that Inga communities in Peru, 96 

French Guiana and Panama comprise phylogenetically scattered species (Fig. 2, S1). These results, 97 

which show clear lack of geographic structure in the phylogeny of Inga, are mirrored by the other 98 

tree lineages with numerous Amazonian species that we have analysed. We evaluated geographic 99 

phylogenetic structure by calculating phylogenetic diversity metrics for local communities and 100 

regions and comparing the observed values to a null expectation generated by randomly sampling 101 

species from the phylogenies. We used three phylogenetic diversity metrics (cf. 28,29): 1) 102 

phylogenetic diversity sensu stricto (PDss), the total phylogenetic branch length present among 103 

species in a given community/region; 2) mean pairwise distance (MPD), the mean of all pairwise 104 

phylogenetic distances between species in a given community/region; and 3) mean nearest taxon 105 

distance (MNTD), the mean of the phylogenetic distance between each species and its closest 106 

relative in a given community/region. If species show significantly lower values than the null 107 

expectation, this indicates geographic phylogenetic structure or clustering, while significantly higher 108 

values than expected indicate phylogenetic overdispersion. Of the three local Amazonian 109 

communities, none show phylogenetic clustering for any of the metrics evaluated (Table S2), while 110 

Nouragues Research Station shows slight phylogenetic overdispersion. The Inga community on Barro 111 

Colorado Island, Panama, shows significant phylogenetic clustering, as evaluated by PDss and MPD. 112 

For Inga, we obtained sufficient sampling from five Amazonian regions to test more broadly for 113 

geographic phylogenetic structure. As with local Amazonian Inga communities, no Amazonian region 114 

shows significant phylogenetic clustering by any metric (i.e., no points in Figs. 3, S2 or S3 below the 115 

grey area encompassing the 95% confidence interval; see also Table S2), while French Guiana shows 116 

slight phylogenetic overdispersion according to the PDss metric (Fig. 3; i.e., it is above the grey area 117 

encompassing the 95% confidence interval) and Loreto shows overdispersion using the MPD metric 118 
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(Fig. S2). Meanwhile, Central America is the only region to show significant phylogenetic clustering 119 

for all three metrics (Figs. 3, S2, S3; i.e., in every case below the grey area encompassing the 95% 120 

confidence interval). 121 

This lack of geographic structure is duplicated in regional Amazonian communities of Swartzia, 122 

Protieae and Guatteria, as measured by all metrics (Figs. 3, S2, S3, Table S2). All species in regional 123 

Amazonian communities represent a random draw from each phylogeny, as measured by all metrics, 124 

with the sole exception of the Swartzia community in Guyana as measured by MNTD (Fig. S3, Table 125 

S2). The only cases where species in regional communities are consistently more closely related than 126 

would be expected by chance are in Central America (Inga [all metrics], Swartzia [all metrics], 127 

Protieae [PDss]) and the Atlantic coastal rain forest of Brazil (Guatteria and Swartzia [all metrics] 128 

(Figs. 3, S2, S3, Table S2). The level of sampling of different geographic regions varies widely (see x-129 

axes in Figs. 3, S2, S3), but we note that well-sampled and poorly-sampled Amazonian regions 130 

present similar results. In general, neither depart significantly from null expectations for the 131 

phylogenetic diversity metrics.  132 

Our results for geographic structure in Protieae differ slightly from those presented by Fine et al. 133 

(30), who calculated MTD and MNTD for major biogeographic regions in a global scale study of 134 

Protieae that included palaeotropical species. Firstly, the three Amazonian regions used by Fine et al. 135 

(30; eastern Amazonia, western Amazonia, Guianas) are larger than those used here and therefore 136 

not directly comparable. Further, we analysed only the neotropical clade of Protieae given our focus 137 

on local and regional Amazonian communities, for which the Neotropics alone may be a more 138 

appropriate wider metacommunity from which to draw random communities. Including 139 

palaeotropical species, which form two clades basal to the neotropical species of Protieae, will have 140 

the effect of inflating values of phylogenetic diversity in the random communities, which may also 141 

contribute to why Fine et al. (30) found greater evidence for phylogenetic clustering in the regional 142 

communities they considered. 143 
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 144 

DISCUSSION 145 

The primacy of historical dispersal in the assembly of local and regional communities 146 

Our results demonstrate that tree communities at local (for Inga) and regional scales (for Inga, 147 

Swartzia, Protieae and Guatteria) are assembled by dispersal across Amazonia. Species in all local 148 

Amazonian Inga communities and virtually all regional communities across all lineages are a random 149 

draw from the phylogeny in each of our exemplar taxa. This shared pattern is found despite the 150 

different fruit morphologies of these lineages, which reflects a variety of vertebrate dispersers. Inga 151 

is primarily dispersed by primates; Protieae’s small endozoochorous fruits attract a wide variety of 152 

birds, bats, and terrestrial mammal species (31); Guatteria has been observed to be eaten by 153 

primates and birds (32); and Swartzia is dispersed by birds (33), primates (34) and in one species, 154 

water (35). 155 

The only exception to this lack of phylogenetic geographic structuring is found outside of Amazonia 156 

in the rain forests of Atlantic coastal Brazil (in Swartzia and Guatteria) and Central America 157 

(Swartzia, Inga, Protieae). The phylogenetic clustering found in these areas may reflect that they are 158 

isolated from the Amazon by major physical barriers – the Andes mountains for Central America and 159 

a ‘dry diagonal’ of seasonally dry vegetation formations across eastern Brazil for the Brazilian 160 

Atlantic coast (36,37). In addition, the presence of physical barriers isolating these non-Amazonian 161 

areas has been suggested as an explanation for greater phylogeographic structure found there 162 

amongst populations of Symphonia globulifera, a widespread tree species (38).   163 

The implication of the lack of geographic phylogenetic structure demonstrated here is that, on 164 

evolutionary timescales, the metacommunity for any regional or local tree community in the 165 

Amazon is the entire Amazon basin. This does not preclude a role for ecological filtering in the 166 

assembly of local communities. Our own and other previous work shows that Inga species in Madre 167 
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de Dios have clear habitat preferences and that environmental filtering affects species composition 168 

of Inga communities (39-41). Further, our work has shown Inga species that defend themselves 169 

against herbivores in distinct ways are more likely to co-occur, signifying filtering based on herbivore 170 

defence traits (42). Thus, ecological processes clearly can play a role in local community assembly. 171 

However, the species that may populate any given region and provide species for local communities 172 

could have ancestry from anywhere in the Amazon and from any clade of the Inga phylogeny. 173 

Interestingly, the average relatedness of co-occurring congeneric species differs markedly among the 174 

four genera we study here (Fig. S2). For example, the average phylogenetic distance between co-175 

occurring Inga species is 3 myrs (divergence time of 1.5 myrs), while that among Protieae species is 176 

36 myrs. This could have significant implications for the level of ecological interaction among co-177 

occurring Inga versus Protieae species, for example competition might be considered to be more 178 

intense amongst Inga species because of their recent divergence (43), which could in turn influence 179 

the composition of local and regional communities. However, our analyses tend to suggest that the 180 

average phylogenetic distance among co-occurring species of a given genus may simply depend on 181 

the age of the genus, although the exact phylogenetic distance estimates will depend on how well 182 

the genus has been sampled phylogenetically. Further, the high degree of sympatric co-occurrence 183 

observed for the species-rich genera we study here suggests that there may not be strong 184 

constraints on the number of co-occurring congeneric species, especially if they differ in herbivore 185 

defence traits (42,44,45). One of the key factors influencing the number of co-occurring species of a 186 

given genus in a given Amazonian tree community may simply be the total diversity of that genus in 187 

the Amazon, because dispersal into regions, which provide species for local communities, does not 188 

seem to be limited (46).  189 

We emphasise that the generality of our results may only apply to larger trees, and that there are 190 

indications that patterns of geographic structure in phylogenies of shrubs, understory trees and 191 

other tropical plant life forms may differ (47). For example, the phylogeny of the tropical rain forest 192 
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herb genus Pilea is highly congruent with geography, which may reflect limited pollen dispersal and 193 

mechanical dispersal of seeds over very short distances of a few millimetres (48). Our results also 194 

contrast with studies published for large terrestrial birds (49) and primates (50), which show more 195 

geographically structured patterns in their phylogenies. 196 

 197 

Contrasting patterns of community assembly amongst different biomes 198 

The pattern of assembly of regional tree communities reported for the neotropical seasonally dry 199 

forest biome (24,51,52) differs markedly from that discovered here for regional Amazonian 200 

communities. Phylogenies of several genera of woody plants characteristic of seasonally dry tropical 201 

forests in the Neotropics (e.g., Coursetia, Poissonia, Cyathostegia, Amicia) demonstrate that clades 202 

of species are confined to single regions of dry forest such as the Brazilian caatingas (53) or 203 

seasonally dry Andean valleys (52). These differences are not artefacts of the age of clades because 204 

the crown clades of these dry forest genera are older than that of Inga; despite historical dispersal 205 

having had less time to operate in Inga, successful dispersal and establishment events are more 206 

prevalent.  207 

The geographic phylogenetic structure shown in dry forest clades may reflect two factors (51). First, 208 

unlike the continuous Amazon rain forest, dry forest areas are scattered across the Neotropics, 209 

physically isolated by high mountains or areas of mesic vegetation, and this may limit dispersal 210 

amongst them (51). Second, ecological factors, operating over evolutionary timescales, are different 211 

in dry forests, and this may alter the probability of propagules establishing after dispersal (51, 54). 212 

For example, there may be more opportunities for immigration into rain forests where drought can 213 

cause widespread tree mortality (23), and landscape evolution is also known to be dynamic over 214 

evolutionary timescales in Amazonia, especially via radical movement of river courses (20,55), which 215 
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may be an additional source of environmental instability creating opportunities for successful 216 

immigration.  217 

 218 

Implications for processes of diversification in Amazonian rain forest trees 219 

A key role for dispersal in Inga and other important tree genera has implications for understanding 220 

speciation histories in Amazonian rain forests. For Amazonian trees the lack of geographic 221 

phylogenetic structure that we find in local and regional communities provides little support for 222 

large-scale reconfigurations of the landscape causing common vicariance of continuous populations 223 

of multiple species, a conclusion reached recently for Amazonian birds (56). Large-scale geological 224 

events that subdivide populations would lead to congruent geographic phylogenetic patterns across 225 

lineages, but there is little evidence for common deep imprints of geological events in Amazonian 226 

tree phylogenies. For example, geographic phylogenetic structure across the Miocene Lake Pebas is 227 

not detected in the phylogenies of Inga, Swartzia, Guatteria or Protieae. Instead, geographic 228 

patterns are particular to lineages, reflecting a primacy for idiosyncratic historical dispersal in 229 

generating distributions (25,53). The lack of congruent patterns suggests that allopatric speciation 230 

involving population vicariance caused by common geological factors is unlikely. 231 

 232 

Rather than geological phenomena that isolate regions, our results for multiple Amazonian tree 233 

lineages are more consistent with the founding of isolated peripheral populations by dispersal, 234 

which could then lead to speciation. This model is also consistent with patterns in some Amazonian 235 

tree lineages of phylogenetic nesting of species within paraphyletic progenitor species (57). An 236 

alternative model would be more localised speciation followed by sufficient dispersal, which could 237 

also result in the random phylogenetic composition of tree communities that we show here, and 238 

also nesting of species within paraphyletic ancestors. Such local speciation could be via hybridisation 239 

or adaptation to soil types (6,8,30,58). The documented inter-sterility of sympatric Inga species (59) 240 
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argues against a role for hybridisation in speciation of that genus, but our biggest challenge to 241 

understanding the mechanism of speciation is that rampant dispersal may overwrite the original 242 

signature of genetic divergence. To distinguish the relative importance of ecological divergence, 243 

breeding systems and allopatric isolation in driving diversification of Amazonian trees, it would be 244 

fruitful to characterise further the variation in the functional ecology, biology and underlying 245 

genetics of species of Inga and other diverse tree genera across their ranges.  246 

 247 

MATERIALS AND METHODS 248 

Sampling 249 

In the Amazon basin and Guianas, together comprising what we term Amazonia, we sampled 181 250 

Inga individuals, representing 105 total species (including 20 unidentified morphospecies). Outside 251 

of the Amazon basin, we sampled two species in Ecuador west of the Andes, three species in the 252 

Caribbean, and 23 species in Central America. In total our phylogenetic sampling for Inga included 253 

four local communities and seven regional communities and comprised 210 individuals from 124 254 

species (Tables S1, S2). This represents many more accessions and more than double the species 255 

sampling in prior Inga phylogenies (39,42,60; sampled from 37 to 55 species]). Because our goal was 256 

to sample as many species as possible in individual local and regional communities, we sampled 44 257 

of the total 124 species more than once, because these species were present in more than one 258 

region. We did not sample any species more than once within any one local or regional community.    259 

Swartzia (Leguminosae-Papilionoideae) contains approximately 200 neotropical species found from 260 

southern Mexico to southern Brazil, including the Caribbean islands (61). Swartzia occurs in a variety 261 

of habitats, but is especially typical of lowland rain forests, where 10 or more species can be found 262 

growing in sympatry (62). Phylogenetic data and the sampling locality for each accession of Swartzia 263 
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come from Torke & Schaal (63), who sampled 76 species, including multiple exemplar species of 264 

each of the infrageneric groupings (see 64), covering the full geographic range of the genus. 265 

The tribe Protieae (Burseraceae), comprising Protium together with Tetragastris and 266 

Crepidospermum nested within it, is an important tree lineage in terms of its diversity and 267 

abundance in neotropical and palaeotropical rain forests (2,30). The majority of Protieae species are 268 

found in the Amazon basin and the Guianas, but there are smaller numbers of species occurring in 269 

other areas, including Central America, the Caribbean, and the Brazilian Atlantic Forest. Phylogenetic 270 

data for Protieae come from Fine at al. (30), who sampled 102 species covering 75% of accepted 271 

species names and all pantropical areas of distribution.  272 

Guatteria (Annonaceae) is an abundant and diverse component of lowland rain forests in the 273 

Neotropics and is a member of the magnoliids, a basally divergent angiosperm lineage. The genus is 274 

hypothesized to have originated in Africa and to have colonized South America via North and then 275 

Central America during the late Miocene (65). Nevertheless, Guatteria is most diverse in lowland 276 

Amazonia (66,67). The published phylogeny of the genus covers 97 of 265 named species from 277 

Central America to the Mata Atlantica, with 39 accessions covering 38 species sampled from 278 

Amazonia (Bolivia, Peru, Colombia, Brazil and the Guianas), representing 40% of the species found in 279 

these areas (67). 280 

Phylogenetic reconstruction 281 

For Inga, we sequenced seven chloroplast regions (rpoCI, psbA-trnH, rps16, trnL-F, trnD-T, ndhF-282 

rpl32, rpl32-trnL; 5916 aligned bp) and the nuclear ribosomal internal transcribed spacer regions (ITS 283 

1 & 2; 572 aligned bp) (Table S1). PCR and sequencing protocols for chloroplast regions are given by 284 

Kursar et al. (42) and for ITS by Richardson et al. (60) and Dexter et al. (39). Sequences were initially 285 

aligned using MAFFT (68) and then adjusted manually, which was straightforward given low 286 

sequence divergence. The phylogeny was estimated under a maximum likelihood framework using 287 
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RAxML with separate partitions and models for ITS and cpDNA and 1000 bootstrap replicates to 288 

estimate node support (69). The phylogeny was subsequently time-calibrated using penalised 289 

likelihood (70), where the crown age was constrained to 6 myrs (following 24,60).  290 

The Inga phylogeny resolves numerous clades with reasonable bootstrap support (Fig. 2, Fig. S1) and 291 

is the best resolved Inga phylogeny to date, though within major clades the relationships amongst 292 

closely related species are not always well resolved, reflecting the recent evolutionary radiation of 293 

the genus (60). The topology of our phylogeny is largely congruent with that presented by Nicholls et 294 

al. (71) based upon 194 nuclear loci, which shows high support for all branches. There are only two 295 

strongly supported incongruencies between the two phylogenies, involving two species, I. laurina 296 

and I. ruiziana, and a formal statistical test (72) shows that the phylogenies are significantly 297 

congruent (Icong = 1.46, p = 0.0016). Although Nicholls et al. (71) sampled only 22 Inga species, the 298 

topological congruence gives confidence that our less well supported phylogeny does reflect 299 

phylogenetic relationships accurately. 300 

For Swartzia, aligned sequences from Torke & Schaal (63) were downloaded from TreeBase and a 301 

phylogeny estimated under a maximum likelihood optimality criterion as described for Inga using 302 

separate partitions and models for ITS, AAT1 and chloroplast DNA. This phylogeny was subsequently 303 

time-calibrated using penalised likelihood where the crown age was constrained to 13.6 myrs 304 

(following 73). For Protieae, the time-calibrated Bayesian phylogeny reported by Fine et al. (30) was 305 

downloaded from TreeBase. For Guatteria, sequences reported by Erkens et al. (66) were 306 

downloaded from Genbank and a phylogeny was estimated under a maximum likelihood optimality 307 

criterion as described above for Inga with a single partition and model because all loci reported are 308 

from the chloroplast genome. This phylogeny was subsequently time-calibrated using penalised 309 

likelihood where the crown age was constrained to 17.2 myrs following Erkens et al. (65). 310 

Analyses of geographic phylogenetic structure 311 
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We analyzed geographic phylogenetic structure at two scales (Fig. 1): local communities (Inga only) 312 

and regions (across all groups). In the case of Inga, we were able to sample all or nearly all species in 313 

four local communities (see above) at Los Amigos and Madreselva Biological Stations (Peru), 314 

Nouragues Research Station (French Guiana) and Barro Colorado Island (Panama) (Fig. 1). The scale 315 

of the local communities varied from ~6 km2 (Madreselva) to 15.6 km2 (Barro Colorado Island). 316 

We defined 13 geographic regions with sufficient sampling (≥5 species in nearly all cases) that could 317 

be analyzed across the different phylogenies (Fig. 1) using our knowledge for Inga and Swartzia, and 318 

information in Fine et al. (30) for Protieae and in Erkens et al. (66) for Guatteria. In Amazonia and 319 

the Guianas these are geographic political units of similar size, such as states in Brazil, departments 320 

in Peru, or countries such as Guyana. Beyond Amazonia and the Guianas, the defined regions were 321 

the Mata Atlântica (Atlantic coastal rain forest) of Brazil, the Chocó of Colombia and Ecuador (i.e., 322 

South American rain forests on the Pacific coast west of the Andes), Central America (Panama north 323 

to Mexico) and the Caribbean. If an accession sampled in our phylogenies came from one of these 324 

regions, as indicated by its published locality (30,63,66), it was scored as present there. An 325 

alternative approach would be to assign a given species in the phylogeny to every region in which it 326 

is known to occur (30). This approach might be problematic if accessions are misidentified or not 327 

positively identified (i.e. morphospecies) or if species distributions are imperfectly known. For Inga, 328 

we conducted a series of sensitivity analyses to assess if our results were robust to our approach of 329 

only assigning accessions to the regions in which they were collected, and this revealed no effect on 330 

our results (see SI). 331 

If closely related species within a clade (in this case Inga, Swartzia, Protieae or Guatteria) are found 332 

near each other in geographic space because they originated by local, in-situ speciation with little 333 

subsequent dispersal then we would expect the phylogenetic diversity represented by species in 334 

regions and local communities to be less than that if the same number of species were drawn 335 

randomly from across the phylogeny. Conversely, if distant dispersal is common over one or multiple 336 
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generations, causing local and regional communities to be assembled stochastically from a wide 337 

geographic pool, then we expect that the phylogenetic diversity in communities and regions would 338 

be more commensurate with a random draw from the phylogeny. We evaluated phylogenetic 339 

diversity using three metrics described above. The null expectations for each of these metrics, and 340 

the uncertainty around them, were calculated by randomly drawing the same number of species as 341 

present in communities/regions from the phylogeny and repeating this process 999 times. 342 

Significant phylogenetic clustering for a given community/region was deemed to be present when 343 

the observed phylogenetic diversity metric was less than the lower 2.5% quantile of the randomly 344 

generated distribution for that species richness, while significant overdispersion would be indicated 345 

by a value greater than the 97.5% quantile. 346 
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Figure 1: Map of the 13 Neotropical regions used in the analyses of phylogenetic geographic 537 

structure for the four focal genera: 1) Amazonian Bolivia, 2) Madre de Dios (southern) Peru, 3) Acre, 538 

Brazil, 4) Loreto (northern) Peru, 5) Amazonian Ecuador, 6) Amazonas, Brazil, 7) Amazonas, 539 

Venezuela, 8) Guyana, 9) French Guiana, 10) Mata Atlantica (Atlantic rain forest), 11) Choco (trans-540 

Andean) Colombia and Ecuador, 12) Central America, and 13) the Caribbean. Letters denote location 541 

of the local communities of Inga (Leguminosae) that received in-depth sampling: A) Los Amigos 542 

Biological Station, B) Madreselva Biological Station, C) Nouragues Research Station, and D) Barro 543 

Colorado Island. The dark black line denotes our delimitation of ‘Amazonia’, which includes wet and 544 

moist forests across the Amazon Basin and the Guianan Shield. 545 

Figure 2: Phylogeny of 210 accessions representing 124 Inga (Leguminosae) species with a maximum 546 

of one individual per species per region. Accessions from focal communities are colored as follows: 547 

Los Amigos Biological Station (blue), Madreselva Biological Station (purple), Nouragues Research 548 

Station (brown), and Barro Colorado Island (red). Additional accessions are colored by biogeographic 549 

region: Amazon (black), Central America (orange) and Caribbean (cyan). Circle size at nodes is 550 

proportional to bootstrap support.  See Figure S1 for details of tip labels and node support values. 551 

The line drawing at the top right is I. pitmanii, a regionally restricted species, apparently endemic to 552 

Madre de Dios, Peru (reproduced with permission from Novon; 71). 553 

Figure 3: Relationship between number of taxa sampled and phylogenetic diversity in Neotropical 554 

regions for four emblematic Amazonian tree genera. Phylogenetic diversity was evaluated as the 555 

sum of branch lengths in an ultrametric, temporally-calibrated phylogeny including the taxa from a 556 

given region. Regions are numbered following Figure 1. The solid black line gives the mean null 557 

expectation for phylogenetic diversity given the number of taxa sampled, for 1000 random draws of 558 

that number of taxa from the phylogenies. The shaded gray area denotes the 95% confidence 559 

intervals of the null expectation for the relationship. Regions that fall outside of the 95% confidence 560 

intervals are labeled. 561 



24 
 

562 
Figure 1: Map of the 13 Neotropical regions used in the analyses of phylogenetic geographic 563 

structure for the four focal genera: 1) Amazonian Bolivia, 2) Madre de Dios (southern) Peru, 3) Acre, 564 

Brazil, 4) Loreto (northern) Peru, 5) Amazonian Ecuador, 6) Amazonas, Brazil, 7) Amazonas, 565 

Venezuela, 8) Guyana, 9) French Guiana, 10) Mata Atlantica (Atlantic rain forest), 11) Choco (trans-566 

Andean) Colombia and Ecuador, 12) Central America, and 13) the Caribbean. Letters denote location 567 

of the local communities of Inga (Leguminosae) that received in-depth sampling: A) Los Amigos 568 

Biological Station, B) Madreselva Biological Station, C) Nouragues Research Station, and D) Barro 569 

Colorado Island. The dark black line denotes our delimitation of ‘Amazonia’, which includes wet and 570 

moist forests across the Amazon Basin and the Guianan Shield. 571 
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572 
Figure 2: Phylogeny of 210 accessions representing 124 Inga (Leguminosae) species with a maximum 573 

of one individual per species per region. Accessions from focal communities are colored as follows: 574 

Los Amigos Biological Station (blue), Madreselva Biological Station (purple), Nouragues Research 575 

Station (brown), and Barro Colorado Island (red). Additional accessions are colored by biogeographic 576 

region: Amazon (black), Central America (orange) and Caribbean (cyan). Circle size at nodes is 577 

proportional to bootstrap support.  See Figure S1 for details of tip labels and node support values. 578 

The line drawing at the top right is I. pitmanii, a regionally restricted species, apparently endemic to 579 

Madre de Dios, Peru (reproduced with permission from Novon; 74).  580 
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581 
Figure 3: Relationship between number of taxa sampled and phylogenetic diversity in Neotropical 582 

regions for four emblematic Amazonian tree genera. Phylogenetic diversity was evaluated as the 583 

sum of branch lengths in an ultrametric, temporally-calibrated phylogeny including the taxa from a 584 

given region. Regions are numbered following Figure 1. The solid black line gives the mean null 585 

expectation for phylogenetic diversity given the number of taxa sampled, for 1000 random draws of 586 

that number of taxa from the phylogenies. The shaded gray area denotes the 95% confidence 587 

intervals of the null expectation for the relationship. Regions that fall outside of the 95% confidence 588 

intervals are labeled. 589 

 590 
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Supplementary Information 591 

 592 

Figure S1: Maximum likelihood phylogeny for Inga (Leguminosae) after rate smoothing via penalised 593 

likelihood. The numbers to the left-hand side of the nodes indicate the percentage of 1000 594 

maximum likelihood bootstrap replicates that support the relationship. Branch lengths are in terms 595 

of millions of years. 596 
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punctata Kursar1281 BCI
venusta.aff Dexter1859 MadreDeDios
jincuil Pennington13568 CostaRica
cinnamomea Dexter4390 Bolivia
cinnamomea KursarFG213 Nouragues
morpho.42 Dexter825 Loreto
cinnamomea Dexter465 MadreDeDios
stipulacea Dexter615 Loreto
stipulacea Dexter191 MadreDeDios
lateriflora KursarSN Nouragues
paraensis KursarFG91 Nouragues
heterophylla Kursar1528 MadreDeDios
heterophylla Dexter719 Loreto
virgultosa KursarFG187 Nouragues
alba KursarFG156 Nouragues
psittacorum Dexter1860 MadreDeDios
alba Dexter699 Loreto
alba Dexter494 MadreDeDios
loubryana KursarFG33 Nouragues
brachyrachis Dexter703 Loreto
capitata Dexter132 MadreDeDios
capitata Dexter777 Loreto
capitata Brenes-ArguedasTag 100223 EcuadorWest
TAK35 Kursar1560 MadreDeDios
morpho.53 KursarFG24 Nouragues
morpho.53 Dexter349 MadreDeDios
melinonis KursarFG112 Nouragues
stipularis Dexter759 Loreto
stipularis KursarFG94 Nouragues
flagelliformis KursarFG68 Nouragues
brachystachys KursarFG28 Nouragues
brachystachys.cf Dexter202 MadreDeDios
umbratica Brenes-ArguedasTag 174124 EcuadorAmazon
umbratica Dexter617 Loreto
morpho.81 Dexter731 Loreto
umbellifera Kursar1272 BCI
umbellifera KursarFG197 Nouragues
graciliflora KursarFG160 Nouragues
umbellifera Dexter613 Loreto
umbellifera Dexter4406 Bolivia
umbellifera Dexter22 MadreDeDios
umbellifera Brenes-ArguedasTag 63659 EcuadorAmazon
brevipes KursarFG200 Nouragues
tenuistipula Dexter257 Loreto
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 597 

Figure S2: Relationship between number of taxa sampled and mean pairwise distance (MPD) in 598 

Neotropical regions for four emblematic Amazonian tree genera. Regions are numbered following 599 

Figure 1. The solid black line gives the mean null expectation for MPD given the number of taxa 600 

sampled for 1000 random draws of that number of taxa from the phylogenies. The shaded grey area 601 

denotes the 95% confidence intervals of the null expectation for that relationship. Regions that fall 602 

outside of the 95% confidence intervals are labelled. 603 
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 604 

Figure S3: Relationship between number of taxa sampled and mean nearest taxon distance (MNTD) 605 

in Neotropical regions for four emblematic Amazonian tree genera. Regions are numbered following 606 

Figure 1. The solid black line gives the mean null expectation for MNTD given the number of taxa 607 

sampled for 1000 random draws of that number of taxa from the phylogenies. The shaded grey area 608 

denotes the 95% confidence intervals of the null expectation for that relationship. Regions that fall 609 

outside of the 95% confidence intervals are labelled. 610 

 611 

 612 
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Sensitivity Analyses for Phylogenetic Diversity Estimates of Amazonian Inga communities 613 

In order to assess how robust our results were to uncertainty in the age of Inga clades, the topology 614 

of the Inga phylogeny, and in the assignment of Inga species to different geographic regions, we 615 

conducted sensitivity analyses. We ran a Bayesian analysis to calibrate the Inga phylogeny 616 

temporally while simultaneously estimating its topology, using BEAST v1.8.2 (Drummond et al. 617 

2012). As there are no definitively identified fossils for Inga, we constrained the crown age of Inga in 618 

this phylogeny (using a log-normal prior with a mean of| 6 myrs and a standard deviation of 0.5) 619 

based on dates from Richardson et al. (2001) and Lavin (2006). For each iteration of the sensitivity 620 

analyses, we sampled one tree at random from the post burn-in, posterior distribution of trees from 621 

the BEAST analysis. 622 

In our primary analyses presented in the main text, the species lists for a given geographic region are 623 

comprised of all species in a region that were sampled by accessions in the phylogeny. An alternative 624 

approach would be to include all species present in the phylogeny that are known to occur in the 625 

region based on their overall distribution (rather than just those that were sampled by accessions 626 

from the region in our phylogeny). Our primary approach has the advantages that it does not 627 

assume monophyly of species (and not all Inga species are monophyletic, see Fig. S1) and does not 628 

assume perfect taxonomy and knowledge of species’ distributions. However, it does mean that 629 

species lists for a given region may not include many species that are found in the region. As can be 630 

seen in examining the x-axis in Figures 3, S2 and S3, our level of sampling for different regions varies 631 

greatly. Thus, we also conducted additional analyses assigning Inga species to each region in which 632 

they are known to occur, based on distributions in Pennington (1997) and our own field work. As 633 

many species in the phylogeny are represented by multiple accessions, we randomly selected a 634 

single accession for each species. This random selection introduces stochasticity into calculations, so 635 

we repeated this process 999 times. For each repetition, we started with a topology randomly 636 
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selected from the posterior distribution of trees (see above), which serves to generate a range of 637 

results representing uncertainty in phylogenetic topology and ages.  638 

For each iteration, we assessed whether a given Amazonian tree community showed more or less 639 

phylogenetic diversity than expected by chance by calculating the standardised effect size for each 640 

phylogenetic diversity metric (ses.pd, ses.mpd and ses.mntd). Positive values indicate phylogenetic 641 

overdispersion, while negative values indicate phylogenetic clustering. As these metrics are 642 

standardised (with an expected value of 0 and a standard deviation of 1), values that are less than -643 

1.96 or greater than 1.96 represent communities that show significant phylogenetic overdispersion 644 

or clustering. In order to assess how are results compared to those using our primary approach, we 645 

assessed the value for each metric across the 1000 iterations and compared it to the values 646 

generated with the approach we present in the main text (Figs S4, S5 and S6). As can be seen, the 647 

median results of this alternative approach are slightly lower than those obtained in our analyses 648 

presented in the main text (on average). However, for the large majority of the iterations, none of 649 

the Amazonian communities show significant phylogenetic clustering (or overdispersion) by any 650 

metric. Thus, these sensitivity analyses demonstrate that Amazonian Inga communities represent a 651 

random draw from the Inga phylogeny, and that this result is robust to uncertainty in the age of Inga 652 

clades, the topology of the Inga phylogeny, and in the method of assignment of Inga species to 653 

different geographic regions. 654 

 655 
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 665 

Figure S4: Distribution of ses.pd values for different Amazonian regions across 1000 iterations of the 666 

sensitivity analyses. The values from the analyses presented in the main text are shown by the large 667 

blue circles. These are only available for Amazonian regions that are actually sampled in our 668 

phylogeny. Values less than -1.96 would indicate significant phylogenetic clustering, while values 669 

greater than 1.96 would indicate significant phylogenetic overdispersion. These threshold values are 670 

indicated by dashed red lines. Overall, these results demonstrate that most iterations of the 671 

sensitivity analyses do not result in significant phylogenetic clustering or overdispersion for 672 

Amazonian regions. 673 
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 674 

Figure S5: Distribution of ses.mpd values for different Amazonian regions across 1000 iterations of 675 

the sensitivity analyses. The values from the analyses presented in the main text are shown by the 676 

large blue circles. These are only available for Amazonian regions that are actually sampled in our 677 

phylogeny. Values less than -1.96 would indicate significant phylogenetic clustering, while values 678 

greater than 1.96 would indicate significant phylogenetic overdispersion. These threshold values are 679 

indicated by dashed red lines. Overall, these results demonstrate that most iterations of the 680 

sensitivity analyses do not result in significant phylogenetic clustering or overdispersion for 681 

Amazonian regions. 682 
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 683 

Figure S6: Distribution of ses.mntd values for different Amazonian regions across 1000 iterations of 684 

the sensitivity analyses. The values from the analyses presented in the main text are shown by the 685 

large blue circles. These are only available for Amazonian regions that are actually sampled in our 686 

phylogeny. Values less than -1.96 would indicate significant phylogenetic clustering, while values 687 

greater than 1.96 would indicate significant phylogenetic overdispersion. These threshold values are 688 

indicated by dashed red lines. Overall, these results demonstrate that most iterations of the 689 

sensitivity analyses do not result in significant phylogenetic clustering or overdispersion for 690 

Amazonian regions. 691 
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