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An explicit link between Gaussian fields and
Gaussian Markov random fields:
The stochastic partial differential equation approach

Finn Lindgren and Håvard Rue†
Department of Mathematical Sciences
Norwegian University of Science and Technology
NTNU, Trondheim, Norway

and Johan Lindström
Mathematical Statistics, Centre for Mathematical Sciences
Lund University, Lund, Sweden

Summary. Continuously indexed Gaussian fields (GFs) is the most important ingredient in spatial
statistical modelling and geostatistics. The specification through the covariance function gives an
intuitive interpretation of the field properties. On the computational side, GFs are hampered with
the big n problem, since the cost of factorising dense matrices is cubic in the dimension. Although
the computational power today is at an all-time-high, this fact seems still to be a computational
bottleneck in many applications. Along with GFs, there is the class of Gaussian Markov random
fields (GMRFs) which are discretely indexed. The Markov property makes the involved precision
matrix sparse which enables the use of numerical algorithms for sparse matrices, that for fields in
R2 only use the square-root of the time required by general algorithms. The specification of a GMRF
is through its full conditional distributions but its marginal properties are not transparent in such a
parametrisation.

In this paper, we show that using an approximate stochastic weak solution to (linear) stochastic
partial differential equations (SPDEs), we can, for some GFs in the Matérn class, provide an explicit
link, for any triangulation of Rd, between GFs and GMRFs, formulated as a basis function represen-
tation. The consequence is that we can take the best from the two worlds and do the modelling using
GFs but do the computations using GMRFs. Perhaps more importantly, our approach generalises
to other covariance functions generated by SPDEs, including oscillating and non-stationary GFs, as
well as GFs on manifolds. We illustrate our approach by analysing global temperature data with a
non-stationary model defined on a sphere.

Keywords: Approximate Bayesian inference, Covariance functions, Gaussian Markov random
fields, Gaussian fields, Latent Gaussian models, Sparse matrices, Stochastic partial differential
equations.

1. Introduction

Gaussian fields (GFs) have a dominant role in spatial statistics and especially in the traditional field
of geostatistics (Cressie, 1993; Stein, 1999; Chilés and Delfiner, 1999; Diggle and Ribeiro, 2006), and
form an important building block in modern hierarchical spatial models (Banerjee et al., 2004). GFs
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is one of a few appropriate multivariate models with an explicit and computable normalising constant
and has otherwise good analytic properties. In a domain D ∈ Rd with coordinate s ∈ D, x(s) is a
continuously indexed GF if all finite collections {x(si)} are jointly Gaussian distributed. In most cases,
the Gaussian field is specified using a mean function µ(·) and a covariance function C(·, ·), so the mean
is µ = (µ(si)) and the covariance matrix is Σ = (C(si, sj)). Often the covariance function is only a
function of the relative position of two locations, in which case it is said to be stationary, and it is isotropic
if the covariance functions only depends on the Euclidean distance between the locations. Since a regular
covariance matrix is positive definite, the covariance function must be a positive definite function. This
restriction makes it difficult to “invent” covariance functions stated as closed form expressions. Bochner’s
theorem can be used in this context, as it characterises all continuous positive definite functions in Rd.

Although GFs are convenient from both an analytical and a practical point of view, the computational
issues have always been a bottleneck. This is due to the general cost of O(n3) to factorise dense n × n
(covariance) matrices. Although the computational power today is all-time-high, the tendency seems
to be that the dimension n is always set, or we want to set it, a bit higher than the value that gives a
reasonable computation time. The increasing popularity of hierarchical Bayesian models has made this
issue more important, as “repeated computations (as for simulation-based model fitting) can be very slow,
perhaps infeasible” (Banerjee et al., 2004, p.387), and the situation is informally referred to as “the big n
problem”.

There are several approaches trying to overcome or avoid “the big n problem”. The spectral repre-
sentation approach for the likelihood (Whittle, 1954) makes it possible to estimate the (power-)spectrum
(using discrete Fourier transforms calculations) and compute the log-likelihood from it (Guyon, 1982;
Dahlhaus and Künsch, 1987; Fuentes, 2008) but this is only possible for directly observed stationary GFs
on a (near-)regular lattice. Vecchia (1988) and Stein et al. (2004) propose to use an approximate likeli-
hood constructed through a sequential representation and then simplify the conditioning set, and similar
ideas also apply when computing conditional expectations (Kriging). An alternative approach is to do
exact computations on a simplified Gaussian model of low rank (Banerjee et al., 2008; Cressie and Jo-
hannesson, 2008; Eidsvik et al., 2010). Furrer et al. (2006) apply covariance tapering to zero-out parts
of the covariance matrix to gain computational speedup. However, the sparsity pattern will depend on
the range of the GFs, and the potential in a related approach, named “lattice methods” by Banerjee et al.
(2004, A.5.3), is superior to the covariance tapering idea. In this approach the GF is replaced by a Gaus-
sian Markov random field (GMRF); see Rue and Held (2005) for a detailed introduction and Rue et al.
(2009, Sec. 2.1) for a condensed review. A GMRF is a discretely indexed Gaussian field x, where the
full conditionals π(xi | x−i), i = 1, . . . , n, only depend on a set of neighbours ∂i to each site i (where
consistency requirements imply that if i ∈ ∂j then also j ∈ ∂i). The computational gain comes from
the fact that the zero-pattern of the precision matrix Q (the inverse covariance matrix) relates directly to
the notion of neighbours; Qij 6= 0 ⇐⇒ i ∈ ∂j ∪ j, see, for example, Rue and Held (2005, Sec 2.2).
Algorithms for MCMC will repeatedly update from these simple full conditionals, which explains to a
large extent the popularity of GMRFs in recent years, starting already with the seminal papers by J. Be-
sag (Besag, 1974, 1975). However, GMRFs also allow for fast direct numerical algorithms (Rue, 2001),
as numerical factorisation of the matrix Q can be done using sparse matrix algorithms (George and Liu,
1981; Duff et al., 1989; Davis, 2006) at a typical cost of O(n3/2) for two-dimensional GMRFs; see (Rue
and Held, 2005) for detailed algorithms. GMRFs have very good computational properties, which is of
major importance in Bayesian inferential methods. This is further enhanced by the link to nested inte-
grated Laplace approximations (INLA) (Rue et al., 2009), which allows for fast and accurate Bayesian
inference for latent Gaussian field models.

Although GMRFs have very good computational properties, there are reasons for why current statis-
tical models based on GMRFs are relatively simple, in particular when applied to area data from regions
or counties. First, there has been no good way to parametrise the precision matrix of a GMRF to achieve
a predefined behaviour in terms of correlation between two sites and to control marginal variances. In
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matrix terms, the reason for this is that one must construct a positive definite precision matrix in order
to obtain a positive definite covariance matrix as its inverse, so the conditions for proper covariance ma-
trices are replaced by essentially equivalent conditions for sparse precision matrices. Therefore, often
simplistic approaches are taken, like letting Qij be related to the reciprocal distance between sites i and
j (Besag et al., 1991; Arjas and Gasbarra, 1996; Weir and Pettitt, 2000; Pettitt et al., 2002; Gschlößl and
Czado, 2007), however a more detailed analysis shows that such a rationale is suboptimal (Besag and
Kooperberg, 1995; Rue and Tjelmeland, 2002) and can give surprising effects (Wall, 2004). Secondly, it
is unclear how large the class of useful GMRF models really is using only a simple neighbourhood. The
complicating issue here is the global positive definiteness constraint, and it might not be evident how this
influences the parametrisation of the full conditionals.

Rue and Tjelmeland (2002) demonstrated empirically that GMRFs could closely approximate most
of the commonly used covariance functions in geostatistics, and proposed to use them as computational
replacements for GFs for computational reasons like doing Kriging (Hartman and Hössjer, 2008). How-
ever, there were several drawbacks with their approach; First, the fitting of GMRFs to GFs was restricted
to a regular lattice (or torus) and the fit itself had to be precomputed for a discrete set of parameter values
(like smoothness and range), using a time-consuming numerical optimisation. Despite these ‘proof-of-
concept’ results, several authors have followed up this idea without any notable progress in the method-
ology (Hrafnkelsson and Cressie, 2003; Song et al., 2008; Cressie and Verzelen, 2008), but the approach
itself has shown useful even for spatio-temporal models (Allcroft and Glasbey, 2003).

The discussion so far has revealed a modelling/computational strategy for approaching “the big n
problem” in a seemingly good way:

(a) Do the modelling using a GF on a set of locations {si}, to construct a discretised GF with covari-
ance matrix Σ

(b) Find a GMRF with local neighbourhood and precision matrix Q that represents the GF in the best
possible way; i.e. Q−1 is close to Σ in some norm. (We deliberately use the word “represents”
instead of approximates.)

(c) Do the computations using the GMRF representation using numerical methods for sparse matrices.

Such an approach relies on several assumptions. First the GF must be of such a type that there exists
a GMRF with local neighbourhood that can represent it sufficiently accurately in order to maintain the
interpretation of the parameters and the results. Secondly, we must be able to compute the GMRF repre-
sentation from the GF, at any collections of locations, so fast, that we still achieve a considerable speedup
compared to treating the GF directly.

The purpose of this paper is to demonstrate that these requirements can indeed be met for certain
members of GF with the Matérn covariance function in Rd, where the GMRF representation is available
explicitly. Although these results are seemingly restrictive at first sight, they do cover the most important
and used covariance model in spatial statistics; see Stein (1999, p.14) which concluded a detailed theo-
retical analysis with “Use the Matérn model”. The GMRF representation can be constructed explicitly
using a certain stochastic partial differential equation (SPDE) which has GFs with Matérn covariance
function as the solution when driven by Gaussian white noise. The result is a basis function representa-
tion with piecewise linear basis functions, and Gaussian weights with Markov dependencies determined
by a general triangulation of the domain.

Rather surprisingly, extending this basic result seems to open new doors and opportunities, and pro-
vide rather simple answers to rather difficult modelling problems. In particular, we will show how this
approach extends to Matérn fields on manifolds, non-stationary fields and fields with oscillating covari-
ance functions. Further, we will discuss the link to the deformation method by Sampson and Guttorp
(1992) for non-stationary covariances for non-isotropic models, and how our approach naturally extends
to non-separable space-time models. Our basic task, to do the modelling using GF and the computations
using the GMRF representation, still holds for these extensions as the GMRF representation is still avail-
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able explicitly. An important observation is that the resulting modelling strategy does not involve having
to construct explicit formulae for the covariance functions, which are instead only defined implicitly
through the SPDE specifications.

The plan of rest of this paper is as follows. In Sec. 2, we discuss the relationship between Matérn
covariances and a specific stochastic partial differential equation, and present the two main results for
explicitly constructing the precision matrices for GMRFs based on this relationship. In Sec. 3, the results
are extended to fields on triangulated manifolds, non-stationary and oscillating models, and non-separable
space-time models. The extensions are illustrated with a non-stationary analysis of global temperature
data in Sec. 4, and we conclude the main part of the paper with a discussion in Sec. 5. Thereafter follows
four technical appendices, with explicit representation results (A), theory for random fields on manifolds
(B), the Hilbert space representation details (C), and proofs of the technical details (D).

2. Preliminaries and main results

This section will introduce the Matérn covariance model and discuss its representation through a SPDE.
We will state explicit results for the GMRF representation of Matérn fields on a regular lattice and do an
informal summary of the main results.

2.1. The Matérn covariance model and its SPDE
Let ‖ · ‖ denote the Euclidean distance in Rd. The Matérn covariance function between locations u,v ∈
Rd, is defined as

r(u,v) =
σ2

Γ(ν)2ν−1
(κ‖v − u‖)νKν(κ‖v − u‖). (1)

Here, Kν is the modified Bessel function of second kind and order ν > 0, κ > 0 is a scaling parameter
and σ2 is the marginal variance. The integer value of ν determines the mean square differentiability of the
underlying process, which matters for predictions made using such a model. However, ν is usually fixed
since it is poorly identified in typically applications. A more natural interpretation of the scaling parameter
κ is as a range parameter ρ; the Euclidean distance where x(u) and x(v) is almost independent. Lacking
a simple relationship, we will throughout this paper use the empirically derived definition ρ =

√
8ν/κ,

corresponding to correlations near 0.1 at the distance ρ, for all ν.
The Matérn covariance function appears naturally in a number of scientific fields (Guttorp and Gneit-

ing, 2006), but the important relationship that we will make use of is that a Gaussian field x(u) with the
Matérn covariance is a solution to the linear fractional stochastic partial differential equation (SPDE)

(κ2 −∆)α/2x(u) =W(u), u ∈ Rd, α = ν + d/2, κ > 0, ν > 0, (2)

where (κ2 − ∆)α/2 is a pseudo-differential operator that we will define later in (4) through its spectral
properties (Whittle, 1954, 1963). The innovation process W is spatial Gaussian white noise with unit
variance, ∆ is the Laplacian

∆ =

d∑

i=1

∂2

∂x2
i

,

and the marginal variance is

σ2 =
Γ(ν)

Γ(ν + d/2)(4π)d/2κ2ν
.

We will name any solution to (2) a Matérn field in the following. However, the limiting solutions to the
SPDE (2) as κ → 0 or ν → 0 do not have Matérn covariance functions, but the SPDE still has solutions
when κ = 0 or ν = 0 which are well-defined random measures. We will return to this issue in App. C.3.



Gaussian Markov random fields: The SPDE approach 5

Further, there is an implicit assumption of appropriate boundary conditions for the SPDE, as for α ≥ 2 the
null-space of the differential operator is non-trivial, containing, for example, the functions exp(κeTu),
for all ‖e‖ = 1. The Matérn fields are the only stationary solutions to the SPDE.

The proof given by Whittle (1954, 1963) is to show that the wave-number spectrum of a stationary
solution is

R(k) = (2π)−d
(
κ2 + ‖k‖2

)−α
, (3)

using the Fourier transform definition of the fractional Laplacian in Rd,
{
F(κ2 −∆)α/2φ

}
(k) = (κ2 + ‖k‖2)α/2(Fφ)(k), (4)

where φ is a function on Rd for which the right-hand side of the definition has a well-defined inverse
Fourier transform.

2.2. Main results
This section contains our main results, however in a loose and imprecise form. In the Appendices, our
statements are made precise and the proofs are given. In the discussion we will restrict ourselves to
dimension d = 2 although our results are general.

2.2.1. Main result 1
For our first result, we will use some hand-waving arguments and a simple but powerful consequence of
a partly analytic result of Besag (1981). We will in the Appendices show that these results are true. Let x
be a GMRF on a regular (tending to infinite) two-dimensional lattice indexed by ij, where the Gaussian
full conditionals are

E(xij | x−ij) =
1

a
(xi−1,j + xi+1,j + xi,j−1 + xi,j+1) , Var(xij | x−ij) = 1/a (5)

and |a| > 4. To simplify notation, we write this particular model as

−1
a −1

(6)

which displays the elements of the precision matrix related to a single location (Chapter 3.4.2 in Rue
and Held, 2005, uses a related graphical notation). Due to symmetry, we only display the upper right
quadrant, with “a” as the central element. The approximate result (Besag, 1981, Eq. (14)) is that

Cov(xij , xi′j′) ≈
a

2π
K0(l

√
a− 4), l 6= 0

where l is the Euclidean distance between ij and i′j′. Evaluated for continuous distances, this is a
generalised covariance function, obtained from (1) in the limit ν → 0, with κ2 = a−4 and σ2 = a/(4π),
even though (1) requires ν > 0. Informally, this means that the discrete model defined by (5) generates
approximate solutions to the SPDE in (2) on a unit-distance regular grid, with ν = 0.

Solving (2) for α = 1 gives a generalised random field with spectrum

R1(k) ∝
{

(a− 4) + ‖k‖2
}−1

,

meaning that (some discretised version of) the SPDE acts like a linear filter with squared transfer-function
equal to R1. If we replace the noise term on the right hand side of (2) by Gaussian noise with spectrum
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Fig. 1. The Matérn correlations (solid line) for range 10 (left) and 100 (right), and the correlations for the
GMRF representation (circles).

R1, the resulting solution has spectrum R2 = R2
1, and so on. The consequence is GMRF representations

for the Matérn fields for ν = 1 and ν = 2, as convolutions of the coefficients in (6),

ν = 1 :
1

−2a 2
4 + a2 −2a 1

ν = 2 :

−1
3a −3

−3(a2 + 3) 6a −3
a(a2 + 12) −3(a2 + 3) 3a −1

The marginal variance is 1/(4πν(a − 4)ν). Fig. 1 shows how accurate these approximations are for
ν = 1 and range 10 and 100, displaying the Matérn correlations and the linearly interpolated correlations
for integer lags for the GMRF representation. For range 100 the results are indistinguishable. The root-
mean-square error between correlations up to twice the range, is 0.01 and 0.0003 for range 10 and 100,
respectively. The error in the marginal variance is 4% for range 10 and negligible for range 100.

Our first result confirms the above heuristics.

MAIN RESULT 1. The coefficients in the GMRF representation of (2) on a regular unit-distance two-
dimensional infinite lattice for ν = 1, 2, . . ., is found by convolving (6) by itself ν times.

Simple extensions of this result includes anisotropy along the main axes, as presented in App. A. A
rigorous formulation of the result is derived in the subsequent Appendices, showing that the basic result
is a special case of a more general link between SPDEs and GMRFs. The first such generalisation, based
on irregular grids, is the next main result.

2.3. Main result 2
Although Main Result 1 is useful in itself, it is not yet fully practical since often one does not want to
have a regular grid, to avoid interpolating the locations of observations to the nearest grid-point, and to
allow for finer resolution where details are required. We therefore extend the regular grid to irregular
grids, by subdividing R2 into a set of non-intersecting triangles, where any two triangles meet in at most
a common edge or corner. The three corners of a triangle are named vertices. In most cases we place
initial vertices at the locations for the observations, and add additional vertices to satisfy overall soft
constraints of the triangles, such as maximally allowed edge length, and minimally allowed angles. This
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Fig. 2. Panel (a) displays the locations of leukaemia survival observations, panel (b) the triangulation using
3446 triangles, and panel (c) displays a stationary correlation function (line) and the corresponding GMRF
approximation (dots) for ν = 1 and approximate range 0.26.

is a standard problem in engineering for solving partial differential equations using finite element methods
(Ciarlet, 1978; Brenner and Scott, 2007; Quarteroni and Valli, 2008), where the quality of the solutions
depends on the triangulation properties. Typically, the triangulation is chosen to maximise the minimum
interior triangle angle, so called Delaunay triangulations, which helps ensure that the transitions between
small and large triangles are smooth. The extra vertices are added heuristically to try to minimise the
total number of triangles needed to fulfil the size and shape constraints. See for example Edelsbrunner
(2001); Hjelle and Dæhlen (2006) for algorithm details. Our implementation in the R-inla package
(www.r-inla.org) is based on Hjelle and Dæhlen (2006).

To illustrate the process of triangulation of R2, we will use an example from Henderson et al. (2002)
which models spatial variation in leukaemia survival data in Northwest England. Fig. 2(a) displays the
locations of 1043 cases of acute myeloid leukaemia in adults who have been diagnosed between 1982
and 1998 in Northwest England. In the analysis, the spatial scale has been normalised so that the height
of the study region is equal to one. Panel (b) displays the triangulation of the area of interest, using fine
resolution around the data locations and rough resolution outside the area of interest. Further, we place
vertices at all data locations. The number of vertices in this example is 1749 and the number of triangles
is 3446.

In order to construct a GMRF representation of the Matérn field on the triangulated lattice, we start
with a stochastic weak formulation of the SPDE (2). Define the inner product

〈f, g〉 =

∫
f(u)g(u)du (7)

where the integral is over the region of interest. The stochastic weak solution of the SPDE is found by
requiring that

{
〈φj , (κ2 −∆)α/2x〉, j = 1, . . . , m

}
d
= {〈φj ,W〉, j = 1, . . . , m} (8)

for every appropriate finite set of test functions {φj(u), j = 1, . . . ,m}, where “ d=” denotes equality in
distribution.

The next step is to construct a finite element representation of the solution to the SPDE (Brenner and
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Scott, 2007) as

x(u) =

n∑

k=1

ψk(u)wk (9)

for some chosen basis functions {ψk} and Gaussian distributed weights {wk}. Here, n is the number of
vertices in the triangulation. We choose to use functions ψk that are piecewise linear in each triangle, de-
fined such that ψk is 1 at vertex k and zero at all other vertices. An interpretation of the representation (9)
with this choice of basis functions is that the weights determine the values of the field at the vertices, and
the values in the interior of the triangles are determined by linear interpolation. The full distribution of
the continuously indexed solution is determined by the joint distribution of the weights.

The finite dimensional solution is obtained by finding the distribution for the representation weights
in (9) that fulfils the stochastic weak SPDE formulation (8) for only a specific set of test functions, with
m = n. The choice of test functions, in relation to the basis functions, governs the approximation
properties of the resulting model representation. We choose φk = (κ2 − ∆)1/2ψk for α = 1 and
φk = ψk for α = 2. These two approximations are denoted the least squares and the Galerkin solution,
respectively. For α ≥ 3, we let α = 2 in the left-hand side of (2), and replace the right-hand side with a
field generated by α − 2, and let φk = ψk. In essence, this generates a recursive Galerkin formulation,
terminating in either α = 1 or α = 2; see App. C for details.

Define the n× n-matrices C,G, andK with entries

Cij = 〈ψi, ψj〉 , Gij = 〈∇ψi,∇ψj〉 , (Kκ2)ij = κ2Cij +Gij .

Using Neumann boundary conditions (zero normal-derivative at the boundary), we get our second main
result, expressed here for R1 and R2.

MAIN RESULT 2. LetQα,κ2 be the precision matrix for the Gaussian weightsw as defined in (9) for
α = 1, 2, . . ., as a function of κ2. Then the finite dimensional representations of the solutions to (2) have
precisions 




Q1,κ2 = Kκ2 ,

Q2,κ2 = Kκ2C−1Kκ2 ,

Qα,κ2 = Kκ2C−1Qα−2,κ2C−1Kκ2 , for α = 3, 4, . . . .
(10)

Some remarks concerning this result:

(a) The matrices C and G are easy to compute as their elements are non-zero only for pairs of basis
functions which share common triangles (a line segment in R1), and their values do not depend on
κ2. Explicit formulae are given in App. A.

(b) The matrix C−1 is dense, which makes the precision matrix dense as well. In App. C.5, we show
that C can be replaced by the diagonal matrix C̃, where C̃ii = 〈ψi, 1〉, which makes the precision
matrices sparse, and hence we obtain GMRF models.

(c) A consequence of the previous remarks is that we have an explicit mapping from the parameters of
the GF model to the elements of a GMRF precision matrix, with computational cost of O(n) for
any triangulation.

(d) For the special case where all the vertices are points on a regular lattice, using a regular triangular-
isation reduces Main Result 2 to Main Result 1. Note that the neighbourhood of the corresponding
GMRF in R2, is 3 × 3 for α = 1, is 5 × 5 for α = 2, and so on. Increased smoothness of the
random field induces a larger neighbourhood in the GMRF representation.

(e) In terms of the smoothness parameter ν in the Matérn covariance function, these results correspond
to ν = 1/2, 3/2, 5/2, . . ., in R1 and ν = 0, 1, 2, . . ., in R2.
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(f) We are currently unable to provide results for other values of α; the main obstacle is the fractional
derivative in the SPDE which is defined using the Fourier transform (4). A result of Rozanov
(1982, Chapter 3.1) for the continuously indexed random field, says that a random field has a
Markov property if and only if the reciprocal of the spectrum is a polynomial. For our SPDE (2)
this corresponds to α = 1, 2, 3, . . .; see (3). This result indicates that a different approach may
be needed to provide representation results when α is not an integer, such as approximating the
spectrum itself. Given approximations for general 0 ≤ α ≤ 2, the recursive approach could then
be used for general α > 2.

Although the approach does give a GMRF representation of the Matérn field on the triangulated
region, it is truly an approximation to the stochastic weak solution as we only use a subset of the possible
test functions. However, for a given triangulation, it is the best possible approximation in the sense made
explicit in App. C, where we also show weak convergence to the full SPDE solutions. Using standard
results from the finite element literature (Brenner and Scott, 2007), it is also possible to derive rates of
convergence results, like for α = 2,

sup
f∈H1;‖f‖H1≤1

E
(
〈f, xn − x〉2H1

)
≤ ch2. (11)

Here, xn is the GMRF representation of the SPDE solution x, h is the diameter of the largest circle that
can be inscribed in a triangle in the triangulation, c is some constant. The Hilbert space scalar product
and norm include the values and the gradients of the field, and are defined in Definition 2 in App. B. The
result holds for general d ≥ 1, with h proportional to the edge lengths between the vertices, when the
minimal mesh angles are bounded away from zero.

To see how well we are able to approximate the Matérn covariance, Fig. 2(c) displays the empirical
correlation function (dots) and the theoretical one for ν = 1 with approximate range 0.26, using the trian-
gulation in Fig. 2(b). The match is quite good. Some dots shows discrepancy from the true correlations,
but these can be identified to be due to the rather rough triangulation outside the area of interest included
to reduce edge effects. In practice there is a trade-off between accuracy of the GMRF representation and
the number of vertices used. In Fig. 2(b) we chose to use a fine resolution in the study-area and a reduced
resolution outside. A minor drawback using these GMRFs in place of given stationary covariance models,
is the boundary effects due to the boundary conditions of the SPDE. In Main Result 2 we used Neumann
conditions that inflates the variance near the boundary (see App. A.4 for details) but other choices are
also possible (see Rue and Held, 2005, Chapter 5).

2.4. Leukaemia example
We will now return to the Henderson et al. (2002) example from the beginning of Sec. 2.3 which mod-
els spatial variation in leukaemia survival data in Northwest England. The specification, in (pseudo)
Wilkinson-Rogers notation (McCullagh and Nelder, 1989, Sec. 3.4) is

survival(time, censoring) ∼ intercept + sex + age + wbc + tpi + spatial(location)

using a Weibull-likelihood for the survival times, and where “wbc” is the white blood-cell count at diag-
nosis, “tpi” is the Townsend deprivation index (which is a measure of economic deprivation for the related
district) and “spatial” is the spatial component depending on the spatial location for each measurement.
The hyper-parameters in this model are the marginal variance and range for the spatial component, and
the shape-parameter in the Weibull distribution.

Kneib and Fahrmeir (2007) reanalysed the same data-set using a Cox proportional hazards model but,
for computational reasons, used a low-rank approximation for the spatial component. With our GMRF
representation we easily work with a sparse 1749× 1749 precision matrix for the spatial component. We
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Fig. 3. The posterior mean (left) and standard deviation (right) of the spatial effect on survival using the
GMRF representation.

ran the model in R-inla (www.r-inla.org) using integrated nested Laplace approximations to do
the full Bayesian analysis (Rue et al., 2009). Fig. 3 displays the posterior mean and standard deviation
of the spatial component. A full Bayesian analysis took about 16 seconds on a quad-core laptop, and
factorising the 2797× 2797 (total) precision matrix took about 0.016 seconds on average.

3. Extensions: Beyond classical Matérn models

In this section we will discuss five extensions to the SPDE, widening the usefulness of the GMRF con-
struction results in various ways. The first extension is to consider solutions to the SPDE on a manifold,
which allows us to define Matérn fields on domains such as a sphere. The second extension is to allow
for space-varying parameters in the SPDE which allows us to construct non-stationary locally isotropic
Gaussian fields. The third extension is to study a complex version of (2) which makes it possible to
construct oscillating fields. The fourth extension generalises the non-stationary SPDE to a more general
class of non-isotropic fields. Finally, the fifth extension shows how the SPDE generalises to non-separable
space-time models.

An important feature in our approach, is that all these extensions still give explicit GMRF represen-
tations similar to (9) and (10), even if all the extensions are combined. The rather amazing consequence,
is that we can construct the GMRF representations of non-stationary oscillating GFs on the sphere, still
not requiring any computation beyond the geometric properties of the triangulation. In Sec. 4 we will
illustrate the use of these extensions with a non-stationary model for global temperatures.

3.1. Matérn fields on manifolds
We will now move away from R2 and consider Matérn fields on manifolds. Gaussian fields on manifolds
is a well-studied subject with important application to excursion sets in brain mapping (Adler and Taylor,
2007; Bansal et al., 2007; Adler, 2009). Our main objective is to construct Matérn fields on the sphere,
which is important for the analysis of global spatial and spatio-temporal models. To simplify the current
discussion we will therefore restrict the construction of Matérn fields to a unit radius sphere S2 in three
dimensions, leaving the general case for the appendices.



Gaussian Markov random fields: The SPDE approach 11

Just as for Rd, models on a sphere can be constructed via a spectral approach (Jones, 1963). A more
direct way of defining covariance models on a sphere is to interpret the two-dimensional space, S2, as a
surface embedded in R3. Any three-dimensional covariance function can then be used to define the model
on the sphere, considering only the restriction of the function to the surface. This has the interpretational
disadvantage of using chordal distances to determine the correlation between points. Using the great
circle distances in the original covariance function would not work in general, since for differentiable
fields this does not yield a valid positive definite covariance function (this follows from Gneiting, 1998,
Theorem 2). Thus, the Matérn covariance function in Rd can not be used to define GFs on a unit sphere
embedded in R3 with distance naturally defined with respect to distances within the surface. However,
we can still use its origin, the SPDE! For this purpose, we simply reinterpret the SPDE to be defined on
S2 instead of Rd, and the solution is still what we mean by a Matérn field, but defined directly for the
given manifold. The Gaussian white noise which drives the SPDE can easily be defined on S2 as a (zero
mean) random Gaussian field W (·) with the property that the covariance between W (A) and W (B), for
any subsets A and B of S2, is proportional to the surface integral over A ∩ B. Any regular 2-manifold
behaves locally like R2, which heuristically explains why the GMRF-representation of the weak solution
only needs to change the definition of the inner product (7) to a surface integral on S2. The theory in
App. B through App. D covers the general manifold setting.

To illustrate the continuous index definition and the Markov representation of Matérn fields on a
sphere, Fig. 4 shows the locations of 7280 meteorological measurement stations on the globe, together
with an irregular triangulation. The triangulation was constrained to have minimal angles 21◦ and max-
imum edge lengths corresponding to 500 km based on an average Earth radius of 6370 km. The trian-
gulation includes all the stations more than 10 km apart, requiring a total of 15182 vertices and 30360
triangles. The resulting Gaussian field model for α = 2 is illustrated in Fig. 5, for κ2 = 16, corresponding
to an approximate correlation range 0.7 on a unit radius globe. Numerically calculating the covariances
between a point on the equator and all other points shows, in Fig. 5(a), that despite the highly irregular
triangulation, the deviations from the theoretical covariances determined by the SPDE (calculated via
a spherical Fourier series) are practically non-detectable for distances larger than the local edge length
(≤ 0.08), and nearly un-detectable even for shorter distances. A random realisation from the model is
shown in Fig. 5(b), resampled to a longitude/latitude grid with an area preserving cylindrical projection.
The number of Markov neighbours of each node ranges from 10 to 34, with an average of 19. The result-
ing structure of the precision matrix is shown in Fig. 6(a), with the corresponding ordering of the nodes
shown visually in Fig. 6(b) by mapping the node indices to grey-scales. The ordering uses the Markov
graph structure to recursively divide the graph into conditionally independent sets (Karypis and Kumar,
1999), which helps make the Cholesky factor of the precision matrix sparse.

3.2. Non-stationary fields
From a traditional point of view, the most surprising extension within the SPDE-framework is how we
can model non-stationarity. Many applications do require non-stationarity in the correlation function
and there is a vast literature on this subject (Sampson and Guttorp, 1992; Higdon, 1998; Hughes-Oliver
et al., 1998; Cressie and Huang, 1999; Higdon et al., 1999; Fuentes, 2001; Gneiting, 2002; Stein, 2005;
Paciorek and Schervish, 2006; Jun and Stein, 2008; Yue and Speckman, 2010). The SPDE approach has
the additional huge advantage that the resulting (non-stationary) Gaussian field is a GMRF, which allows
for swift computations and can additionally be defined on a manifold.

In the SPDE defined in (2), the parameters κ2 and the innovation variance are constant in space. In
general, we can allow both parameters to depend on the coordinate u, and we write

(κ2(u)−∆)α/2(τ(u)x(u)) =W(u). (12)

For simplicity, we choose to keep the variance for the innovation constant and instead scale the resulting
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Fig. 4. Data locations (top row) and triangulation (bottom row) for the global temperature dataset analysed
in Sec. 4, with a coastline map superimposed.

●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●
●

●●●●
●●
●●●
●●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●
●
●
●

●
●
●

●●

●

●
●

●●

●●
●●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●
●

●●
●

●
●
●
●

●●

●

●

●●

●●

●●
●●

●
●●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●●●

●
●
●

●
●

●
●

●
●●●

●

●

●

●●

●

●

●
●
●

●
●

●●

●●
●

●

●●●●●●
●●●

●●●●●
●
●

●●

●●●●●
●●

●

●●
●

●
●●
●●

●●
●

●

●

●
●

●●

●

●
●

●

●●
●●

●
●
●

●

●

●●●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●●●

●

●●●●
●●●

●●

●
●●●
●●●●●●●●●●●●

●●●●●●

●
●
●
●
●

●

●●●
●●●●●
●

●

●●●●
●●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●●
●

●
●
●

●●●

●
●●

●

●
●

●●●●

●

●
●●●●●●

●●●●
●●

●

●

●

●●

●
●

●
●
●●

●
●●
●
●

●

●

●

●

●

●
●
●
●
●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●●
●
●

●
●

●
●●

●
●
●

●

●●

●
●
●
●●●

●

●●●●
●●●

●●
●

●
●

●●●●
●●●●●●●

●●

●
●●●●●●●●●

●●
●
●●●●●●●●●

●
●
●
●●●●●●

●●●
●●●

●●●●●
●●●

●●●●
●●●●●●
●
●

●●●●

●
●

●

●

●

●●
●

●

●●

●

●
●●

●
●●●

●●
●●

●

●

●●

●
●●

●

●

●●

●
●●

●

●
●●

●

●

●

●●

●
●●

●
●

●

●
●

●
●
●●
●

●
●
●

●●●●
●●

●●
●●●
●
●

●
●●●

●

●

●

●
●●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●
●
●

●

●

●
●●

●
●

●

●

●●●●●
●
●●●
●●

●
●
●

●

●

●●●
●

●

●

●

●

●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●● ●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ● ●

●● ●●●● ●● ●●●● ●
● ●● ● ●●●● ● ●● ●●●●●●●●● ●●●●● ●●●●●●

●●●●●●●●●●●●●●
●●●●
●●●●●●
●●●

●
●

● ●
●

●● ●●
●●●●●●●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●
●●●●

●
●●● ●

●●● ●●
● ● ●●●

●●●●●●●
●

●●

●●●●●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ● ●●●●●● ●●●●●●● ●●●●●● ● ●●
●●●● ●●●●●●● ● ●●●● ●●●●●●●●●●●●●●●●●

● ●●●●●●●●●● ●●●●●●●
● ●●●●● ●● ● ● ●●●● ●●●●● ●●●● ●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●
●

●
●

●

●
●

●
●

●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●
●

●●●●●●
●●●●●●●

●
●

● ●●
●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●●●

●●●●●●●●●
●

●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●
● ●●●●●● ●

● ●●●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●
●

●●

●
●●

●
●

●
●●

●

●●

●

●

●

●
●

●●
●

●●●
●●●

●●●
●

●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●
●

●
●●● ●

●
●●●●●

●●
●●●

●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●● ●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●● ●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●

●●●●●●
● ●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●●●

●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●
●

●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●● ● ●●●●●●●●●●●●●●●●●●●●● ● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●● ● ●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●● ●●●●●●● ● ● ●●● ●●●●●●●● ●● ●● ● ●● ●●●●●●●●●● ●●● ●●

●●●●

●●
●●●●●●●●●●●

●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●●●
●●●●

●●●●●●●●

●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●
●
●●●●

●●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●●

●●●●
●●●●●
●●
●

●●●●●●●●●
●●

●●●
●●●●

●●●●●

●●●●

●●
●●●

●

●

●●●●

●●

● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●

●●
●

●●●●
●
●●
●●●

●●
●

●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●

●●●●●●●
●●●●

●●●●●●●●
●

●

●●●●●●●●
●●●●●●●
●●●
●●●●●

●

●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●

●●●●●
●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●● ●
●

●●●

●●●
●●●●●●●●●●●●●●● ●

●●●●● ● ●● ●● ●●
●●●

●●●●
●

●

●
●

●●

●

●
●

●
●

●
●

●

●● ●
●

●

●
●

●●●
●

● ● ●
●

●
●

●
● ●

●

●

●

●●
●

● ●

●

●●

●

●

● ●●●
●●

●

●

● ●
●

●

●

●
●

●

●
●

●

●

●●
●

●
●●

●

●●●●● ●

●

●●

●

● ●●
●

●

●

● ●
●

●●

●●
●

●●

●

● ●
●

●
●

●●
●

●

●●

●

●
●

● ●●
● ● ●

●

●

●

●

●

●●
●

●

●●

●
●

●●
●

●

●

●●

●

●

●

● ●
●

●
●

●●●● ● ● ●● ●●
● ● ●
●

● ●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●● ● ●
● ●

●

●
●●

●
● ●

●

●●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

● ●●

●

●

●

●
● ●●

●
●●

●

●

●

●

●●

●
●

●
●

●

●
●● ●

●

●

●●

●● ●

●

●

●
●

●

●
●

● ●

●●

●
●●

●

●
●

●

●
●

●

●
●●

● ●

●

●

●

●● ●
●

●

●

●●

●

●
●

●●

●

●
●

●

●●● ●●●●
●●●●

●

●

●●
●

●

●●
●

●

●●

●

●
●

●

●

●

● ●

●

●
●

● ●

●

●
● ●

●

●●
●●●

●
●●

● ●●●●

●

●

●

●●

●

●

●

●
●

●●
●

●
●

●

●

● ●
● ● ● ●●●● ●● ●
●

●

●
●●

●

●

●

● ●●●

●
●

●

● ● ●

●

●

●

● ● ●

●

●

●

●●

●

●

● ●● ●●● ● ●
●●●

●

●
●

●
●●●

●

●● ●
●

●

● ●

●

● ●●

●

● ●

●
● ●

●

●●●●
●

●

●

●

● ●● ●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●●
● ●●

●
●

●

●●

●● ●●●● ● ●
●

●

●

● ●●

●
●

●

●
● ●

●
●

●●● ●
●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●

●

●

●●
●

●

●
●● ●●● ●

●

● ●●
●●

●

●
●

●
●

●

●
● ●●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●●●●●

●

●

●

●
●● ●

●

●

●

●

●

● ● ●

●

● ● ●●

●

●

●

●

●● ●●●

●

● ●
●

●

●● ● ●

●

●●● ●

●

●

●

●

●

●

●●● ●
●●●

●

●
●

●●

●

●●

●

●
●

●

●

●

●●●

●

●
●●

●

●
●● ● ●●●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●●●

●

●●
● ●

●
● ●

●

●●

●●● ●●

●

●

●

●●
●●

●
●

●●
●● ●● ●● ●

●● ●●●

●

●
●●

●

●
●

●

● ●

●

●● ● ●

●

●

● ● ●● ●

●
●

●●

●

●

●
●

●

●
●

●●

●

●
●●

●● ●●

●

●
●

●

●●

● ●●●● ●●● ●●
●

●
●

●● ●

●

●
●

● ● ● ●●●
●●

●

●
●

●

●

●

●
●●●

● ●
●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●● ●●●●
●

●

●
●

●● ●●
●

●●

●

● ●

●

● ●
●

●

●

●

●

●

●
●● ● ● ●●

●

●

● ●●

●

● ●

●

●●

●

●
●

●

●
●

●

● ●●● ●● ●
● ●

●●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●
●● ●

●

●●● ●
● ● ● ●
●

●●

●● ●●

●

●

●
●● ●● ●● ●●

●

●●● ●
●

●●●

●

●

●

● ●● ●

●

●

●●

● ●

●
●

●●●

●

●
●

●
●

●

●

● ● ●

●

●

●●

● ●
●

●●

●

●

●

●

●

●
●

●

●●

●

●●●
● ●●●

●
●

● ●●

●

●

●●

●
●

●

●

●●

●

● ●
●

●●
●●

●

● ● ●● ●
●● ●

●

●

●●
●

●

●
●●

●●

●

●

●

●
●

●
●

●

●

●●
●

●
●●●

●●

●● ●●

●

●
●●●

●

●

●●●

●

●

●●●

●

●
●●●

●●

●
●

●●

●

●●●

●

● ●

●●

●●

●

●●●

●

●●●
●●●●

●●●

●

●
●●

●

●●●●●
●

●

●

●● ●●●●
●

●

●●●
●●●

●

●

●●● ●●●

●

●

●

●●●
●

●
●

●

●
●

● ● ●●
●●

●

●

●●

●

●●● ●

●

●
●

●●
●●

●

● ●

●

●

●

●
● ●●

●
●

●

●

● ●
●●

●

●

●
●●● ●

●
●

●

●●●
●

●●●●

●

● ● ●
●●

●

●

●

●● ●
●

●

●

●

● ●●
●●

●●

●

● ● ●●

●

● ●
●

●●

●

●● ●

●●

●

●

●● ●●●
●

●●

●

● ●

●

●

●●● ●

●

●●

●

●

●● ● ●●

●

●

●● ●

●

●
● ●

●

●
●

●
● ●●●

●●
●

● ●
●●

●●
●●●

●

●

●
● ●

● ●●

●

●● ●●● ●●●● ●●●●
●●

●

●

●●● ●

●

●
●●

● ●●●●

●●●
●

●●

●

●

●

●● ● ● ●●

●

●

●●

●●

●
●●●● ●●

●

●●

●

●
● ●● ● ●●●

●

●● ●

●

●●

●

●

● ●
●●●●●●

●●
●

●●●●●

●

● ●

●
●

●● ●

●
●
●

●
●●

●

● ●

●

●●●● ● ● ●

●

●

● ●●● ● ●

●

●
●

●

●●●

●

●

● ●●

●

●
● ● ●●●●

●
●●●●

●

● ●

●●

●●
●●

●

●

●●

●

●

●●●
● ● ●●● ●●

●

●●●●●● ●
● ●

●

●

●

●● ●● ● ●

●

●●
●

●

●

●
●

●●
●

●●●●● ●●

●

●
●

● ● ●● ●● ●●●●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●

●
●●●●●●●

●

●

●
● ●

●

●●

●

●
●

●●

●●

●

●●

●

●

●
●● ●

● ● ●●●

●●
●

●●

●

● ●●●● ●
●

●●

●●

●●

●

●
●

●● ●● ●
●

●●

●●

●

●
●

● ●

●

●●●

●

●

●

●●
●●

●

●
●● ●

●

●
● ●

●

● ●

●●

●●●●● ●●

●

●●

●
●

●
●●● ●●

●

●

●

●

●●
●

●●●●● ●●

●
●

●

●

●●●

●

●●● ●●●● ●●●

●

●

●

●●
●

●●●

●
●

●

●

●● ●●
●

●●

●●
●●● ●●

● ● ●
●

●

● ● ●●

●

●

●●●● ●

●
●●● ●●●

●●

●●●●●●● ●● ●●●●

●

● ●● ●
●●

●

●

●●
●● ●●

●

●

●

●

●●

●
●

●

●●
●

● ●●●●

●

● ●●● ●●●● ●●●

●
● ●●●

●

● ●
● ●●●

●

●

●

●●●

●

●

●

●

●
●

●●●

●

●

●
●

● ●●
● ● ● ●

●
●

●

●

●●●

● ●●
●●●● ●

●
●●●

●●●● ●

●

●
● ●●

●●
●

●●
●

●●

●

●

●●●

●

●●●●● ●●
●

●

●

● ●
●

●

●

●

●

●

●● ● ●

●

●●
●

●

●●

●

●

●

●

●●●●

●

● ●●●●

●

●

●
●

● ●●●●● ●●
●●●

●
●

●

●

●

●
●

●

●●

●

●

●

● ●●● ● ●●
●●● ●● ●● ●●●

● ●

●

●
●

●●●●

●

●
●

●

●

● ●● ●●

●

●

●

● ●
●

●
●

●●

●

●●● ●

●●●

●
●●●

●
●

●

● ●

●
●●

●
●●
●

●●

●

●●

●

●●

●●

●●

●●
●

●
●

●

● ●

●●

● ●● ●

●

●● ● ●

●

●

●

●● ●

●

●●●●● ●

●

● ●● ●
●●

● ●●
●●

● ●

●

●
●

●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●●
●●

●

●●

●

●

●
●

●

● ● ●
●●

●●●

●

●●
●●●

● ● ●●

●●

● ●●● ●●
●

●●

●●●● ●●●

●

● ●

●

●

●

● ●●

●

●
●●

●
●● ●●

●
●

●
● ●

●●
●

● ● ● ●

●

●

● ●

●
●

●● ● ●

●●

●● ●●●

●●●

●
●●●

●● ●
●

●

●●●
●●● ●●●●●●

●

●

●

●

●
●●●●

●●

●

● ●

●

●●●

●

●●● ●●
●

●

●

●●

●

●●

●

●●

●●●

●

●

●

●
●●●

●●
●●

●

●

●

● ●

●●●

●
●●

●

●

● ●●

●

●●

●

●
●●

●

●
●●

●

● ●●● ●

●

● ●

●●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●●●

●

●●

●

●●
●●

●

●

●

●●●

●

●●●
●●●● ●

●

●● ●●● ●

●

● ●●
●●●

●
●●●

●● ●●
●●

●

●●

●● ●

●

●●

●

●
●●●

●
●●

●●

●●
●

●● ●

●

● ●
●●

●

●

●

● ● ●●●

●

● ●●

●

● ●●●●●

●

● ●●● ● ●

●

●
●

●●●

●

●

● ● ●

●

●

●●
●

● ● ●●
●

●
●● ●● ●

●

●
●

●●●
●

●●

●

●

●

●●

●

●

● ●●●●

●
●●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●●

●●

●

●

●

●●
●

●
●●●●

●

●

●●●● ●● ●●●●

●

●●● ●
●

●

●

●

●

●
● ●●

●

●● ● ●●
●

●
●●●

●●●● ●
●

●

●

●

●●●

●

●
●●

●

●●

●

●●●

●●

●
●

●● ●● ●●

●

● ● ●●
●

●●

●
●

●

●●●● ● ●
●

●●
●●●

●

●

●●
●●●●● ●

●●

●

●●

●●

●

●
● ●●●● ●

●

●
●●●

●●

●●
●

●●
●

●

●

●●●● ●●●

●

●●● ●

●

●

●●
●● ●●

●

●●● ●●

●

●●

●●

●

●

●
●

●

●●●
●

●●
●● ●●●

●

●

●
●●

●
●

●●
●

●

●●●
● ●

●
●

●●
●

●●

●

●

●

●●

●

●●
●

● ●●●

●●●

●
●

●

● ●●●

●

●

●● ● ● ●●●●

●
●

●

●
● ● ●● ●●

●●●
●

●

●

●

●
●

●
● ●

●●●

●●

●
●●●

●

●● ●● ●

●

●

●●
●●

●●
●

● ●● ● ●
●

●

●●
●●

●

●

●●●●

●●●●

●●●

● ●

●●●

●●●

●●

●● ●
●●

●● ●
●●

●

● ●●●●●●

●●

●

●●

●

●
●●

● ●●●●●●● ●●●

●

●

●

●

●

●

●

●●●

●●●

●
●

●

●

● ●●● ●●●

●

●

●●●

●

●

●
●

●

●

●
● ●

●

●

●●●
●●●●●●

●
●●

●
●

●

●●●● ●●● ●●
●

●●●● ●●●●
●

●

●

●
●●●●●

●

●

●

●

●

●●● ●●
●●

●

●
●

●

●

●

●

● ●●●●

●

● ●

●
●

●

●

●●

●● ●●
●

●●●●●
●

●

●●
●

●

●

●

●●

●●
●● ● ●●●●● ●●●

●

●

●●●

●
●●

●●● ●●
●●

● ●●

●

●
●

● ● ●

●

●●

●

● ● ●

●●

● ●● ●

●

●

●

●

●

●●●
●

●

●
●

●
●●

●●● ●● ●

●

●● ●

●●

●

●●

●

●●● ●
●

●● ●● ●

●

●●

●

●● ●

●

●● ●●●

●●●

●● ●

●

●●●

●● ●●●

●

● ●
●

●

●

●● ●
●●

●● ●●

●

●
●

●

● ●●●●

●

●●
●●● ●

●

●

●●●

●
●

●●

●

● ●●●● ●●●
● ●

●

●●

●●●

●

● ●
●

●

●

●●
●

●

●

●
●

●
●●

● ● ●●

●

●● ●

●●●●

●

●●

●

● ●●●● ●

●

●
●

●●● ●●●

●

●● ●
●

●

●
●●

●

●

●●●
●

● ●●● ●●●● ●●●●

●●●
●

●

● ●
●

●●

●●●
●● ●●

●

●●
●●

●

●
●

●●
●●

●●●

●

●

●●●
●●●●●

● ●

●●●
●●●

●

●●
●●● ●●

●

●

●

● ●●
●●

●

●

● ●●

●

●

●●●●

●

●

●

●
●●

●●

●

●● ●●●●● ● ●● ●● ●●
●●

●●
●

●●● ●
●●

●
●

●

●

●

●

●

●● ●

●
●

●●

●●●
●

●●

●
●

●●
●●●●● ●●●●

●

●●

●

●
●●●● ●

●●●●

●●●●●●

●

●●
● ●● ●

●

●

●

●●●

● ●

●●

●
●●● ●

●
●

●
●●

●● ●
●●

●

●

●

●

●

●

●

● ●● ●●● ●

●

●

●●●

●●

●
● ●

●

●

●

●●

●●

●●

●

●●

●

● ●●
● ●●

●

●
●

●

●
●

●

● ●●
●

●

●
● ●

●

●

●

●●●

●

●

●●

●

●
●

●●●●
●

●

●

●●●● ● ●●
●●● ●● ●

●

●●

●

●
●

●

●● ●
●

●●●
●

●

●

●●●
●

●

●●● ●

●

●

●
●●●●

●

●

●●●●

●●

●●

●●

●

●

●●
●

●●● ●●●●●● ● ●● ●●●

●

●

● ●● ●

●

● ● ●●●● ●●●● ● ●●●

●

●●●●●

●

●

●
●●

●●

●●● ●● ● ●

●

●

●●● ●

●

●

●

●
●

●

●

●

●●
●●●●

●

●

●
●

● ●●● ●●

●

●
●

●

●

●

●●

●● ●

●

●●●●●

●●

●●
●

●

●●

●
●● ●

●

●●●
●● ●●●●●●● ●●●

●
●●● ● ●●●●● ●

●●
●● ● ●● ●●●●

●●●

●● ●●●

●

●● ●

●
●

●●●
●

●●● ●●●● ●
●●

●●●
●

●

●

●

●●●
●

●

●●

●
●

●

●

●

●
●

●

●

●●●
●●

●●●●

●

●●

●●●
●●●

●

●●

●● ●
● ●

●●●

●●

●●

●

●

●

●

●

●●
●

●

●●● ●
●

●●● ●

●

●

●

●
●●●●●

●

● ●● ●

●

● ●
●●

● ●

●
●●● ● ●●

●

●●

●

●

●●

●
● ●●

●

●

●

●
●

●●●

●●

●

●●

●

●●

●

● ●●●● ●●

●●●

●● ● ●
●●

●

●●●●

●●

● ● ●●●●

●

●●

●
●

●

●● ●

●●●

●●

●

●●●

●●

●

●
● ● ●

●

●

●

●●

●●
●

●●●●

●

●●● ●

●

●●●●

●

●●●●●
●

●●

●

●●●
●

●●
●●

●●●

●●●
● ●●

●

●●● ●● ●●
● ●●●

●

●●●●

●

● ●●●●●
●●●

●● ●

●●

● ●●●●
●●●

●●●

●●● ●●
●● ●●

●

●●●

●

●●● ●● ●●●
● ●

●

●

●

●

●

●

●
●

● ●●●
●

●●

●
●

●●
●

●●

●

●●●

●
●●

●

●● ●

●●

●●●

●

● ●●●● ●

●

●●●●●

●

● ●

●

●● ●
●

●● ●●

●

● ●●●● ●●● ●●●●● ●● ●●●●●●

●
●

●●

●

●

●
●●●●●

●●●●

●
●

●

●●●

●●

●●

●●●

●●

●●●●●

●

● ●●●
●●●

●

●

● ●
●●●

●●●

●●●● ● ●
● ●

●●●

●

●●●●
● ●● ●

●

●

● ●●●● ●●

●●●

●●●

●●●

●● ●
●●

● ●●●● ●

●

● ●

●●●

●

●

●●●●

●●●
●●●

●●●

●

●

●

●● ●● ●●

●●
●

●●
●●

●

●●

●

●

●●

●●●

●

●
●

● ●●●●● ● ●●●

●●●

●

●●

●

●●●●● ● ●●●●●

●

● ●●

●

●●
●

●

●●●

●

●

●●● ●

●

●

●

●●
●●●

●
●

●

●

●

●

●●●

●
●

●

●● ●●●●
●●●●●●●

●●

● ●

●

●

●●

●●●●

●●●

●

● ●●
●

●●●
●

●

●

●

●

● ●●
●

●●

●

●
●

● ●
●

●● ●
●

● ●

●●●●
●

●
●●

●●

●

●

●

●

●
●● ●●●● ●●

●

●●●●●●● ●

●

●

●●

●●●

●●
●

●●●

●

●● ●●

●●
●●

●
●

●●
●●

●●●

●●●● ●

●

●●
●●

●●●
●● ●●

●●●●●

●●●

●

●

● ●●

●

●

●
●●● ●

●
●●● ●●●●●● ●●●

●
●●

●●●●
●

●
●

●
●

●
●●●

●

●

●●●●● ●●●
● ●

●●

●●●●●●●
●●●

●●
●

●●●
● ●

●

●●
●●

●

●

●●●● ● ●
●

●

●

●

●●●

●

● ● ●

●
●

●●●
●

●●●●

● ●●●●
●

●

●

●
●●

●●

● ●

●

●

●

●●

●

●●●

●●
●●

●
●

●

●
● ● ●●

●●●● ● ●●
●

●
●

●

●

●●●● ●●
●

●
●●

●

● ●●●
●

● ●●●●●

●

● ●● ●●

●

●●●
●

●●●
●

●●●

●●●

●●● ●
●●●

● ●●●
● ●

●

●●

●
●●

●● ●●●
●●●

● ●●●●●
●● ●

●●●

●

●

●●●

●

●

●
●●

●

● ●●

●

●

●

●
●
●

●●●●
●

●

●

●

●
●●●

●
●●

●●

●

● ●
●

●
●

●●●

●

●● ● ●● ●●
●●●

●●

●●

●
●●

●

●

●

●●●
●

●

● ●●●

●

●
●●

●●

●

●

●

●

●●●●

● ●● ●

●

●
●●●●

●●

●

●● ●●

●

●
●●●

●
●●●

●●

●

●
●

●●

●

●●

●

●
●

●
●

●

● ●
● ● ●

●●
●

●
●●●

●●
●

●●● ●●●●

●
●●

●● ●

●

●

●●

●●

●

●●

●

●● ●●● ●

●
●●●

●

●
●

●

●

●●● ●

●●

●●● ●●●

●

●

●

●

● ●●●
●

●
●

●

●

●●

●

●

●

●

●●
●

● ●● ●● ●●●●●●

●

●●●●
●●

●●
● ●

●●●●

●●

●

●●

●

●
●

●●● ●●

●

●

●●●●●● ●

●

●●●

●●●
●

●●

●
●●●

●●
●●

●●●●●●

●

●

●●
● ●●● ●●●●●●●

●

●

●●

●●
●

●
●●●

● ● ●●●● ●

●

●
●

●
●

●

●● ●● ●●

●

●●

●●●
●

●

●
●●

●

●●
● ●

●●
●

●●●●●

●●

●
● ●●

●

●● ●●●●

●
●

●

●

●●●● ●

●

●
●●●● ●●●● ●●●● ●●●●

●

●●

●

●
●

●

●

●●●
●

●
●●●

●

●●

● ●
● ●● ●

●

●

●

●

●

●●●
●●

●●

●●●

●
●●● ●

●

●●

●

●●● ● ●

●
●

●
● ●●● ●●●●● ●

●
●●●●

● ●

●

●
●●● ● ●●● ●●● ●●●●

●

● ●●●
●●●

●●●●●●

●● ●●●

●

●●●

●

●●● ●●●●●

●
●●

● ●●●●●● ●●●● ●●●● ●●●●● ●

●

●●●

●

●

●

●●●●●●

●●●●

●●

●●●●●
●●●

● ●

●
●●●

●

●

●
● ● ● ●●

●●

●●
●

●●●

●

●●●●

●

●

●●●

●●●
●●

●●
●

●

● ●●●●●●●
●● ●

●

●

●

●

●

● ●●●●●

●

●●●

●●

●●●●

●●

●
●●●●

●

●

●●●●
●

●
●

●●●

●● ●●●●●●●

●

●

●

●

●●●
● ●●

●

●

●●●
●●

●● ●●●●●● ● ●
●

●
●● ● ● ●●●

●

●

●

●

●●● ●●

●

●●●●●

●●

●
●●●●●●

●● ●●●●

●

● ●
●

●● ● ●●● ●●

●

●● ●● ●● ●●●
● ● ●● ●●●●

●
●

●

●

●

●

●

●●● ●

●

● ● ●

●

● ●●● ●

●

● ● ●●● ●●

●

●

●
●

●●

●

● ●● ●

●

●

●

●

●
●

●

●
● ●● ● ●●

●
●● ●●●●● ●

●

●

●

●
●

●●● ●● ● ●●

●
●

●

●

● ●● ●●●●
●●● ● ●●

●
●● ●

●

●

●

● ●●● ●
●

●

●

●
● ●●

●
●

●●
●

●

●●
●

●●

●

● ●

●●

● ● ●●●● ●●●● ●● ●●● ●

●

●●

●
● ●● ● ●

●
● ●●●●

●

●● ●

●

● ●

●

●● ●●●

●

●
●

●

●●

●

●

●
●

●●
●

●

●

●●● ●
●

●

●

●●●

●

●●●● ●● ●

●

● ●●

●

● ●●● ● ●● ●●●● ●
● ● ●

●

● ●● ●● ●

●

●

● ●●●

●

●

●●●

●●●●
●

●●
●

●●

●

● ●

●
●

●
●

●

● ●●●●●
●

●

●
●

●● ●● ●

●

●

●

● ● ● ●● ●
●

●

●
●

●

●

●

● ●
●

●

●

●
●

●● ● ●

●

● ●●● ●●

●

●●

●

●

●

● ● ●●

●

●

●

● ●● ●

●

● ●● ●

●

●
●●

●● ● ●●

●

● ● ●●

●●

●● ●

●

●

●

●

●

●

●● ● ●●●

●

●

●

●
●

●● ●

●

●●● ●● ●● ●●● ●● ● ●●

●

●

●

●●

●

●

●● ●●● ● ●● ●● ●●

●●

●
●

●● ●

●

●● ●

●

●

●

●● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●● ●●

●

● ●

●

●

●● ●
●

●

●

●●●●

●
●

● ●

●

●

●●
●

●●
●

●● ● ●

●

●

●

● ●●● ●
●

● ●
●

●●
●

●

●

●

● ●●●●●
●

●●

●

●

●● ●●● ●●

●●

●●● ●
●

●

●

●

●● ● ● ●●●
●

●●

●●●

●

●●

●

●●●
●

●●● ●●●

●

●●

●

●

●

●

●●●

●

● ●

●●

●

●

●

●

●●● ●●● ●

●

●●
●

●
●

●

●

●●
●●

●

●
●

● ●●●

●

●
●●

●● ●●
●

●

●

●

●●

●

●● ●
●

●

●
●

● ●● ●●

●

●● ●●●

●

●●●●

●

●

●●

●●● ●
●

●

●●
●

●

●

●
●●

● ●● ● ●●● ●

●

●●

●

●●● ●● ●
●

● ●
●

●

●

●

● ●
● ● ●●

●

●

●● ● ●●●● ●
●

●●● ●
●

●●

●
●

●

● ●●

●

●

●

●

●

● ● ●● ●●● ●

●

●● ●● ●●● ●●●

●

●
● ● ●●●

●

●

●
●

●

●

●

●

●

●

●

●● ●● ●●●

●

●● ●
●

●
●

●●

●

●●●

●

●●● ●●●● ●●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●

● ●●●● ● ●● ●● ●
●●● ●●

●

●

●

●

●

●●●●●● ●

●

● ●●●●●
●●

●

●
● ● ●● ●● ●

●

●

●

●

●

●●

●

●●
●●● ●● ●●

●

●

●●● ●

●

●
●

●

●●●

● ●● ●●●●

●

●

●
●

● ● ●●●●●

●

●

●

●●

●

●

●● ●

●
●

●

●●
● ●●

●

●●●●
● ● ● ●●● ●● ●●●● ●●● ●●●● ●

●

●

●● ●●●

●

●

●

●●●● ● ●●●●●● ●● ●●

●

●
●

●●

●● ●●●●

●

●●●●● ● ●●

●

●● ● ●●●
●

●

●
●

● ● ●●● ●

●

●

● ●●●●● ●●

●

●

●●
●●

●●
● ● ● ●●●●

●
●

● ●● ●

●●
● ●●● ●

●

●● ●

●

● ●

●
●

●
●

●●● ●● ●

●
●

●

●
●

●

●

●●●

●

●● ●●

●

●● ●

●

● ● ●●
●

●

●

●

●
●

● ●● ●● ●
●

● ●●●●●● ●●●● ●●

●

●

●● ●● ●
●●

●● ●

●

●

●

●

●

●

●
●

● ●● ●

●●

●
● ●

●

●

●
●

● ●●

●●

●
●

●
●

●● ●●

●

●●●
●

●

●

●

● ●

●
● ●●● ●

●

●

●

●

●

●

●● ●●
●

●●●●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●● ●

●

●●●● ●
●

● ●
●

● ●

●

●● ●● ●

●

●●

●

●●●
●●

●

● ●● ●●● ●● ●
●●

●●

●

●

●●●

●

●

●
●●

●

●● ● ●

●
●

● ●●●●

●

●

●
● ●

● ● ●●●

●

●●●●●●

●

●● ●●●
●

●

● ●
●

●●●

●

●●●
●● ● ●●

●

●

●

●●● ●

●

● ● ● ●● ●●●

●

● ●● ● ●● ●● ●●

●●

●

●●

●

● ●●

●

● ●

●

●●

●

● ●●

●

● ●

●●

●

●●

●

●

●
●

● ●●●●
●

● ●

●

●

●

●
●

●

● ●

●
●

●●

●

●● ●● ● ●

●

● ●

●

●

●●● ●●●

●● ●
●

●

●

●● ● ●
●

●

●

● ● ● ●●

●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●●

●● ●●

●

●●●●● ●●

●

●●●

●

●

●
●

● ●● ● ●● ●●
●

● ● ●

●

●●
● ●

●

●

●●

●●

●

●

●

●

● ●● ● ●●● ●● ●
●

●

●

●●
●

●●●
●

●●●
●

●

●

●●●

●

●●● ●●
●

● ●●

●
●

●
●

●

●● ●

●
●

●●

●

●

●

● ●● ●●●●

●

●

●

●

●

● ●
● ● ●

●

●● ●

●
●

●

● ●

●

●●

●

● ●

●

●●● ● ●●●● ●

●

●
●

●

●

●● ●●●● ● ●
●

●

●

●
●●

●● ● ●

●

●
●

●

● ●●● ● ●

●

●
● ●● ●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

● ●● ●● ●● ●●

●

●●●●

●

●●

●
●

●

● ●●●●
●●

●

●

●

●

●

● ●●● ●

●

●

●

●

●

●

●
●

●

● ●● ●●●●●●●● ●●● ●● ●● ●●● ●●

●

●●

●

● ●
●

●●●

●

●

●

●●●

●

●
●●

●

●

●

●

●● ● ●

●

●

● ●

●

●●● ●

●

●

●● ●

●

●

●

●●

●

●

●

● ●● ● ● ●

●

● ●

●

●● ●●●

●●

● ●

●●
●

●
●

●●●

●

●

●

●

●●

●●●

●

●●●●

●

●
●

●

●

●
●

●●

●

● ● ●

●

●●

●

● ●●● ●● ●

●

● ●●

●

●
●

●
● ●●●●●

●

● ●●● ●

●

●

●

●
●●

●

●●

●

●
●

●

● ●●●
●

●

●

●●

●

●

●●
●

●

●

●●

● ●●●● ●● ● ●

●
●

●
● ●

●

●

●

●●●

●

● ●● ●●● ●●
●●

● ●●

●

●
● ●●● ●● ●● ●● ●●● ● ●●●● ●

●

●
●

● ●

●

●●●
●

●●●
● ●● ● ●●

●

●

●●

●
●

●●

●

●●●●
●

●

●

●

●

● ●●

●

● ●●

●

●

●
●

● ●●●● ●●●
●

●

●● ●

●

●

● ●● ● ●

●

●

●
●● ●

●

●●● ● ●● ●

●

●
●

●

● ●

●

●
● ●●

●

●

●

●

●

●
●●

●
●●

●

●
●

●

●

●

●
●

● ●

●

●

●●●

●

●

●●●

●

●

●

● ● ●●

●

●

●●

●●● ●● ● ●
● ●● ●● ● ● ●●● ●

●
●

●

●●

●●

●●● ●●●●

●

●

●

●●

●

● ●●

●
●

●●● ●●

●

●

●

●

●

●

● ●●●● ● ●●●● ●●
●

●

●

●

● ●●

●

●●●●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

● ●● ●

●

●● ●● ● ● ●

●

●

●

●●● ●●

●

●
●

●

●●

●

●
●

●

●

● ●

●

● ●● ● ●

●

● ●●
●

● ●

●

● ●●●● ●
●

●

● ●●●●●

●●

●

●●

●●● ●
●

●● ●

●

●●● ●

●●●

●

●

●

●

●

●● ●●

●

●

●●● ●● ● ●

●

●●●

●

● ●

●

● ●

●

● ●●

●

●●

●

●

● ● ●

●

●

●
●

●●

● ●●● ●●

●

●

●

● ● ●

●

●

●

●●●

●

●

●

● ● ●●●●●●
● ● ●● ●

●

●

●

●
●

●●●● ●● ●●

●

●●●

●

●● ● ●●●
●●●●

●

● ●● ●●
●●●

●

●

●●● ●

●

● ●●●
● ●

●

●●
●

●

●●●●

●

●

●

●●●
●

●

●
●

●

● ● ●●●

●

● ●

●

●

●●
●●●

●

●● ●

●

●

●
●●●● ●

●

● ●

●

●

●

●● ●

●

●● ●●
●

●
●●

●

●

●● ●●

●

●

●● ●●

●

●

● ●● ●
●

●● ●●●●●

●●

●

● ●

●
●

●●

●

●

●

●●●● ●●●
●

●●

●●

●

● ● ●●● ●●

●

● ●●
● ●

●

●

●●

●

●

●

●
●●●

●●● ●

●

●

●

●●●

●
●●

●●●● ●
●

●

●●

●
●

● ●

●

● ●●

●

●

●

●● ●
●

●

●

●
●●●● ● ●● ●●

●●
●● ●

●
●

●

●●●●●
●

●

●

●

●

● ●
●

●
●

●
●

●●●

●●●
● ● ●● ●● ●●●● ● ●●

●

●●● ●●

●

●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
00

0
0.

00
2

0.
00

4

Great circle distance

C
ov

ar
ia

nc
e

Longitude

L
a
ti
tu
d
e

−90
−60

−45

−30

−15

0

15

30

45

60
90

−180 −135 −90 −45 0 45 90 135 180

−0.20 −0.10 0.00 0.05 0.10 0.15 0.20

(a) (b)

Fig. 5. Covariances (a) and a random sample (b) from the stationary SPDE model (2) on the unit sphere,
with ν = 1 and κ2 = 16. In (a), the black dots show the numerical result for the GMRF approximation, and
the superimposed grey curve is the theoretical covariance function.
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Fig. 6. The structure of the (reordered) 15182 × 15182 precision matrix (a) and a visual representation of
the reordering (b). The indices of each triangulation node has been mapped to grey-scales, showing the
governing principle of the reordering algorithm, recursively dividing the graph into conditionally indepen-
dent sets.

process x(u) with a scaling parameter τ(u). Non-stationarity is achieved when one or both parameters
are non-constant. Of particular interest is the case where they vary slowly with u, for example in a
low-dimensional representation like

log(κ2(u)) =
∑

i

β
(κ2)
i B

(κ2)
i (u) and log(τ(u)) =

∑

i

β
(τ)
i B

(τ)
i (u)

where the basis functions {B(·)
i (·)} are smooth over the domain of interest. With slowly varying param-

eters κ2(u) and τ(u), the appealing local interpretation of (12) as a Matérn field remains unchanged,
whereas the actual form of the achieved non-stationary correlation function is unknown. The actual pro-
cess of “combining all local Matérn fields into a consistent global field”, is done automatically by the
SPDE.

The GMRF representation of (12) is found using the same approach as for the stationary case, with
minor changes. For convenience, we assume that both κ2 and τ can be considered as constant within the
support of the basis functions {ψk}, and hence

〈ψi, κ2ψj〉 =

∫
ψi(u)ψj(u)κ2(u) du ≈ Cijκ2(u∗j ) (13)

for a naturally defined u∗j in the support of ψi and ψj . The consequence is a simple scaling of the
matrices in (10) at no additional cost, see App. A.3. If we improve the integral approximation (13) from
considering κ2(u) locally constant to locally planar, the computational preprocessing cost increases, but
is still O(1) for each element in the precision matrixQα.

3.3. Oscillating covariance functions
Another extension is to consider a complex version of the basic equation (2). For simplicity, we only
consider the case α = 2. With innovation processesW1 andW2 as two independent white noise fields,
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Fig. 7. Correlation functions from oscillating SPDE models, for θ = 0, 0.1, . . . , 1, on (a) R2 and on (b) S2,
with κ2 = 12, ν = 1.

and an oscillation parameter θ, the complex version becomes

(κ2eiπθ −∆)(x1(u) + ix2(u)) =W1(u) + iW2(u), 0 ≤ θ < 1. (14)

The real and imaginary stationary solution components x1 and x2 are independent, with spectral densities

R(k) = (2π)−d
(
κ4 + 2 cos(πθ)κ2‖k‖2 + ‖k‖4

)

on Rd. The corresponding covariance functions for R and R2 are given in App. A. For general manifolds,
no closed form expression can be found. In Fig. 7, we illustrate the resonance effects obtained for compact
domains by comparing oscillating covariances for R2 and the unit sphere, S2. The precision matrices for
the resulting fields are obtained by a simple modification of the construction for the regular case, the
precise expression given in App. A. The details of the construction, given in App. C.4, also reveal the
possibility of multivariate fields, similar to Gneiting et al. (2010).

For θ = 0, the regular Matérn covariance with ν = 2− d/2 is recovered, with oscillations increasing
with θ. The limiting case θ = 1 generates intrinsic stationary random fields, on Rd invariant to addition
of cosine functions of arbitrary direction, with wave number κ.

3.4. Non-isotropic models and spatial deformations
The non-stationary model defined in Sec. 3.2, has locally isotropic correlations, despite having globally
non-stationary correlations. This can be relaxed by widening the class of considered SPDEs, allowing a
non-isotropic Laplacian, and also by including a directional derivative term. This also provides a link to
the deformation method for non-stationary covariances introduced by Sampson and Guttorp (1992).

In the deformation method, the domain is deformed into a space where the field is stationary, resulting
in a non-stationary covariance model in the original domain. Using the link to SPDE models, the resulting
model can interpreted as a non-stationary SPDE in the original domain.

For notational simplicity, assume that the deformation is between two d-manifolds Ω ⊆ Rd to Ω̃ ⊆
Rd, with u = f(ũ), u ∈ Ω, ũ ∈ Ω̃. Restricting to the case α = 2, consider the stationary SPDE on the
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deformed space Ω̃,

(κ2 − ∇̃ · ∇̃)x̃(ũ) = W̃(ũ), (15)

generating a stationary Matérn field. A change of variables onto the undeformed space Ω yields (Smith,
1934)

1

det{F (u)}

[
κ2 − det{F (u)}∇ · F (u)F (u)T

det{F (u)} ∇
]
x(u) =

1

det{F (u)}1/2W(u), (16)

where F (u) is the Jacobian of the deformation function f . This non-stationary SPDE exactly reproduces
the deformation method with Matérn covariances (Sampson and Guttorp, 1992). A sparse GMRF appro-
ximation can be constructed using the same principles as for the simpler non-stationary model in Sec. 3.2.

An important remark is that the parameters of the resulting SPDE do not depend directly on the
deformation function itself, but only its Jacobian. A possible option for parametrising the model without
explicit construction of a deformation function, is to control the major axis of the local deformation given
by F (u) through a vector field, given either from covariate information or as a weighted sum of vector
basis functions. Addition of subtraction of a directional derivative term further generalises the model.
Allowing all parameters, including the variance of the white nose, to vary across the domain, results in a
very general non-stationary model that includes both the deformation method and the model in Sec. 3.2.
The model class can be interpreted as changes of metric in Riemannian manifolds, which is a natural
generalisation of deformation between domains embedded in Euclidean spaces. A full analysis is beyond
the scope of this paper, but the technical appendices cover much of the necessary theory.

3.5. Non-separable space-time models
A separable space-time covariance function can be characterised as having a spectrum that can be writ-
ten as a product or sum of spectra in only space or time. In contrast, a non-separable model can have
interaction between the space and time dependency structures. While it is difficult to explicitly construct
non-separable non-stationary covariance functions, non-separable SPDE models can be obtained with
relative ease, using locally specified parameters. Arguably, the most simple non-separable SPDE that can
be applied to the GMRF method is the transport and diffusion equation,

{
∂

∂t
+ (κ2 +m · ∇ −∇ ·H∇)

}
x(u, t) = E(u, t), (17)

where m is a transport direction vector, H is a positive definite diffusion matrix (for general manifolds
strictly a tensor), and E(u, t) is a stochastic space-time noise field. It is clear that even this stationary
formulation yields non-separable fields, since the spatio-temporal power spectrum of the solution is

Rx(k, ω) = RE(k, ω)
{

(ω +m · k)2 + (κ2 + k ·Hk)2
}−1

, (18)

which is strictly non-separable even with m = 0 and H = I . The driving noise is an important part of
the specification, and may require an additional layer in the model. In order to ensure a desired regularity
of the solutions, the noise process can be chosen to be white in time but with spatial dependence, such
as a solution to (κ2 − ∇ · ∇)α/2E(u, t) = W(u, t), for some α ≥ 1, where W(u, t) is space-time
white noise. A GMRF representation can be obtained by first applying the ordinary spatial method,
and then discretising the resulting system of coupled temporal SDEs with, for example, an Euler method.
Allowing all the parameters to vary with location in space (and possibly in time) generates a large class of
non-separable non-stationary models. The stationary models evaluated by Heine (1955) can be obtained
as special cases.
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4. Example: Global temperature reconstruction

4.1. Problem background
When analysing past observed weather and climate, the Global Historical Climatology Network (GHCN)
data set‡ (Peterson and Vose, 1997) is commonly used. On 2010-08-08, the data contained meteorological
observations from 7280 stations spread across continents, where each of the 597373 rows of observations
contains the monthly mean temperatures from a specific station and year. The data spans the period 1702
through 2010, though counting, for each year, only stations with no missing values, yearly averages can
be calculated only as far back as 1835. The spatial coverage varies from less than 400 stations prior to
1880 up to 3700 in the 1970s. For each station, covariate information such as location, elevation, and
land use is available.

The GHCN data is used to analyse regional and global temperatures in the GISS (Hansen et al., 1999,
2001) and HadCRUT3 (Brohan et al., 2006) global temperature series, together with additional data
such as ocean based sea surface temperature measurements. These analyses process the data in different
ways to reduce the influence of station specific effects (a procedure knows as homogenisation), and the
information about the temperature anomaly (the difference in weather to the local climate, the latter
defined as the average weather over a 30 year reference period) is then aggregated to latitude-longitude
grid boxes. The grid box anomalies are then combined using area based weights into an estimate of
the average global anomaly for each year. The analysis is accompanied by a derivation of the resulting
uncertainty of the estimates.

Though different in details, the griding procedures are algorithmically based, i.e. there is no under-
lying statistical model for the weather and climate, only for the observations themselves. We will here
present a basis for a stochastic model based approach to the problem of estimating past regional and
global temperatures, as an example of how the non-stationary SPDE models can be used in practice. The
ultimate goal is to reconstruct the entire spatio-temporal yearly (or even monthly) average temperature
field, with appropriate measures of uncertainty, taking the model parameter uncertainty into account.

Since most of the spatial variation is linked to the rotational nature of the globe in relation to the sun,
we will here restrict ourselves to a rotationally invariant covariance model, which reduces the computa-
tional burden. However, we will allow for regional deviations from rotational symmetry in the expecta-
tions. The model separates weather from climate by assuming that the climate can be parametrised by
non-stationary expectation and covariance parameters µ(u), κ(u), and τ(u), for u ∈ S2, and assuming
that the yearly weather follows the model defined by (12), given the climate. Using the triangulation
from Fig. 4 with piecewise linear basis function, the GMRF representation given in Sec. A.3 will be
used, with xt denoting the discretised field at time t. To avoid complications due to temporal dependence
between monthly values, we aggregate the measurements into yearly means, and model only the yearly
average temperature at each location. A full analysis needs to take local station dependent effects into
account. Here, we include only the effect of elevation. To incorporate a completely integrated station
homogenisation procedure into the model would go far beyond the scope of this paper, and we there-
fore use the “adjusted” GHCN data set, which includes some outlier quality control and relative station
calibrations.

4.2. Model summary
The climate and observation model is governed by a parameter vector θ = {θµ,θκ,θτ ,θs, θε}, and
we denote the yearly temperature fields x = {xt} and the yearly observations y = {yt}, with t =
1970, . . . , 1989. Using basis function matricesBµ (all 49 spherical harmonics up to and including order
6, see Wahba, 1981),Bκ andBτ (B-splines of order 2 in sin(latitude), shown in Fig. 8), the expectation
field is given by µx|θ = Bµθµ, the local spatial dependence κ(u) is defined through logκ2 = Bκθκ,

‡http://www.ncdc.noaa.gov/ghcn/ghcn.html
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and the local variance scaling τ(u) is defined through log τ = Bτθτ . The prior distribution for the
climate field is chosen as approximate solutions to the SPDE ∆µ(u) = σµW(u), where σµ � 0, which
provides natural relative prior weights for the spherical harmonic basis functions.

The yearly temperature fields xt are defined conditionally on the climate as

(xt|θ) ∼ N(µx|θ,Q
−1
x|θ),

where Qx|θ is the GMRF precision corresponding to the model (12) with parameters determined by
(θκ,θτ ). Introducing observation matrices At, that extract the nodes from xt for each observation, the
observed yearly weather is modelled as

(yt|xt,θ) ∼ N(Atxt + Stθs,Q
−1
y|x,θ),

where Stθs are station specific effects and Qy|x,θ = I exp(θε) is the observation precision. Since
we only use the data for illustrative purposes here, we will ignore all station specific effects except for
elevation. We also ignore any remaining residual dependencies between consecutive years, analysing
only the marginal distribution properties of each year.

The Bayesian analysis draws all its conclusions from the properties of the posterior distributions of
(θ|y) and (x|y), so that all uncertainty about the weather xt is included in the distribution for the model
parameters θ, and conversely for θ and xt. One of the most important steps is how to determine the
conditional distribution for the weather given observations and model parameters,

(xt|yt,θ) ∼ N
{
µx|θ +Q−1

x|y,θA
T
tQy|x,θ

(
yt −Atµx|θ − Stθs

)
,Q−1

x|y,θ

}
,

where Qx|y,θ = Qx|θ + AT
tQy|x,θAt is the conditional precision, and the expectation is the Kriging

estimator of xt. Due to the compact support of the basis functions, determined by the triangulation, each
observation depends on at most three neighbouring nodes in xt, which makes the conditional precision
have the same sparsity structure as the field precisions Qx|θ. The computational cost of the Kriging
estimates is O(n) in the number of observations, and approximately O(n3/2) in the number of basis
functions. If basis functions with non-compact support had been used, such as a Fourier basis, the pos-
terior precisions would have been fully dense matrices, with computational cost O(n3) in the number
of basis functions, regardless of the sparsity of the prior precisions. This shows that when constructing
computationally efficient models it is not enough to consider the theoretical properties of the prior model,
but instead the whole sequence of computations needs to be taken into account.

4.3. Results
We implemented the model using R-inla. Since (x|y,θ) is Gaussian, the results are only approximate
with regards to the numerical integration of the covariance parameters (θκ,θτ ,θε). Due to the large size
of the data set, this initial analysis is based on data only from the period 1970 through 1989, requiring
336960 nodes in a joint model for the yearly temperature fields, measurements, and linear covariate
parameters, with 15182 nodes in each field, and the number of observations in each year ranging between
approximately 1300 and 1900, for each year including all stations with no missing monthly values. The
full Bayesian analysis took about one hour to compute on a 12 core computer, with a peak memory use of
about 50GB during the parallel numerical integration phase. This is a notable improvement over earlier
work by Das (2000) where partial estimation of the parameters in a deformation based covariance model
of the type in Sec. 3.4 took more than a week on a super-computer.

The 95% credible interval for the measurement standard deviation, including local unmodelled ef-
fects, was calculated to (0.628, 0.650) ◦C, with posterior expectation 0.634 ◦C. The spatial covariance
parameters are harder to interpret individually, but we instead show the resulting spatially varying field
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Fig. 8. Three transformed B-spline basis functions of order 2 (a), and approximate 95% credible intervals
for (b) standard deviation and (c) correlation range of the yearly weather, as functions of latitude.

standard deviations and correlation ranges in Fig. 8, including pointwise 95% credible intervals. Both
curves show a clear dependence on latitude, with both larger variance and correlation range near the
poles, compared with the equator. The standard deviations range between 1.2 and 2.6 ◦C, and the cor-
relation ranges vary between 1175 and 2825 km. There is an asymmetric north/south pole effect for the
variances, but a symmetric curve is admissible in the credible intervals.

Evaluating the estimated climate and weather for a period of only 20 years is difficult, since “climate”
is typically defined as averages over periods of 30 years. Also, the spherical harmonics used for the
climate model are not of high enough order to capture all regional effects. To alleviate these problems, we
base the presentation on what can reasonably be called the empirical climate and weather anomalies for
the period 1970 through 1989, in effect using the period average as reference. Thus, instead of evaluating
the distributions of (µ|y) and (xt − µ|y), we instead consider (x̄|y) and (xt − x̄|y), where x̄ =∑1989
t=1970 xt/20. In Fig. 9(a) and (c), the posterior expectation of the empirical climate, E(x̄|y), is shown

(including the estimated effect of elevation), together with the posterior expectation of the temperature
anomaly for 1980, E(x1980−x̄|y). The corresponding standard deviations are shown in Fig. 9(b) and (d).
As expected, the temperatures are low near the poles and high near the equator, and some of the relative
warming effect of the thermohaline circulation on the Alaska and northern European climates can also be
seen. There is a clear effect of regional topography, showing cold areas for high elevations such as in the
Himalayas, Andes, and Rocky Mountains, as indicated by an estimated cooling effect of 5.2 ◦C per km
of increased elevation. It is clear from Fig. 9(b) and (d) that including ocean based measurements is vital
for analysis of regional ocean climate and weather, in particular for the south-east Pacific Ocean.

With this in mind, one might expect that the analysis period and data coverage is too restricted to
allow detection of global trends, especially since the simple model we use a priori assumes a constant
climate. However, the present analysis, including the effects of all parameter uncertainties, still yields
a 95% Bayesian prediction interval (0.87, 2.18) ◦C per century (expectation 1.52 ◦C) for the global
average temperature trend over the analysed 20 year period. The posterior standard deviation for each
global average temperature anomaly was calculated to about 0.09 ◦C. Comparing the values with the
corresponding estimates in the GISS series, which has an observed trend of 1.48 ◦C per century for this
period, yields a standard deviation for the differences between the series of only 0.04 ◦C. Thus, the results
here are similar to the GISS results, even without the use of ocean data.

The estimated trend has less than a 2% probability of occurring in a random sample from the tem-
porally stationary model used in the analysis. From a purely statistical point of view, this could indicate
either that there is a large amount of unmodelled temporal correlation in the yearly weather averages, or
that the expectation is non-stationary, i.e. that the climate was changing. Since it is impossible to distin-
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Fig. 9. Posterior means for the empirical 1970–1989 climate (a) and for the empirical mean anomaly 1980
(c), with the corresponding posterior standard deviations in (b) and (d). The climate includes the estimated
effect of elevation. An area-preserving cylindrical projection is used.
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guish between these two cases using only statistical methods on the single realisation of the actual climate
and weather system that is available, a full analysis should incorporate knowledge from climate system
physics to properly balance the change in climate and short-term dependence in the weather in the model.

5. Discussion

The main result in this work is that we can construct an explicit link between (some) Gaussian fields
and Gaussian Markov random fields using an approximate weak solution of the corresponding stochastic
partial differential equation. Although this result is not generally applicable for all covariance functions,
the subclass of models where this result is applicable is substantial, and we expect to find additional
versions and extensions in the future; see for example Bolin and Lindgren (2011). The explicit link
makes these Gaussian fields much more practically applicable, as we might model and interpret the model
using covariance functions while doing the computations using the GMRF representation which allow for
sparse-matrix numerical linear algebra. In most cases, we can make use of the INLA approach for doing
(approximate) Bayesian inference (Rue et al., 2009), which requires the latent field to be a GMRF. It is
our hope that the SPDE link might help bridging the literature of (continuously indexed) Gaussian fields
and geostatistics on one side, and Gaussian Markov random fields/conditional auto-regressions on the
other.

Furthermore, the simplicity of the SPDE parameter specifications provides a new modelling approach
that is not dependent on the theory for constructing positive definite covariance functions. The SPDE
approach allows for easy construction of non-stationary models, defined in a natural way that provides
good local interpretation, via spatially varying parameters, and is computationally very efficient, as we
still obtain GMRF representations. The extension to manifolds is also useful, with fields on the globe as
the main example.

A third issue, not yet discussed, is that the SPDE approach might help interpret external covariates (for
example wind speed) as an appropriate drift term or similar in the related SPDE and then this covariate
would enter correctly in the spatial dependence models. This is again an argument for more physics
based spatial modelling, but as we have shown in this paper, such an approach can also provide a huge
computational benefit.

On the negative side, the approach comes with an implementation and preprocessing cost for setting
up the models, as it involves the SPDE, triangulations, and GMRF representations, but we firmly believe
that such costs are unavoidable when efficient computations are required.
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A. Explicit results

This appendix includes some explicit expressions and results not included in the main text.
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A.1. Regular lattices
We will here give some explicit precision expressions for grid based models on R and R2. Consider the
SPDE

(κ2 −∇ ·H∇)α/2x(u) =W(u), Ω = Rd, d = 1 or 2,

whereH is a diagonal d-dimensional matrix with positive diagonal elements (compare with Sec. 3.4).
For any given ordered discretisation u1, . . . , un on R, let γi = ui − ui−1, δi = ui+1 − ui, and

si = (γi + δi)/2. Since d = 1, we can write H = H ≥ 0, and the elements on row i, around the
diagonal, of the precision are given by

Q1 : si ·
[
−ai ci −bi

]

Q2 : si ·
[
aiai−1 −ai(ci−1 + ci) aibi−1 + c2i + biai+1 −bi(ci + ci+1) bibi+1

]

where ai = H/(γisi), bi = H/(δisi), and ci = κ2 + ai + bi. If the spacing is regular, s = δ = γ, and
a = ai = bi ≡ H/δ2 and c = ci ≡ κ2 + 2a. The special case α = 2 with κ = 0 and irregular spacing is
a generalisation of Lindgren and Rue (2008).

For R2, assume a given regular grid discretisation, with horizontal (coordinate component 1) distances
γ and vertical (coordinate component 2) distances δ. Let s = γδ, a = H11/γ

2, b = H22/δ
2, and

c = κ2 + 2a+ 2b. The precision elements are then given by

Q1 : s · −b
c −a

Q2 : s ·
b2

−2bc 2ab
2a2 + 2b2 + c2 −2ac a2

Q3 : s ·
−b3
3b2c −3ab2

−3b(2a2 + b2 + c2) 6abc −3a2b
c(6a2 + 6b2 + c2) −3a(a2 + 2b2 + c2) 3a2c −a3

If the grid distances are proportional to the square root of the corresponding diagonal elements of H
(such as in the isotropic case γ = δ and H11 = H22), the expressions simplify to s = γδ, a = b =
H11/γ

2 = H22/δ
2, and c = κ2 + 4a.

A.2. Triangulated domains
In this section, we derive explicit expressions for the building blocks for the precision matrices, for general
triangulated domains with piecewise linear basis functions. For implementation of the theory in App. C,
we need to calculate

C̃ii = 〈ψi, 1〉Ω , Cij = 〈ψi, ψj〉Ω , Gij = 〈∇ψi,∇ψj〉Ω , Bij = 〈ψi, ∂nψj〉∂Ω . (19)

For 2-manifolds such as regions in R2 or on S2, we require a triangulation with a set of vertices v1, . . . ,vn,
embedded in R3. Each vertex vk is assigned a continuous piecewise linear basis function ψk with support
on the triangles attached to vk. In order to obtain explicit expressions for (19), we need to introduce some
notation for geometry of an arbitrary triangle. For notational convenience, we number the corner vertices
of a given triangle T = (v0,v1,v2). The edge vectors opposite each corner are

e0 = v2 − v1, e1 = v0 − v2, e2 = v1 − v0,



22 Lindgren et al.

and the corner angles are θ0, θ1, and θ2.
The triangle area |T | can be obtained from the formula |T | = ‖e0 × e1‖/2, i.e. half the length of the

vector product in R3. The contributions from the triangle to the C̃ and C matrices are given by

[
C̃i,i(T )

]
i=0,1,2

=
|T |
3

[
1 1 1

]
,

[
Ci,j(T )

]
i,j=0,1,2

=
|T |
12




2 1 1
1 2 1
1 1 2




The contribution to G0,1 from the triangle T is

G0,1(T ) = |T |(∇ψ0)T(∇ψ1) = −cot(θ2)

2
=

1

4|T |e
T
0e1,

and the entire contribution from the triangle is

[
Gi,j(T )

]
i,j=0,1,2

=
1

4|T |



‖e0‖2 eT0e1 eT0e2

eT1e0 ‖e1‖2 eT1e2

eT2e0 eT2e1 ‖e2‖2


 =

1

4|T |
[
e0 e1 e2

]T [
e0 e1 e2

]
.

For the boundary integrals in (19), the contribution from the triangle is

[
Bi,j(T )

]
i,j=0,1,2

=
−1

4|T |




0 e0 e0

e1 0 e1

e2 e2 0



T 

b0I
b1I
b2I


 [e0 e1 e2

]
,

where bk = I(Edge k in T lies on ∂Ω). Summing the contributions from all the triangles yields the
complete C̃, C,G, andB matrices.

For the anisotropic version, parametrised as in Sec. A.1 and Sec. C.4, the modifiedGmatrix elements
are given by

[
Gi,j(T )

]
i,j=0,1,2

=
1

4|T |
[
e0 e1 e2

]T
adj(H)

[
e0 e1 e2

]
, (20)

where adj(H) is the adjugate matrix ofH , for non-singular matrices defined as det(H)H−1.

A.3. Non-stationary and oscillating models
For easy reference, we give specific precision matrix expressions for the case α = 2 for arbitrary tri-
angulated manifold domains Ω. The stationary and simple oscillating models for α = 2 have precision
matrices given by

Q2(κ2, θ) = κ4C + 2κ2 cos(πθ)G+GC−1G, (21)

where θ = 0 corresponds to the regular Matérn case and 0 < θ < 1 are oscillating models. Using the
approximation from (13), the non-stationary model (12) with α = 2 has precision matrix given by

Q2(κ2(·), τ(·)) = τ
(
κ2Cκ2 + κ2G+Gκ2 +GC−1G

)
τ (22)

where κ2 and τ are diagonal matrices, with κ2
ii = κ(ui)

2 and τii = τ(ui). As shown in Sec. C.5, all the
C should be replaced by C̃ to obtain a Markov model.
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A.4. Neumann boundary effects
The effects on the covariance functions resulting from using Neumann boundary conditions can be ex-
plicitly expressed as a folding effect. When the full SPDE is

{
(κ2 −∆)α/2x(u) =W(u), u ∈ Ω

∂n(κ2 −∆)jx(u) = 0, u ∈ ∂Ω, j = 0, 1, . . . , b(α− 1)/2c , (23)

the following theorem provides a direct answer, in terms of the Matérn covariance function.

THEOREM 1. If x is a solution to the boundary value problem (23) for Ω = [0, L] and a positive
integer α, then

Cov(x(u), x(v)) =
∞∑

k=−∞
(rM (u, v − 2kL) + rM (u, 2kL− v))

where rM is the Matérn covariance as defined on the whole of R.

The theorem, that extends naturally to arbitrary generalised rectangles in Rd, is proved in App. D.1. In
practice, when the effective range is small compared to L, only the three main terms need to be included
for a very close approximation:

Cov(x(u), x(v)) ≈ rM (u, v) + rM (u,−v) + rM (u, 2L− v) (24)
= rM (0, v − u) + rM (0, v + u) + rM (0, 2L− (v + u)). (25)

Moreover, the resulting covariance is nearly indistinguishable from the stationary Matérn covariance at
distances greater than twice the range away form the borders of the domain.

A.5. Oscillating covariance functions
The covariances for the oscillating model can be calculated explicitly for R and R2, from the spectrum.
On R, complex analysis gives

r(u, v) =
1

2 sin(πθ)κ3
e−κ cos(πθ/2)|v−u| sin {πθ/2 + κ sin(πθ/2)|v − u|} , (26)

which has variance {4 cos(πθ/2)κ3}−1. On R2, involved Bessel function integrals yield

r(u,v) =
1

4π sin(πθ)κ2i

{
K0

(
κ‖v − u‖e−iπθ/2

)
−K0

(
κ‖v − u‖eiπθ/2

)}
(27)

which has variance {4πκ2 sinc(πθ)}−1.

B. Manifolds, random fields, and operator identities

B.1. Manifold calculus
In order to state concisely the necessary theory for constructing solutions to stochastic partial differential
equations on more general spaces than Rd, we need to introduce some concepts from differential geometry
and manifolds. A main point is that, loosely speaking, for statisticians familiar with measure theory and
stochastic calculus on Rd, many of the familiar rules for calculus for random processes and fields still
apply, as long as all expressions are defined in coordinate-free manners. Here, we give a brief overview of
the concepts uses in the subsequent appendices. For more details on manifolds, differential calculus and
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geometric measure theory see for example Auslander and MacKenzie (1977), Federer (1978) and Krantz
and Parks (2008).

Loosely, we say that a space Ω is a d-manifold if it locally behaves as Rd. We only consider manifolds
with well-behaved boundaries, in the sense that the boundary ∂Ω of a manifold, if present, is required to
be a piecewise smooth (d − 1)-manifold. We also require the manifolds to be metric manifolds, so that
distances between points and angles between vectors are well-defined.

A bounded manifold has a finite maximal distance between points. If such a manifold is complete in
the set-sense, it is called compact. Finally, if the manifold is compact but has no boundary, it is closed.
The most common metric manifolds are subsets of Rd equipped with the Euclidean metric. The prime
example of a closed manifold is the unit sphere S2 embedded in R3. In Fourier analysis for images, the flat
torus commonly appears, when considering periodic continuations of a rectangular region. Topologically,
this is equivalent to a torus, but with a different metric compared with a torus embedded in R3. The d-
dimensional hypercube [0, 1]d is a compact manifold with a closed boundary.

From the metric associated with the manifold it is possible to define differential operators. Let φ
denote a function φ : Ω 7→ R. The gradient of φ at u is a vector∇φ(u) defined indirectly via directional
derivatives. In Rd with Euclidean metric, the gradient operator∇ is formally given by the column vector[
∂
∂u1

, . . . , ∂
∂ud

]T
. The Laplacian ∆ of φ at u (or the Laplace-Beltrami operator) can be defined as the

sum of the second order directional derivatives, with respect to a local orthonormal basis, and is denoted
∆φ(u) = ∇ · ∇φ(u). In Euclidean metric on Rd, we can write ∆ = ∂2

∂u2
1

+ · · ·+ ∂2

∂u2
d

. At the boundary
of Ω, the vector n∂(u) denotes the unit length outward normal vector at the point u on the boundary ∂Ω.
The normal derivative of a function φ is the directional derivative ∂nφ(u) = n∂(u) · ∇φ(u).

An alternative to defining integration on general manifolds through mapping subsets into Rd, is to re-
place Lebesgue integration with integrals defined through normalised Hausdorff measures (Federer, 1951,
1978), here denoted Hd

Ω(·). This leads to a natural generalisation of Lebesgue measure and integration,
that coincides with the regular theory on Rd. We write the area of a d-dimensional Hausdorff measurable
subset A ⊂ Ω as |A|Ω = Hd

Ω(1A), and the Hausdorff integral of a (measurable) function φ as Hd
Ω(φ). An

inner product between scalar or vector valued functions φ and ψ is defined through

〈φ, ψ〉Ω = Hd
Ω(φ · ψ) =

∫

u∈Ω

φ(u) · ψ(u)Hd
Ω(du).

A function φ : Ω 7→ Rm, m ≥ 1, is said to be square integrable if and only if ‖φ‖2Ω = 〈φ, φ〉Ω < ∞,
denoted φ ∈ L2(Ω).

A fundamental relation, that corresponds to integration by parts for functions on R, is Green’s first
identity,

〈φ,−∆ψ〉Ω = 〈∇φ,∇ψ〉Ω − 〈φ, ∂nψ〉∂Ω .

Typical statements of the identity require φ ∈ C1(Ω) and ψ ∈ C2(Ω), but we will relax these require-
ments considerably in Lemma 1.

We also need to define Fourier transforms on general manifolds, where the usual cosine and sine
functions do not exist.

DEFINITION 1 (GENERALISED FOURIER REPRESENTATION). The Fourier transform pair for a func-
tion φ ∈ L2 : Rd 7→ R is given by





φ̂(k) = (Fφ)(k) =
1

(2π)d

〈
φ(u), e−ik

Tu
〉
Rd(du)

,

φ(u) = (F−1φ̂)(u) =
〈
φ̂(k), eik

Tu
〉
Rd(dk)

.
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(Here, we briefly abused our notation by including complex functions in the inner products.)
If Ω is a compact manifold, a countable subset {Ek, k = 0, 1, 2, . . .} of orthogonal and normalised

eigenfunctions to the negated Laplacian, −∆Ek = λkEk, can be chosen as basis, and the Fourier
representation for a function φ ∈ L2 : Ω 7→ R is given by





φ̂(k) = (Fφ)(k) = 〈φ,Ek〉Ω ,

φ(u) = (F−1φ̂)(u) =

∞∑

k=0

φ̂(k)Ek(u).

Finally, we define a subspace of L2 functions, with inner product adapted to the differential operators
we will study in the remainder of this paper.

DEFINITION 2. The Hilbert space H1(Ω, κ), for a given κ ≥ 0, is the space of functions {φ : Ω 7→
R} with∇φ ∈ L2(Ω), equipped with inner product

〈φ, ψ〉H1(Ω,κ) = κ2 〈φ, ψ〉Ω + 〈∇φ,∇ψ〉Ω .

The inner product induces a norm, given by ‖φ‖H1(Ω,κ) = 〈φ, φ〉1/2H1(Ω,κ). The boundary case κ = 0 is
also well defined, since ‖φ‖H1(Ω,0) is a semi-norm, and H1(Ω, 0) is a space of equivalence classes of
functions, that can be identified by functions with 〈φ, 1〉Ω = 0.

Note that for κ > 0, the norms are equivalent, and that the Hilbert space H1 is a quintessential Sobolev
space.

B.2. Generalised Gaussian random fields
We now turn to the problem of characterising random fields on Ω. We restrict ourselves to Gaussian
fields that are at most as irregular as white noise. The distributions of such fields are determined by the
properties of expectations and covariances of integrals of functions with respect to random measures, the
so called finite dimensional distributions.

In classical theory for Gaussian fields, the following definition can be used:

DEFINITION 3 (GAUSSIAN FIELD). A random function x : Ω 7→ R on a manifold Ω is a Gaussian
field (GF) if {x(uk), k = 1, . . . , n} are jointly Gaussian random vectors for every finite set of points
{uk ∈ Ω, k = 1, . . . , n}. If there is a constant b ≥ 0 such that E(x(u)2) ≤ b for all u ∈ Ω, the random
field has bounded second moments.

The complicating issue in dealing with the fractional SPDEs considered in this paper is that for some
parameter values, the solutions themselves are discontinuous everywhere, although still more regular
than white noise. Thus, since the solutions do not necessarily have well-defined pointwise meaning, the
above definition is not applicable, and the driving white noise itself is also not a regular random field.
Inspired by Adler and Taylor (2007), we solve this by using a generalised definition based on generalised
functions.

DEFINITION 4 (GENERALISED FUNCTION). For a given function space F , an F-generalised func-
tion x : Ω 7→ R with an associated generating additive measure x∗ : F 7→ R, is an equivalence class
of objects identified through the collection of integration properties defined by 〈φ, x〉Ω = x∗(φ), for all
x∗-measurable functions φ ∈ F .

When x∗ is absolutely continuous with respect to the Hausdorff measure on Ω, x is a set of regular
functions, at most differing on sets with Hausdorff measure zero. The definition allows many of the
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regular integration rules to be used for generalised functions, without any need to introduce a heavy
theoretical notational machinery, and provides a straightforward way of generalising Def. 3 to the kind of
entities we need for the subsequent analysis.

DEFINITION 5 (GENERALISED GAUSSIAN FIELD). A generalised GF x on Ω is a random L2(Ω)-
generalised function such that for every finite set of test functions {φi ∈ L2(Ω), i = 1, . . . , n}, the
inner products 〈φi, x〉Ω, i = 1, . . . , n, are jointly Gaussian. If there is a constant b ≥ 0 such that
E(〈φ, x〉2Ω) ≤ b ‖φ‖2Ω for every φ ∈ L2(Ω), the generalised field x has L2(Ω)-bounded second moments,
abbreviated as is L2(Ω)-bounded.

Of particular importance is the fact that white noise can be defined directly as a generalised GF.

DEFINITION 6 (GAUSSIAN WHITE NOISE). Gaussian white noiseW on a manifold Ω is an L2(Ω)-
bounded generalised GF such that for any set of test functions {φi ∈ L2(Ω), i = 1, . . . , n}, the integrals
〈φi,W〉Ω, i = 1, . . . , n, are jointly Gaussian, with expectation and covariance measures given by

E(〈φi,W〉Ω) = 0 and Cov
(
〈φi,W〉Ω , 〈φj ,W〉Ω

)
= 〈φi, φj〉Ω .

In particular, the covariance measure of W over two subregions A,B ⊆ Ω is equal to the area measure
of their intersection, |A ∩ B|Ω, so that the variance measure of W over a region is equal to the area of
the region.

We note that the popular approach to defining white noise on Rd via a Brownian sheet is not applicable
for general manifolds, since the notion of globally orthogonal directions is not present. The closest
equivalent would be to define a set-indexed Gaussian random functionW∗(A) : {A;A ⊆ Ω} 7→ R, such
that E(W∗(A)) = 0 and Cov(W∗(A),W∗(B)) = |A ∩ B|Ω. This definition is equivalent to the one
above (Adler and Taylor, 2007), and the Brownian sheet is a special case that only considers rectangular
regions along the axes of Rd, with one corner fixed at the origin.

B.3. Operator identities
Identities for differentiation and integration on manifolds are usually stated as requiring functions in C1,
C2, or even C∞, which is much too restrictive to be applied to generalised functions and random fields.
Here, we present the two fundamental identities needed for the subsequent SPDE analysis; Green’s first
identity and a scalar product characterisation of the half-Laplacian.

B.3.1. Stochastic Green’s first identity
We here state a generalisation of Green’s first identity, showing that the identity applies to generalised
fields, as opposed to only differentiable functions.

LEMMA 1. If ∇f ∈ L2(Ω) and ∆x is L2(Ω)-bounded, then (with probability 1)

〈f,−∆x〉Ω = 〈∇f,∇x〉Ω − 〈f, ∂nx〉∂Ω .

If ∇x is L2(Ω)-bounded and ∆f ∈ L2(Ω) , then (with probability 1)

〈x,−∆f〉Ω = 〈∇x,∇f〉Ω − 〈x, ∂nf〉∂Ω .

For brevity, we include only a sketch of the proof:

PROOF. The requirements imply that each integrand can be approximated arbitrarily closely in the L2

senses using Cq functions f̃ and x̃, where q in each case is large enough for the regular Green’s identity
to hold for f̃ and x̃. Using the triangle inequality, it follows that the expectation of the squared difference
between the left and right hand sides of the identity can be bounded by an arbitrarily small positive
constant. Hence, the difference is zero in quadratic mean, and the identity holds with probability 1. 2
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B.3.2. The half-Laplacian
In defining and solving the considered SPDEs, the half-Laplacian operator needs to be characterised in a
way that permits practical calculations on general manifolds. The fractional modified Laplacian operators
(κ2−∆)α/2, κ, α ≥ 0, are commonly (Samko et al., 1992, p. 483) defined through the Fourier transform,
as defined above:

{
F(κ2 −∆)α/2φ

}
(k) = (κ2 + ‖k‖2)α/2(Fφ)(k), on Rd

{
F(κ2 −∆)α/2φ

}
(k) = (κ2 + λk)α/2(Fφ)(k), on compact Ω,

where λk, k = 0, 1, 2, . . ., are the eigenvalues of −∆. The formal definition is mostly of theoretical
interest, since in practice, the generalised Fourier basis and eigenvalues for the Laplacian are unknown.
In addition, even if the functions are known, working directly in the Fourier basis is computationally
expensive for general observation models, since the basis functions do not have compact support, which
leads to dense covariance and precision matrices. The following Lemma provides an integration identity
that allows practical calculations involving the half-Laplacian.

LEMMA 2. Let φ and ψ be functions inH1(Ω, κ). Then, the Fourier-based modified half-Laplacians
satisfy

〈
(κ2 −∆)1/2φ, (κ2 −∆)1/2ψ

〉
Ω

= 〈φ, ψ〉H1(Ω,κ)

whenever either (a) Ω = Rd, (b) Ω is closed, or (c) Ω is compact and 〈φ, ∂nψ〉∂Ω = 〈∂nφ, ψ〉∂Ω = 0.

For proof, see App. D.2. The Lemma shows that for functions ψ fulfilling the requirements, we can use
the Hilbert space inner product as a definition of the half-Laplacian. This also generalises in a natural way
to random fields x with L2(Ω)-bounded∇x, as well as to suitably well-behaved unbounded manifolds.

It would be tempting to eliminate the qualifiers in part (c) of the Lemma by subtracting the average
of the two boundary integrals to the relation, and extend the Lemma to a complete equivalence relation.
However, the motivation may be problematic, since the half-Laplacian is defined for a wider class of
functions than the Laplacian, and it is unclear whether such a generalisation necessarily yields the same
half-Laplacian as the Fourier definition for functions that are not of the class ∆φ ∈ L2(Ω). See Ilić et al.
(2008) for a partial result.

C. Hilbert space approximation

We are now ready to formulate the main results of the paper in more technical detail. The idea is to
approximate the full SPDE solutions with functions in finite Hilbert spaces, showing that the approxima-
tions converge to the true solutions as the finite Hilbert space approaches the full space. In App. C.1, we
state the needed convergence and stochastic finite element method definitions. The main result for Matérn
covariance models is stated in App. C.2, followed by generalisations to intrinsic and oscillating fields in
App. C.3 and App. C.4. Finally, the full finite element constructions are modified to Markov models in
App. C.5.

C.1. Weak convergence and stochastic FEM
We start by stating formal definitions of convergence of Hilbert spaces and of random fields in such spaces
(Def. 7 and 8) as well as the definition of the finite element constructions that will be used (Def. 9).

DEFINITION 7 (DENSE SUBSPACE SEQUENCES). A finite subspaceH1
n(Ω, κ) ⊂ H1(Ω, κ) is spanned

by a finite set of basis functions Ψn = {ψ1, . . . , ψn}. We say that a sequence of subspaces {H1
n} is dense

inH1 if for every f ∈ H1 there is a sequence {fn}, fn ∈ H1
n, such that limn→∞ ‖f − fn‖H1(Ω,κ) = 0.
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If the subspace sequence is nested, there is a monotonely convergent sequence {fn}, but that is not a
requirement here. For given H1

n, we can choose the projection of f ∈ H1 onto H1
n, i.e. the fn that

minimises ‖f−fn‖H1 . The error f−fn is orthogonal toH1
n, and the basis coordinates can be determined

via the system of equations 〈ψk, fn〉H1(Ω,κ) = 〈ψk, f〉H1(Ω,κ), for all k = 1, . . . , n.

DEFINITION 8 (WEAK CONVERGENCE). A sequence of L2(Ω)-bounded generalised Gaussian fields
{xn} is said to converge weakly to an L2(Ω)-bounded generalised Gaussian field x if for all f, g ∈
L2(Ω),

E (〈f, xn〉Ω)→ E (〈f, x〉Ω) ,

Cov (〈f, xn〉Ω , 〈g, xn〉Ω)→ Cov (〈f, x〉Ω , 〈g, x〉Ω) ,

as n→∞. We denote such convergence by xn
D(L2(Ω))−−−−−−⇀ x.

DEFINITION 9 (FINITE ELEMENT APPROXIMATIONS). Let L be a second order elliptic differential
operator, and let E be a generalised Gaussian field on Ω. Let xn =

∑
j ψjwj ∈ H1

n(Ω, κ) denote
approximate weak solutions to the SPDE Lx = E on Ω.

a) The weak Galerkin solutions are given by Gaussian w = {w1, . . . , wn} such that

E(〈fn,Lxn〉Ω) = E(〈fn, E〉Ω)

Cov(〈fn,Lxn〉Ω , 〈gn,Lxn〉Ω) = Cov(〈fn, E〉Ω , 〈gn, E〉Ω)

for every pair of test functions fn, gn ∈ H1
n(Ω, κ).

b) The weak least squares solutions are given by Gaussian w = {w1, . . . , wn} such that

E(〈Lfn,Lxn〉Ω) = E(〈Lfn, E〉Ω)

Cov(〈Lfn,Lxn〉Ω , 〈Lgn,Lxn〉Ω) = Cov(〈Lfn, E〉Ω , 〈Lgn, E〉Ω)

for every pair of test functions fn, gn ∈ H1
n(Ω, κ).

C.2. The basic Matérn-like cases
In the remainder of the appendices, we let L = (κ2−∆). In the classic Matérn case, the SPDE Lα/2x =
W can, for integer α values, be unravelled into an iterative formulation

L1/2y1 =W, Ly2 =W, Lyk = yk−2, k = 3, 4, . . . , α.

For integers α = 1, 2, 3, . . ., yα is a solution to the original SPDE. To avoid solutions in the null-space
of (κ2 −∆), we will require Neumann boundaries, i.e. the solutions must have zero normal derivatives
at the boundary of Ω. In the Hilbert space approximation, this can be achieved by requiring that all basis
functions have zero normal derivatives.

We now formulate the three main theorems of the paper, that show what the precision matrices should
look like for given basis functions (Thm. 2), that the finite Hilbert representations converge to the true
distributions for α = 1 and α = 2 and dense Hilbert space sequences (Thm. 3), and finally that the
iterative constructions for α ≥ 3 also converge (Thm. 4). Note that a sequence H1

n(Ω, κ) of piecewise
linear Hilbert spaces defined on non-degenerate triangulations of Ω is a dense sequence in H1(Ω, κ) if
the maximal edge length decreases to zero. Thus, the theorems are applicable for piecewise linear basis
functions, showing weak convergence of the field itself and its derivatives up to order min(2, α).
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THEOREM 2 (FINITE ELEMENT PRECISIONS). Define matrices C,G, andK through

Ci,j = 〈ψi, ψj〉Ω , Gi,j = 〈∇ψi,∇ψj〉Ω , K = κ2C +G

and denote the distribution for w with N(0,Q−1), where the precision matrix Q is the inverse of the
covariance matrix, and let xn =

∑
k ψkwk be a weak H1

n(Ω, κ) approximation to Lα/2x = E , L =
(κ2 −∆), with Neumann boundaries, and ∂nψk = 0 on ∂Ω.

a) When α = 2 and E =W , the weak Galerkin solution is obtained forQ = KTC−1K.

b) When α = 1 and E =W , the weak least squares solution is obtained forQ = K.

c) When α = 2 and E is an L2(Ω)-bounded Gaussian field inH1
n(Ω, κ) with mean zero and precision

QE,n, the weak Galerkin solution is obtained forQ = KTC−1QE,nC
−1K.

THEOREM 3 (CONVERGENCE). Let x be a weak solution to the SPDE Lα/2x =W , L = (κ2−∆),
with Neumann boundaries on a manifold Ω, and let xn be a weak H1

n(Ω, κ) approximation, whenW is
Gaussian white noise. Then,

xn
D(L2(Ω))−−−−−−⇀ x, (I)

Lα/2xn
D(L2(Ω))−−−−−−⇀ Lα/2x, (II)

if the sequence {H1
n(Ω, κ), n→∞} is dense inH1(Ω, κ), and either

(a) α = 2, and xn is the Galerkin solution, or
(b) α = 1 and xn is the least squares solution.

THEOREM 4 (ITERATIVE CONVERGENCE). Let y be a weak solution to the linear SPDE Lyy = E
on a manifold Ω, for some L2(Ω)-bounded random field E , and let x be a weak solution to the SPDE
LyLx = E , where L = κ2 −∆. Further, let yn be a weakH1

n(Ω, κ) approximation to y such that

yn
D(L2(Ω))−−−−−−⇀ y, (I)

and let xn be the weak Galerkin solution inH1
n(Ω, κ) to the SPDEs Lx = yn on Ω. Then,

xn
D(L2(Ω))−−−−−−⇀ x, (II)

Lxn
D(L2(Ω))−−−−−−⇀ Lx. (III)

For proofs of the three theorems, see App. D.3.

C.3. The intrinsic cases
When κ = 0, the Hilbert space from Def. 2 is a space of equivalence classes of functions, corresponding to
SPDE solutions where arbitrary functions in the null-space of (−∆)α/2 can be added. Such solution fields
are known as intrinsic fields, and have well-defined properties. With piecewise linear basis functions, the
intrinsicness can be exactly reproduced for α = 1 for all manifolds, and partially for α = 2 on subsets
of R2, by relaxing the boundary constraints to free boundaries. For larger α or more general manifolds,
the intrinsicness will only be approximately represented. How to construct models with more fine-tuned
control of the null-space is a subject for further research.
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To approximate intrinsic fields with α ≥ 2 and free boundaries, the matrix K in Thm. 2 should be
replaced byG−B (due to Green’s identity), where the elements of the (possibly asymmetric) boundary
integral matrixB are given by Bi,j = 〈ψi, ∂nψj〉∂Ω. The formulations and proofs of Thm. 3 and Thm. 4
remain unchanged, but with the convergence only defined with respect to test functions f and g orthogonal
to the null-space of the linear SPDE operator.

The notion of non-null-space convergence allows us to formulate a simple proof of the result from Be-
sag and Mondal (2005), that says that a 1st order intrinsic CAR model on infinite lattices in R2 converges
to the de Wij process, which is an intrinsic generalised Gaussian random field. As can be seen in App. A.1,
for α = 1 and κ = 0, theQ-matrix (equal toG) for a triangulated regular grid matches the ordinary intrin-
sic 1st order CAR model. The null-space of the half-Laplacian are constant functions. Choose non-trivial
test functions f and g that integrate to zero, and apply Thm. 3 and Def. 8. This shows that the regular
CAR model, seen as a Hilbert space representation with linear basis functions, converges to the de Wij
process, which is the special SPDE case α = 1, κ = 0 in R2.

C.4. The oscillating and non-isotropic cases
To construct the Hilbert space approximation for the oscillating model introduced in Sec. 3.3, as well as
non-isotropic versions, we introduce a coupled system of SPDEs for α = 2,

[
h1 −∇ ·H1∇ −h2 +∇ ·H2∇
h2 −∇ ·H2∇ h1 −∇ ·H1∇

] [
x1

x2

]
=

[
E1
E2

]
(28)

which is equivalent to the complex SPDE

(h1 + ih2 −∇ · (H1 + iH2)∇)(x1(u) + ix2(u)) = E1(u) + iE2(u). (29)

The model in Sec. 3.3 corresponds to h1 = κ2 cos(πθ), h2 = κ2 sin(πθ),H1 = I , andH2 = 0.
To solve the coupled SPDE system (28) we take a set {ψk, k = 1, . . . , n} of basis functions for

H1
n(Ω, κ) and construct a basis for the solution space for

[
x1 x2

]T
as

[
ψ1

0

]
, . . . ,

[
ψn
0

]
,

[
0
ψ1

]
, . . . ,

[
0
ψn

]
.

The definitions of theG andK matrices are modified as follows:

(Gk)i,j =
〈
H

1/2
k ∇ψi,H

1/2
k ∇ψj

〉
Ω
, k = 1, 2,

Kk = hkC +Gk, k = 1, 2.

Using the same construction as in the regular case, the precision for the solutions are given by

[
K1 −K2

K2 K1

]T [
C 0
0 C

]−1 [
QE 0
0 QE

] [
C 0
0 C

]−1 [
K1 −K2

K2 K1

]
=

[
Q 0
0 Q

]
,

whereQ = Q(h1,H1)+Q(h2,H2), andQ(·, ·) is the precision generated for the regular iterated model
with the given parameters. Surprisingly, regardless of the choice of parameters, the solution components
are independent.

C.5. Markov approximation
By choosing piecewise linear basis functions, the practical calculation of the matrix elements in the
precision construction is straightforward, and the local support make the basic matrices sparse. Since
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they are not orthogonal, theC matrix will be non-diagonal, and therefore the FEM-construction does not
directly yield Markov fields for α ≥ 2, since C−1 is not sparse. However, following standard practice
in FEM, C can be approximated with a diagonal matrix as follows. Let C̃ be a diagonal matrix, with
C̃ii =

∑
j Cij = 〈ψi, 1〉Ω, and note that this preserves the interpretation of the matrix as an integration

matrix. Substituting C−1 with C̃
−1

yields a Markov approximation to the FEM solution.
The convergence rate for the Markov approximation is the same as for the full FEM model, which can

be shown by adapting the details of the convergence proofs. Let f and g be test functions inH1(Ω, κ) and
let fn and gn be their projections onto H1

n(Ω, κ), with basis weights wf and wg . Taking the difference
between the covariances for the Markov (x̃n) and the full FEM solution (xn) for α = 2 yields the error

Cov(〈f,Lx̃n〉Ω , 〈g,Lx̃n〉Ω)− Cov(〈f,Lxn〉Ω , 〈g,Lxn〉Ω) = wf (C̃ −C)wg.

Requiring ‖f‖H1(Ω,κ) , ‖g‖H1(Ω,κ) ≤ 1, it follows from Lemma 1 in Chen and Thomée (1985) that the
covariance error is bounded by ch2, where c is some constant, and h is the diameter of the largest circle
that can be inscribed in a triangle of the triangulation. This shows that the convergence rate from (11) will
not be affected by the Markov approximation. In practice, the C matrix inK should also be replaced by
C̃. This improves the approximation when either h or κ is large, with numerical comparisons showing a
covariance error reduction of as much as a factor 3. See Bolin and Lindgren (2009) for a comparison of
the resulting Kriging errors for different methods, showing negligible differences between the exact FEM
representation and the Markov approximation.

D. Proofs

D.1. Folded covariance
PROOF (THM. 1). Writing the covariance of the SPDE solutions on the interval Ω = [0, L] ⊂ R in

terms of the spectral representation gives an infinite series,

Cov(x(u), x(v)) = λ0 +
∞∑

k=1

cos(uπk/L) cos(vπk/L)λk, (30)

where λ0 = (κ2αL)−1 and λk = 2L−1(κ2 + (πk/L)2)−α are the variances of the weights for the basis
functions cos(uπk/L), k = 0, 1, 2, . . ..

We use the spectral representation of the Matérn covariance in the theorem statement, and show that
the resulting expression is equal to the spectral representation of the covariance for the solutions to the
given SPDE. The Matérn covariance on R (with variance given by the SPDE) can be written as

rM (u, v) =
1

2π

∫ ∞

−∞
(κ2 + ω2)−α cos{(v − u)ω} dω.

Thus, with r̃(u, v) denoting the folded covariance in the theorem statement,

r̃(u, v) =

∞∑

k=−∞
{rM (u, v − 2kL) + rM (u, 2kL− v)}

=
1

2π

∞∑

k=−∞

∫ ∞

−∞
(κ2 + ω2)−α [cos {(v − u− 2kL)ω}+ cos {(v + u− 2kL)ω}] dω

=
1

2π

∫ ∞

−∞
(κ2 + ω2)−α

∞∑

k=−∞
[cos {(v − u− 2kL)ω}+ cos {(v + u− 2kL)ω}] dω
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Rewriting the cosines via Euler’s formulas, we obtain

∞∑

k=−∞
[cos{(v − u− 2kL)ω}+ cos{(v + u− 2kL)ω}]

=
1

2

∞∑

k=−∞

(
eiuω + e−iuω

){
ei(v−2kL)ω + e−i(v−2kL)ω

}

= cos(uω)

(
eivω

∞∑

k=−∞
e−2ikLω + e−ivω

∞∑

k=−∞
e2ikLω

)

= 2π cos(uω)
(
eivω + e−ivω

) ∞∑

k=−∞
δ(2Lω − 2πk)

=
2π

L
cos(uω) cos(vω)

∞∑

k=−∞
δ(ω − πk/L)

where we used the Dirac-measure representation
∑∞
k=−∞ eiks = 2π

∑∞
k=−∞ δ(s− 2πk). Finally, com-

bining the results yields

r̃(u, v) =
1

L

∫ ∞

−∞
(κ2 + ω2)−α cos(uω) cos(vω)

∞∑

k=−∞
δ(ω − πk/L) dω

=
1

L

∞∑

k=−∞

{
κ2 + (πk/L)2

}−α
cos(uπk/L) cos(vπk/L)

=
1

κ2αL
+

2

L

∞∑

k=1

{
κ2 + (πk/L)2

}−α
cos(uπk/L) cos(vπk/L),

which is precisely the sought expression in (30). 2

D.2. Modified half-Laplacian equivalence
PROOF (LEMMA 2). For the sake of brevity, we only present the proof for compact manifolds, as

the the proof for Ω = Rd follows the same principle but without the boundary complications. The main
difference is that the Fourier representation is discrete for compact manifolds and continuous for Rd.

Let λk ≥ 0, k = 0, 1, 2, . . ., be the eigenvalue corresponding to eigenfunction Ek of −∆ (Defini-
tion 1). Then, with φ̂(k) = (Fφ)(k), the modified half-Laplacian from App. B.3.2 is defined through
F{(κ2 −∆)1/2φ}(k) = (κ2 + λk)1/2φ̂(k), and we obtain

〈
(κ2 −∆)1/2φ, (κ2 −∆)1/2ψ

〉
Ω

=

〈 ∞∑

k=0

(κ2 + λk)1/2φ̂(k)Ek,
∞∑

k′=0

(κ2 + λk′)
1/2ψ̂(k′)Ek′

〉

Ω

,

and, since φ, ψ ∈ H1(Ω, κ), we can change the order of integration and summation,

=

∞∑

k=0

(κ2 + λk)φ̂(k)ψ̂(k),

since the eigenfunctions Ek and Ek′ are orthonormal.
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Now, starting from the Hilbert space inner product,

〈φ, ψ〉H1(Ω,κ) = κ2 〈φ, ψ〉Ω + 〈∇φ,∇ψ〉Ω

= κ2

〈 ∞∑

k=0

φ̂(k)Ek,
∞∑

k′=0

ψ̂(k′)Ek′

〉

Ω

+

〈
∇
∞∑

k=0

φ̂(k)Ek,∇
∞∑

k′=0

ψ̂(k′)Ek′

〉

Ω

and, since φ, ψ ∈ H1(Ω, κ) and Ek, Ek′ ∈ L2(Ω), we can change the order of differentiation and
summation,

= κ2

〈 ∞∑

k=0

φ̂(k)Ek,
∞∑

k′=0

ψ̂(k′)Ek′

〉

Ω

+

〈 ∞∑

k=0

φ̂(k)∇Ek,
∞∑

k′=0

ψ̂(k′)∇Ek′
〉

Ω

and, since in addition∇Ek,∇Ek′ ∈ L2(Ω), we can change the order of summation and integration,

= κ2
∞∑

k=0

∞∑

k′=0

φ̂(k)ψ̂(k′) 〈Ek, Ek′〉Ω +
∞∑

k=0

∞∑

k′=0

φ̂(k)ψ̂(k′) 〈∇Ek,∇Ek′〉Ω .

Further, Green’s identity for 〈∇Ek,∇Ek′〉Ω yields

〈∇Ek,∇Ek′〉Ω = 〈Ek,−∆Ek′〉Ω + 〈Ek, ∂nEk′〉∂Ω = λk′ 〈Ek, Ek′〉Ω + 〈Ek, ∂nEk′〉∂Ω .

Since ∇φ,∇ψ ∈ L2(Ω) we can change the order of summation, integration and differentiation for the
boundary integrals,

∞∑

k=0

∞∑

k′=0

φ̂(k)ψ̂(k′) 〈Ek, ∂nEk′〉∂Ω = 〈φ, ∂nψ〉∂Ω .

By the boundary requirements in the Lemma, whenever Green’s identity holds, the boundary integral
vanishes, either because the boundary is empty (if the manifold is closed), or the integrand is zero, so
collecting all the terms we obtain

〈φ, ψ〉H1(Ω,κ) =

∞∑

k=0

∞∑

k′=0

(κ2 + λ′k)φ̂(k)ψ̂(k′) 〈Ek, Ek′〉Ω + 0 =
∞∑

k=0

(κ2 + λk)φ̂(k)ψ̂(k),

and the proof is complete. 2

D.3. Hilbert space convergence
PROOF (THM. 2, FINITE ELEMENT PRECISIONS). The proofs are straightforward applications of

the definitions. Letwf andwg be the Hilbert space coordinates of two test functions fn, gn ∈ H1
n(Ω, κ),

and let L = (κ2 −∆).
For case a), α = 2 and E =W , so that

〈fn,Lxn〉Ω =
∑

i,j

wf,i 〈ψi,Lψj〉Ω wj =
∑

i,j

wf,i(κ
2Ci,j +Gi,j)wj = wT

fKw

due to Green’s identity, and

Cov(〈fn,Lxn〉Ω , 〈gn,Lxn〉Ω) = wT
fKCov(w,w)KTwg.
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This covariance is equal to

Cov(〈fn,W〉Ω , 〈gn,W〉Ω) = 〈fn, gn〉Ω =
∑

i,j

wf,i 〈ψi, ψj〉Ω wg,j =
∑

i,j

wf,iCi,jwg,j = wT
fCwg

for every pair of test functions fn, gn whenQ = Cov(w,w)−1 = KTC−1K.
For case b), α = 1 and E = W . Using the same technique as in a), but with Lemma 2 instead of

Green’s identity,
〈
L1/2fn,L1/2xn

〉
Ω

= 〈fn, xn〉H1(Ω,κ) = wT
fKw and

Cov
(〈
L1/2fn,W

〉
Ω
,
〈
L1/2gn,W

〉
Ω

)
=
〈
L1/2fn,L1/2gn

〉
Ω

= 〈fn, gn〉H1(Ω,κ) = wT
fKwg

so thatQ = KTK−1K = K, noting thatK is a symmetric matrix since both C andG are symmetric.
Finally, for case c), α = 2 and E = En is a Gaussian field onH1

n(Ω, κ) with precisionQE,n. Using the
same technique as in a), Cov(〈fn,Lxn〉Ω , 〈gn,Lxn〉Ω) = wT

fKCov(w,w)KTwg and the finite basis
representation of the noise En gives Cov(〈fn, En〉Ω , 〈gn, En〉Ω) = wT

fCQ
−1
E,nCwg . Requiring equality

for all pairs of test functions yields Q = KTC−1QE,nC
−1K. Here, keeping the transposes allows the

proof to apply also to the intrinsic free boundary cases. 2

PROOF (THM. 3, CONVERGENCE). First, we show that part (I) follows from part (II). LetL = (κ2−
∆), let f and g be functions inH1(Ω, κ), and let f̃ be the solution to the PDE

{
Lf̃(u) = f(u), u ∈ Ω,

∂nf̃(u) = 0, u ∈ ∂Ω,

and correspondingly for g. Then f̃ and g̃ are inH1(Ω, κ), and further fulfil the requirements of Lemma 1
and Lemma 2. Therefore,

〈f, xn〉Ω = 〈Lf̃ , xn〉Ω = 〈f̃ , xn〉H1(Ω,κ) = 〈f̃ ,Lxn〉Ω , and

〈f, x〉Ω = 〈Lf̃ , x〉Ω = 〈f̃ , x〉H1(Ω,κ) = 〈f̃ ,Lx〉Ω ,

where the last equality holds when α = 2, since W is L2(Ω)-bounded. The convergence of xn to x
follows from part (II). In the Galerkin case (a), we have

Cov(〈f, xn〉Ω , 〈g, xn〉Ω) = Cov(〈f̃ ,Lxn〉Ω , 〈g̃,Lxn〉Ω)

→ Cov(〈f̃ ,Lx〉Ω , 〈g̃,Lx〉Ω) = Cov(〈f, x〉Ω , 〈g, x〉Ω),

and similarly for the Least Squares case (b).
Part (II): Let fn =

∑
k ψkwf,k and gn =

∑
k ψkwg,k be the orthogonal projections of f and g onto

H1
n(Ω, κ). In case (a), then

〈f,Lxn〉Ω = 〈f, xn〉H1(Ω,κ) = 〈f − fn, xn〉H1(Ω,κ) + 〈fn, xn〉H1(Ω,κ) = 〈fn, xn〉H1(Ω,κ) ,

and

Cov(〈f,Lxn〉Ω , 〈g,Lxn〉Ω) = Cov(〈fn, xn〉H1(Ω,κ) , 〈gn, xn〉H1(Ω,κ))

= Cov(〈fn,W〉Ω , 〈gn,W〉Ω) = 〈fn, gn〉Ω
→ 〈f, g〉Ω = Cov(〈f,W〉Ω , 〈g,W〉Ω)
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as n→∞. Similarly in case (b), for any f ∈ H1(Ω, κ) fulfilling the requirements of Lemma 2,
〈
L1/2f,L1/2xn

〉
Ω

= 〈f, xn〉H1(Ω,κ) = 〈fn, xn〉H1(Ω,κ) ,

and

Cov
(〈
L1/2f,L1/2xn

〉
Ω
,
〈
L1/2g,L1/2xn

〉
Ω

)
= Cov(〈fn, xn〉H1(Ω,κ) , 〈gn, xn〉H1(Ω,κ))

= Cov
(〈
L1/2fn,W

〉
Ω
,
〈
L1/2gn,W

〉
Ω

)
= 〈fn, gn〉H1(Ω,κ)

→ 〈f, g〉H1(Ω,κ) =
〈
L1/2f,L1/2g

〉
Ω

= Cov
(〈
L1/2f,W

〉
Ω
,
〈
L1/2g,W

〉
Ω

)

as n→∞. 2

PROOF (THM. 4, ITERATIVE CONVERGENCE). First, we show that part (II) follows from part (III).
Let f̃ and g̃ be defined as in the proof of Thm. 3. Then, since L = κ2 −∆,

〈f, xn〉Ω = 〈f̃ ,Lxn〉Ω and 〈f, x〉Ω = 〈f̃ ,Lx〉Ω ,

and the convergence of xn to x follows from part (III). For part (III), as in the proof of Thm. 3, 〈f,Lxn〉Ω =
〈fn, xn〉H1(Ω,κ), and

Cov(〈f,Lxn〉Ω , 〈g,Lxn〉Ω) = Cov(〈fn, xn〉H1(Ω,κ) , 〈gn, xn〉H1(Ω,κ))

= Cov(〈fn, yn〉Ω , 〈gn, yn〉Ω) = Cov(〈f, yn〉Ω , 〈g, yn〉Ω)

→ Cov(〈f, y〉Ω , 〈g, y〉Ω) = Cov(〈f,Lx〉Ω , 〈g,Lx〉Ω)

as n→∞, due to requirement (I). 2
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Authors response, F. Lindgren, H. Rue, J. Lindström

We are delighted by the deluge of insightful comments, the details of which
we can only begin to answer here. We have grouped our responses into a few
common themes, mentioning commenters’ names only when referring to specific
issues.

Triangulations

As pointed out by Cooley, Hoeting, and Brown, it is not necessary to place the
triangulation vertices at observation points. Indeed, the observation matrix in
the global temperature example Section 4.2 was introduced for this very reason.
For a given triangulation, the matrix can be used to extract any observable
linear combination of field values, allowing observations in arbitrary locations
as well as regional averages. For point observations, each row of the matrix
contains three non-zero elements, one for each corner of the triangle containing
the point, and the sparsity structure of the posterior precision matrix is un-
affected. There is also no requirement to use a regular grid for such models.
The triangulation implementation in R-INLA has a parameter for a minimum
required distance between data-located vertices. In the temperature example
this was set to 10 km, allowing the vertex placement to follow the data density,
without generating excessively small triangles. An example where the triangu-
lation is chosen completely independently of the data locations is given by Bolin
and Lindgren (2011). Crujeiras and Prieto add that the triangulation could be
chosen adaptively based on local approximation error estimates, and we agree
that this can potentially be useful for non-stationary anisotropic models.

Approximation properties

Ippoliti, Martin and Bhansali note that the SPDE/GMRF precision coefficients
do not match those obtained by inverting the covariance matrix of a field sam-
pled on a regular grid. However, the approximation is not aiming to approximate
the field only at the vertices of the triangulation, but also at the intermediate
points obtained via linear interpolation. If the same interpolation method is used
with the sampled covariances, the overall field covariances is underestimated,
whereas the SPDE/GMRF approach gives an overall closer approximation. The
upper and lower envelopes of all the pairwise covariances for the two settings
are shown in Figure 1, together with the target covariance function. Bolin and
Lindgren (2009) investigates how this effect influences the Kriging results, com-
paring with tapering, kernel convolutions, as well as alternative choices of basis
functions in the GMRF construction, including wavelets and B-splines.

Kernel methods

Kernel convolution methods, as mentioned by Furrer, Furrer, and Nychka, are
useful theoretical tools, but can in practice be cumbersome and computationally
intensive (Bolin and Lindgren, 2009). The kernel generated by the SPDE opera-
tor for a Matérn field takes the shape of another Matérn covariance with different
shape parameter. The kernels are singular for α ≤ d, and non-differentiable for
α ≤ d + 2, so the commonly used discrete kernel sums result in Kriging and
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Figure 1: Target covariance (solid), linear interpolation covariance envelopes
(dotted), and GMRF covariance envelopes (dashed). The envelopes show the
minimum and maximum covariances for each pairwise point distance within the
domain. The linear interpolation is accurate at grid nodes, but the GMRF
approximation is closer to the target overall

parameter estimation artefacts, and do not yield either correct pointwise dis-
tribution or correct distributions for regional averages, unless the range is large
compared to the kernel placement distances. Also, since the kernels have non-
compact support, they yield dense matrices for the posterior precisions. Using
compactly supported kernels as suggested by Mateu is similar to moving average
processes in time-series analysis, and problematic unless the data are densely
and evenly located on the domain of interest, whereas the GMRF models are
counterparts to auto-regressive models, that are much more flexible tools for
approximating general dependence structures.

Parameter estimation

Both when estimating parameters and calculating Kriging interpolations, the
results are influenced by the choice of boundary conditions. The easiest method
for avoiding these effects is to extend the triangulation beyond the study region
by an amount large enough to cover the correlation range of the field, since
this allows the boundary effects to drop off to virtually zero before reaching
the data locations that influence the likelihood. As seen in Figure 2 (left), this
eliminates the bias in the maximum likelihood estimates of the field variances
σ2. The bias for the rescaling parameter τ−2 is reduced when the triangula-
tion resolution is increased, as seen in Figure 2 (right). The parameter σ2κ2ν
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used in the comparison by Lee and Kaufman is equivalent to τ−2 in the SPDE
models used in the paper. We believe that the highly variable results in their
comparison is explained by noting that the precision matrix was chosen by sim-
ply deleting rows and columns, which is equivalent to conditioning, in this case
leading to approximate Dirichlet boundary conditions. In order to compensate
for the resulting small variances near the boundary of such a model, the variance
parameter needs to be greatly overestimated. The combined comparisons show
that Neumann boundaries are safer, and that extending the boundary further
reduces the bias.
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Figure 2: From left to right, estimated σ2, κ, and τ−2 ∝ σ2κ2 for a h = 1 lattice
GMRF (squares), a h = 1 with irregular extension (circles) and a h = 1/2
lattice with irregular extension, all with Neumann boundary conditions, plotted
against the corresponding estimates based on a sampled covariance matrix. The
estimations were computed on 10 samples from an ν = 1 stationary Matérn field,
with exact observations at a 20 by 20 lattice.

Boundaries

In the paper, we used Neumann boundary conditions for simplicity and ease of
characterisation of the properties of the resulting models. For intrinsic models,
these conditions are too restrictive, and need to be relaxed to achieve the de-
sired field properties. The key lies in how the boundary conditions affect the
null-space of the differential operator. The B matrix used in Appendix C.3
relaxes the constraints on the null-space, leading to intrinsic models. Normally,
the rank deficiency of the precision matrix is used to determine the order of
intrinsicness. However, since only some of the eigenfunctions of the Laplacian
can be represented exactly in the piecewise linear basis, the rank deficiency does
not tell the whole story. For a more complete picture, the continuous domain
problem needs to be analysed more carefully.

A common alternative to Neumann conditions is to let ∂2
n = 0, which is

easily accomplished for regular grids by replacing the 2D grid Laplacian with
the 1D Laplacian along the boundaries. For a unit square domain, the resulting
null-space is spanned by the four functions 1, u1, u2, and u1u2, but the rank
deficiency is only 3, since the last function is not piecewise linear. While this
gives approximately the standard polynomially intrinsic models on R2, the con-
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struction also hints at a more general method for more general SPDE models
currently under investigation. The idea is to start with a fully intrinsic precision
for the interior of the domain and add appropriate penalties generated by SPDE
models within the boundary. For 1D models, this eliminates the boundary ef-
fects entirely, and the higher dimension cases show promising results.

Model checking

We have not yet investigated the model checking issue mentioned by Gelman
and Møller, since this is a general problem for spatial models, and not specific
to the SPDE/GMRF approach. However, there appears to be opportunities for
using the GMRF increments in similar ways to residual analysis for time-series
models, and also using the close link to the continuous space SPDE formulation
itself when interpreting the results.

Priors

Choosing priors for the model parameters is a general issue for spatial models,
but the handling of the boundary in the SPDE formulation may present further
complications. When the correlation range is longer than the size of the domain,
estimating κ becomes very difficult. In such situations, the intrinsic models (κ =
0) can be used, reducing the set of parameters to an overall scaling factor. This
also handles applications with only a single realisation of the random field, where
it is impossible to separate long correlation range from a fixed spatial trend, and
the posterior distribution for κ typically becomes degenerate, requiring a careful
choice of prior. A heuristic approach when not using intrinsic models is to specify
a prior for κ that puts low probability for range longer than the diameter of the
domain. In the temperature example, we used independent Gaussian priors of
that type for the weights for the basis functions controlling log τ and log κ2. We
are currently extending the temperature example into a full analysis, where the
prior for all the SPDE parameters is constructed jointly, giving more control
over the behaviour.

Simultaneous auto-regressions

Kent astutely noted the connection to simultaneous auto-regressions (SAR)
that, for even integer values of α, provides another direct link between Markov
models and SPDEs, and the GMRF construction in the paper also takes this
form. Using the notation from Theorem 2 in Appendix C.2, for α = 2 we have∑
j Kijxj ∼ N(0, C̃ii), where C̃ is the diagonal matrix from Appendix C.5. In

our early experimentation, we approached the GMRF construction problem by
various attempts at modifying the graph Laplacian mentioned by Mondal. In
hindsight, the current approach that builds more directly on the continuous
domain Laplacian feels more natural to us when the goal is to build spatially
consistent Markov models. The results do resemble the graph Laplacian, but
as the SPDE models are extended to non-stationary models and fields on man-
ifolds, the graph becomes less useful as such, and is purely a computational
device. This becomes particularly clear when extending the methods to frac-
tional SPDEs.
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Fractional operators

Although the results as presented in the paper are limited to integer values
for α in the SPDE generating Matérn field, the GMRF construction can be
extended into a more general class of continuous domain Markov models, which
contains close approximators of Matérn models with fractional α. The result
from Rozanov (1977) mentioned in Section 2.3 means that a stationary random
field is a Markov field if and only if the spectral density is the reciprocal of a
polynomial. In the isotropic case, such spectra take the form

S̃(k) = (2π)−d
(

p∑

i=0

bi‖k‖2i
)−1

where p is the degree of the polynomial and bi are coefficients in a non-negative
polynomial, and the corresponding discretised precision matrix can be obtained
as

Q =

p∑

i=0

biC
(
C−1G

)i
.

We need to find coefficients bi so that the model defined by S̃(k) is an ap-
propriate approximation of a model defined by the Matérn spectrum S(k) =

(2π)−d
(
κ2 + ‖k‖2

)−α
. A sensible choice is to let p = dαe, and we use a con-

venient weighting function w(k) for the deviation between the spectra, such
that

∫

Rd

(
S̃(k)− S(k)

)2

w(k) dk ∝
∫ ∞

κ2

(
zα −

p∑

i=0

bi(z − κ2)i

)2

z−2p−1−λdz.

Taking derivatives with respect to all bi and evaluating the integrals, we obtain
a linear system of equations that can be solved easily. For dαe = 1 and dαe = 2,
the coefficients are given through

[
b0
b1κ

2

]
= κ2α

[
1 1
0 1

] [ 1
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1
1+λ
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]
,



b0
b1κ

2

b2κ
4


 = κ2α




1 1 1
0 1 2
0 0 1






1
4+λ

1
3+λ

1
2+λ

1
3+λ

1
2+λ

1
1+λ

1
2+λ

1
1+λ

1
λ



−1 


1
4+λ−α

1
3+λ−α

1
2+λ−α


 ,

respectively.
The limiting case λ −→ ∞ is equivalent to Taylor approximation at k = 0,

and gives (b0, b1) = κ2α−2(κ2, α) for dαe = 1 and (b0, b1, b2) = κ2α−4(κ4, ακ2, α(α−
1)/2) for dαe = 2. These limiting approximations provide good agreement for
integrals of the field over regions, but for better behaviour of the short-distance
covariances, λ needs to be chosen more carefully. For a given measure of de-
viation between the desired and approximate covariance functions, the optimal
λ can be determined numerically, as a function of α. For fractional α between
0 and 2 on R2, the parsimonious choice λ = α − bαc approximately minimises
the maximal absolute difference between the covariance functions. As noted

5



by Cooley and Hoeting, α is in practice often chosen only from the integers
and half-integers, and we obtain (b0, b1) = κ−1(3κ2/4, 3/8) for α = 1/2 and
(b0, b1, b2) = κ−1(15κ4/16, 15κ2/8, 15/128) for α = 3/2. Combined with the
recursive construction for α > 2, this provides GMRF approximations for all
positive integers and half-integers. This includes the exponential covariance in
R2, which corresponds to α = 3/2. The resulting covariance is shown in Figure 3,
together with the covariance from the spectral Taylor approximation. Further
investigations are needed to determine how well the measurement noise model
can incorporate the resulting deviation in small scale variation introduced by
the approximation. Also shown in the figure is the covariance for a model with
α = 2, showing the same qualitative behaviour at zero, but different mid-range
behaviour.
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Figure 3: Covariances based spectral approximation: Desired exponential co-
variance (d = 2, α = 3/2, range 5, solid line), Taylor approximation (dash-
dotted), parsimonious weighting (λ = 1/2, dashed), and theoretical covariance
for α = 2 (dotted)

Long-range dependence

As discussed by Bhattacharya et al. (1983), apparent long-range dependence
in data can not be distinguished from a non-stationary mean or trend. An
alternative to constructing covariance functions with such behaviour is there-
fore to use a two-stage model, where the local behaviour is treated separately
from the long-range behaviour. In practical situations, spatially varying basis
functions are often used to capture large-scale variations, leaving the rest for a
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spatial field component. This can easily be extended to allow the basis weights
to differ between realisation of the field, in effect increasing the spectral density
near zero. For identifiability reasons, intrinsic models can be preferable, but
alternatives such as conditioning on zero integral for the field can also be used,
and are implemented in R-INLA. As suggested by Fernhead, another even more
general approach is to model the observed field as the sum of several latent fields
with different range. Care has to be taken to handle the near non-identifiability
of such models, noting that each individual latent component may be of less
interest than their sum.

In some cases, these approaches can be motivated by considering the physical
interpretation of the observed system, where long-range dependence may appear
due to an unobserved latent physical process, e.g. deep-water processes with
long-term memory affecting surface-water processes that interact more rapidly
with external forces. The rational spectra generated by the nested SPDE ap-
proach due to Bolin and Lindgren (2011) allows more general models even with
just a single latent process. While not Markov as such, they are Markov on an
augmented state space, leading to almost the same computational efficiency as
the pure Markov models.

Deformations

When using the non-stationary SPDE reparameterisation of the deformation
method, all distances are interpreted within a fixed topology, and the issue of
folding is transformed into requiring strictly positive definite diffusion tensors.
By parameterising with scalar and vector fields, the estimated parameter fields
can be used to interpret and understand the non-stationarity. A simple example
is shown by Ottavi and Simpson. Furthermore, this yields a larger practical
class of models, since the parameters need no longer correspond to a simple
deformation. When using a Matérn process prior in a traditional deformation
model, Schmidt rightly points out that fixing α = 2 for the deformation field
would give undesirable foldings due to insufficient differentiability. Increasing
α should alleviate the problem to the same extent as any other choice of more
differentiable deformation field model would do. Similarly the parameters in the
non-stationary SPDE models can be constructed via general Gaussian fields, but
direct comparison to the more general deformation methods is difficult, since
the models would need to be constructed on the embedding space, whereas the
SPDE as used in this paper is defined on the manifold itself, regardless of any
embedding.

General extensions

It is important to note that the GMRF models can be combined in hierarchical
modelling frameworks to allow highly non-Gaussian observation processes. Of
these, of particular note are the log-Gaussian Cox-processes, mentioned by Dig-
gle, Illian, Simpson, Møller, and Höhle. The likelihood can be rewritten on a
form that allows the use of the INLA method for inference, and as Diggle notes
one can choose freely between gridded count data and using the actual point
data itself.

Functional data can be treated either directly in the general observation
model, or by incorporating desired basis functions into the finite element basis
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itself, leading to block matrices in the precisions. In a setting with a local set
of temporal basis functions {ξ1

k, . . . , ξ
m
k } for each spatial triangulation vertex k,

the resulting elements of the joint K-matrix take the form

〈
ψkξ

i
k,Lψk′ξi

′
k′

〉
Ω×R

= 〈ψk,Lψk′〉Ω
〈
ξik, ξ

i′
k′

〉
R

for a given spatial differential operator L, and similarly for the other matrices
in the precision construction.

For more general spatio-temporal SPDE models, we agree with Crujeiras
and Prieto that a finite volume approach is preferable to finite elements, and
Fuglstad presents an example of such a solution. The diagonal approximation
to the C matrix is precisely what a simple finite volume method would produce
in the purely spatial case, lending further weight to the appropriateness of the
approximation.

References

Bhattacharya, R. N., V. K. Gupta, and E. Waymire (1983). The Hurst effect
under trends. Journal of Applied Probability 20 (3), pp. 649–662.

Bolin, D. and F. Lindgren (2009). Wavelet Markov models as efficient alterna-
tives to tapering and convolution fields. Preprints in Mathematical Sciences,
Lund University (2009:13), submitted.

Bolin, D. and F. Lindgren (2011). Spatial models generated by nested stochastic
partial differential equations, with an application to global ozone mapping.
Annals of Applied Statistics 5 (1), 523–550.

Rozanov, J. A. (1977). Markov random fields and stochastic partial differential
equations. Mathematics of the USSR-Sbornik 32 (4), 515.

8


