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A Multi-resolution Gaussian process model for the
analysis of large spatial data sets.

Douglas Nychka, Soutir Bandyopadhyay, Dorit Hammerling,
Finn Lindgren, and Stephan Sain∗

Abstract

A multi-resolution model is developed to predict two-dimensional spatial fields based on

irregularly spaced observations. The radial basis functions at each level of resolution are con-

structed using a Wendland compactly supported correlation function with the nodes arranged

on a rectangular grid. The grid at each finer level increases by a factor of two and the basis

functions are scaled to have a constant overlap. The coefficients associated with the basis func-

tions at each level of resolution are distributed according to a Gaussian Markov random field

(GMRF) and take advantage of the fact that the basis is organized as a lattice. Several numer-

ical examples and analytical results establish that this scheme gives a good approximation to

standard covariance functions such as the Matérn and also has flexibility to fit more compli-

cated shapes. The other important feature of this model is that it can be applied to statistical

inference for large spatial datasets because key matrices in the computations are sparse. The

computational efficiency applies to both the evaluation of the likelihood and spatial predic-

tions.

Keywords:Spatial estimator, Kriging, Fixed Rank Kriging, Sparse Cholesky Decomposi-

tion, Multi-resolution
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1 Introduction

Statistical methodology for spatial data is a well developed field and has roots in geo-

statistics and multivariate analysis. More recently the breakthroughs in Bayesian hi-

erarchical models have added rich new classes of models for handling heterogenous

spatial data and indirect measurements of spatial processes (Banerjee et al. (2003),

Cressie and Wikle (2011)). This development in spatial statistics is coincident with

emerging challenges in the geosciences involving new types of observations and com-

parisons of such observations to complex numerical models. For example, as attention

in climate science shifts to understanding the regional and local changes in future cli-

mate there is a need to analyze high resolution simulations from climate models and

to compare them to surface and remotely sensed observations at fine levels of details.

These kinds of geoscience applications are characterized by large numbers of spatial

locations. The application of standard techniques is often not feasible or at least will

take an unacceptably long time given standard algorithms and typical computational

resources. Moreover, geophysical processes tend to have a multi-scale character over

space that requires statistical methods that allow for potentially complicated spatial

dependence beyond a simple parametric model that adjusts for a correlation range and

process smoothness. This work develops a new statistical model that addresses both of

these challenges; our model is applicable to large data sets and supports a more flexi-

ble covariance structure that can be a mixture of more standard covariance functions.

Thus our model fills a gap in current statistical methodology.

We assume that spatial observations{yi} are made at unique two-dimensional spa-

tial locations,{xi}, for 1 ≤ i ≤ n, according to the additive model:

yi = ZT
i d+ g(xi) + εi , (1)

whereZ is a matrix of covariates andd a vector of linear parameters,g is a smooth

Gaussian process andεi are mean zero measurement errors. The parametersd repre-

sent fixed effects in this model.

The statistical problem in this setting is to determineg at locations where observa-
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tions are not available and quantify the uncertainty of the spatial predictions. Given

our main goal to develop an acceptable methodology to handle large data sets, we seek

to balance the complexity of the models and methodology with feasibility for effective

data analysis. We will focus on maximum likelihood estimates of parameters in the

covariance and other model components. For prediction we will adopt the conditional

distribution ofg given the data and other statistical parameters. Our approach com-

bines the representation of a field using a multi-resolution (MR) basis with statistical

models for the coefficients as a process on a lattice. In this sense it is a blending of

ideas from fixed rank Kriging (Katzfuss and Cressie 2011, Cressie and Johannesson

2008) and stochastic partial differential equations (SPDE) including the work in Lind-

gren and Rue (2007), Rue and Held (2005) and Lindgren et al. (2011) (LR2011). It is

useful to view the unknown spatial process in (1) as a sum ofL independent processes,

gl(x), for 1 ≤ l ≤ L, marginal variances{ραl}, and

g(x) =
L∑

l=1

gl(x). (2)

Here the parameterρ > 0 is useful as a leading scaling parameter for the covariance

matrix and the elements ofα = (α1, . . . , αL)T sum to one. In this way the overall spatial

dependence ofg can be much more complex than the spatial dependence of each of

the individual components. Each component,gl is defined through a basis function

expansion as

gl(x) =
m(l)∑

j=1

cl
jφ j,l(x), (3)

whereφ j,l, 1 ≤ j ≤ m(l), is a sequence of fixed basis functions andcl is a vector

of coefficients distributed multivariate normal with mean zero and covariance matrix,

ρQ−1
l . Q−1

l may also depend on additional parameters. Thus the model forg is a sum

of fixed basis functions with stochastic coefficients. An explanation for the notation

Q−1
l for the covariance matrix, emphasizing its specification via the precision matrix,

is given in the following paragraph.

Our two main ideas address the basis functions and the covariance model for the

coefficients. We use families of radial basis functions that are organized on regular
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grids of increasing resolution. These radial basis functions have compact support and

like wavelet bases give computational efficiencies because of this feature. In our treat-

ment, each increase in resolution will be by a factor of two and the levels associated

with finer spatial scales will have more basis functions. Conversely, the representation

has a parsimony in that the coarser scales require fewer basis functions to approximate

the stochastic processes. The spatial dependence among the coefficients for each level

of resolution is modeled using a Gaussian Markov random field (GMRF), specifically

a spatial autoregressive (SAR) model. The fact that the basis functions are organized

on a lattice gives the SAR a simple form along with its precision matrix, which we de-

note asQl. The benefit of this approach is thatQl is sparse even though the covariance

matrix Q−1
l itself can be dense. Thus,gl can exhibit long range correlations among

coefficients widely separated in the lattice even though the precision matrix is sparse.

We have found that this combination of MR bases with companion GMRFs for the

coefficients at each level can approximate standard families of covariance functions

such as the Matérn, but also provides a rich model for more general spatial depen-

dence. It should be noted that we make no assumption on the observation or predic-

tion locations even though the latent components of our model will exploit regular

grids. We are also able to give some analytical results that suggest why this model can

approximate a range of spatial processes exhibiting different degrees of smoothness.

Many of the ingredients for this model are not new, however, their particular com-

bination with a view towards efficient computations for large and irregular spatial data

sets has not been exploited in previous works. The key is to introduce sparsity into

the computations in a way that does not compromise covariance models with long

range correlations and models with many degrees of freedom. This is achieved by

using compactly supported radial basis functions and computing directly thepreci-

sionmatrix of the basis coefficients, not the covariance matrix. In addition we add a

normalization of the marginal process variance that can reduce the degree of artifacts

from using a discrete basis. The net result is a flexible covariance model that has rank

comparable or greater than the number of spatial locations and where spatial predic-
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tion, conditional simulation and evaluation of the likelihood can be done on a modest

laptop computer.

Recent work on statistical methods for large spatial data sets has used a fixed rank

Kriging approach to make computations feasible. This can either take the form of a

small number of basis functions and an unstructured and dense covariance matrix such

as in Cressie and Johannesson (2008) or large number of basis and a sparse model such

a Markov random field forQ (Eidsvik et al. 2010). An insightful approach was sug-

gested in Stein (2008) and later in Sang and Huang (2011) where a low rank process

was combined with a process that has a compactly supported covariance. This su-

perposition of two processes anticipates our model where we consider a mixture of

covariances at multiple scales. Reflecting the fact that the likelihood calculation car-

ries most of the computational cost, there has been work on approximations to the

likelihood for spatial models by binning the observations and using spectral methods

(Fuentes 2007) or considering a partial likelihood (Michael L. Stein 2004) or pseudo

likelihood (Caragea and Smith 2007). Our approach differs from these papers in that

we are able to compute the likelihood exactly.

The next section describes the fixed rank Kriging model and its likelihood un-

der a setting where the process and measurement errors have a Gaussian distribution.

Section 3 outlines the computational algorithm and gives some timing results. The

approximation properties of this basis/lattice model are reported in Section 4 with the

proofs of the asymptotic results relegated to the Appendix. Section 5 provides an ex-

ample for a climate precipitation data set and Section 6 is our conclusions. Much of

the computations in this paper can be reproduced using theLatticeKrig package in

R, which serves as a supplement for implementing the numerical methods and a ready

source for the data set from Section 5.
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2 The spatial model

2.1 Process and observational models

Although we have introducedg as a MR, to streamline notation in this section it is

convenient to view this model asg(x) =
∑m

j=1 cjφ j(x), where we have combined the

MR bases into a single basis, the MR coefficients into a single coefficient vector, and

m is the total number of basis functions.

Based on the set up in the introductiong will be a mean zero Gaussian process with

a covariance matrixρQ−1 and covariance function:

COV(g(x),g(x′)) =
m∑

j,k=1

ρQ−1
j,kφ j(x), φk(x′). (4)

with Q−1 having dimensionm×m.

With respect to the observation model in (1) we assume thatε = {ε1, . . . , εn} are

uncorrelated, normally distributed with mean zero and covarianceσ2W−1. Here we

assume thatσ2 is a free parameter of the measurement error distribution andW is a

known but sparse precision matrix. In most applicationsW is diagonal and we takeW

to be the identity for our example in Section 5. LetΦ be the regression matrix with

columns indexing the basis functions and rows indexing locations.Φi, j = φ j(xi). With

these definitions one can now rewrite (1) in matrix vector notation asy = Zd+Φc+ ε

and collecting the fixed and random components we have

y ∼ MN(Zd, ρΦQ−1ΦT + σ2W−1). (5)

As a last step it is useful to reparametrize this model to better mesh with the compu-

tations and in some instances to simplify formulas. Letλ = σ2/ρ and we reparametrize

σ in terms ofλ andρ ( i.e.σ2 = λρ). Now setMλ = (ΦQ−1ΦT + λW−1) and (5) is the

same asy ∼ MN(Zd, ρMλ).

6
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2.2 Spatial estimate

From (5) we have the log likelihood

`(y|ρ,Q−1, λ, d) = (−1/2)(y− Zd)T(ρMλ)
−1(y− Zd) − (1/2)log|ρMλ| + (n/2)log(π).

This expression is used to find maximum likelihood estimates (MLEs) of the fixed

effects and covariance parameters. For computation it is often convenient to first max-

imize over the fixed effects and the covariance parameterρ analytically to reduce the

number of parameters for optimization. For fixedρ andQ−1 the MLEs ford are also

the generalized least squares (GLS) estimates

d̂ = (ZT M−1
λ Z)−1ZT M−1

λ y. (6)

Note this estimate only depends onλ and not onρ. Setr = y− Zd̂ and substitute back

in the full log likelihood giving

`(y|ρ,Q−1, σ, d̂) = (−1/2)(rT(ρM)−1
λ r) − (1/2)log|ρMλ| + (n/2)log(π). (7)

Finally, the expression given above can be maximized analytically overρ giving ρ̂ =

rT M−1
λ r/n. This estimate can be substituted back into (7) to give aprofile log like-

lihood that only depends onλ = σ2/ρ and on any other covariance parameters that

determineQ−1.

The inference for the basis coefficients depends on the standard results for the

conditional normal distribution. Specifically, the conditional distribution ofc given y

and all other parameters in the model at their true values is a multivariate normal

[c|y, d, σ, ρ,Q−1] ∼ MN(ĉ, ρQ−1 − ρQ−1ΦT(Mλ)
−1ΦQ−1), (8)

with

ĉ = Q−1ΦT M−1
λ (y− Zd). (9)

This conditional mean,̂c, is taken to be the point estimate (or prediction) ofc and by

linearity, the spatial prediction forg(x) at an arbitrary location is ˆg(x) =
∑m

j=1 φ j(x)ĉj.

Typically a vector of the spatial covariates,z(x), is also provided at this location. To

reproduce the familiar universal Kriging estimator,d is set at the GLS estimate given

above and so the full spatial prediction is: ˆy(x) = z(x)T d̂+ ĝ(x).

7
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2.3 Radial Basis functions (RBF)

Our full model proposes a MR basis where each level of resolution takes the same

form and so we start with describing a single level of basis functions on a common

scale. The basis functions are essentially translations and scalings of a single radial

function. Letφ be a unimodal, symmetric function in 1-dimension and let{u j}, 1 ≤

j ≤ m be a rectangular grid of points in two dimensions. Consistent with radial basis

function terminology, we will refer to the grid points asnode pointsand letθ be a scale

parameter. The basis functions are then

φ∗j = φ(||x − u j ||/θ). (10)

Geometrically, the basis will consist of bumps centered at the node points with over-

lap controlled by the choice ofθ. In this work we will takeφ to be a two-dimensional

Wendland covariance (Wendland 1995) that has support on [0,1]. The Wendland func-

tions are polynomials on [0,1]. They are also positive definite, which is an attractive

property when the basis is used for interpolation. In this work we use a Wendland

function valid up to 3 dimensions and belonging toC4:

φ(d) =





(1− d)6(35d2 + 18d + 3)/3 for 0≤ d ≤ 1

0 otherwise.

In all examples in this work we fix the scale factor to be 2.5 times the grid spacing.

Thus in two dimensions and away from edges each RBF overlaps with 68 others. We

found that empirically this amount of overlap was necessary to avoid obvious artifacts

in the covariance function from the lattice.

2.4 Markov Random fields

In parallel with the preceding section we describe the stochastic model for the coeffi-

cients of a basis constructed at a single level of resolution. The MR aspect replicates

this model at each level. The coefficient vectorc at a single level follows a Gaussian

Markov random field (GMRF) and is organized by the node points. We will assume

8
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the special case that the coefficients follow a spatial autoregression (SAR). The differ-

ence with this model forc and that in LR2011 is that we define the SAR independently

from the choice of basis.

Given an autoregression matrixB ande, a random vector distributed asN(0, ρI ), we

construct the distribution ofc according toc = B−1e. The autoregressive interpretation

is thatBc = e. That is,B transforms the correlated field to white noise with variance

ρ. For our use we will constrainB to be sparse. LetN j denote the indices of the

nearest neighbors ofu j. For an interior point this will be four neighbors, but less for

the nodes at edges and corners. Following LR2011 for interior lattice points we take

B j, j = 4 + κ2 with κ ≥ 0 and the off diagonal elements to be -1. Although one can

modify the weights at the edges of the lattice to approximate free boundary conditions,

we have found that adding a buffer and keeping zero boundary conditions provides

an easier solution. The boundary effects are also diminished by the normalization

discussed in Section 2.6. By linearityc has covariance matrixρB−1B−T and precision

matrix given byQ = (1/ρ)BT B. BecauseB is formulated as unconditional weights

on the field, any choice ofB will lead to a valid covariance and soQ will be positive

definite. It is well known that the SAR weights do not specify the Markov structure

directly. For nonzero weights on the four neighborsQ will be a sparse matrix with each

row having 12 nonzero elements: the first, second and third order neighbors. Thus,c

will be a GMRF conditional on this larger clique of points. The results in LR2011

provide the connection between this GMRF and approximations to the Matérn family

of spatial covariances. In this particular case one expects that the SAR described above

will approximate a Mat́ern process with scale parameterκ in LR2011 and smoothness

ν = 1.

2.5 Extension to a MR process

In the previous sections we have developed a basis and a covariance for a specific grid.

The MR model extends this idea by successively halving the spacing of the grid points

and specifying a GMRF for the coefficients at each level. Between levels we assume

9
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coefficients are independent. To make this idea explicit assume that the spatial domain

is the rectangle [a1,a2] × [b1,b2] and the initial grid{u1
j } is laid out withmx ×my grid

points with the spacingδ ≡ (a2 − a1)/(mx − 1) = (b2 − b1)/(my − 1). Note here the

constraint that the spatial domain and numbers of grid points are matched so that the

grid spacing is the same in the x and y dimensions. Subsequent grids are defined with

spacingsδl = δ2−(l−1) and yield a sequence of grids,{ul
j} that increase roughly by a

factor of four in size from levell to level l + 1. To define the basis functions for thelth

level we takeθl = θ/2(l−1) and define the radial basis functions as in (10). LetL denote

the total number of levels then the (unnormalized) MR basis isφ∗j,l = φ(||x − ul
j ||/θl),

where 1≤ l ≤ L, 1 ≤ j ≤ m(l), andm(l) = (mx − 1)(my − 1)4l−1 + mx + my + 1.

The total number of basis functions is approximately (mxmy)(4L), (This is not exact

becausemgrid points are subdivided into 2m−1 points at the next level.) When buffer

nodes are added to reduce edge effects we take these as afixednumber of extra points

that are added to each edge of the grid. The number of basis functions follows a more

complicated expression when buffer nodes are added at each level but is still grows at

roughly 4L.

Recall that the vector of coefficients associated with each level iscl and the MR

representation forg is given by equations (2) and (3) with either the unnormalized

MR basis{φ∗j,l} or the normalized basis described in Section 2.6 below. It should be

noted that the MR basis by itself does not contribute too much additional computation

burden. The main difference in a single level of basis functions and a MR are additional

nonzero elements in the inner matrix,ΦTΦ, due to coarse resolution basis functions

overlapping with finer resolution ones. Although the MR will have more nonzero

elements in the inner product matrix, there are many fewer coarse functions for overlap

and so the total number of nonzero elements does not increase substantially. This

feature can be seen in the timing results in Section 4.

It is useful to illustrate how the number of basis functions depend on the number

of levels. Suppose that an initial grid of 10× 10 is chosen for a square spatial domain,

L = 4, and 5 extra buffer node points are added on each side to moderate the edge

10
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effects. The first level will comprise (10+ 10)× (10+ 10)= 400 grid points including

a buffer region on all four sides of the spatial domain. The second level will decrease

the grid spacing by a factor of two giving 19× 19 grid points included in the spatial

domain and being aligned with the coarser grid. To these are appended 5 buffer points

on each edge giving a total of 29×29= 841 points. Subsequent levels yield (37+10)×

(37+ 10) = 2209 and (73+ 10)× (73+ 10) = 6889 grid points. The four levels sum

to 10399 grid points/basis functions and of these 7159 have nodes that are included in

the spatial domain.

In general we can stack these coefficients asc = (c1, c2, ..., cL) and the natural

extension of the SAR model is a sparse matrixB such thatBc is N(0, ρI ). AlthoughB

can be a general matrix we have found it useful to restrict attention to a block diagonal

form. Letα1, α2, . . . , αL be a vector of positive weights and for thelth level we assume

cl follow a GMRF with a SAR matrix, (1/
√
αl)Bl. HereBl has the same form as in

the single level but with theκ parameter possibly depending on the level. One can

interpretραl as parameterizing the marginal variance of thelth level process andκl is

an approximate scale parameter. Thus we are lead to a block diagonal form forB and

also for the precision matrix:

Q = (1/ρ)




(1/α1)(B1)T B1 0 . . . 0

0 (1/α2)(B2)T B2 . . . 0

0 0 . . . 0

0 0 0 (1/αL)(BL)T BL




. (11)

Q will have dimensionm×mequal to the total number of basis functions but of course

will be sparse andc will have lengthm.

2.6 Normalization to approximate stationarity

Based on the specific form forQ we have found it useful to normalize the basis func-

tions to give a better approximation to stationary covariance functions. It is well

known that a GMRF on a finite lattice can exhibit edge effects and other artifacts

in the covariance model that are not physical. Moreover the radial basis functions
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having nodes on a discrete set can also contribute to patterns in the implied covari-

ance matrix. One obvious correction for this effect is to weight the basis functions

so that when (4) is evaluated one will obtain a constant marginal variance. Accord-

ingly, let ω(x) =
√

COV(g(x),g(x)) from (4) and normalize the basis functions as

φ j(x) = φ∗j (x)/ω(x). Because this normalization is tied to the choice of covariance

model it means that the basis is no longer independent of the GMRF and this linkage

adds more computational overhead. However, computingω(x) can take advantage of

the sparse precision matrix and we believe reducing edge effects and other artifacts is

worth the extra computation.

3 Computational strategy and timing results

The estimators defined in the previous section can be found efficiently by a judicious

use of sparse matrix decompositions and matrix identities. Most of these computations

depend on the constructions ofΦ, W andQ to be sparse matrices. Our basic approach

exploits the fact that a sparse and positive definite matrix can be factored into a sparse

cholesky decomposition. With this decomposition it is efficient to evaluate inverses

and determinants. In this section we outline the key numerical steps and the reader

should refer to Nychka et al. (2013) and the commentedLatticeKrig package source

code for details.

3.1 Spatial prediction and evaluating the likelihood

A basic calculation that illustrates the computational strategy is to evaluateM−1
λ w for

an arbitrary vectorw. Recall thatMλ = ΦQ−1ΦT + λW−1 and taken at face valueMλ

is a dense, potentially large matrix and so difficult to work with directly. The strategy

is to transformMλ using matrix identities to involve the sparse precision matrix. The

Sherman-Morrison-Woodbury formula (Henderson and Searle (1981)) can be applied

to give

M−1
λ =

(
ΦQ−1ΦT + λW−1

)−1
= (W − (WΦ)G−1(ΦTW)),
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whereG = ΦTWΦ + λQ. BecauseΦ, W andQ are all sparse,G will also be sparse

and positive definite. Using this identity one can now use the sparse Cholesky decom-

position forG to solve the linear systemGv= (ΦTW)w for v and it follows that

M−1
λ w = Ww−WΦv.

Note that an important limitation of this computational strategy is thatλ can not be

identically zero. To computêc we use the identitŷc = G−1ΦTW(y− Zd̂) and exploit

the sparsity ofΦ andW for multiplication and the sparse Cholesky factorization ofG.

Finally note that the evaluation of ˆg(x) can also be computed in an efficient manner if

the sum is restricted to basis functions that are nonzero atx.

The other intensive computation occurs in the likelihood as the determinant ofMλ.

Here we use a special case of Sylvester’s Theorem: For ann×mmatrixU and identity

matricesI n andI m, |UUT + I n| = |UTU + I m|. Using elementary properties of matrices

one can derive the identity|Mλ| = λn−m|G|/(|Q||W|). The matrices,W, G andQ are

all positive definite and sparse so the determinants can be found efficiently from the

product of the diagonal elements of the Cholesky decompositions.

Based on exploiting matrix sparsity and these classic matrix identities one can

evaluate the likelihood in an efficient manner. With this option we just use standard

maximum likelihood methods of inference on the covariance parameters.

In this work we suggest finding the prediction errors using the well known Monte

Carlo technique of conditional simulation. Under the assumption that the covariance

model is known, one generates a sample from the conditional distribution ofg and

d given the observations. The prediction variance can be approximated from Monte

Carlo draws from this conditional distribution. This computation can be done in two

steps: simulating an unconditional random process at the prediction and observation

locations and then determining the prediction errors based on synthetic/simulated ob-

servations for this realization. The first step is an standard application of multivariate

simulation by solving a linear system based on the Cholesky decomposition of the pre-

cision matrix and the second step is the same spatial estimator that is applied to actual

data.
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Here we present some timing results for the computations with the main compar-

ison being with the dense matrix computations associated with Kriging. The spatial

locations were uniformly distributed over the domain [0,1] × [0,1] and the number

were varied between 500 and 20000. The likelihood function and spatial predictions

were found for an exponential covariance model and several choices of the lattice MR

model. For these algorithms the computation time is dominated by basic linear algebra

and does not depend on the values of the spatial data, the distribution of spatial loca-

tions, and the specific values of the covariance parameters. The timing is done for the

functionmKrig in the R packagefields (Furrer et al. 2012) implementing standard

Kriging and for the functionLKrig in the R packageLatticeKrig (Nychka et al.

2012) implementing the MR basis function model. Times reported are on asinglepro-

cessor for a Macbook Pro laptop ( 2.3 Ghz Intel Core i7, 8Gb memory) and R 3.0.1

(R Development Core Team 2011). Both of these functions compute the predictions

at the observations for a fixed covariance model, evaluate the likelihood and compute

the coefficients for predicting the surface at arbitrary points. Despite this varied output

from the functions, the Cholesky decomposition in bothmKrig andLKrig dominate

the time for largen.

Figure 1 reports the total time (“wall clock” time) for these functions using the

R utility system.time. The dashed line is the time for the standard “Kriging” esti-

mate usingmKrig up to 10,000 observations and with times extrapolated to 20,000.

The time for 20,000 observations and standard Kriging is estimated to be about 1,300

seconds (more than 21 minutes). The solid black line is the time for the function

LKrig with a single level with the number of basis functions chosen to be approxi-

mately equal to the sample size, and with the basis functions normalized to have unit

marginal variance. The dotted black line is the same scheme but without normalizing

the basis functions. Note that for 20,000 spatial locations the times for this case are 66

seconds (normalized) and 5.4 seconds (unnormalized). As a practical rule of thumb, a

single level model with normalization, is at least a factor of 5 faster when the number

of observations is greater than 1000 and increases to a factor of 20 when there are
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20,000 observations.

The grey lines report timing with the number of basis functions keptfixedand with

(solid) and without (dashed) normalization. The lines labeled 10 have four levels (L =

4) of MR and where the coarsest basis has centers on a 10× 10 grid (mx = my = 10)

and giving 7159 basis functions with nodes within the spatial domain and 10339 total.

The lines labeled 20 have coarsest grid being a 20×20 grid (mx = my = 20) with a total

of 31,259 basis functions within the spatial domain and 37,439 total. The memory for

this latter case is dominated by storage of the sparse matrixG comprising 7.4 × 106

nonzero elements and taking 60Mb of memory.

These results indicate substantial time savings over the dense matrix computations

and evaluations of the likelihood are feasible even for 20,000 spatial locations. The

single level results (solid and dotted black lines) are more efficient than dense matrix

Kriging even for moderate sample sizes and indicate the value of sparse matrix meth-

ods. The multi-resolution model because it has substantially more degrees of freedom

becomes competitive with dense matrix Kriging once the number of observations is

comparable or larger than the number of basis functions. The unnormalized computa-

tion times are particularly striking and are largely dominated by the sparse Cholesky

decomposition of the matrixG discussed in Section 3. For this work we have not ex-

ploited more efficient algorithms in the normalization step and so there is a significant

difference between the normalized and unnormalized cases. As might be expected the

two covariance models with fixed number of basis functions (“10” and “20” cases ) are

closer to being linear as a function sample size. At the sample size of approximately

10400 the 10× 10, L = 4 case and the single level model 103× 103,L = 1 case have

equal numbers of basis functions. However, because of the difference in levels the

four level model has aG with 1.88× 106 nonzero elements compared to.67× 106 for

the one level model. This difference in sparsity explains the timing differences for the

unnormalized computations. The normalized cases are apparently dominated by the

normalization computation and this is why they are closer in their timing.
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4 Properties of the covariance model

4.1 Comparison to a convolution process

As a foundation, we first consider a convolution approximation to the sum of radial

basis functions. First we define a single convolution process and then extend this to an

infinite mixture. Letz be a unit variance, isotropic, two dimensional Matérn process

with spatial scale parameterκ, smoothnessν, andCν(||x − x′||/κ) = E(z(x)z(x′)), the

corresponding covariance function. Also letφ be a compactly supported RBF with

φ(0) = 1. Forθ > 0 a scale parameter, define the convolution process

g(x) =
∫

R2

1
θ2
φ(||x − u||/θ)z(u)du.

This type of process for statistical modeling is well-established (see Higdon 1998) and

as written will be Gaussian, mean zero, and have an isotropic covariance function.

Now consider a sequence of independent Matérn processes,zl(x) with {θl} a sequence

of scale parameters for the convolution kernel and “hard wire”κl = 1/θl. These define

a sequence of convolution processesgl(x) according to (12) with the same marginal

variance. Finally, letkl denote the covariance function for thelth process. Given,

non-negative weights{αk} that are summable we are lead to the MR process that is

Gaussian, mean zero and covariance given by

k(x, x′) =
∞∑

l=1

αlkl(x, x′).

Given this representation, a theoretical question is how the choice of{θl} and{αl}

influence the properties ofk. In particular, is it possible to construct covariances that

represent different degrees of smoothness than those implied by the basis functions

and Mat́ern process used in the convolution? Typically the smoothness of an isotropic,

stationary Gaussian process is tied to the differentiability of the covariance function at

the origin. An alternative measure is to characterize the tail behavior of the spectral

density of the process. Under isotropy the spectral density will be radially symmetric

and we focus on the decay rate asr increases. In particular, for spectral densities whose

16
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

at
h]

 a
t 0

1:
06

 1
6 

Ju
ne

 2
01

5 



ACCEPTED MANUSCRIPT

tails are bounded by a fixed polynomial decay we will take the polynomial order as a

convenient measure of the process smoothness. For the Matérn family a smoothness

of ν and dimension 2 the spectral density will have a tail behavior followingr−(2ν+2) as

r → ∞. For example the exponential covariance (ν= 1/2) will have a spectral density

that decreases at the polynomial rater−3. A covariance spectrum with tail behavior

of the same order might be expected to provide a process model with similar smooth-

ness to the exponential at small spatial scales. The following theorem reports the tail

behavior for the MR process for different choices of the scale and weight sequences.

An interesting result is that the MR process can reproduce a scale of different decay

rates for the tail of the spectral density and can recover the -3 rate of decay for the

exponential covariance.

Theorem 4.1 Assume (1)φ is a two-dimensional Wendland covariance function of

orderK. (2) the smoothness of the Matérn processes is fixed atν = 1. (3)αl = e−2β1l

and θl = e−β2l with β1, β2 > 0 and (β1/β2 + 1) < (5 + 2K). If S(r) denotes the

spectral density ofg (or k) with respect to the radial coordinate then there are constants

independent ofr, 0 < A1,A2 < ∞ such that

A1 < S(r)r2μ+2 < A2, with μ = β1/β2.

Corollary 4.1 Under assumptions (1) and (2) andθl = 2−l, αl = θ
2ν
l and (ν + 1) < (5+

2K), S(r) will have tail behavior with the same polynomial order as a two-dimensional,

Matérn process spectrum with smoothnessν.

The proof of this theorem is given in the Appendix.

4.2 Numerical approximation

The theoretical approximation is based on a continuous convolution of the basis func-

tions with the Mat́ern covariance. We have found that the theoretical sequence of

weights gives an accurate approximation when 6 or more levels are considered. How-

ever this theoretical comparison does not exactly match the discrete stochastic model

used for data analysis. A more practical comparison is how well the discrete MR basis
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proposed here can match members of the Matérn family. We investigate the quality of

the approximation givenθl = 2−l but optimizing over{κl} and and{αl}. Note that this

scheme is slightly different than the theoretical setup becauseκl is allowed to vary in-

dependently fromθl andαl is not constrained to be a power ofθl. The most important

constraint in choosing an approximation is the initial choice of grid size (mx andmy)

and the number of levels,L. The spacing of the nodes should be chosen so the coars-

est level is comparable to the process correlation range andL such that the finest basis

functions have smaller scale than the finest spatial scale of the process. One advantage

of this model is that flexibility in choosing the range parameterκ means that the grid

spacings need not exactly conform to the correlation scale of the process.

The first column in Figure 2 shows the approximation for an exponential covari-

ance with range parameters .1, .5 and 1.0 using 3 and 4 levels of MR basis functions.

The MR parametersκl andαl have been found by minimizing the mean squared error

between the approximation and the target covariance function on a grid of 200 dis-

tances in the interval [0,1]. The coarsest basis function centers are organized on a

10× 10 grid on the square [−1,1] × [−1,1] and so with four levels the approximation

has 102 + 192 + 372 + 732 = 7159 two-dimensional basis functions with nodes that are

included in the spatial domain. There are 10339 basis functions total considering the

buffer regions. The plots in the upper row are the target and approximate covariances

as a function of distance from the point (0,0) along the x-axis. The approximation

is close to being stationary and isotropic and so this comparison is representative for

distances along other orientations. In the plots the solid curve is the covariance, the

dotted line is the approximation with 3 levels, and the dashed line is the approximation

at 4 levels.

Not surprisingly the approximation breaks down at small distances that are below

the resolution of the finest basis functions This feature is highlighted by the plots in

the lower row where the approximation is given for points in a range close to zero. The

characters “3” and “4” indicate the smallest scale of the basis functions and thus indi-

cate the limits of the MR for the 3 and 4 level choices. In general it is straightforward
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to improve this approximation by increasingL beyond 4. A similar approximation is

made for the Whittle covariance (ν = 1) except for the largest range parameter the

coarsest basis has centers on a 5× 5 grid (giving a total of 1484 basis functions). This

case is an example where the smoothness of the covariance at zero does require as

detailed basis functions and in fact we found empirically that the coarser initial grid

(5×5) gives a better approximation. Note that in the error plot there is also a small arti-

fact, a rippling feature that is from the discrete spacing of the basis functions. The third

column of Figure 2 is an example of the ability of the MR to approximate more general

correlation functions. This is perhaps the most strikingly example of the flexibility of

this model. Here the target is a mixture of exponentials:.4 exp(−d/.1)+ .6 exp(−d/3).

For reference the individual exponent correlation functions are plotted as grey solid

lines. The approximation is also accurate with the error localized near the origin and

being large below the smallest scale of the MR.

5 North American summer precipitation

The MR lattice model was applied to a substantive climate data set in order to test

its practical value and compare it to standard Kriging. The goal is to estimate the

average summer rainfall on a fine grid for North America based on high quality surface

observations (NOAA/NCDC 2011). These types of fields are an important reference

in studying the Earth’s climate system. GHCN data is quality controlled, curated and

served by the US National Climatic Data Center and for this example we use 1720

stations from North America. For each station, a least squares trend line was fit to the

summer precipitation totals (June, July, August) for the period 1950-2010 and the trend

line was evaluated at the midpoint time (1980.5). Note that with complete observations

this is just the sample mean and we will refer to these statistics as the station “mean

summer precipitation”. However, 75% of the adjusted stations are missing at least 10

values in this period and the least squares analysis will differ from a sample average.

The version of the climate data used is the R data setNorthAmericanRainfall

19
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

at
h]

 a
t 0

1:
06

 1
6 

Ju
ne

 2
01

5 



ACCEPTED MANUSCRIPT

in the LatticeKrig package and a spatial model was fit using stereographic map

coordinates for the station locations. This projection gave spatial coordinates whose

euclidean distances were similar to great circle distance (see Figure 3). The spatial

model was fit to the log of mean precipitation with the spatial coordinates and elevation

included as a linear fixed effects. Three correlation models were considered and we

report the MLEs for the relevant parameters and the effective degrees of freedom (

EDF).

Matern (2 parameters) A stationary, isotropic Matern with range and smoothness pa-

rameters.

σ̂ = .1084, EDF= 943.

Matern-like (2 parameters) A three-level, MR covariance with coarsest level having

a lattice of 16×13 included the rectangular spatial domain amounting to approx-

imately 4000 basis functions. A common value forκ was used to control the

range at all levels. The first MR model constrains{α1, ..., α3}, αk ∼ 2−2ν with the

additional constraint that
∑
αk = 1.

σ̂ = .1402,ν̂ = .49, κ̂ = .96, EDF= 489.4.

Multi-resolution (3 parameters) The same three-level structure as the Matern-like

model withκ a common parameter withαk > 0 and
∑
αk = 1.

σ̂ = .1353,α̂ = (0.91,0.00,0.09), κ̂ = .7071, EDF= 550.6.

All three covariance functions include the variance parameter,ρ being the marginal

variance of the spatial process and the parameter,σ2, that is the measurement error (or

nugget) variance. The initial grid size for the MR models and the number of levels was

identified by trying several sizes and comparing likelihood values when models were

nested. We also avoided configurations whereκ was large suggesting an uncorrelated

model for the GMRF. The covariance parameters were estimated by maximum likeli-

hood and confidence regions for the parameters were derived using the large sample

chi-squared approximation to -2 times the log likelihood. Based on a 95% confidence

set the range parameter for the Matern model was not constrained from above and so a

thin-plate spline model, i.e. a limiting process as the range becomes large, is not ruled
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out. The smoothness parameter however has an MLE of .64. Figure 4 compares the

correlation functions for these three different models based on the confidence sets for

the parameters. Here the usual 95% confidence set for the model parameters based on

the likelihood was translated into a confidence band for the corresponding correlation

functions. The MR models have the flexibility to have long range correlations and it

is interesting for these data that their shape is different than the Matern family. Also

it is striking that the three level MR hasα2 ≈ 0 suggesting omitting the middle res-

olution level. The spatial predictions given by all three models are similar, however,

and within the prediction uncertainty measures. The measurement error variance is

smaller for the Matern compared to the lattice models and this is consistent with the

Matern representing a slightly rougher process than the MR models. In this case the

Matern process captures more of the fine scale variability and so less is represented by

the measurement error/nugget term.

Figure 5 is an example of the expected precipitation surface for a subregion over

the Rocky Mountains centered on Colorado. The MR covariance with the MLE pa-

rameters reported above is used for these estimates, which are evaluated on 200× 200

grid. 200 conditional fields were simulated and to increase the accuracy of this sample

the realizations were centered so that their mean matched their conditional expected

mean, which can be computed exactly. Although the spatial model was estimated on

a log scale of precipitation, the conditional samples were transformed to the raw scale

of precipitation totals to represent the distribution for unlogged values. Specifically

the surface in (a) is mean of the exponentiated conditional fields. Here the elevation

covariate explains a large amount of the spatial structure but this component is mod-

ified by the smooth nonparametric component based on the location. Plot (b) is the

estimated prediction standard error as a percentage of the mean predicted field.
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6 Discussions and Conclusions

This work has developed a new model for a spatial process: a lattice/basis model that

builds on ideas from fixed rank Kriging and the computational efficiencies that are

inherited from Markov random fields. The key contribution is that an independent sum

of the processes at different scales can approximate a larger family of processes not

limited to the properties of the covariance at each resolution level. One advantage of

our model is numerical evidence that it can accurately reproduce the Matérn family of

covariances. Also we give some asymptotic results based on a theoretical convolution

model that indicate that a range of smoothness properties can be achieved. This result

is unexpected given that the lattice/basis process has a fixed smoothness controlled by

the choice of basis functions.

Besides the value of the lattice/basis formulation as a new covariance model there

is an equally important contribution in computational efficiency for large data sets. In

fact it is our perspective that more complex covariance models can only be exploited

when large number of observation locations allow for accurate estimation of covari-

ance parameters. Thus efficient computation is intrinsic to entertaining new spatial

models. We have been successful in identifying algorithms that allow for computing

the likelihood to estimate covariance parameters and the prediction of the spatial field

using large data sets.

Because of the description of the stochastic spatial elements in terms of a SAR,

it is straightforward to propose a non stationary extension to the lattice basis model.

One would allow both theκl andαl to vary over the lattice at each level. An addi-

tional refinement would allow the SAR weights between the neighboring lattice points

to be directionally dependent. In particular extending the SAR weights to the 8 first

and second order neighbors can allow for a model that has directional or anisotropic

dependence. The spatial variation in these parameters could be modeled by a set of

covariates and fixed effects or one could include a spatial process prior on these param-

eter fields. The advantage of our approach and also of the related SPDE and process

convolution models is that one will always obtain a valid covariance function because
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the model focuses on a process level description.

We conjecture that the choice of the Wendland family of RBFs is not crucial and

other compacted supported, positive definite functions will work. Moreover by modi-

fying the distance metric to one of chordal distance one can also extend these ideas to

the sphere. The one hurdle in an extension to a spherical process, however, is to devise

non-rectangular grids for the nodes and to formulate a SAR on these points.

Finally, we note that the lattice/basis model can be implemented using a collection

of simple numerical algorithms and readily available software. An R implementation

is available with documented and commented source code and uses the general sparse

matrix R packagespam. TheLatticeKrig source code is largely written in the R

language with limited use of lower level C or FORTRAN functions and hence is easy

to modify.

References

Banerjee, Sudipto, Alan E Gelfand, and Bradley P Carlin (2003),Hierarchical model-

ing and analysis for spatial data. Crc Press.

Caragea, P. C. and R. L. Smith (2007), “Asymptotic properties of computationally

efficient alternative estimators for a class of multivariate normal models.”Journal

of Multivariate Analysis, 98, 1417–1440.

Cressie, Noel and Christopher K Wikle (2011),Statistics for spatio-temporal data.

Wiley. com.

Cressie, Noel A. C. and Gardar Johannesson (2008), “Fixed rank kriging for very

large spatial data sets.”Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 70, 209–226.

Eidsvik, Jo, Andrew O Finley, Sudipto Banerjee, and Havard Rue (2010), “Approxi-

mate bayesian inference for large spatial datasets using predictive process models.”

Computational Statistics& Data Analysis, 56, 1362–1380.

23
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

at
h]

 a
t 0

1:
06

 1
6 

Ju
ne

 2
01

5 



ACCEPTED MANUSCRIPT

Fuentes, Montserrat (2007), “Approximate likelihood for large irregularly spaced spa-

tial data.”Journal of the American Statistical Association, 102, 321.

Furrer, Reinhard, Douglas Nychka, and Stephen Sain (2012),fields: Tools for spatial

data. URL http://www.image.ucar.edu/Software/Fields. R package ver-

sion 6.6.4.

Henderson, H.V. and S. R. Searle (1981), “On deriving the inverse of a sum of matri-

ces.”SIAM Review, 23, 53–60.

Higdon, David M. (1998), “A process-convolution approach to modelling tempera-

tures in the north atlantic ocean.”Environmental and Ecological Statistics, 5, 173–

190.

Katzfuss, Matthias and Noel Cressie (2011), “Spatio-temporal smoothing and em es-

timation for massive remote-sensing data sets.”Journal of Time Series Analysis, 32,

430–446.

Lindgren, Finn and Håvard Rue (2007), “Explicit construction of gmrf approximations

to generalized matern fields on irregular grids.” Technical report, Lund Institute of

Technology.

Lindgren, Finn, Håvard Rue, and Johan Lindström (2011), “An explicit link between

gaussian fields and gaussian markov random fields: the stochastic partial differential

equation approach.”Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 73, 423–498.

Michael L. Stein, Leah J. Welty, Zhiyi Chi (2004), “Approximating likelihoods for

large spatial data sets.”Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 66, 275296.

NOAA/NCDC (2011). URLhttp://www.ncdc.noaa.gov/ghcnm.

Nychka, Douglas, Soutir Bandyopadhyay, Dorit Hammerling, Finn

Lindgren, and Stephan Sain (2013),A Multi-resolution Gaussian

24
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

at
h]

 a
t 0

1:
06

 1
6 

Ju
ne

 2
01

5 



ACCEPTED MANUSCRIPT

process model for the analysis of large spatial data sets. URL

http://www.ucar.edu/library/collections/technotes. NCAR Tech

Note.

Nychka, Douglas, Dorit Hammerling, Stephen Sain, and Tia Lerud (2012),

LatticeKrig: Multiresolution Kriging based on Markov random fields. URL

http://www.image.ucar.edu/Software/MRKriging. R package version 2.3.

R Development Core Team (2011),R: A Language and Environment for Statisti-

cal Computing. R Foundation for Statistical Computing, Vienna, Austria, URL

http://www.R-project.org/. ISBN 3-900051-07-0.

Rue, Håvard and Leonhard Held (2005),Gaussian Markov random fields : theory and

applications, volume 104. Chapman & Hall/CRC, Boca Raton.

Sang, H. and J.Z. Huang (2011), “A full scale approximation of covariance functions

for large spatial data sets.”Journal of the Royal Statistical Society: Series B (Statis-

tical Methodology).

Stein, Michael L. (2008), “A modeling approach for large spatial datasets.”Journal of

the Korean Statistical Society, 37, 3.

Wendland, H. (1998), “Error estimates for interpolation by compactly supported radial

basis functions of minimal degree.”Journal of Approximation Theory, 93, 258–272.

Wendland, Holger (1995), “Piecewise polynomial, positive definite and compactly

supported radial functions of minimal degree.”AICM, 4, 389–396.

Acknowledgements

This work supported in part by National Science Foundation grant DMS-0707069

and the National Center for Atmospheric Research. S. Bandyopadhyay is partially

supported by the Reidler Foundation of Lehigh University.

25
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

at
h]

 a
t 0

1:
06

 1
6 

Ju
ne

 2
01

5 



ACCEPTED MANUSCRIPT

Appendix

Note that the convolution process has a covariance function given by
∫

R2

∫

R2

1
θ4
φ(||x − u||/θ)Cν(||u − v||/κ)φ(||x′ − v||/θ)dudv. (12)

Outline of proof

Let φ̃k be the spectral density forφ andC̃ν the spectral density of a Matérn field with

ν = 1, unit variance and unit spatial scale parameter. Including the scale parameter for

the radial basis function kernel and using elementary properties of convolution,

S̃(r) =
∞∑

l=1

αl

[
θ2l C̃ν(θl r)

] [
φ̃k(θl r)

]2
.

The Mat́ern spectral density is

C̃ν(r) =
1

(2π)
1

(1+ r2)2
.

For the Wendland spectral density there are constantsC1 andC2 depending only onK

such that for allω,

C1 ≤ φ̃k(ω)(1+ ‖ω‖2)3/2+K ≤ C2,

(Wendland (1998)). Using the upper bound onφ̃, substituting the expressions forθl

andαl and finally combining terms gives the upper bound

S̃(r) < C′
∞∑

l=1

αl

θ2l
(1+ (rθl)2)η

= C′
∞∑

l=1

e−2β1le−2β2l

(1+ (re−β2l)2)η
= C′

∞∑

l=1

e−(2β1+2β2)l

(1+ r2e−2β2l)η
,

with η = 2+ 2(3/2+ K) = 5+ 2K.

Now apply the useful lemma given below with the identificationsa = 2β1 + 2β2 ,

b = 2β2 andc = η and s = r2. We have the rate given byr−2(a/b) and with 2a/b =

2(2β1 + 2β2)/2β2 = 2β2/β1 + 2. The result for the upper bound now follows and the

rate for the lower bound is proved in a similar manner.
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Two Useful Lemmas

Lemma 6.1. Let H be a continuous and integrable function on[1,∞]. Also assume

that H is positive and unimodal with maximum at u∗.
∣∣∣∣∣∣∣

∞∑

l=1

H(l) −
∫ ∞

1
H(u)du

∣∣∣∣∣∣∣
< H(u∗)

Proof Let L be the integer so thatH(L) = maxlH(l) also letIl =
∫ l+1

l
H(u)du then by

elementary properties of the integral and the unimodality ofH

Il > H(l), 1 ≤ l ≤ (L − 1)

Il−1 > H(l), (L + 1) ≤ l ≤ ∞.
(13)

Summing overl gives
∞∑

l=1

Il >
∑

l,L

H(l).

Simplifying and rearranging terms
∫ ∞

1
H(u)du−

∞∑

l=1

H(l) > −H(L).

Again by properties of the integral andH

Il−1 < H(l), 2 ≤ l ≤ L

Il < H(l), (L + 1) ≤ l ≤ ∞.
(14)

summing overl gives
∫ ∞

1
H(u)du<

∑

l,L

H(l)

or
∫ ∞

1
H(u)du−

∞∑

l=1

H(l) < H(L)

Noting thatH(L) < H(u∗) the result now follows.

Lemma 6.2.For a,b, c, s> 0 and for(a/b)−c < 0 there are constants0 < C1,C2 < ∞

C1s−a/b <

∞∑

l=1

e−al

(1+ se−bl)c
< C2s−a/b.
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Proof Based on Lemma 1 letH(u) = e−au/(1 + se−bu)c. H is unimodal. From basic

calculus the maximum ofH is H(u∗) = Cs−a/b for 0 < C < ∞ andC depending only

ona,b, c. We now evaluate the approximating integral from Lemma 1 as a function of

s.
∫ ∞

1
H(u)du=

∫ ∞

1

e−audu
(1+ se−bu)c

=

∫ ∞

1

(e−bu)a/bdu
(1+ se−bu)c

.

Now make the substitutionq = e−bu giving dq = −b(ebu)du or du =
−dq
bq and with

limits of integration,e−b and 0. One obtains

b
∫ e−b

0

q(a/b)−1dq
(1+ sq)c

. (15)

Since (a/b) > 0 the pole at zero is integrable and the integral is finite. Now make

the substitutionp = sqgiving dp= sdqand

b
∫ se−b

0

(p/s)(a/b)−1dp
s(1+ p)c

= bs−a/b

∫ se−b

0

p(a/b)−1dp
(1+ p)c

. (16)

Under the assumption thata/b− c < 0 the integral will be finite in the limit ass→ ∞.

Thus
∫ ∞

1
H(u)duandH(u∗) converge to zero at the polynomial rates−a/b and the result

follows from application of Lemma 1.
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Figure 1: Timing results for the lattice/basis model and standard Kriging in seconds for several
different numbers of basis functions and for the standard evaluation of the likelihood based on a
dense covariance matrix. The dashed line is the time for themKrig function from thefields R
package that computes the likelihood and related statistics for an exponential covariance model
with a fixed set of covariance parameters using a standard dense matrix Cholesky decomposition.
Solid and dotted lines are times for theLKrig function from theLatticeKrig R package that
compute the likelihood and related statistics for a MR lattice covariance with fixed parameters.
Solid lines are times with normalization to a constant marginal variance and dotted lines are times
without normalization. Among these cases the black lines are for a single level model where the
basis functions are chosen to be roughly equal to the number of spatial locations. The orange
lines use a fixed number of basis functions comprising four levels and with the coarsest level being
either 10×10 or 20×20. Text labels identify these cases.
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Exponential covarianceWhittle covariance Mixture: .4Exp(.1)+ .6Exp(3.0)
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Figure 2: Approximation of Mat́ern covariances using the lattice/basis model. For the plots on
the top row the solid grey lines are the true correlation functions. First column is an exponential
correlation with range parameter (.1, .5 and 1.0), second column is the Whittle correlation with
ranges .1,.5 and 1.0 and the third column is a mixture of two exponential correlation functions.
Black lines are the approximations to these correlation functions. Approximations are indicated
in black with L = 3 (dashed) orL = 4 (solid). The upper row is the approximations with the
true correlations over the distance limits [0, .3]. The lower row are the differences between the
approximation and the true correlation function for the cases when the range is .1 or for the mixture
model. The characters3 and4 indicate the support for the basis functions at the third and fourth
levels of resolution.
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Figure 3: Illustration of the spatial domain and basis grid for the precipitation example. Left plot is
a stereographic projection of precipitation location observation locations indicating the subregion
in figure 5. The right plot shows the three different grids (“+” – coarse, large dot – middle and
small dot – fine) defining the nodes for the MR basis including the buffer regions of 5 extra nodes
on each side to minimize edge effects. Shading indicates the rectangular spatial domain.
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Figure 4: Correlation models fit to the precipitation data. Dashed line is the Matérn correlation
function found by maximum likelihood and the light grey shading is an approximate 95% uncer-
tainty region based on a confidence set for the range and smoothness parameters. Dotted line is
the estimated correlation and uncertainty (dotted envelope) for the Matern-like covariance model.
Solid line with darker shading is a similar summary for the three level MR model.

32
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
B

at
h]

 a
t 0

1:
06

 1
6 

Ju
ne

 2
01

5 



ACCEPTED MANUSCRIPT

5 10 15 20 25 30
cm

(a)

6 8 10 14 18
Percent

(b)

Figure 5: Plot (a) reports the spatial predictions for mean summer (June, July, and August) precip-
itation in centimeters and includes elevation as a fixed linear covariate over the Rocky Mountain
region of the US. This subregion is outlined in Figure 3. The spatial covariance function is the three
level MR model described in Figure 4. Plot (b) reports approximate prediction standard errors for
this surface as a percentage of the predicted mean field. Solid points show observation stations.
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