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ReseaRch

This study evaluates the potential of accurate within-family 
imputation for enabling cost-effective genomic selection in 

plant breeding. Genomic selection has great potential to increase 
the efficiency of plant breeding (Bernardo and Yu, 2007; Lorenzana 
and Bernardo, 2009). Perhaps most importantly, genomic selection 
increases the accuracy of early assessment of the genetic merit and 
therefore enables rapid recurrent selection. In practice, implement-
ing genomic selection can be challenging due to the high costs of 
collecting the necessary amounts of data, which must meet a set of 
requirements and must integrate with the breeding program.

Two large sets of data are required for the full exploitation of 
the potential of genomic selection; a training set of genotyped and 
phenotyped individuals and a prediction set of genotyped-only 
individuals (Meuwissen et al., 2001; Daetwyler et al., 2008; God-
dard, 2009). The training set is used to estimate parameters of the 
genomic selection model. To accurately estimate the parameters, 
the training set must be comprised of a large number of geno-
typed and phenotyped individuals. The prediction set represents 
the selection candidates, whose genetic merit will be predicted. 
Ideally, the prediction set would be large, because this enables 
high selection intensity and consequently high response to selec-
tion. However, large training and prediction sets increase costs 
that must be balanced against the potential increase in response to 
selection. The two sets of data can be assembled in different ways, 
and this has important implications for use of genomic selection 
in plant breeding.

Prospects for Cost-Effective Genomic Selection 
via Accurate Within-Family Imputation

Gregor Gorjanc,* Mara Battagin, Jean-Francois Dumasy, Roberto Antolin, R. Chris Gaynor,  
and John M. Hickey

ABSTRACT
Genomic selection has great potential to 
increase the efficiency of plant breeding, but its 
implementation is hindered by the high costs of 
collecting the necessary data. In this study we 
evaluated the potential of accurate within-family 
imputation for enabling cost-effective genomic 
selection. We have simulated a breeding program 
with inbred parents and their segregating progeny 
distributed among families, of which some were 
used as a training set and some were used as a 
prediction set. Parents were genotyped at high 
density (20,000 markers), while progeny were 
genotyped at high or low density (500, 200, 100, 
or 50 markers) and imputed. Low-density markers 
were chosen to segregate within each family 
separately. The assumed low-density genotyping 
costs accounted for this assumption. Six sets 
of scenarios were analyzed in which imputation 
was leveraged to maximize cost effectiveness of 
genomic selection by (i) decreasing the genotyping 
costs, (ii) increasing selection intensity by 
genotyping more individuals at fewer markers, or 
(iii) increasing prediction accuracy by genotyping 
more phenotyped individuals at fewer markers. The 
results show that, with a constant size of the training 
and prediction sets, the prediction accuracy was 
unimpaired when at least 200 low-density markers 
were used. However, the return on investment was 
maximal (5.67 times that of the baseline scenario) 
when only 50 low-density markers were used 
because that enabled maximal reduction in the 
genotyping costs and only minimal reduction in the 
prediction accuracy. Increasing either the training 
set or prediction set further increased the return on 
investment when imputed genotypes were used, 
but not when the true high-density genotypes 
were used. The results show how plant breeding 
programs can implement genomic selection in a 
cost-effective way.
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Initial proposals of genomic selection in plant breeding 
suggested training and prediction within a family (Bernardo 
and Yu, 2007; Lorenzana and Bernardo, 2009). Such an 
implementation requires small amounts of data but does not 
fully utilize the potential of genomic selection. For example, 
to achieve genomic prediction accuracy of 0.5 in a biparental 
family, a training set should be composed of about 100 phe-
notyped individuals from the family that are genotyped at a 
few hundred markers (Bernardo and Yu, 2007; Lorenzana 
and Bernardo, 2009; Hickey et al., 2014; Lian et al., 2014). 
These low requirements are due to the limited genetic diver-
sity within a family and high relatedness between the training 
and prediction individuals within a family (Daetwyler et al., 
2008; Goddard, 2009; Pszczola et al., 2012; Hickey et al., 
2014). However, assembling the training set within a family 
is time consuming and delays the use of genomic selection 
until the late generations of genetic improvement within 
a family. The potential for genomic selection at that stage 
is lessened in comparison with early stages and phenotypic 
selection (e.g., Endelman et al., 2014; Jacobson et al., 2014).

Recent proposals of genomic selection in plant 
breeding suggested training and prediction across fami-
lies (Heffner et al., 2011; Hickey et al., 2014; Jacobson 
et al., 2014; Mackay et al., 2014). Such an implementa-
tion requires large amounts of data and fully utilizes the 
potential of genomic selection. For example, to achieve 
genomic prediction accuracy of 0.5 in a new biparental 
family, a training set should be composed of at least a few 
thousand phenotyped individuals from other families 
that are genotyped with about 10,000 markers (Hickey et 
al., 2014). These requirements are due to more diversity 
among families than within a family and potentially low 
relatedness between the training and prediction individu-
als (Daetwyler et al., 2008; Goddard, 2009; Clark et al., 
2012; Pszczola et al., 2012; Hickey et al., 2014).

While training across families with a large number of 
densely genotyped individuals can be significantly more 
expensive than training within a family with a small number 
of sparsely genotyped individuals, it provides important 
advantages for plant breeding programs. Most importantly 
it enables selection for quantitative traits, such as yield, in 
early generations of segregating populations. This enables a 
reduction in generation interval and an increase in selection 
intensity, which are the key advantages of genomic selec-
tion in comparison with phenotypic selection (e.g., Schaeffer, 
2006; Bernardo and Yu, 2007; Gaynor et al., unpublished 
data, 2016). Additionally, training the genomic selection 
model across families enables continuous expansion and 
updating of the training set with data from each new family. 
Such an expansion increases the prediction accuracy and 
reduces its sampling variance (Hickey et al., 2014), which 
reduces the variance of response to selection (Nicholas, 
1980). In addition, reuse of the collected data increases its 

value and distributes the costs of setting up the training set 
over a longer time period and a larger number of predictions.

Several studies have suggested leveraging the power of 
imputation for genomic selection in plant breeding (e.g., 
Hickey et al., 2012a; Rutkoski et al., 2013; He et al., 2015; 
Xavier et al., 2016). However, most of these studies used 
relatively inaccurate imputation methods and genotyping 
strategies that do not explicitly leverage the family structure 
of plant breeding programs, such as those used by Hickey 
et al. (2015). In addition, the studies did not quantify the 
potential of imputation to reduce the cost of assembling the 
required data for genomic selection (Huang et al., 2012; 
Cleveland and Hickey, 2013; Jacobson et al., 2015). Plant 
breeders could leverage imputation in several ways to maxi-
mize the return on investment in genomic selection. First, 
breeders could reduce the cost of each prediction by geno-
typing selection candidates at a few markers and imputing 
the untyped markers. Perhaps the same approach could also 
be used to reduce the cost of assembling the training set. 
Second, given a fixed genotyping budget, breeders could 
increase response to selection by genotyping more selection 
candidates with fewer markers and imputing the untyped 
markers with the aim to increase selection intensity. Third, 
breeders could also increase response to selection by geno-
typing more training individuals with fewer markers and 
imputing the untyped markers with the aim to increase 
the genomic prediction accuracy. Both the second and the 
third option would utilize existing phenotypes at a fraction 
of full genotyping costs and would therefore increase the 
return on investment in both phenotype and genotype data. 
Finally, the enlarged training and prediction sets could be 
used jointly with the aim to increase response to selection 
via both increased selection intensity and accuracy.

The aim of this study was to evaluate the poten-
tial of accurate within-family imputation for enabling 
cost-effective genomic selection in plant breeding. We 
addressed this by evaluating:

(i) the prediction accuracy and return on investment 
with imputed genotypes in the prediction set 
and/or the training set

(ii) the response to selection and return on investment 
with imputed genotypes in an enlarged prediction set

(iii) the prediction accuracy and return on investment 
with imputed genotypes in an enlarged training set

(iv) the response to selection and return on investment 
with imputed genotypes in enlarged training and 
prediction sets.

MATeRiAlS And MeThodS
We used stochastic simulation to evaluate the potential of 
accurate within-family imputation to enable cost-effective 
genomic selection in plant breeding. The simulation involved 
the following steps, most of which were performed with the 

https://www.crops.org
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These causal loci had additive effects sampled from a normal 
distribution with a mean of zero and variance of one divided 
by the number of loci. True breeding value of an individual 
was calculated as the sum of additive effects of alleles at the 
causal loci that the individual inherited. Phenotype value of an 
individual was sampled from a normal distribution with a mean 
equal to the true breeding value of the individual and a residual 
variance according to the heritability. The heritability and the 
residual variance were computed relative to the additive genetic 
variance in the base population.

One high-density and four low-density marker arrays were 
constructed. The high-density array had 20,000 markers in 
total (2000 markers per chromosome) sampled from the non-
causal segregating sequence variants with the restriction of an 
equal number from each chromosome. The low-density arrays 
had 50, 100, 200, or 500 markers in total with 5, 10, 20, or 50 
markers per chromosome, respectively. Markers for the low-
density arrays were selected at random from the high-density 
array with two restrictions. First, they were specific for each 
family by selecting markers with opposing homozygous geno-
types in parents of a family. We did this to get an exact number 
of segregating markers within each family. This design choice 
was accounted for when we evaluated the genotyping costs. 
We refer to the number of segregating markers throughout the 
manuscript unless otherwise stated. Second, the markers were 
nested, i.e., markers on the smallest low-density array were 
present on the second smallest low-density array, etc.

Breeding Program
A breeding program of a self-pollinating species with inbred 
parents and biparental populations (families) was simulated 
(Fig. 1). The program was initiated by establishing a base pop-
ulation of 40 inbred parents. Each parent had one haplotype 
per chromosome sampled from the base haplotypes, allow-
ing for recombination between base haplotypes. The sampled 
haplotypes were doubled to create inbreds. The parents were 
then crossed at random to create 160 biparental populations, 
with a restriction that the same parents could only be crossed 
once. Each biparental population was developed by selfing the 
F1 individual to generate 200 F2 individuals, who were fur-
ther selfed to generate 200 F3 individuals that gave rise to 200 
F3:4 populations. These were evaluated in a preliminary yield 
trial with a heritability of 0.1. This phenotype pertained to the 

AlphaSim program (Faux et al., 2016), available at http://www.
AlphaGenes.Roslin.ed.ac.uk/AlphaSuite/AlphaSim:

(i) generating founder genomes

(ii) selecting causal loci, defining trait architecture, and 
selecting several marker arrays

(iii) generating a breeding program with inbred parents and 
a series of segregating families

(iv) applying a cost-effective genotyping strategy (densely 
genotype the parents and sparsely genotype their 
progeny) and within-family imputation

(v) training the genomic selection model and predicting 
breeding values in a range of scenarios

(vi) describing results within each scenario with prediction 
accuracy or response to selection and return on 
investment.

Obtained results were summarized over 30 replicates and pre-
sented graphically, while Supplemental Table S2 provides results 
in the tabular form. Data preparation and summaries were per-
formed with the R program (R Development Core Team, 2014).

Genome
The genome was simulated by sampling 100 haplotype 
sequences for each of 10 chromosomes using the Markovian 
Coalescent Simulator (MaCS) (Chen et al., 2009). Each chro-
mosome was 100 cM long and included 1 ´ 108 base pairs. 
Chromosomes were simulated using a per-site recombination 
rate of 1 ´ 10-8, a per-site mutation rate of 1 ´ 10-8, and 
an effective population size that varied over time. The effec-
tive population size was set to 50 in the final generation of the 
coalescent simulation, to 100 at 10 generations ago, to 1000 at 
100 generations ago, to 6000 at 1000 generations ago, to 12,000 
at 10,000 generations ago, and to 32,000 at 100,000 generations 
ago, with linear changes in between. The resulting genome 
sequences had approximately 1000,000 segregating variants 
(bi-allelic single-nucleotide polymorphisms) in total.

Causal loci, Phenotypes, and Marker Arrays
A quantitative trait was simulated as being influenced by 10,000 
loci sampled at random from the segregating sequence variants 
with the restriction of an equal number from each chromosome. 

Fig. 1. Breeding program design with 
40 inbred lines used to generate 160 
families, of which 80 families comprised 
a genomic selection training set and 
80 families comprised a prediction set. 
Circles represent individuals (shaded had 
genotype data) and squares represent 
phenotypic data

https://www.crops.org
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genotype of the F3 individual used to derive the F3:4 population. 
In practice, the development of a biparental population would 
continue for a number of further generations, but for this study, 
it was stopped at this stage, as all the individuals and phenotypes 
required for genomic selection, according to the design that we 
chose to use, had been generated.

Genotyping Strategy and imputation
All parents were genotyped with the high-density array, while 
F3 individuals were either genotyped with the high-density array 
or genotyped with one of the low-density arrays and imputed to 
the high-density array. We performed imputation with a slightly 
modified version of the method of Li et al. (2010), which was imple-
mented in a new version of the AlphaImpute program (Hickey et 
al., 2012b, available at http://www.AlphaGenes.Roslin.ed.ac.uk/
AlphaSuite/AlphaImpute). The imputation method involved (i) 
constructing a set of template haplotypes, (ii) estimating model 
parameters that describe the mapping of the observed genotypes 
onto the template haplotypes, and (iii) estimating (imputing) 
genotype probabilities and allele dosages at untyped markers for 
sparsely genotyped individuals. We used estimated allele dosages 
as imputed genotypes. Each family and chromosome was imputed 
independently. Inputs for imputation were the high-density geno-
types of the two crossing parents and low-density genotypes of the 
200 F3 individuals. Accuracy of imputation was measured with 
the Pearson correlation between the standardized imputed allele 
dosages and the standardized true genotype at untyped markers; 
the correlation was computed one individual at a time and aver-
aged over individuals (Hickey et al., 2012a; Calus et al., 2014). 
Standardization included centering (subtracting average allele 
dosage, which is equal to two times the allele frequency) and scal-
ing (dividing by the standard deviation of allele dosages, which is 
equal to square root of heterozygosity). We also report the unstan-
dardized accuracies in parentheses for completeness. Preliminary 
tests showed limited imputation accuracy with the method of Li et 
al. (2010): 0.09 (0.58) with 5 markers per chromosome, 0.31 (0.71) 
with 10 markers per chromosome, 0.60 (0.83) with 20 markers per 
chromosome, and 0.77 (0.89) with 50 markers per chromosome. 
This is expected, as the high-density genotype for each family was 
only available on two parents, which provides limited information 
to construct an informative set of template haplotypes and estimate 
model parameters (Li et al., 2010).

We improved the initially low imputation accuracy by lever-
aging the inbred status of parents; in silico, we generated 98 doubled 
haploid F2 individuals from the parental genotypes (assuming 
uniform recombination rates, although in practice, any recombi-
nation map could be used) and used them to expand the set of 
template haplotypes and improve estimates of model parameters. 
This procedure improved accuracy of imputation to 0.61 (0.81) 
with 5 markers per chromosome, 0.76 (0.89) with 10 markers per 
chromosome, 0.86 (0.93) with 20 markers per chromosome, and 
0.93 (0.96) with 50 markers per chromosome. Between families, 
there were some differences in the imputation accuracy. The range 
was 0.56 to 0.67 (0.75 to 0.88) with 5 markers per chromosome, 
0.66 to 0.81 (0.81 to 0.95) with 10 markers per chromosome, 0.82 
to 0.88 (0.87 to 0.97) with 20 markers per chromosome, and 0.88 
to 0.95 (0.91 to 0.98) with 50 markers per chromosome.

The computational time to impute 2000 markers per chro-
mosome for 200 individuals was about 10 min with 200 template 

haplotypes and 100 iterations. Preliminary analyses showed that 
increasing number of low-density markers, number of template 
haplotypes, and iterations increased accuracy. We also observed 
an interaction between the number of template haplotypes and 
iterations, i.e., accuracy can be increased by iterating over a few 
template haplotypes many times or iterating over many tem-
plate haplotypes fewer times. Generally, 10 to 20 iterations gave 
high imputation accuracy that was only marginally improved in 
further iterations. On the other hand, computational time for 
certain level of accuracy increased with reduced number of low-
density markers and increased number of template haplotypes 
and iterations. Analysis of the implemented algorithm shows that 
the computational time is quadratic in the number of haplotypes 
and linear in the number of iterations. The chosen setting gave 
accurate imputations with acceptable computational time.

Genomic Prediction
Genomic predictions of breeding values for genotyped-only 
F3 individuals within a family were based on estimated marker 
associations from training on other families (Fig. 1). The size 
and composition of the training set varied between and within 
the different scenarios. Marker associations were estimated by 
regressing phenotypic values on allele dosages with the ridge 
regression model (Hoerl and Kennard, 1976; Whittaker et al., 
2000; Meuwissen et al., 2001) as implemented in the AlphaBayes 
program, available at http://www.AlphaGenes.Roslin.ed.ac.uk/
AlphaSuite/AlphaBayes. The model parameters were estimated 
using a Monte Carlo Markov Chain method with one chain of 
10,000 iterations, of which the first 1000 were discarded as burn-
in. Posterior means were used as estimates of marker associations.

Prediction Accuracy
Accuracy of genomic prediction was measured with the Pearson 
correlation between predicted and true breeding values. We mea-
sured accuracy in two ways, jointly across families and within each 
family, to remove the between-family source of variation (e.g., 
Windhausen et al., 2012). In the results, we refer to this as the scope 
of prediction. The within-family correlation measures accuracy of 
predicting the within-family variation, commonly referred to as 
Mendelian sampling variation. The across-family correlation mea-
sures accuracy of predicting the within-family and between-family 
variation. The aim of genomic prediction is to capture variation due 
to both components, but it is harder and more important to cap-
ture the within-family variation, as it is this component that drives 
sustainable genetic gain (e.g., Woolliams et al., 1999; Hickey et al., 
2014). We therefore focus largely on the accuracy within a family in 
the results and discussion but report both for completeness.

Response to Selection
Response to selection was measured only for selection within a 
family for the same reasons as described for accuracy (see previ-
ous paragraph). It was calculated by subtracting the mean true 
breeding value of selection candidates within a family from the 
mean true breeding value of the 10 selected individuals. Selec-
tion was based on genomic predictions of breeding values.

Return on investment
Return on investment was measured by dividing the response 
to selection within a family by the accrued genotyping costs to 

https://www.crops.org
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or fewer phenotyped individuals at fewer or more markers, i.e., 
enlarging the training set at the expense of the precision in the 
genotyping of each individual in the training set. Each scenario 
involved (i) constructing a training set with the true or imputed 
genotypes comprised of individuals from a number of families, (ii) 
estimating parameters of the genomic selection model, and (iii) 
predicting breeding values with the true or imputed genotypes in 
a prediction set of a distinct set of families.

The first three scenarios quantified the prediction accuracy 
and return on investment by using imputation with different 
numbers of low-density markers in the training and/or predic-
tion set (Table 2, Supplemental Table S2). The first scenario 
used high-density genotypes in the training set and low-density 
genotypes imputed to high density in the prediction set. The 
second scenario used low-density genotypes imputed to high 
density in the training set and high-density genotypes in the 
prediction set. The third scenario used low-density genotypes 
imputed to high density in both the training and prediction set. 
The training set comprised 80 families, with each family con-
tributing 25 training individuals. In total, this gave a training 
set with 80 ´ 25 = 2000 individuals (Supplemental Table S2). 
The families and individuals within families were selected at 
random among all the available families and individuals within 
families. Predictions were performed in the other 80 families, 
for 200 F3 individuals within each family.

The fourth scenario quantified the response to selec-
tion and return on investment in an enlarged prediction set 
genotyped at fewer markers (Table 2, Supplemental Table S2). 
Since we always selected the fixed number of individuals, the 
change in the size of the prediction set (the number of selection 
candidates) translates to the increased selection intensity. The 
following four strategies that had approximately the same cost 
were evaluated (denoted as x selection candidates genotyped 
at y low-density markers—xI@yM): 50I@500M, 100I@200M, 
150I@100M, and 200I@50M (Supplemental Table S2). When 
a strategy did not involve genotyping all of the potential selec-
tion candidates of a family, a random sample of candidates was 
taken. The training set was the same as in the first scenario and 
was genotyped at high density. The prediction set had either 
the true high-density genotypes or low-density genotypes 
imputed to high density.

The fifth scenario quantified the prediction accuracy and 
return on investment in an enlarged training set genotyped 
at fewer markers (Table 2, Supplemental Table S2). The same 
four strategies were used as in the fourth scenario but were 
applied to the training set. The following four strategies that 
had approximately the same cost were evaluated (denoted 
as 80 families times x individuals per family genotyped at y 
low-density markers—80C´xI@yM): 80C´50I@500M, 
80C´100I@200M, 80C´150I@100M, and 80C´200I@50M. 
When a strategy did not involve genotyping all of the indi-
viduals within a family, a random sample of individuals was 
taken. In total, the training set had 4000 individuals for the 
strategy 80C×50I@500M, 8000 individuals for the strat-
egy 80C´100I@200M, 12,000 individuals for the strategy 
80C´150I@100M, and 16,000 individuals for the strategy 
80C´200I@50M (Supplemental Table S2). The training set 
therefore had low-density genotypes imputed to high density. 
The true high-density genotypes were also used for comparison. 

achieve that response to selection. We expressed it relative to a 
chosen baseline so that all the evaluated scenarios could be com-
pared. We considered only the costs of genotypes, as we assumed 
that a breeding program would already have phenotypes avail-
able. For simplicity, other costs were ignored. We divided the 
cost of training genotypes by 80, because we performed pre-
dictions in 80 families and all of them used the same training 
data. We believe this is a conservative choice, as a real breeding 
program could spread this cost over many more families gener-
ated in several cycles of genomic selection. The cost of prediction 
genotypes was considered for each family separately, because the 
response to selection was measured for each family separately.

We assumed that the cost of a high-density array with 
20,000 markers is US$30.00. Further, we assumed that the 
cost of a low-density array is due to fixed and variable compo-
nents. The fixed component was set to $2.50, while the variable 
component was set to $1.00 for 100 markers. Because the low-
density markers were chosen for each family, we assumed that 
the total number of markers on a low-density array would have 
to be three times larger (e.g., Hickey et al., 2014), and we fac-
tored this into the costs. The cost of low-density arrays therefore 
ranged between 13 and 58% of the high-density array (Table 
1). We provide a spreadsheet in the supplement that details the 
calculations (Supplemental Table S2), which can be used to 
modify our cost assumptions for genotypes and phenotypes.

Scenarios
We analyzed the simulated data in six sets of scenarios in which 
imputation was leveraged to maximize utility of genomic data in 
our chosen breeding program design (Table 2, Supplemental Table 
S2). Across the scenarios, the utility of the resources was maxi-
mized based on three principles: (i) decreasing the genotyping 
costs, (ii) trading off selection intensity versus prediction accuracy 
by genotyping more or fewer individuals at fewer or more mark-
ers, and (iii) increasing prediction accuracy by genotyping more 

Table 1. Assumed costs of high-density and low-density 
genotype data.

Number of markers Cost Ratio
US$

High-density
 20,000 30.00 1.00
Low-density
 500 17.50 0.58
 200 8.50 0.28
 100 5.50 0.18
 50 4.00 0.13

Table 2. Summary of scenarios.

Scenario
Training  

set†
Prediction 

set Result‡
1 HD LD Accuracy & ROI

2 LD HD Accuracy & ROI

3 LD LD Accuracy & ROI

4 HD LD & enlarge Response to selection & ROI

5 LD & enlarge HD Accuracy & ROI

6 LD & enlarge LD & enlarge Response to selection & ROI

† HD, high-density genotypes; LD, low-density genotypes imputed to high density.

‡ ROI, return on investment.

https://www.crops.org
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The prediction set was the same as in the first scenario, but this 
time with the true high-density genotypes.

The sixth scenario quantified the response to selection and 
return on investment in an enlarged training and prediction set 
genotyped at fewer markers (Table 2, Supplemental Table S2). 
This scenario was a combination of the fourth and the fifth sce-
narios with exactly the same setting, with the only difference 
that low-density genotypes imputed to high density were used 
both in training and prediction. The true high-density geno-
types were also used for comparison.

ReSulTS

This paper uses simulation to evaluate the prospect of 
accurate imputation to enable cost-effective genomic 
selection in plant breeding. The results show that accurate 
imputation can enable cost-effective genomic selection 
through (i) reduction of genotyping costs in training 
and prediction sets, (ii) increase of selection intensity by 
enlarging the prediction set, and (iii) increase of prediction 
accuracy by enlarging the training set. These advantages 
enable breeders to increase the return on investment in 
the required data for genomic selection.

Prediction Accuracy with imputation  
in Training and/or Prediction
Prediction accuracy decreased marginally with the 
decreasing number of low-density genotypes used for 
imputation. This is shown in Fig. 2, which plots the 
genomic prediction accuracy against the number of 
markers used in the prediction set. The training set had 
high-density genotypes. Accuracies are shown both for 
prediction across families and within a family. The base-
line accuracy with the true high-density genotypes was 

0.71 for prediction across families and 0.42 for prediction 
within a family. The accuracy decreased with the decreas-
ing number of low-density genotypes. The decrease was 
less pronounced for prediction across families (from 0.71 
to 0.66) than for within a family (from 0.42 to 0.34). Simi-
lar trends were observed when imputation was used in 
the training set and not in the prediction set (scenario 2; 
Supplemental Table S1) and when imputation was used in 
both sets (scenario 3; Supplemental Table S1). Supplemen-
tal Table S1 also shows that the main difference between 
the three scenarios was in the rate of the decrease in accu-
racy. The rate was lowest when imputation was used only 
in the training set (scenario 2).

Using imputed genotypes gave greater return on 
investment than using the true high-density genotypes. 
This is shown in Fig. 3, which plots the return on invest-
ment of selecting within a family against the number of 
markers used in the training and prediction set in the 
first three scenarios. The baseline for comparison was a 
strategy where both the training and prediction set had 
high-density genotypes. Return on investment increased 
with the decreasing number of low-density markers and 
there were large differences between the scenarios. The 
greatest increases were observed when imputed genotypes 
were used both in the training and prediction set. In that 
scenario, the greatest return on investment was 5.67 times 
that of the baseline scenario when we used only 50 low-
density markers. Intermediate increases were observed 
when imputed genotypes were used only in the predic-
tion set. In that scenario, the greatest return on investment 
was 3.52 times that of the baseline scenario when we used 
only 50 low-density markers. The lowest increases were 
observed when imputed genotypes were used only in the 
training set. In that scenario, there were no significant dif-
ferences between the marker densities.

Fig. 2. Prediction accuracy across families and within a family 
against the number of markers used in the prediction set with 
200 individuals; 2000 training individuals had the true high-
density genotypes (HD); LD, low-density genotypes imputed 
to high density; letters denote significant difference within the 
scope of prediction at p £ 0.01 according to the Tukey’s multiple 
comparison test.

Fig. 3. Return on investment for selection within a family against the 
number of markers used in the training set with 2000 individuals 
and prediction set with 200 individuals; HD, true high-density 
genotypes; LD, low-density genotypes imputed to high density; 
letters denote significant difference within a scenario at p £ 0.01 
according to the Tukey’s multiple comparison test.
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Response to Selection with imputation  
and enlarged Prediction Set
Enlarging the prediction set through low-density geno-
typing and imputation increased response to selection 
through increased selection intensity. This is shown in 
Fig. 4, which plots the response to selection against the 
number of prediction individuals, i.e., the selection can-
didates. The selection candidates were evaluated based on 
the true high-density genotypes or low-density genotypes 
imputed to high density. Increasing the number of candi-
dates increases response to selection. When the increased 
number of candidates was based on genotyping fewer 
markers, the response to selection stopped increasing 
after a certain number of low-density markers. Signifi-
cant increase in response occurred when we increased 
the number of selection candidates from 50 genotyped at 
500 low-density markers (response was 0.30) to 100 gen-
otyped at 200 low-density markers (response was 0.36). 
Further increases in the number of selection candidates 
(above 100) while decreasing the number of low-density 
markers (below 200 markers) did not increase response 
any further.

Increasing response to selection through increased 
selection intensity was cost effective only with impu-
tation. This is shown in Fig. 5, which plots the return 
on investment of selecting within a family against the 
number of prediction individuals, i.e., the selection can-
didates. The selection candidates were evaluated based on 
the true high-density genotypes or low-density genotypes 
imputed to high density. The baseline for comparison was 
the strategy from the first scenario, in which 200 selec-
tion candidates were genotyped at high density. When 

selection candidates had the true high-density genotypes, 
increasing selection intensity was not cost effective—
the highest return on investment (2.05 times that of the 
baseline scenario) was achieved when 50 candidates were 
genotyped with 500 low-density markers. When selection 
candidates had imputed genotypes, increasing selec-
tion intensity was cost effective—the highest return on 
investment was achieved when 150 candidates were geno-
typed with 100 low-density markers, though this strategy 
was comparable with genotyping 100 candidates with 
200 low-density markers or genotyping 200 candidates 
with 50 low-density markers. These three strategies gave 
return of investment between 3.39 and 3.68 times that of 
the baseline strategy.

Prediction Accuracy with imputation  
and enlarged Training Set
Enlarging the training set through low-density genotyp-
ing and imputation increased prediction accuracy. This 
is shown in Fig. 6, which plots the genomic prediction 
accuracy against the number of training individuals. The 
training individuals were from 80 families and had either 
the true high-density genotypes or low-density genotypes 
imputed to high density. Accuracies are shown both for 
prediction across families and within a family. Prediction 
accuracy increases with an enlarged training set. Predic-
tions based on the imputed genotypes in training were of 
similar accuracy to those based on the true genotypes over 
a wide range of training set sizes and marker densities. For 
example, the highest loss of accuracy from 0.69 to 0.62 was 
observed when the scope of prediction was within a family 
and 50 low-density markers were used for imputation. The 
turning point at which imputed genotypes in training gave 

Fig. 4. Response to selection within a family against the number 
of selection candidates having the true high-density genotypes 
(HD) or low-density genotypes imputed to high density (LD; 
2000 training individuals had the true high-density genotypes 
(points with a different letter—letters denote significant difference 
between strategies [the first letter] and used prediction genotypes 
[the second letter] at p £ 0.01 according to the Tukey’s multiple 
comparison test).

Fig. 5. Return on investment for selection within a family against 
the number of selection candidates having the true high-density 
genotypes (HD) or low-density genotypes imputed to high density 
(LD); 2000 training individuals had the true high-density genotypes 
(letters denote significant difference between strategies [the first 
letter] and the baseline scenario [the second letter] at p £ 0.01 
according to the Tukey’s multiple comparison test).
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significantly lower prediction accuracy than the true geno-
types differed between the scopes of prediction. When the 
scope of prediction was across families, the turning point 
was between 100 and 50 low-density markers. When the 
scope of prediction was within a family, the turning point 
was already between 200 and 100 low-density markers.

Enlarging the training set increased return on invest-
ment when low-density genotyping and imputation were 
used, but not when the true high-density genotypes were 
used. This is shown in Fig. 7, which plots the return 
on investment of selecting within a family against the 
number of training individuals. The training individuals 
had either the true high-density genotypes or low-density 
genotypes imputed to high density. The baseline for com-
parison was a strategy from the first scenario, in which 
2000 training individuals were genotyped at high density. 
Doubling the baseline training set with high-density indi-
viduals gave 1.08 times higher return on investment, but 
further increases either gave comparable or lower return 
on investment than the baseline strategy. When low-den-
sity genotyping and imputation were used, the return on 
investment was larger and increased with increasing train-
ing set size. The maximal return on investment with that 
approach was 1.44 times that of the baseline strategy. This 
maximal scenario had a training size of 16,000 individuals 
genotyped at 50 low-density markers.

Response to Selection with imputation  
and enlarged Training and Prediction Sets
Enlarging both the training and prediction set through low-
density genotyping and imputation increased response to 
selection with diminishing returns. This is shown in Fig. 

8, which plots the response to selection within a family 
against the number of training and prediction individuals. 
Both sets of individuals had either the true high-density 
genotypes or low-density genotypes imputed to high 
density. Response to selection increased when both the 
number of training and prediction individuals with true 
high-density genotypes increased. However, when low-
density genotypes and imputation were used, the increase 
in response to selection plateaued at strategies that used 
100 low-density markers both in training with 12,000 
individuals across 80 families and in prediction with 150 
individuals per family.

Enlarging both the training and prediction set through 
low-density genotyping and imputation gave greater 
return on investment than using the true high-density 

Fig. 6. Prediction accuracy across families and within a family 
against the number of training individuals from 80 families having 
the true high-density genotypes (HD) or low-density genotypes 
imputed to high density (LD); 200 prediction individuals had the 
true high-density genotypes (letters denote significant difference 
between strategies [the first letter] and used training genotypes 
[the second letter] at p £ 0.01 according to the Tukey’s multiple 
comparison test).

Fig. 7. Return on investment for selection within a family against the 
number of training individuals from 80 families having the true high-
density genotypes (HD) or low-density genotypes imputed to high 
density (LD); 200 prediction individuals had the true high-density 
genotypes (letters denote significant difference between strategies 
[the first letter] and the baseline scenario [the second letter] at p £ 
0.01 according to the Tukey’s multiple comparison test).

Fig. 8. Response to selection within a family against the number 
of training individuals from 80 families and prediction individuals 
having the true high-density (HD) genotypes or low-density (LD) 
genotypes imputed to high density.
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genotypes. This is shown in Fig. 9, which plots the return 
on investment of selecting within a family against the 
number of training and prediction individuals. Both sets 
of individuals had either the true high-density geno-
types or low-density genotypes imputed to high density. 
The baseline for comparison was a strategy from the first 
scenario, in which 2000 training individuals and 200 pre-
diction individuals had high-density genotypes. When 
high-density genotypes were used, it was not cost effec-
tive to increase either the training set size or the prediction 
set. Using the imputation increased return on investment 
up to 5.12 times that of the baseline strategy. The most 
effective strategy was to assemble a training set of 12,000 
individuals and a prediction set of 150 individuals per 
family, both genotyped at 100 low-density markers.

diSCuSSion
Our results highlight four main points for discussion, 
specifically (i) the three principles of cost effectively assem-
bling the data for genomic selection through imputation, 
(ii) the required number of low-density genotypes, (iii) 
implications for breeding programs, and (iv) the assump-
tions made by the study.

The Three Principles of Cost effectively 
Assembling the data for Genomic Selection 
through imputation
The results show that accurate within-family imputation 
can enable cost-effective genomic selection in plant breed-
ing through three complementary principles: (i) reducing 
costs by low-density genotyping and imputation, (ii) increas-
ing selection intensity by genotyping more candidates at 
fewer low-density markers, and (iii) increasing prediction 
accuracy by genotyping more training individuals at fewer 
low-density markers. Each of these principles is underpinned 
by phenomena that affect the power and cost effectiveness of 
a genomic selection program, and we discuss these in turn.

Reducing Genotyping Costs  
by Low-Density Genotyping and Imputation
Imputation is a technology designed to reduce the 
genotyping costs by exploiting the rules of inheri-
tance on partially observed genotypes of relatives. In 
this study, we have leveraged this technology and the 
prevalent family structure of plant breeding programs 
to assemble the required data for genomic selection in 
a cost-effective way. Plant breeding programs are ideal 
for such an approach, because a strategy to genotype 
a small number of parents at high density and a large 
number of their progeny at low density enables large 
cost savings in genotyping the training or prediction 
sets for genomic selection.

When we used imputation only in the prediction set, 
the prediction accuracy was unimpaired when at least 

200 low-density markers were used. However, the return 
on investment was optimal with 50 low-density markers 
(3.52 that of the baseline scenario), because at that den-
sity, the 19% loss in prediction accuracy (= 1 − 0.34/0.42, 
Supplemental Table S2) was more than compensated by 
the 87% cost reduction in genotyping an individual (= 1 
− $4.00/$30.00, Supplemental Table S2). When we used 
imputation only in the training set, the prediction accu-
racy was reduced less, but the return on investment did 
not improve compared with the baseline scenario. This 
was because we spread the cost of genotyping the training 
set across a large number of predictions and the reduction 
in that cost was negligible when analyzed on a per-family 
basis. The return on investment was the greatest when 
imputation was used both in training and prediction 
sets, because this scenario enabled the greatest total cost 
reduction in genotyping. The most optimal strategy was 
to genotype the sets with 50 low-density markers, which 
gave 5.67 times more return on investment than the base-
line scenario. This was achieved through a 24% loss in 
prediction accuracy (= 1 − 0.34/0.45, Supplemental Table 
S2) but an 87% cost reduction in genotyping the sets (= 
1 − $2400/$18,000, Supplemental Table S2).

Of note is the observation that, when imputed gen-
otypes were used only in the training set, the prediction 
accuracy decreased at a lower rate than when imputed gen-
otypes were used only in the prediction set. This can be 
explained by the fact that, for training a genomic selection 
equation, a set of individuals is used to estimate population 
parameters (variance components and allele substitution 
effects) and errors for any individual average out across the 
set of individuals to some degree. On the other hand, in the 
prediction set, each individual is evaluated independently 
and is more dependent on having few errors in its genotype 
(e.g., Gorjanc et al., 2015). This observation suggests that a 

Fig. 9. Return on investment for selection within a family against 
the number of training individuals from 80 families and prediction 
individuals having the true high-density (HD) genotypes or low-
density (LD) genotypes imputed to high density.
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small amount of errors introduced by imputation has larger 
effect on prediction than on training.

Increasing Selection Intensity by Genotyping 
More Candidates at Fewer Low-Density Markers
Increasing selection intensity increases response to 
selection, but the benefit must be balanced against 
increased costs of evaluating more selection candidates. 
Our results show that this is hard to achieve with high-
density genotyping but is possible with low-density 
genotyping and imputation. For example, increasing 
selection intensity from 1.4 (10 selected candidates 
out of 50 candidates) to 2.1 (10 selected candidates 
out of 200 candidates) increased response to selection 
by 33% when the candidates were genotyped at high 
density (= 1 − 0.31/0.44, Supplemental Table S2) and 
by 17% when the candidates were genotyped at low 
density and imputed (= 1 − 0.30/0.36, Supplemental 
Table S2). However, this strategy increased the return 
on investment only when low-density genotyping and 
imputation were used, because the total costs of geno-
typing an increasing number of selection candidates at 
fewer markers was nearly constant (between $800 and 
$875, Supplemental Table S2). The return on invest-
ment did not increase when the true high-density 
genotypes were used, because the total costs of geno-
typing increased linearly with an increasing number of 
selection candidates (from $1500 to 6000, Supplemental 
Table S2) and outweighed the benefit of an increased 
response to selection.

The observed dynamic can be explained by the fact 
that, while selection intensity increases at an increas-
ing (nonlinear) rate against a decreasing proportion of 
selected individuals, it increases almost linearly for a 
wide range of proportions, i.e., when >20% of candi-
dates are selected (Falconer and Mackay, 1996). This 
means that a greater response to selection through more 
intense selection must outweigh greater costs of evalu-
ating more selection candidates at a rate that is more 
than linear. This can only be achieved with genotyp-
ing an increasing number of candidates at ever fewer 
markers. However, this strategy can only be used to 
the point where the loss in prediction accuracy due 
to imputation errors diminishes response to selection 
and the higher cost of genotyping ever more individu-
als outweighs the benefit. In this study, this point was 
observed when 10 candidates were selected out of 150 
that were genotyped at 100 low-density markers. This 
scenario gave the return on investment of 3.68 times 
that of the baseline scenario (genotyping the 200 can-
didates at high density).

Increasing Prediction Accuracy  
by Genotyping More Training Individuals  
at Fewer Low-Density Markers
Increasing accuracy of selection through enlarging the train-
ing set increases response to selection, but this principle must 
also be balanced with the costs of achieving that level of 
accuracy. Our results show that low-density genotyping and 
imputation enable increasing response to selection with this 
strategy in a cost-effective way, while high-density genotyp-
ing leads to overinvestment in genotype data. Since accuracy 
of imputation was high in this study, it is not surprising that 
imputation enabled a cost-effective way to increase the size of 
the training set and with that the prediction accuracy. How-
ever, the overinvestment with high-density genotyping was 
surprising. There are at least two phenomena that underlie 
this observation. First, while the genomic prediction accu-
racy increases with an increasing training set size, it does so 
with diminishing returns (Daetwyler et al., 2008; Goddard, 
2009). Since our baseline training set of 2000 individuals was 
already sizeable, it is expected that increases in the training 
set do not increase prediction accuracy substantially. When 
this is coupled with the higher costs of genotyping more 
training individuals at high density, it leads to an expectation 
that the return on investment reduces. Second, the design 
of our simulation likely exacerbated the first phenomena. 
Namely, we have increased the baseline training set by sam-
pling more individuals from the same families. In addition, 
each family in the prediction set had, on average, 7.7 families 
with one parent in common in the training set. These two 
design properties imply that the baseline training set already 
covered most of the genetic variability and that the relation-
ship between the training and prediction sets was high (Clark 
et al., 2012; Pszczola et al., 2012; Hickey et al., 2014). Such 
high coverage of genetic variability and high connectedness 
between the training and prediction sets is not expected for 
every breeding program, especially when rapid cycling is 
aggressively used. In such cases, increasing or updating the 
training set every year is essential to maintain prediction 
accuracy (Michel et al., 2016; Pszczola and Calus, 2016). Our 
work shows that this can be achieved in a cost-effective way 
with low-density genotyping and imputation.

Required number of low-density Markers
The required number of low-density markers for cost-
effective genomic selection depends on many parameters 
and a setting where the data will be used. The results of 
this study suggest that imputation with about 20 segregat-
ing markers per chromosome gives comparable prediction 
accuracy and response to selection as high-density geno-
types. However, in the terms of return on investment, 
the number can be reduced to as few as five segregat-
ing markers per chromosome when imputation is used 
both in the training and prediction sets with or without 
enlarging the sets. These numbers refer to the number 
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of segregating markers, and unless marker platforms can 
be cost effectively developed for each family specifically, 
a greater number of assayed markers will be needed to 
ensure so many segregating markers in a family. Assuming 
that about one third of markers segregate in a family (e.g., 
Hickey et al., 2014), the targeted number of low-density 
markers should be between 15 and 60 per 1-Morgan chro-
mosome or between 150 and 600 per genome with 10 
1-Morgan chromosomes. That so few markers are suffi-
cient is consistent with previous results from studies in 
simulated (Hickey et al., 2015) and real data ( Jacobson et 
al., 2015). Hickey et al. (2015) discuss in detail why plant 
breeding populations enable accurate imputation with 
so few low-density markers. Here, we emphasize that a 
strategy of densely genotyping a small number of parents 
and sparsely genotyping a large number of their progeny 
enables large reductions in the total genotyping costs, 
while response to selection is not diminished substantially.

implications for Breeding Programs
Our study has three implications for plant-breeding programs:

First, the results show that large cost reductions can 
be achieved with the proposed genotyping strategy and 
accurate within-family imputation. This is extremely 
important, because the cost of assembling the required data 
is the key-limiting factor for adopting genomic selection. 
We have shown that this limitation can be overcome by (i) 
lowering the costs of assembling sufficiently large training 
sets that yield accurate predictions in unphenotyped fami-
lies and (ii) lowering the cost of assembling large prediction 
sets that yield measurable response to selection.

Second, low-cost genotyping enables adoption of 
genomic selection in early segregating populations. In that 
stage of the breeding program, the potential of genomic 
selection is likely to be the greatest, because breeders could 
select early for all traits covered by the training set, even 
yield. However, that stage is also the most challenging for 
implementing genomic selection, because early segregating 
populations comprise large number of individuals. Genotyp-
ing costs should be as low as possible to make this a possibility. 
Genomic prediction at that stage could be combined with a 
prior phenotype screening for traits that are inexpensive to 
measure. This strategy would avoid the need to genotype 
individuals with poor phenotypes for these traits. Our results 
show that genotyping with 50 low-density markers and 
imputing can give accuracy of prediction within an unphe-
notyped family of at least 0.3. Coupling this level of accuracy 
with large genetic variance in segregating populations and 
short generation interval promises substantial responses to 
selection, which could be achieved in a cost-effective way.

Third, low-density genotyping and imputation affect 
accuracy of prediction in a different way when the scope of 
prediction is across families or within a family. Our results 
show that prediction accuracy within a family is more 

sensitive to imputation errors than prediction accuracy across 
families. This is expected, because prediction accuracy across 
families is due to capturing the between- and within-family 
genetic variation, while prediction accuracy within a family 
is only due to capturing the within-family genetic variation. 
It is easy to accurately impute the part of genotypes that is 
due to between-family variation, i.e., the mean genotype 
of the parents. It is much more challenging to accurately 
impute the part of genotypes that is due to within-family 
variation, i.e., the deviation of progeny’s genotype from the 
mean genotype of the parents. This is important, because 
imputation accuracy and the resulting prediction accuracy 
with imputed genotypes are influenced by the population or 
family structure in the same way as prediction accuracy with 
non-imputed genotypes is (e.g., Windhausen et al., 2012). 
Ignoring this phenomenon can lead to a breeding program 
that underuses the potential of genomic selection to capture 
within-family variation. This is important also in the terms 
of long-term gain and sustainability of a breeding program, 
which depend largely on the ability to select on the within-
family variation, while selection on the between-family 
variation leads to rapid depletion of genetic variation (e.g., 
Woolliams et al., 1999, 2015).

Assumptions of the Study
The estimated benefit of imputation for cost-effective 
genomic selection in plant breeding depends on some 
assumptions made in this study. Breeding programs 
attempting to follow the described approach might want to 
reevaluate the benefit of imputation by varying the popula-
tion structure, the size of a program, and most importantly 
the costs. We have modelled the cost of genotyping based 
on inquiries from several genotyping providers, in particular 
from LGC (http://www.lgcgroup.com). The assumed costs 
were for a species with an established genome sequence 
and a fairly large breeding program that would enable the 
economy of scale. We have spread the cost of assembling 
the training genotypes over one cycle of predictions in 80 
families, while the cost of the prediction genotypes was 
attributed to each family. We believe this is a conservative 
approach, because we do not expect large genetic changes 
so that the training set would have to be fully replaced after 
one cycle of selection. This suggests that using imputation 
in training might be even more cost effective than sug-
gested in this study. If costs are spread over many cycles of 
selection, drop in prediction accuracy with distancing gen-
erations should be accounted for. More critically, we have 
assumed that phenotype data is available and that a starting 
genomic selection program could simply reuse this data. We 
believe this is a reasonable assumption for existing breeding 
programs, but if this assumption is not met, the return on 
investment can change considerably. The spreadsheet pro-
vided in supplement can be used to change our assumptions 
and corroborate our results under different settings.
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We have performed sensitivity analysis by doubling 
low-density genotyping costs (both fixed and variable parts 
or just one of the two) and found that, while the values for 
the return on investment change, the relative comparison 
of the evaluated strategies in the scenarios does not change. 
Specifically, doubling the fixed and variable costs of low-
density genotyping increased total costs of 50 markers from 
$4.00 to 8.00, of 100 markers from $5.50 to 11.00, and of 
200 markers from $8.50 to 17.00. In scenarios 1–3 (fixed 
size of training and prediction sets), these cost changes have 
reduced the return on investment for the optimal scenario 
(low-density genotyping with 50 markers and imputation 
both in training and prediction sets) from 5.67 to 2.84 (a 
50% reduction), but this scenario was still the most optimal. 
In scenario 4 (enlarging the prediction set by low-density 
genotyping and imputation), these cost changes reduced the 
return on investment for 35% in all settings. In scenario 
5 (enlarging the training set by low-density genotyping 
and imputation), these cost changes reduced the return on 
investment for 11% in all settings. In scenario 6 (enlarging 
both training and prediction sets by low-density genotyp-
ing and imputation), these cost changes reduced the return 
on investment for 50% in all settings.

The reviewers pointed out that our simulation design 
does not resemble an evolving breeding program and that 
<20,000 high-density markers might be sufficient for the 
same prediction accuracy but have a lower cost, and hence 
a greater return on investment. The simulation design used 
is not an evolving breeding program, but it is indicative of a 
snapshot of such a program at one time point. The founder 
chromosomes were sampled from a coalescent process with 
effective population size of 50 (with increasing values in 
the past). Therefore, there was a trajectory of relationships 
between the founders and families that is representative of 
what may be present in a particular breeding program, and 
our results show average over this trajectory. Hence, our 
results inform about the potential of imputation to lower the 
cost of genotyping large number of individuals for genomic 
selection, but each breeding program should evaluate this 
potential for its specific conditions.

We agree that <20,000 high-density markers are 
required for accurate predictions among closely related indi-
viduals. While parents could have been genotyped with fewer 
high-density markers, this might not necessarily reduce costs 
considerably, as there is a nonlinear relationship between the 
number of markers and the cost, in particular when pro-
gressing between the low-density and high-density types of 
arrays. It should be emphasized that the cost of high-density 
genotypes on a relatively small number of parents is only a 
fraction of the total required genotyping budget for genomic 
selection, hence not primary target for cost optimization. 
Also, using a surplus of high-density markers is beneficial 
for at least two reasons. First, when the relationship between 
the training and prediction sets reduces, the required number 

of markers to achieve a targeted level of accuracy increases 
(e.g., Hickey et al., 2014). By having high-density markers, 
we ensure that, in the longer term, the training set can be 
used for making selection decisions in more families and thus 
have its cost of construction offset over more selection deci-
sions. Second, surplus of high-density markers ensures good 
coverage of germplasm genetic diversity and reduces ascer-
tainment bias (e.g., Ganal et al., 2012; Heslot et al., 2013).

ConCluSion
Accurate within-family imputation enables cost-effective 
genomic selection in plant breeding. This can be achieved 
through (i) reduced cost of genotyping the training and 
prediction sets by low-density genotyping and imputa-
tion, (ii) increased selection intensity by genotyping more 
selection candidates at fewer markers and imputing, and 
(iii) increased genomic prediction accuracy by genotyping 
more training individuals at fewer markers and imputing. 
These three principles enable plant breeders to cost effec-
tively assemble the required data for genomic selection.
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