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ABSTRACT
Software is a critical part of modern research and yet there is little support across the

scholarly ecosystem for its acknowledgement and citation. Inspired by the activities

of the FORCE11 working group focused on data citation, this document

summarizes the recommendations of the FORCE11 Software Citation Working

Group and its activities between June 2015 and April 2016. Based on a review of

existing community practices, the goal of the working group was to produce a

consolidated set of citation principles that may encourage broad adoption of a

consistent policy for software citation across disciplines and venues. Our work is

presented here as a set of software citation principles, a discussion of the motivations

for developing the principles, reviews of existing community practice, and a

discussion of the requirements these principles would place upon different

stakeholders. Working examples and possible technical solutions for how these

principles can be implemented will be discussed in a separate paper.

Subjects Digital Libraries, Software Engineering

Keywords Software citation, Software credit, Attribution

SOFTWARE CITATION PRINCIPLES
The main contribution of this document are the software citation principles, written fairly

concisely in this section and discussed further later in the document (see Discussion).

In addition, we also motivate the creation of these principles (see Motivation),

describe the process by which they were created (see Process of Creating Principles),

summarize use cases related to software citation (see Use Cases), and review related

work (see Related Work). We also lay out the work needed to lead to these software

citation principles being applied (see Future Work).

1. Importance: Software should be considered a legitimate and citable product of

research. Software citations should be accorded the same importance in the scholarly

record as citations of other research products, such as publications and data; they

should be included in the metadata of the citing work, for example in the reference list

of a journal article, and should not be omitted or separated. Software should be cited on

the same basis as any other research product such as a paper or a book, that is, authors

should cite the appropriate set of software products just as they cite the appropriate set

of papers.
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2. Credit and attribution: Software citations should facilitate giving scholarly credit and

normative, legal attribution to all contributors to the software, recognizing that a single

style or mechanism of attribution may not be applicable to all software.

3. Unique identification: A software citation should include a method for identification

that is machine actionable, globally unique, interoperable, and recognized by at least a

community of the corresponding domain experts, and preferably by general public

researchers.

4. Persistence: Unique identifiers and metadata describing the software and its

disposition should persist—even beyond the lifespan of the software they describe.

5. Accessibility: Software citations should facilitate access to the software itself and to its

associated metadata, documentation, data, and other materials necessary for both

humans and machines to make informed use of the referenced software.

6. Specificity: Software citations should facilitate identification of, and access to, the

specific version of software that was used. Software identification should be as specific

as necessary, such as using version numbers, revision numbers, or variants such as

platforms.

MOTIVATION
As the process of research1 has become increasingly digital, research outputs and products

have grown beyond simply papers and books to include software, data, and other

electronic components such as presentation slides, posters, (interactive) graphs, maps,

websites (e.g., blogs and forums), and multimedia (e.g., audio and video lectures).

Research knowledge is embedded in these components. Papers and books themselves

are also becoming increasingly digital, allowing them to become executable and

reproducible. As we move towards this future where research is performed in and recorded

as a variety of linked digital products, the characteristics and properties that developed

for books and papers need to be applied to, and possibly adjusted for, all digital products.

Here, we are concerned specifically with the citation of software products. The challenge is

not just the textual citation of software in a paper, but the more general identification of

software used within the research process. This work focuses on making software a citable

entity in the scholarly ecosystem. While software products represent a small fraction of

the sum total of research output, this work together with other efforts such as the

FORCE11 Data Citation Principles (Data Citation Synthesis Group, 2014; Starr et al., 2015)

collectively represent an effort to better describe (and cite) all outputs of research.

Software and other digital resources currently appear in publications in very

inconsistent ways. For example, a random sample of 90 articles in the biology

literature found seven different ways that software was mentioned, including simple

names in the full-text, URLs in footnotes, and different kinds of mentions in reference

lists: project names or websites, user manuals or publications that describe or

introduce the software (Howison & Bullard, 2015). Table 1 shows examples of

these varied forms of software mentions and the frequency with which they were

encountered. Many of these kinds of mentions fail to perform the functions needed

1 We use the term “research” in this

document to include work intended to

increase human knowledge and benefit

society, in science, engineering,

humanities, and other areas.
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of citations, and their very diversity and frequent informality undermine the

integration of software work into bibliometrics and other analyses. Studies on data

and facility citation have shown similar results (Huang, Rose & Hsu, 2015; Mayernik,

Maull & Hart, 2015; Parsons, Duerr & Minster, 2010).

There are many reasons why this lack of both software citations in general and standard

practices for software citation are of concern:

� Understanding research fields: Software is a product of research, and by not citing it we

leave holes in the record of research of progress in those fields.

� Credit: Academic researchers at all levels, including students, postdocs, faculty, and

staff, should be credited for the software products they develop and contribute to,

particularly when those products enable or further research done by others.2

Non-academic researchers should also be credited for their software work, though the

specific forms of credit are different than for academic researchers.

� Discovering software: Citations enable the specific software used in a research product

to be found. Additional researchers can then use the same software for different

purposes, leading to credit for those responsible for the software.

� Reproducibility: Citation of specific software used is necessary for reproducibility,

although not sufficient. Additional information such as configurations and platform

issues are also needed.

PROCESS OF CREATING PRINCIPLES
The FORCE11 Software Citation Working Group was created in April 2015 with the

following mission statement:

The software citation working group is a cross-team committee leveraging the

perspectives from a variety of existing initiatives working on software citation to produce

a consolidated set of citation principles in order to encourage broad adoption of a

consistent policy for software citation across disciplines and venues. The working group

will review existing efforts and make a set of recommendations. These recommendations

will be put off for endorsement by the organizations represented by this group and others

that play an important role in the community.

Table 1 Varieties of software mentions in publications, from Howison & Bullard (2015).

Mention type Count (n = 286) Percentage (%)

Cite to publication 105 37

Cite to user’s manual 6 2

Cite to name or website 15 5

Instrument-like 53 19

URL in text 13 5

In-text name only 90 31

Not even name 4 1

2 Providing recognition of software can

have tremendous economic impact as

demonstrated by the role of Text

REtrieval Conference (TREC) in

information retrieval (Rowe et al., 2010).
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The group will produce a set of principles, illustrated with working examples, and a plan

for dissemination and distribution. This group will not be producing detailed

specifications for implementation although it may review and discuss possible technical

solutions.

The group gathered members (see Appendix A) in April and May 2015, and then

began work in June. This materialized as a number of meetings and offline work

by group members to document existing practices in member disciplines; gather

materials from workshops and other reports; review those materials, identifying

overlaps and differences; create a list of use cases related to software citation, recorded

in Appendix B; and subsequently draft an initial version of this document. The draft

Software Citation Principles document was discussed in a day-long workshop and

presented at the FORCE2016 Conference in April 2016 (https://www.force11.org/

meetings/force2016). Members of the workshop and greater FORCE11 community

gave feedback, which we recorded here in Appendix C. This discussion led to some

changes in the use cases and discussion, although the principles themselves were not

modified. We also plan to initiate a follow-on implementation working group that will

work with stakeholders to ensure that these principles impact the research process.

The process of creating the software citation principles began by adapting the

FORCE11 Data Citation Principles (Data Citation Synthesis Group, 2014). These were

then modified based on discussions of the FORCE11 Software Citation Working Group

(see Appendix A for members), information from the use cases in section Use Cases,

and the related work in section Related Work.

We made the adaptations because software, while similar to data in terms of not

traditionally having been cited in publications, is also different than data. In the context of

research (e.g., in science), the term “data” usually refers to electronic records of

observations made in the course of a research study (“raw data”) or to information

derived from such observations by some form of processing (“processed data”), as well as

the output of simulation or modeling software (“simulated data”). Some confusion

about the distinction between software and data comes in part from the much wider

scope of the term “data” in computing and information science, where it refers to

anything that can be processed by a computer. In that sense, software is just a special

kind of data. Because of this, citing software is not the same as citing data. A more

general discussion about these distinctions is currently underway (https://github.com/

danielskatz/software-vs-data).

The principles in this document should guide further development of software

citation mechanisms and systems, and the reader should be able to look at any

particular example of software citation to see if it meets the principles. While we strive

to offer practical guidelines that acknowledge the current incentive system of academic

citation, a more modern system of assigning credit is sorely needed. It is not that

academic software needs a separate credit system from that of academic papers, but

that the need for credit for research software underscores the need to overhaul the

system of credit for all research products. One possible solution for a more complete
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description of the citations and associated credit is the transitive credit proposed by

Katz (2014) and Katz & Smith (2015).

USE CASES
We documented and analyzed a set of use cases related to software citation in

FORCE11 Software Citation Working Group (https://docs.google.com/document/d/

1dS0SqGoBIFwLB5G3HiLLEOSAAgMdo8QPEpjYUaWCvIU) (recorded in Appendix B

for completeness). Table 2 summarizes these use cases and makes clear what the

requirements are for software citation in each case. Each example represents a particular

stakeholder performing an activity related to citing software, with the given metadata as

information needed to do that. In that table, we use the following definitions:

� “Researcher” includes both academic researchers (e.g., postdoc, tenure-track faculty

member) and research software engineers.

� “Publisher” includes both traditional publishers that publish text and/or software

papers as well as archives such as Zenodo that directly publish software.

� “Funder” is a group that funds software or research using software.

� “Indexer” examples include Scopus, Web of Science, Google Scholar, and Microsoft

Academic Search.

� “Domain group/library/archive” includes the Astronomy Source Code Library

(ASCL; http://ascl.net); biomedical and healthCAre Data Discovery Index Ecosystem

(bioCADDIE; https://biocaddie.org); Computational Infrastructure for Geodynamics

(CIG; https://geodynamics.org), libraries, institutional archives, etc.

� “Repository” refers to public software repositories such as GitHub, Netlib,

Comprehensive R Archive Network (CRAN), and institutional repositories.

� “Unique identifier” refers to unique, persistent, and machine-actionable identifiers

such as a DOI, ARK, or PURL.

� “Description” refers to some description of the software such as an abstract, README,

or other text description.

� “Keywords” refers to keywords or tags used to categorize the software.

� “Reproduce” can mean actions focused on reproduction, replication, verification,

validation, repeatability, and/or utility.

� “Citation manager” refers to people and organizations that create scholarly reference

management software and websites including Zotero, Mendeley, EndNote, RefWorks,

BibDesk, etc., that manage citation information and semi-automatically insert those

citations into research products.

All use cases assume the existence of a citable software object, typically created by the

authors/developers of the software. Developers can achieve this by, e.g., uploading a

software release to figshare (https://figshare.com/) or Zenodo (GitHub, 2014) to obtain a

DOI. Necessary metadata should then be included in a CITATION file (Wilson, 2013) or

machine-readable CITATION.jsonld file (Katz & Smith, 2015). When software is not
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freely available (e.g., commercial software) or when there is no clear identifier to use,

alternative means may be used to create citable objects as discussed in section Access to

Software.

In some cases, if particular metadata are not available, alternatives may be provided.

For example, if the version number and release date are not available, the download

date can be used. Similarly, the contact name/email is an alternative to the

location/repository.

RELATED WORK
With approximately 50 working group participants (see Appendix A) representing a range

of research domains, the working group was tasked to document existing practices in

their respective communities. A total of 47 documents were submitted by working group

participants, with the life sciences, astrophysics, and geosciences being particularly

well-represented in the submitted resources.

General community/non domain-specific activities
Some of the most actionable work has come from the UK Software Sustainability Institute

(SSI) in the form of blog posts written by their community fellows. For example, in a

blog post from 2012, Jackson (2012) discusses some of the pitfalls of trying to cite

software in publications. He includes useful guidance for when to consider citing software

as well as some ways to help “convince” journal editors to allow the inclusion of

software citations.

Wilson (2013) suggests that software authors include a CITATION file that documents

exactly how the authors of the software would like to be cited by others. While this is

not a formal metadata specification (e.g., it is not machine readable) this does offer a

solution for authors wishing to give explicit instructions to potential citing authors and,

as noted in the motivation section (see Motivation), there is evidence that authors

follow instructions if they exist (Huang, Rose & Hsu, 2015).

In a later post on the SSI blog, Jackson gives a good overview of some of the approaches

package authors have taken to automate the generation of citation entities such as

BIBTEX entries (Jackson, 2014), and Knepley et al. (2013) do similarly.

While not usually expressed as software citation principles, a number of groups have

developed community guidelines around software and data citation. Van de Sompel

et al. (2004) argue for registration of all units of scholarly communication, including

software. In “Publish or be damned? An alternative impact manifesto for research

software,” Chue Hong (2011) lists nine principles as part of “The Research Software Impact

Manifesto.” In the “Science CodeManifesto” (Barnes et al., 2016), the founding signatories

cite five core principles (Code, Copyright, Citation, Credit, Curation) for scientific

software.

Perhaps in light of the broad range of research domains struggling with the challenge of

better recognizing the role of software, funders and agencies in both the US (e.g., NSF,

NIH, Alfred P. Sloan Foundation) and UK (e.g., SFTC, JISC, Wellcome Trust) have

sponsored or hosted a number of workshops with participants from across a range of
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disciplines, specifically aimed at discussing issues around software citation (Sufi et al.,

2014; Ahalt et al., 2015; Software Credit Workshop, 2015; Norén, 2015; Software Attribution

for Geoscience Applications, 2015; Allen et al., 2015). In many cases these workshops

produced strong recommendations for their respective communities on how best to

proceed. In addition, a number of common themes arose in these workshops, including

(1) the critical need for making software more “citable” (and therefore actions authors

and publishers should take to improve the status quo), (2) how to better measure the

impact of software (and therefore attract appropriate funding), and (3) how to properly

archive software (where, how, and how often) and how this affects what to cite and when.

Most notable of the community efforts are those of WSSSPE Workshops

(http://wssspe.researchcomputing.org.uk/) and SSI Workshops (http://www.software.ac.uk/

community/workshops), who between them have run a series of workshops aimed at

gathering together community members with an interest in (1) defining the set of problems

related to the role of software and associated people in research settings, particularly

academia, (2) discussing potential solutions to those problems, (3) beginning to work

on implementing some of those solutions. In each of the three years that WSSSPE

workshops have run thus far, the participants have produced a report (Katz et al., 2014; Katz

et al., 2016a; Katz et al., 2016b) documenting the topics covered. Section 5.8 and Appendix J

in the WSSSPE3 report (Katz et al., 2016b) has some preliminary work and discussion

particularly relevant to this working group. In addition, a number of academic publishers

such as APA (McAdoo, 2015) have recommendations for submitting authors on how to

cite software, and journals such as F1000Research (http://f1000research.com/for-authors/

article-guidelines/software-tool-articles), SoftwareX (http://www.journals.elsevier.com/

softwarex/), Open Research Computation (http://www.openresearchcomputation.com) and

the Journal of Open Research Software (http://openresearchsoftware.metajnl.com) allow

for submissions entirely focused on research software.

Domain-specific community activities
One approach to increasing software “citability” is to encourage the submission of papers

in standard journals describing a piece of research software, often known as software

papers (see Software Papers). While some journals (e.g., Transactions on Mathematical

Software (TOMS), Bioinformatics, Computer Physics Communications, F1000Research,

Seismological Research Letters, Electronic Seismologist) have traditionally accepted

software submissions, the American Astronomical Society (AAS) has recently announced

they will accept software papers in their journals (AAS Editorial Board, 2016). Professional

societies are in a good position to change their respective communities, as the publishers

of journals and conveners of domain-specific conferences; as publishers they can

change editorial policies (as AAS has done) and conferences are an opportunity to

communicate and discuss these changes with Astrophysics Source Code Library their

communities.

In astronomy and astrophysics: The Astrophysics Source Code Library (ASCL;

http://ASCL.net) is a website dedicated to the curation and indexing of software used in

the astronomy-based literature. In 2015, the AAS and GitHub co-hosted a workshop
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(Norén, 2015) dedicated to software citation, indexing, and discoverability in astrophysics.

More recently, a Birds of a Feather session was held at the Astronomical Data Analysis

Software and Systems (ADASS) XXV conference (Allen et al., 2015) that included

discussion of software citation.

In the life sciences: In May 2014, the NIH held a workshop aimed at helping the

biomedical community discover, cite, and reuse software written by their peers. The

primary outcome of this workshop was the Software Discovery Index Meeting Report

(White et al., 2014) which was shared with the community for public comment and

feedback. The authors of the report discuss what framework would be required for

supporting a Software Discovery Index including the need for unique identifiers, how

citations to these would be handled by publishers, and the critical need for metadata to

describe software packages.

In the geosciences: The Ontosoft (Gil, Ratnakar & Garijo, 2015) project describes itself

as “A Community Software Commons for the Geosciences.” Much attention was given

to the metadata required to describe, discover, and execute research software. The

NSF-sponsored Geo-Data Workshop 2011 (Fox & Signell, 2011) revolved around data

lifecycle, management, and citation. The workshop report includes many

recommendations for data citation.

Existing efforts around metadata standards
Producing detailed specifications and recommendations for possible metadata standards

to support software citation was not within the scope of this working group. However

some discussion on the topic did occur and there was significant interest in the wider

community to produce standards for describing research software metadata.

Content specifications for software metadata vary across communities, and include

DOAP (https://github.com/edumbill/doap/), an early metadata term set used by the

Open Source Community, as well as more recent community efforts like Research

Objects (Bechhofer et al., 2013), The Software Ontology (Malone et al., 2014), EDAM

Ontology (Ison et al., 2013), Project CRediT (CRediT, 2016), the OpenRIF Contribution

Role Ontology (Gutzman et al., 2016), Ontosoft (Gil, Ratnakar & Garijo, 2015),

RRR/JISC guidelines (Gent, Jones & Matthews, 2015), or the terms and classes defined

at schema.org related to the https://schema.org/SoftwareApplication class. In addition,

language-specific software metadata schemes are in widespread use, including the

Debian package format (Jackson & Schwarz, 2016), Python package descriptions (Ward &

Baxter, 2016), and R package descriptions (Wickham, 2015), but these are typically

conceived for software build, packaging, and distribution rather than citation. CodeMeta

(Jones et al., 2014) has created a crosswalk among these software metadata schemes and

an exchange format that allows software repositories to effectively interoperate.

DISCUSSION
In this section we discuss some the issues and concerns related to the principles stated in

section Software Citation Principles.
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What software to cite
The software citation principles do not define what software should be cited, but rather

how software should be cited. What software should be cited is the decision of the

author(s) of the research work in the context of community norms and practices, and in

most research communities, these are currently in flux. In general, we believe that software

should be cited on the same basis as any other research product such as a paper or book; that

is, authors should cite the appropriate set of software products just as they cite the

appropriate set of papers, perhaps following the FORCE11 Data Citation Working

Group principles, which state, “In scholarly literature, whenever and wherever a claim

relies upon data, the corresponding data should be cited” (Data Citation Synthesis

Group, 2014).

Some software which is, or could be, captured as part of data provenance may not be

cited. Citation is partly a record of software important to a research outcome3, where

provenance is a record of all steps (including software) used to generated particular data

within the research process. Research results, including data, increasingly depend on

software (Hannay et al., 2009), and thus may depend on the specific version used

(Sandve et al., 2013; Wilson et al., 2014). Furthermore, errors in software or environment

variations can affect results (Morin et al., 2012; Soergel, 2015). This implies that for a data

research product, provenance data will include some of the cited software. Similarly,

the software metadata recorded as part of data provenance will overlap the metadata

recorded as part of software citation for the software that was used in the work. The data

recorded for reproducibility should also overlap the metadata recorded as part of software

citation. In general, we intend the software citation principles to cover the minimum

of what is necessary for software citation for the purpose of software identification. Some

use cases related to citation (e.g., provenance, reproducibility) might have additional

requirements beyond the basic metadata needed for citation, as Table 2 shows.

Software papers
Currently, and for the foreseeable future, software papers are being published and cited, in

addition to software itself being published and cited, as many community norms and

practices are oriented towards citation of papers. As discussed in the Importance principle

(1) and the discussion above, the software itself should be cited on the same basis as any

other research product; authors should cite the appropriate set of software products. If a

software paper exists and it contains results (performance, validation, etc.) that are

important to the work, then the software paper should also be cited. We believe that a

request from the software authors to cite a paper should typically be respected, and the

paper cited in addition to the software.

Derived software
The goals of software citation include the linked ideas of crediting those responsible for

software and understanding the dependencies of research products on specific software.

In the Importance principle (1), we state that “software should be cited on the same

basis as any other research product such as a paper or a book; that is, authors should cite

3 Citation can be used for many purposes,

including for software: which software

has been used in the work, which

software has influenced the work, which

software is the work superseding,

which software is the work

disproving, etc.
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the appropriate set of software products just as they cite the appropriate set of papers.”

In the case of one code that is derived from another code, citing the derived software may

appear to not credit those responsible for the original software, nor recognize its role in

the work that used the derived software. However, this is really analogous to how any

research builds on other research, where each research product just cites those

products that it directly builds on, not those that it indirectly builds on. Understanding

these chains of knowledge and credit have been part of the history of science field for

some time, though more recent work suggests more nuanced evaluation of the

credit chains (CRediT, 2016; Katz & Smith, 2015).

Software peer review
Adherence to the software citation principles enables better peer review through

improved reproducibility. However, since the primary goal of software citation is to

identify the software that has been used in a scholarly product, the peer review of software

itself is mostly out of scope in the context of software citation principles. For instance,

when identifying a particular software artifact that has been used in a scholarly product,

whether or not that software has been peer-reviewed is irrelevant. One possible

exception would be if the peer-review status of the software should be part of the

metadata, but the working group does not believe this to be part of the minimal metadata

needed to identify the software.

Citation format in reference list
Citations in references in the scholarly literature are formatted according to the citation

style (e.g., AMS, APA, Chicago, MLA) used by that publication. (Examples illustrating

these styles have been published by Lipson (2011); the follow-on Software Citation

Implementation Group will provide suggested examples.) As these citations are

typically sent to publishers as text formatted in that citation style, not as structured

metadata, and because the citation style dictates how the human reader sees the software

citation, we recommend that all text citation styles support the following: a) a label

indicating that this is software, e.g., [Software], potentially with more information such as

[Software: Source Code], [Software: Executable], or [Software: Container], and b) support

for version information, e.g., Version 1.8.7.

Citations limits
This set of software citation principles, if followed, will cause the number of

software citations in scholarly products to increase, thus causing the number of overall

citations to increase. Some scholarly products, such as journal articles, may have

strict limits on the number of citations they permit, or page limits that include

reference sections. Such limits are counter to our recommendation, and we recommend

that publishers using strict limits for the number of citations add specific instructions

regarding software citations to their author guidelines to not disincentivize software

citation. Similarly, publishers should not include references in the content counted

against page limits.
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Unique identification
The Unique Identification principle (3) calls for “a method for identification that is

machine actionable, globally unique, interoperable, and recognized by a community.”

What this means for data is discussed in detail in the “Unique Identification” section of a

report by the FORCE11 Data Citation Implementation Group (Starr et al., 2015), which

calls for “unique identification in a manner that is machine-resolvable on the Web and

demonstrates a long-term commitment to persistence.” This report also lists examples

of identifiers that match these criteria including DOIs, PURLs, Handles, ARKS, and

NBNs. For software, we recommend the use of DOIs as the unique identifier due to

their common usage and acceptance, particularly as they are the standard for other digital

products such as publications.

While we believe there is value in including the explicit version (e.g., Git SHA1 hash,

Subversion revision number) of the software in any software citation, there are a

number of reasons that a commit reference together with a repository URL is not

recommended for the purposes of software citation:

1. Version numbers/commit references are not guaranteed to be permanent. Projects can

be migrated to new version control systems (e.g., SVN to Git). In addition, it is possible

to overwrite/clobber a particular version (e.g., force-pushing in the case of Git).

2. A repository address and version number does not guarantee that the software is

available at a particular (resolvable) URL, especially as it is possible for authors to

remove their content from, e.g., GitHub.

3. A particular version number/commit reference may not represent a “preferred” point at

which to cite the software from the perspective of the package authors.

We recognize that there are certain situations where it may not be possible to follow

the recommended best-practice. For example, if (1) the software authors did not

register a DOI and/or release a specific version, or (2) the version of the software used

does not match what is available to cite. In those cases, falling back on a combination

of the repository URL and version number/commit hash would be an appropriate way to

cite the software used.

Note that the “unique” in a UID means that it points to a unique, specific software

version. However, multiple UIDs might point to the same software. This is not

recommended, but is possible. We strongly recommend that if there is already a UID for a

version of software, no additional UID should be created. Multiple UIDs can lead to split

credit, which goes against the Credit and Attribution principle (2).

Software versions and identifiers
There are at least three different potential relationships between identifiers and versions

of software:

1. An identifier can point to a specific version of a piece of software.

2. An identifier can point to the piece of software, effectively all versions of the software.

3. An identifier can point to the latest version of a piece of software.
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It is possible that a given piece of software may have identifiers of all three types. In

addition, there may be one or more software papers, each with an identifier.

While we often need to cite a specific version of software, we may also need a way to

cite the software in general and to link multiple releases together, perhaps for the

purpose of understanding citations to the software. The principles in section Software

Citation Principles are intended to be applicable at all levels, and to all types of identifiers,

such as DOIs, RRIDs, etc., though we again recommend when possible the use of

DOIs that identify specific versions of source code. We note that RRIDs were developed

by the FORCE11 Resource Identification Initiative (https://www.force11.org/group/

resource-identification-initiative) and have been discussed for use to identify software

packages (not specific versions), though the FORCE11 Resource Identification

Technical Specifications Working Group (https://www.force11.org/group/resource-

identification-technical-specifications-working-group) says “Information resources like

software are better suited to the Software Citation WG.” There is currently a lack of

consensus on the use of RRIDs for software.

Types of software
The principles and discussion in this document have generally been written to focus on

software as source code. However, we recognize that some software is only available as

an executable, a container, or a virtual machine image, while other software may be

available as a service. We believe the principles apply to all of these forms of software,

though the implementation of them will certainly differ based on software type. When

software is accessible as both source code and another type, we recommend that the source

code be cited.

Access to software
The Accessibility principle (5) states that “software citations should permit and facilitate

access to the software itself.” This does not mean that the software must be freely

available. Rather, the metadata should provide enough information that the software

can be accessed. If the software is free, the metadata will likely provide an identifier

that can be resolved to a URL pointing to the specific version of the software being cited.

For commercial software, the metadata should still provide information on how to

access the specific software, but this may be a company’s product number or a link to a

website that allows the software be purchased. As stated in the Persistence principle (4),

we recognize that the software version may no longer be available, but it still should

be cited along with information about how it was accessed.

What an identifier should resolve to
While citing an identifier that points to, e.g., a GitHub repository can satisfy the principles

of Unique Identification (3), Accessibility (5), and Specificity (6), such a repository

cannot guarantee Persistence (4). Therefore, we recommend that the software identifier

should resolve to a persistent landing page that contains metadata and a link to the software

itself, rather than directly to the source code files, repository, or executable. This ensures
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longevity of the software metadata—even perhaps beyond the lifespan of the software

they describe. This is currently offered by services such as figshare and Zenodo

(GitHub, 2014), which both generate persistent DataCite DOIs for submitted software.

In addition, such landing pages can contain both human-readable metadata (e.g., the

types shown by Table 2) as well as content-negotiable formats such as RDF or DOAP

(https://github.com/edumbill/doap/).

Updates to these principles
As this set of software citation principles has been created by the FORCE11 Software

Citation Working Group (https://www.force11.org/group/software-citation-working-

group), which will cease work and dissolve after publication of these principles, any

updates will require a different FORCE11 working group to make them. As mentioned in

section Future Work, we expect a follow-on working group to be established to

promote the implementation of these principles, and it is possible that this group might

find items that need correction or addition in these principles. We recommend that this

Software Citation Implementation Working Group be charged, in part, with updating

these principles during its lifetime, and that FORCE11 should listen to community

requests for later updates and respond by creating a new working group.

FUTURE WORK
Software citation principles without clear worked-through examples are of limited value

to potential implementers, and so in addition to this principles document, the final

deliverable of this working group will be an implementation paper outlining working

examples for each of the use cases listed in section Use Cases.

Following these efforts, we expect that FORCE11 will start a new working group with

the goals of supporting potential implementers of the software citation principles and

concurrently developing potential metadata standards, loosely following the model

of the FORCE11 Data Citation Working Group. Beyond the efforts of this new

working group, additional effort should be focused on updating the overall academic

credit/citation system.
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APPENDIX B
Software citation use cases
This appendix records an edited, extended description of the use cases discussed in

section Use Cases, originally found in FORCE11 Software Citation Working Group.

This discussion is not fully complete, and in some cases, it may not be fully self-consistent,

but it is part of this paper as a record of one of the inputs to the principles. We expect

that the follow-on Software Citation Implementation Group will further develop these

use cases, including explaining in more detail how the software citation principles

can be applied to each as part of working with the stakeholders to persuade them to

actually implement the principles in their standard workflows.

Researcher who uses someone else’s software for a paper
One of the most common use cases may be researchers who use someone else’s software

and want to cite it in a technical paper. This will be similar to existing practices for citing

research artifacts in papers.

“Requirements” for researcher:

� Name of software

� Names of software authors/contributors

� Software version number and release date, or download date

� Location/repository, or contact name/email (if not publicly available)

� Citable DOI of software

� Format for citing software in text and in bibliography

Possible steps:

1. Software developers create CITATION file and associate with source code release/

repository.

2. Researcher finds and uses software for research paper.

3. Researcher identifies citation metadata file (e.g., “CITATION” file) associated with

downloaded/installed software source code or in online repository/published location.
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CITATION file includes necessary citation metadata. CITATION file may include

BibTeX entry, suggested citation format.

4. Researcher cites software appropriately, e.g., in methodology section; reference

included in bibliography.

Researcher who uses someone else’s software for new software

In this case, a researcher develops new software that incorporates or depends on existing

software. In order to credit the developer(s), the researcher will include citations in his/her

source code, documentation, or other metadata in a similar manner to papers.

Requirements for researcher:

� Name of software

� Names of software authors/contributors

� Software version number and release date

� Location/repository

� Citable DOI of software

� Format for citing software in source code, documentation, or citation metadata file

Possible steps:

1. Assume that software developers have created a CITATION file and associated with the

source code release/repository.

2. Researcher finds and uses software in the development of new software.

3. Researcher identifies citation metadata file (e.g., “CITATION” file) associated with

downloaded/installed software source code or in online repository/published location.

CITATION file includes necessary citation metadata. CITATION file may include

BibTeX entry, suggested citation format.

4. Researcher cites software in source code, documentation, or other metadata-

containing file.

Researcher who contributes to someone else’s software
(open source project)
A researcher wants to contribute to someone else’s software in the manner in which their

contributions will be accepted and recognized.

Possible steps:

1. Researcher finds information about the software, and how contributors will be recognized

2. Researcher possibly submit a Contributor License Agreement (CLA) or Copyright

Assignment Agreement (CAA) to allow the contributed content to be distributed with

the software being contributed to

3. Researcher contributes to the software

4. Software maintainers accept contribution, recognize researcher’s contribution, and

update the software metadata as appropriate
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Researcher who wants to know who uses the researcher’s software
This case is similar to a researcher who wants to find other papers/publications that

cite a particular paper. A researcher wants to gauge the usage of her software within

or across communities and measure its impact on research for both credit and

funding.

Requirements:

� Uniquely identify software

� Indexed citations of software

� Indexed papers that use software

Steps:

1. Researcher finds software official name or unique DOI in metadata associated with

downloaded/installed source code or in online repository/published location.

2. Researcher searches for software, may use online indexer (e.g., Scopus, Web of Science,

Google Scholar) using software name or DOI.

3. Online indexer presents entry for software with list of citations, if any. Ideally,

entry will also include metadata contained in software CITATION file and

citation example.

Researcher gets credit for software development at the
academic/governmental institution, in professional career, etc
This case describes the need for a researcher who has contributed to software (by design,

software engineering, development, testing, patching, documentation, training,

evangelizing, etc.) to have their software work recognized by their employer or colleagues

for the purpose of career advancement and increased professional reputation.

Requirements for researcher:

� Name of software

� Names of software authors/contributors

� Location/repository

� Citable DOI of software

� Format for citing software in an official CV, in a departmental/institutional review

report, etc.

� Role in the software creation, that is linked to version or component

� Role in contributing to the software as a “package” (not just lines of code) development

of benchmarks, testing, documentation, tutorials etc.

Researcher who wants to “reproduce” another person/group’s analysis

When a researcher wants to understand or verify a research results from another

researcher, they would like to use the same software. Note that accessing the exact same

software is necessary but not sufficient for reproducibility.
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Requirements for researcher:

� Name of software

� Location/repository for the exact release that was used

� DOI or other persistent handle for that specific release

� Release has all components necessary for reproducing the work (Note: this ideally also

means sample inputs and outputs)

Researcher who wants to find a piece of software to implement a task
This is the case where a research is looking for software to use but wants to understand

whether it is being used in a scholarly fashion. For example, a researcher searches

through a software repository and finds a package that might be useful. They look to find

whether it has been used by others in the scientific literature.

Requirements:

� Either the software documentation page has a reference to existing literature that

makes use of it.

� There is a mechanism to look it up.

Publisher wants to publish a software paper
This case asks what information regarding software is needed for a publisher who wants to

publish a paper describing that software.

Requirements:

� Name of software

� Names of software authors/contributors

� Location/repository

� Citable DOI of software

� Format for citing software in JATS, for example, as well as references in the

text itself

Publisher who wants to publish papers that cite software
This case asks what information regarding software is needed for a publisher who wants to

publish papers that cite that software.

Requirements for publisher:

� Name of software

� Names of software authors/contributors

� Location/repository

� Citable DOI of software

� Format for citing software in, e.g., JATS, as well as references in the text itself
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Indexer (e.g., Scopus, WoS, Scholar, MS Academic Search) who
wants to build a catalog of software

Provide an index over the software that is used within the research domain. Track how

that software is being used by different groups of researchers and to what ends.

Requirements:

� Uniquely identify pieces of software used by the research literature

� Connect authors and organizations to that software

� Connect various software versions together

Domain group (e.g., ASCL, bioCADDIE), Libraries, and Archives
(e.g., University library, laboratory archive, etc.) wants to build

a catalog/registry of institutional or domain software
There are two different examples here: One is building a catalog/archive of software

produced by those affiliated with the institution. The other is along the lines of Sayeed

Choudhury’s note that “data are the new special collections.” An institution may

choose to build a catalog/archive of many things within a single topic or subject in order

to secure all the software on a certain topic or build a collection that may draw users

to their establishment, much like special collections now do for university libraries

and archives.

Repository showing scientific impact of holdings
A repository that archives and/or maintains a collection of software. The repository would

like to address usage and impact of software in its holding. Usage would aid potential

users whether the software is being actively maintained or developed or has been

superseded. Both would help repository know how to direct resources, e.g., maintenance,

training etc. This is similar to the case of a funder wanting to know the impact of

funded work.

Requirements:

� Code name, or a unique identifier

� Relationships to previous versions

� Connect to repository

� Connect to research

Funder who wants to know how software they funded has been used
This use case is similar to “Repository showing scientific impact of holdings”,

where a funder wants to find out the use and impact and software that they supported.

It is also similar to “Researcher who wants to know who uses the researcher’s software.”

Evaluator or funder wants to evaluate contributions of a researcher
In this use case, an evaluator (e.g., academic administrator) or funder wants to evaluate

the contributions of a researcher who develops software. This case is related to those
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where researchers want to get credit for software development, or where organizations

want to evaluate the impact of software itself.

Reference management system used by researchers to
author a manuscript

Reference management systems may need to be updated to internally understand that

their is a software reference type, and to be able to output references to software in

common formats.

Requirements for reference manager:

� Names of software authors/contributors

� Software version number and release date

� Location/repository

� Citable DOI of software or paper recommended for citation

� Format for citing software in citation metadata file

� Citation metadata tags embedded in DOI landing page/software project page for easy

ingest

Possible steps:

1. Reference management system such as EndNote, Mendeley, Zotero, etc. builds

affordances for software references.

2. Researcher finds software citation and adds it to their reference manager library, by

(a) importing from the CITATION file (e.g., BibTeX, RIS), or (b) clicking on,

e.g., an “add to Zotero library” widget in web browser.

3. Researcher writes a paper and uses the reference manager to generate citations or

bibliography.

Repository wants to publish mixed data/software packages
Domain and institutional data repositories have both data and software artifacts, and

want to link these together in a provenance trace that can be cited. Sometimes the software

is a separately identified artifact, but at other times software is included inside of data

packages, and the researcher wants to cite the combined product.

Use cases not adopted in the table
Researcher who benchmarks someone else’s software
with or without modification on one or many hardware platforms
for publication
This case describes the need for a researcher who has contributed to software

(by design, software engineering, development, testing, patching, documentation,

training, evangelizing, etc.) to have their software work recognized by their employer

or colleagues for the purpose of career advancement and increased professional

reputation.

Smith et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.86 21/31

http://dx.doi.org/10.7717/peerj-cs.86
https://peerj.com/computer-science/


Requirements for researcher:

� Name of software

� Names of software authors/contributors

� Software version number and release date

� Location/repository

� Citable DOI of software or paper recommended for citation

� Format for citing software in source code or citation metadata file

Possible steps:

1. Software developers create CITATION file and associate with source code

release/repository.

2. Researcher finds and uses software in the development of new software.

3. Researcher identifies citation metadata file (e.g., CITATION file) associated with

downloaded/installed software source code or in online repository/published location.

CITATION file includes necessary citation metadata. CITATION file may include

BibTeX entry, suggested citation format.

4. Researcher cites software in source code, documentation, or other

metadata-containing file.

After review of this use case, we decided that based on the title this falls under use

case 1, where a researcher uses someone else’s software for a paper. Unlike use case 1,

which is general in terms of the use of software, here the use leads to a benchmarking

study—but the outcome in both cases is a paper that needs to cite the software.

Researcher who wants to publish about a piece of software
The research wants to publish about a version of software they have produced. A key part

of this use case is to be able to connect the given narrative to a specific version of the

software in questions and connect that in large story.

Requirements:

� Name of software

� Names of software authors/contributors

� Location/repository

� Citable DOI of Software

� Links to older versions of software

This is similar to use case 1, other than the fact that the software developer(s) and

paper author(s) will likely be the same person/people here.

Researcher wants to record the software that generated some data
This is the case where a researcher is using some software to perform an analysis, either of

a physical sample or of data. The researcher needs to know which version was used, for
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example in case a bug was fixed. Note that knowing the software and its version is not

sufficient to determine the “conditions” of the analysis, but they are essential.

Requirement: The analysis, or the generated data, has information about the software

used.

This is also similar to use case 1, except in that case the research output is a paper, while

here the output is a dataset.

Researcher who wants to reproduce experience of use of
a particular software implementation in context
Researcher is engaged in historical/cultural research, e.g., a study of video games as

cultural artifacts.

Requirements:

� Name of software

� Software version number

� Documentation of the execution environment/context

� Location/repository for virtual machine (or equivalent) comprising both software and

execution environment/context

� Persistent identifier associated with virtual machine instance (or equivalent)

comprising both software and execution environment/context

Possible steps:

1. Researcher obtains persistent ID from citation

2. Research uses a persistent ID resolution service to resolve ID to a location of an

executable VM instance in a repository

3. Researcher obtains VM in the repository, executes it, and interacts with software

This overlaps use case 6 (reproducing analysis), and so we decided not to include this as

a distinct use case.

APPENDIX C
Feedback following FORCE2016
This appendix contains a record of comments made by the FORCE11 community on

the draft Software Citation Principles, either directly via Hypothesis on the draft

document (https://www.force11.org/softwarecitation-principles) posted following the

FORCE2016 conference (https://www.force11.org/meetings/force2016) or via GitHub

issues (https://github.com/force11/force11-scwg/issues), and the responses to these

comments.

On unique identification
I know this suggestion of a single unique identifier comes from the DOI perspective where

it works pretty well, but I’m wondering if something different in the way of identification

should be used for software. For creative works generally there is the FRBR model

Smith et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.86 23/31

https://www.force11.org/softwarecitation-principles
https://www.force11.org/meetings/force2016
https://github.com/force11/force11-scwg/issues
http://dx.doi.org/10.7717/peerj-cs.86
https://peerj.com/computer-science/


(https://en.wikipedia.org/wiki/Functional_Requirements_for_Bibliographic_Records)

which defines several levels for a creative entity—“work,” “expression,” “manifestation,”

and “item.” I think something along these lines are particularly relevant for software—it

is useful to be able to locate all uses of a particular piece of software no matter

what version (the “work” level—software identified by a particular name and purpose

over a period of time), but it is also important to specify the particular version used

in any given work (“expression”—the source code at the time of use) and in some

cases also the platform (“manifestation”—the compiled bytes including libraries,

for example a docker image). “Item” probably isn’t relevant for software. That is, I

think a software citation perhaps could use THREE distinct unique identifiers, one

for the work itself, one for the specific version (source code), and possibly an additional

one for the actual downloadable binary image that can be run. Rather than leave it

implicit I think recognizing the different levels of citable record would be helpful

here. #F11SC

Reply: I interpret the requirement for “global uniqueness” as referring to the identifier

itself. Two different people can have the same name (not globally unique) but cannot

share a single ORCID (globally unique). Global uniqueness of the identifier does

not preclude multiple identifiers pointing to the same person. I think the suggestion

of differentiating between different software expressions/manifestations/items is a

reasonable one, but I don’t think it relaxes the requirement for identifiers to be

globally unique.

Our response: We agree that there are valid points here, but on balance we don’t feel

that the rewards from implementing this outweigh the practical challenges.

On accessibility
Should this document address this in further detail? For example, “permit and facilitate

access” could be explored further. Should this be done through open access licensing?

repositories? Who’s responsible for providing this access?

I am also wondering if this is a separate issue since “citing” traditionally pointed to

publications but did not necessarily address access. DOI, for example is stated, but doesn’t

guarantee “access,” so does this simply restating point 3, or should it provide

something new?

Our response: We agree that accessibility should receive further attention, which the

follow-on group focusing on implementation will provide. However, this is out of scope

for the document outlining the principles.

To the second point, accessibility provides information about access, but does not

guarantee access itself (e.g., paywalled article).

On specificity
I amwondering if this should be folded into number 3 “Unique Identification.” Both seem

to deal with the issue of identification and access.

Our response: A unique software identifier can point to the specific version/variant of

software, but it can also identify other things (collection of versions, repository, etc.),
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while this principle deals with the need to identify the specific version of software used

(via citation).

On academic credit
A lot of software that were developed by non-academic engineers also contribute to

academic research indirectly. Their names and contributions should also be credited.

So removing “Academic” makes more sense?

Reply: This is a good point, though I think academic and non-academic credit are

different, so perhaps we can add to this regarding non-academic credit, rather than

removing “academic.”

Reply: I agree with Daniel on this. Keep Academic and add non-academic.

Our response: We’ve made the bullet more general, just about credit, discussing

academic credit and adding a sentence about non-academic credit as well.

On citations in text

Although the focus here is on citations in the references, as a publisher, our experience

is that most common practice of “citation” of data and software for authors is

typically in the main body of the text. In order to encourage software to be treated

and valued as a first-class research object, it is important that citations to it be

positioned in the references as citations to articles and books are. However, it

would be a missed opportunity if we did not leverage current practices of authors.

This will also likely arise during implementation, as it has for the Data Citation

Implementation Publisher Early Adopters Pilot. This could be addressed in future

work on implementation.

Our response: In the principles, we propose that software should be cited in the

references list, to recognize the primary role of software in research. However, this practice

is not mutually exclusive with also referencing/citing software in the main body of a

paper—as long as the software is cited in the references.

On unique identification
Clearer instructions will be needed for authors on which version to cite. For BioMed

Central journals, we ask authors to cite two versions of the software, an archived

version (e.g., on Zenodo) as well as the current version (e.g., on GitHub). This is to

ensure accessibility. However, if repositories and archives were to include a persistent

link to the current version of the software, publishers could then instruct authors to

cite only software with a UID, which wouldn’t point to a current version, but

would point to the version(s) used and would be a more accurate version of scientific

record. Related to this point is the idea of group object identifiers. A need for group

identifiers has been identified in the area of data (e.g., in the case of meta-analyses),

and one could also identify a use case for these in the case of software, collecting

metadata around all versions of a given software package. See blog here (https://blog.

datacite.org/to-better-understand-research-communication-we-need-a-groid-group-

object-identifier/).
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Our response: We recommend citing the specific version of the software that was

used. We expect that the unique identifier (e.g., DOI) will point to a landing page

that directs to the repository/current version. However, this is more of a convenience

issue that the software developers should address, rather than the author citing the

software they used.

On future work
For implementation we would recommend both consulting with adopters as well as

developing metadata standards simultaneously rather than developing metadata

standards and then pursuing early adopters implementation. The work early adopters are

doing now for data citation will be able to be leveraged for software citation and the

changes needed to do so could happen now. There is no need to wait on approval of

new tagging for a specific metadata standard. Many publishers will have their own

preferred metadata standards and so implementation could begin now with publishers, as

long as we know what we want to capture. Future implementation groups might also

consider levels of contribution. This is particularly relevant for software. Who is

considered an author? For example, to what extent should authors of pull requests

receive attribution? This might be considered in an FAQs group, or possibly an early

adopters group.

Our response:We agree that metadata standards should be developed with the input of

adopters, and have updated this text accordingly.

Additional thoughts (not sure what section this applies to)
The principles do not address virtual machines. As these are becoming more common and

relevant when addressing the reproducibility of research, it is important this “form” of

software is acknowledged. The question remains in which cases should authors cite the

current version, which the static archived version, and in which the virtual machine?

In this way software is very much a unique evolving research object and might not fit

perfectly into the same citation practices and structure as other research objects. In

addition, software citation could possibly occur within the virtual machine. This could be

added as a use case.

Our response:We feel this has been addressed in Section 5.8, with the explicit addition

of virtual machines in addition to executables and containers. This is also an issue that

should be addressed further by the follow-on implementation working group.

On persistence of identifier vs. persistence of software
The persistence principle outlined in (4) is a key element in making software citeable.

Where software has become part of the record of science not only the identifier and

metadata of the software should be persistent, it should also be the goal to keep a

persistent copy of the source code, where applicable. This links with the accessibility

principle (5).

There are still many open questions about how to resolve package dependencies

in the long term, therefore I would not make the persistent access to code a hard
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requirement but may add something more specific towards preserving the record

of science.

Our response:Our goal is for software citations to point to (persistent) archived source

code, but we are not—nor could we—require this.

Granularity of the citation

One of the key issues with any citation, whether document, individual, or software is

the specificity of what is being cited. In the case of publications, there is almost zero

specificity most of the time.

It’s very easy to cite an entire package even though one function was used.

Part of this problem is being solved in the Python world through this project

(https://github.com/duecredit/duecredit).

Any citation should have the ability to specify more than just the obvious, but even the

obvious would be a good starting point.

The citation/url should therefore allow for greater specificity within a code base. In

general though, a provenance record of the workflow would be significantly more useful

than a citation from a research perspective.

Our response: We agree that greater specificity is desirable in some cases, but we do

not believe this rises to the level of what should be specified or discussed in the

principles at this time.

“Software citations should permit : : : access to the software itself”
Under the “Access” header, the data declaration states that:

Data citations should facilitate access to the data themselves.

Under the same header, the software declaration states:

Software citations should permit and facilitate access to the software itself.

The addition of “permit” suggests that software citations should also grant the user

with permission to access the software. Is this intentional?

It doesn’t seem like a good idea to make access a requirement for discovery, so “permit”

might not be helpful in this sentence.

Our response: To avoid confusion, we removed “permit and” from the accessibility

principle.

Access to software: free vs commercial
The section talks about software that is “free” as well as “commercial” software. I am not

sure whether this is about free as in freedom (or just gratis or freely available), since it is

compared with commercial software, which is unrelated in general, see http://www.gnu.

org/philosophy/words-to-avoid.html#Commercial.

I suppose that “free” should be replaced by “gratis” and “commercial” be replaced by

“non-free” in that section.

Our response: We think this is sufficiently clear as written.
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