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Abstract: In this paper we investigate nonlinear models for rock failure data.
The complexities of estimation and analysis using sample experimental data are
studied when fitting a power-law type model. Both the high frequency of sampling
of observations during the experiment, as well as the nature of the model with
high levels of correlation of the parameter estimators result in some challenging
issues in the modelling.
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1 Introduction

We consider methods for modelling experimental data collected in the lab
concerning rock failure. Accelerating rates of foreshocks are often observed
precursory to natural hazards such as earthquakes and volcanic eruptions.
Similarly, rock failure in laboratory experiments is preceded by accelerating
strain rates. In this work we investigate the usage of a damage mechanics
model proposed by Main (2000) for the analysis of strain and strain rate
data during the tertiary phase of brittle creep. The model studied consists
of 3 parameters, of which we focus on the failure time and on the power-law
exponent. When examining the likelihood function and the Fisher Informa-
tion we find that there is substantial correlation between these parameters.

This paper was published as a part of the proceedings of the 31st Inter-
national Workshop on Statistical Modelling, INSA Rennes, 4–8 July 2016. The
copyright remains with the author(s). Permission to reproduce or extract any
parts of this abstract should be requested from the author(s).



2 Nonlinear modelling

2 Model

Main (2000) develops a damage mechanics model to explain the time-
dependent, trimodal behaviour of brittle creep. We consider modelling the
strain using a relationship of the form

Ω = ΩI(1 +
t

mτ1
)m + ΩIII(1 − t

tf
)−v,

where for time t, Ω is the strain. The parameters are ΩI , ΩIII , m, τ1, v
and tf . There is also interest in modelling strain rate Ω̇, the derivative of
Ω with respect to time t. Here we focus on the accelerating crack growth
which is associated with the second term on the right-hand-side of the
above equation as it illustrates the complexities of modelling the data, i.e.
a strain model of the form

Ω = ω(1 − t

tf
)−v, (1)

where tf represents the time of failure which is of particular interest, while
the exponent parameter v relates to the curvature of the strain relationship.

3 Estimation

We assume for the moment that the strain observations are subject to iid
experimental errors with variance σ2, and the expectation at time t has
the form given in (1) which leads to a nonlinear model (Bates and Watts,
1988; Fahrmeir et al., 2013).
We apply a nonlinear least squares estimation procedure to fit the model
with parameters v and ω for given tf to the strain data (Heap et al. (2009)
gives details of lab experiments). This seems to be an effective numerical
approach for parameter estimation. Models were fitted for failure times tf
over a suitable range of values and the best model selected; this corre-
sponded to tf = 138.864. Table 1 presents the estimates of the fitted model
with this particular failure time value.

TABLE 1. Estimation of v and ω from strain for tf = 138.864.

Parameter Estimate Std. Error

v 2.147×10−2 4.104×10−5

ω 1.741 1.143×10−4

σ 0.001628

The fitted model and residuals are given in Figure 1. Looking at the left
panel we can see that the fitted model appears to represent the experimental
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data well, but the residuals show some concerning departures from the
assumed model. Firstly there are multiple small waves with a length of
about ten minutes, and secondly there are two irregular large waves, which
indicate a more severe discrepancy between the fitted values and the data. A
partial autocorrelation analysis of the residuals suggests that residuals are
autocorrelated, which may possibly be due to the nature of the experiment.
Therefore, we expect the estimates to be reliable, but the SEs may be
misleading.
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Figure 5.6: Fitted regression line and residuals for the estimation from real strain data.
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Figure 5.7: PACF analysis for strain.

rameter regions for nonlinear regression models:

S(θ) < S(θ̂)(1 +
p

n− p
F (p, n− p, α)) (5.1)

S(θ) denotes the residual sum of squares, n is the number of observations and p is the

number of parameters in the model. For large samples of normal distributed random

variables, confidence regions obtained by this method are approximately equivalent to

likelihood ratio based confidence regions (see Appendix B).

−2(l(θ)− l(θ̂)) =
1

σ̂2
(S(θ)− S(θ̂)) < χ2

p(α) (5.2)

To illustrate the confidence regions graphically, we again evaluate the log-likelihood func-

tion and the residual sum of squares over a 3-dimensional grid in proximity to the maxi-

mum likelihood estimator. We extract the sets of parameters, for which the likelihood-ratio

statistic or the residual sums of squares are below the required critical value. The approx-

imate confidence regions for v and tf are created by projecting these sets onto the tf -v
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FIGURE 1. Fitted regression line with strain observations (left) and residuals
(right) for the estimation from the experimental lab data.

The estimated parameters (obtained by minimising RSS over a range of tf
values, with argmin(tf ) = 143.37) are given in Table 2 for the strain rate
data, and the fitted model is shown in Figure 2, with the residuals. The
estimates for the strain and the strain rate produce very similar fits when
viewed on the strain scale. However, the SEs for the strain rate would
appear to be more reliable. On investigating the differences between the
parameters estimated by the two models, the tf over which the RSS was
minimised is not very well determined as the RSS does not vary greatly over
a range of tf -models. Also, the parameter estimators are highly correlated
so changes in tf lead to changes in the other two parameters. Nevertheless,
the strain and strain rate models provide a useful representation of the
experimental data.

TABLE 2. Estimation of v and ω′ (the constant multiplicative parameter from
Ω̇ model) from strain rate for tf = 143.37.

Parameter Estimate Std. Error

v 0.25634 0.05680
ω′ 0.13246 0.04688
σ 0.002479



4 Nonlinear modelling

Estimate Std. Error t value Pr(>|t|)
v 0.25634 0.05680 4.513 7.05e-06
ω 0.13246 0.04688 2.825 0.00481
σ 0.002479

Table 5.2: Estimation of v and ω from the strain rate for tf = 143.3707

The fitted regression line and the residuals can be seen in Figure 5.13. The residuals occur

to be more random than the residuals of the fitted model for strain. However, they are

not free of a pattern alike, as they manifest the discrete nature of the rate data.
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Figure 5.13: Fitted regression line and residuals for the estimation from real rate data.

Moreover partial autocorrelation is also present among the residuals of the strain rate,

although the problem is not as severe as in the case of strain. There is a comparatively

strong negative autocorrelation at a lag of one, and positive autocorrelation at lags between

10 and 15.

The 99% and 95% confidence regions for v and tf are shown in Figure 5.15. In the plot on

the right-hand side ω is unknown and the confidence regions were created by the projection

of a 3-dimensional set onto a plane of v and tf . On the left-hand side ω is treated as fixed

constant of the size of the maximum likelihood estimator. Compared with the estimations

from strain, the estimation from the strain rate leads to much larger confidence regions.

The 99 % confidence interval for tf under the assumption of unknown ω spans from 139.9

to over 148. For v the interval is even less precise. Even if we assume that ω is fixed,

the resulting confidence region is larger than the confidence region given three unknown

parameters for strain.
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FIGURE 2. Fitted regression line with strain rate observations (left) and residuals
(right) for the estimation from the experimental lab data.

4 Discussion

In this paper we have considered the application of nonlinear models for
analysis of experimental rock failure data during the tertiary phase of brit-
tle creep. These 3-parameter models have been used to explore different
features of the data and highlight some of the challenges of analysing such
data. In future work, where lab experiments are repeated under identical
conditions, it is expected that the use of replication will enable the features
we have seen to be investigated more fully, and provide further insights into
the processes related to natural hazards such as earthquakes and volcanic
eruptions.
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