
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data as processes: introducing measurement data into CARMA
models

Citation for published version:
Gilmore, S 2016, Data as processes: introducing measurement data into CARMA models. in FORECAST
2016 Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems. pp. 31-42, Formal
methods for the quantitative Evaluation of Collective Adaptive Systems, Vienna, Austria, 8/07/16. DOI:
10.4204/EPTCS.217.5

Digital Object Identifier (DOI):
10.4204/EPTCS.217.5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
FORECAST 2016 Formal Methods for the Quantitative Evaluation of Collective Adaptive Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Edinburgh Research Explorer

https://core.ac.uk/display/77616261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4204/EPTCS.217.5
https://www.research.ed.ac.uk/portal/en/publications/data-as-processes-introducing-measurement-data-into-carma-models(034b1c62-4489-480c-8eaf-a579f8bd582a).html


M.H. ter Beek and M. Loreti (Eds.): Workshop on
FORmal methods for the quantitative Evaluation
of Collective Adaptive SysTems (FORECAST’16).
EPTCS 217, 2016, pp. 31–42, doi:10.4204/EPTCS.217.5

c© S. Gilmore
This work is licensed under the
Creative Commons Attribution License.

Data as processes:
introducing measurement data into CARMA models

Stephen Gilmore
Laboratory for Foundations of Computer Science

The University of Edinburgh
Edinburgh, Scotland

Stephen.Gilmore@ed.ac.uk

Measurement data provides a precise and detailed description of components within a complex sys-
tem but it is rarely used directly as a component of a system model. In this paper we introduce a
model-based representation of measurement data and use it together with modeller-defined compo-
nents expressed in the CARMA modelling language. We assess both liveness and safety properties
of these models with embedded data.

1 Introduction

A formal model of a real-world system uses abstraction to distill the most important elements of the
system into a succinct representation which is amenable to formal reasoning and analysis. If the modeller
creating the model has chosen the right level of abstraction for their analysis then the insights which are
gained from model-based reasoning are also applicable to the real-world system itself. If, however, some
of the important elements of the system have been mis-represented in the model then the insights gained
by model-based reasoning and analysis are of no value, no matter how much trouble or care was taken
to obtain them from the (flawed) formal model.

For dynamic models used to study performance properties such as throughput, utilisation, and satis-
faction of service-level agreements, one challenge which the modeller must face is representing the timed
behaviour of systems accurately. Depending on the kind of model that is being created, either continuous
sure variables or random variables from a particular random number distribution are used to abstract
aspects of timed behaviour in the system under study. These variables are parameters of the model,
allowing it to be used in a suite of experiments which explore the behaviour of the model when some
of the parameters are perturbed. For such a modelling study to be informative about the system under
study it is then necessary to ensure that these parameters are correctly chosen to reflect the durations of
the corresponding events in the system.

Techniques for abstracting empirical univariate distributions into statistical distributions such as
phase-type distributions are well known and available as algorithms [6] and even as software tools [12].
However, in the case of systems where spatial aspects play a significant role in addition to timed behaviour
we have several correlated variables and a multivariate distribution which means that finding a suitable
abstraction is not so easy. Where a classical model of a spatially-distributed system would typically use
a co-ordinate system to provide an abstract representation of space, our concrete component instead uses
literal latitude and longitude co-ordinates to represent the current position of a mobile component. The
result is a model which is a mix of abstract components crafted by the modeller and concrete compo-
nents which have been automatically generated from measurement data. This allows us to build models
of systems where we selectively choose not to abstract one component, but instead to represent it literally
in order to ensure that we do not misrepresent it via an inappropriate abstraction.
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32 Data as processes

From the viewpoint of model-based testing we should see each concrete component as a black box
component within the model. The component offers up the values of its attributes at any time, but the
logic as to why the attribute values change as they do is not represented anywhere in the model, neither
in the concrete components generated from measurement data nor in the abstract components defined by
the modeller. Measurement data can be easily obtained from an instrumented system and one can often
be in the situation of having an embarrassingly large volume of measurement data. Because the concrete
components admit no compact representation of their behaviour the modelling formalism which we use
must be able to tolerate large unstructured components with real-valued attributes such as latitude and
longitude, paired with timestamps.

Many modelling formalisms are not able to meet this challenge. Classical Petri nets, process alge-
bras, and layered queueing networks do not provide the data types and data structures which are needed to
represent concrete components within the model. Here however, we are working with CARMA (Collec-
tive Adaptive Resource-sharing Markovian Agents) [7] a modern feature-rich modelling language which
in addition to providing a stochastic process algebra of guarded recursive processes with unicast and
broadcast communication also provides the primitive data types and data structures of a general-purpose
programming language. These features are supplemented by encapsulation mechanisms, general func-
tion definitions, and iterative constructs for defining collectives of components. Together these features
give the modeller sufficient linguistic power to represent concrete components directly within CARMA
models, and we utilise this strength of CARMA modelling here.

2 Background

Models in the CARMA language consist of a collective of components, set in an environment represent-
ing the context in which the components operate. The collective is a parallel composition of components,
each of which consists of a process which represents the component’s behaviour, and a store which rep-
resents the component’s knowledge.

Stores map attribute names to basic values of primitive types such as boolean, integer and real.
Values such as these can be passed as parameters when processes communicate. An output action α〈~v〉
by one process can be matched with an input action α(~x) by another process provided the length of the
vector of values ~v is the same as the length of the vector of variables ~x. The arity of a communication
action must be consistent throughout the model: it cannot be used to pass one value at one point and two
(or more) values at another. Communication actions can either be unicast or broadcast in CARMA. In
all, this provides four types of actions in CARMA:

broadcast output α?[π]〈~e〉σ asynchronous (non-blocking) broadcast action α to communication
partners identified by the predicate π; send the values of expressions
~e evaluated in the local store γ; then apply the update σ to γ .

broadcast input α?[π](~x)σ receive a tuple~x of values~v sent with an action α from a component
whose store satisfies the predicate π[~v/~x]; then apply the update σ

to local store γ .
unicast output α[π]〈~e〉σ synchronous (blocking) unicast action α to any communication

partner satisfying the predicate π; send the values of expressions
~e evaluated in the local store γ; then apply the update σ to γ .

unicast input α[π](~x)σ (point-to-point) receive a tuple ~x of values ~v sent with an action α

from a component whose store satisfies the predicate π[~v/~x]; then
apply the update σ to local store γ .
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The use of predicates to describe communication partners means that CARMA supports the attribute-
based communication paradigm [2], as found in languages such as SCEL [9], where dynamic collections
of components called ensembles are formed through having attributes in common. In process alge-
bras such as PEPA [10] where data is abstracted out of the model, attributes are not present and thus
attribute-based communication is not possible. Communication partners are determined statically in
PEPA whereas they are determined dynamically in CARMA and SCEL.

Processes (P,Q, . . . ) in CARMA are defined by the following grammar:

P,Q ::= nil | kill | act.P | P+Q | P|Q | [π]P | A (A , P)
act ::= α?[π]〈~e〉σ | α?[π](~x)σ | α[π]〈~e〉σ | α[π](~x)σ

By convention in a CARMA model activity names begin with a lowercase letter, function and component
names begin with a capital letter, and process names are written in all caps. Expressions in the CARMA
language (as used in function bodies) are generated by the following grammar.

e1,e2,e3 ::= return e1 | if(e1){e2} | if(e1){e2} else {e3} | e1;e2 | a1 | b1
a1,a2 ::= 0 | 1 | · · · | −a1 | a1 +a2 | a1−a2 | a1 ∗a2 | a1/a2
b1,b2 ::= true | false | a1 > a2 | a1 >= a2 | a1 == a2 | a1 <= a2 | a1 < a2

| !b1 | b1 && b2 | b1||b2

3 Case study: Bus fleet management

For our case study in this paper we show how data on the movement of a bus travelling through the
city of Edinburgh can be incorporated into a CARMA model. The purpose of the modelling will be to
check whether or not the bus follows the intended route by matching its movements against a high-level
description of the route in terms of regions of the city described by predicates. This is an instance of
a fleet management problem as studied in the transportation modelling community: it is important to
know the location of all of the vehicles in the fleet and to know that they are serving their assigned
routes. Managing the assignment of buses to routes is not as easy in practice as it might appear: changes
of assignment are needed during the working day as problems such as vehicular mechanical failures,
road closures, or driver unavailabilty can cause buses to be cancelled or re-routed in ways that would be
impossible to predict at the start of the day.

Our specific example is Transport for Edinburgh’s Service 100, which travels between Edinburgh
airport and Edinburgh city centre. We can characterise this route as having five significant regions:
the airport, suburban area 1, suburban area 2, the city centre, and the garage where the bus is parked
overnight. These areas are shown in Figure 1, together with a GPS trace of bus fleet number 937 serving
this route. The definition of these regions is given in Table 1.

In the dataset that we are working with here, the position of a bus has been registered once every
minute. Regions should be chosen to be large enough to make it effectively improbable that a bus can
enter the region and exit from it again without having been observed at least once within it. Regions
should bound a portion of the bus route, but not so tightly that small measurement errors in GPS readings
could cause a bus to be perceived as outside that region. We have chosen our regions to be simple
rectangles because it is easy to test whether a point lies within a simple geometric shape such as this.
We defined five CARMA predicates to test whether a point lies in a region. These are AtAirport,
InSuburbs1, InSuburbs2, InCentre and AtGarage. The CARMA predicate AtAirport is shown in
Figure 2. The other predicates are similarly easy to define.
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Figure 1: The route of bus number 937 in the fleet, assigned to service 100. The route includes the
airport (in the bottom left hand corner, in blue), suburban area 1 (in purple), suburban area 2 (in orange),
the city centre (in green), and the garage (in the top right hand corner, in black).

Significant Significant Region
latitudes longitudes definitions

lat1 = 55.935 long1 = −3.38 airport =
[
(long1, lat1),(long2, lat4)

]
lat2 = 55.940 long2 = −3.34 suburbs1 =

[
(long2, lat1),(long3, lat3)

]
lat3 = 55.945 long3 = −3.28 suburbs2 =

[
(long3, lat2),(long4, lat4)

]
lat4 = 55.950 long4 = −3.22 centre =

[
(long4, lat3),(long6, lat5)

]
lat5 = 55.955 long5 = −3.20 garage =

[
(long5, lat5),(long6, lat6)

]
lat6 = 55.965 long6 = −3.18

Table 1: Table of region definitions in terms of latitude and longitude coordinates.

fun bool AtAirport ( real long , real lat ) {
if (long > long1 && long < long2 && lat > lat1 && lat < lat4 ) {

return true ;
} else {

return false ;
}
}

Figure 2: The AtAirport function in CARMA.



S. Gilmore 35

3.1 Generating a concrete component from measurement data

Given measurement data whose records consist of latitude and longitude coordinates together with a
timestamp it is straightforward to generate a concrete component which introduces this measurement
data into our CARMA model. We generate a straight-line process which broadcasts each move action
as it occurs. We choose broadcast output because in general we do not want the abstract components
of the model to alter the behaviour of the concrete components. The parameters of the move action
are the measurement data in the form of a five-tuple 〈latitude, longitude, hour, minutes, seconds〉. This
conversion from measurement data into a CARMA component is performed automatically with a Python
script. Figure 3 illustrates this process. The updates σ0, σ1 and σ2 are the obvious updates of the local
store to hold the current values of latitude, longitude, hours, minutes, and seconds.

55.948413846216582 -3.363214449536430 00:11:39
55.944855742591862 -3.361568243977290 00:12:41
55.937544319811479 -3.358045792384101 00:13:43

...
...

...

⇓
S0

S1

S2

...

move?[true]〈55.948413846216582,−3.363214449536430,00,11,39〉σ0

move?[true]〈55.944855742591862,−3.361568243977290,00,12,41〉σ1

move?[true]〈55.937544319811479,−3.358045792384101,00,13,43〉σ2

Figure 3: Converting measurement data into concrete components in our CARMA model.

Now that we have our measurement data within our CARMA model we can use the CARMA Eclipse
Plugin to execute the model and investigate its behaviour using a measure defined in the CARMA model.
Measures are real-valued functions which compute some result of the current state of the model, allowing
this to be visualised as an assessment of the model’s behaviour. We can define a measure in CARMA as
shown below.

measure MaxLatitude = max { my. latitude };

The Bus component which we have generated has an attribute in its local state named latitude which is
updated after every movement action. A component refers to its own local state using the prefix my in
CARMA (much like the use of this in Java). The particular measure shown above records the maximum
value of the latitude seen at all timepoints along the trace of the Bus component as it executes. The results
are shown in Figure 4.
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Figure 4: A plot generated by the CARMA Eclipse Plugin showing the maximum value of the latitude
attribute of the Bus component in our model. The long constant high value of latitude near the start of
the trace records the bus being parked in the garage overnight.

This plot assures us that the model exhibits some behaviour, in that the latitude of the bus is changing,
but we do not yet know whether or not it is following the route of the 100 service, or staying within the
five regions of interest specified earlier. We will define an additional component to investigate these
questions.

3.2 Defining a probe to monitor the concrete component

The next step in checking the correctness of a bus journey is to be able to monitor its behaviour by adding
an abstract component (defined by the modeller) to ensure that the progress of the bus moving between
regions is as we expect, and that the bus does not leave the five regions which we have defined (see
Table 1).

We use the term probe for a component whose purpose is simply to monitor changes in another
component [5, 8]. The function of a probe is to make it convenient to express checkable properties of a
model. A probe is a finite-state automaton which recognises the language of acceptable state transitions
within a model and rejects all unacceptable state transition sequences. Probes are sometimes expressed
in formal language terms as regular expressions and sometimes as timed automata [4, 3].

Probes can be used to check both safety and liveness properties of models. Here we are interested in
two liveness properties and one safety property, as described below.

Liveness 1: The bus visits the airport (probe reaches state AIRPORT).

Liveness 2: The bus visits the city centre (probe reaches state CENTRE).

Safety: The bus does not leave the five defined regions (probe never reaches state ERROR).

Perhaps the most natural description of the journey of the bus would be to separate out the Airport
journey (from the airport to the city centre) and the Return journey (from the city centre to the airport).
Denoting these A and R respectively, we would note that the journey from the airport to the city centre
passes through the two suburban regions in the order [SA

1 ;SA
2 ] whereas the return journey passes through

the two suburban regions in the order [SR
2 ;SR

1 ]. The probe which captures this separation of the Airport
and Return journeys is presented in Figure 5. The predicate guards which label each arrow have been
omitted to reduce clutter. The selection of start state means that this probe can only be applied to vehicles
which begin their journey at the airport. State E indicates that an error has occurred.

Although this description of the probe is perfectly correct from the abstract notion of the bus route it
is in practice rather too unforgiving of measurement errors. For a bus stopped on the border between the
region suburbs1 and the region suburbs2 a small error in GPS measurement could cause the sequence of
observations [SA

1 ;SA
2 ;SA

1 ;SA
2 ] to be seen, and this cannot be accepted by the probe presented in Figure 5.

For this reason, we work with a looser specification of the bus route, as described by the probe in
Figure 6. This does not differentiate between the Airport and Return routes and has the dual benefits of
being more compact and tolerating errors in GPS measurement at the boundaries between regions. For
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Astart E G C

SA
1 SA

2

SR
1 SR

2

Figure 5: A probe component which separates the outward and return routes.

example, the sequence of observations [S1;S2;S1;S2] can be accepted by this component. The predicate
guards which label each arrow have again been omitted in this diagram to reduce clutter.

Astart S1 S2 C G

E

Figure 6: A probe component which does not differentiate between the outward and return routes.

Of course, when this probe is expressed as a CARMA component it is necessary to be absolutely
specific about the predicate guards on each transition. The overall effect of the predicates is to track the
location of the bus on the basis of its reported latitude and longitude. A transition to the ERROR state of
the probe may only be taken if no other outgoing transition from a state is possible. We use the predicates
AtAirport, InSuburbs1, InSuburbs2, InCentre and AtGarage as described previously. The text of
the probe as a CARMA component is shown in Figure 7.

3.3 Computing liveness and safety properties using probes

Now we are in a position to be able to use CARMA’s measures to interrogate the probe to see states
which it visits. In order to turn our probe’s observations into numerical measures we count the number
of probes in each state. These measures will only ever return 0 or 1 as their results with 1 indicating that
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component Probe(process Z) {
store {}

behaviour {

AIRPORT = move?[AtAirport(long , lat ) ]( lat , long ,h,m,s){}.AIRPORT
+ move?[InSuburbs1(long, lat ) ]( lat , long ,h,m,s){}.SUBURBS1
+ move?[!AtAirport (long , lat ) &&

!InSuburbs1(long , lat ) ]( lat , long ,h,m,s){}.ERROR;

SUBURBS1 = move?[AtAirport(long,lat)]( lat , long ,h,m,s){}.AIRPORT
+ move?[InSuburbs1(long, lat ) ]( lat , long ,h,m,s){}.SUBURBS1
+ move?[InSuburbs2(long, lat ) ]( lat , long ,h,m,s){}.SUBURBS2
+ move?[!AtAirport (long , lat ) &&

!InSuburbs1(long , lat ) &&
!InSuburbs2(long , lat ) ]( lat , long ,h,m,s){}.ERROR;

SUBURBS2 = move?[InSuburbs1(long,lat)](lat , long ,h,m,s){}.SUBURBS1
+ move?[InSuburbs2(long, lat ) ]( lat , long ,h,m,s){}.SUBURBS2
+ move?[InCentre(long , lat ) ]( lat , long ,h,m,s){}.CENTRE
+ move?[!InSuburbs1(long , lat ) &&

!InSuburbs2(long , lat ) &&
!InCentre(long , lat ) ]( lat , long ,h,m,s){}.ERROR;

CENTRE = move?[InSuburbs2(long, lat ) ]( lat , long ,h,m,s){}.SUBURBS2
+ move?[InCentre(long , lat ) ]( lat , long ,h,m,s){}.CENTRE
+ move?[AtGarage(long,lat ) ]( lat , long ,h,m,s){}.GARAGE
+ move?[!InSuburbs2(long , lat ) &&

!InCentre(long , lat ) &&
!AtGarage(long, lat ) ]( lat , long ,h,m,s){}.ERROR;

GARAGE = move?[InCentre(long , lat ) ]( lat , long ,h ,m,s){}.CENTRE
+ move?[AtGarage(long,lat ) ]( lat , long ,h,m,s){}.GARAGE
+ move?[!InCentre(long , lat ) &&

!AtGarage(long, lat ) ]( lat , long ,h,m,s){}.ERROR;

ERROR = move?[true]( lat , long ,h ,m,s){}.ERROR;
}

init { Z }
}

Figure 7: The probe from Figure 6 represented as a CARMA component.

the state (AIRPORT, SUBURBS1, . . . ) has been visited. We add these measures to our model.

measure ProbeInStateAIRPORT = #{ Probe[AIRPORT] | true };
measure ProbeInStateSUBURBS1 = #{ Probe[SUBURBS1] | true };
measure ProbeInStateSUBURBS2 = #{ Probe[SUBURBS2] | true };
measure ProbeInStateCENTRE = #{ Probe[CENTRE] | true };
measure ProbeInStateGARAGE = #{ Probe[GARAGE] | true };
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measure ProbeInStateERROR = #{ Probe[ERROR] | true };

There are eleven buses from the Transport for Edinburgh fleet which serve the Airport route at any time.
For the day of data which we processed here, these are fleet numbers 937, 938, 939, 940, 941, 943, 945,
947, 948 and 950. We began with bus number 937 and used the CARMA Eclipse Plugin to check our
probe against the trajectory of this bus. This showed that the two liveness properties were satisfied (the
bus visits the airport and the city centre) and that the safety property was also met (the ERROR state of
the probe is never reached). The output from the CARMA Eclipse Plugin is shown in Figure 8.

Figure 8: The route of bus number 937 in the fleet. The bus is initially at the airport and enters the
garage shortly after midnight. The following day the bus performs the expected route between the city
centre and the airport. The ERROR state of the probe is never reached for bus 937.

After this, we applied the same analysis to the remaining ten buses which were serving the 100 route,
compiling these results into Table 2. All but one of these buses passed both the liveness tests and the
safety test. The bus which failed these tests was bus 947, which fails both of the liveness tests and also
fails the safety test.

Fleet Initial Final AIRPORT CENTRE ERROR Probe 100
number state state visited visited seen result
937 AIRPORT GARAGE Yes Yes No Accepted
938 GARAGE AIRPORT Yes Yes No Accepted
939 GARAGE CENTRE Yes Yes No Accepted
940 SUBURBS1 CENTRE Yes Yes No Accepted
941 CENTRE GARAGE Yes Yes No Accepted
943 GARAGE GARAGE Yes Yes No Accepted
944 SUBURBS2 GARAGE Yes Yes No Accepted
945 CENTRE GARAGE Yes Yes No Accepted
947 GARAGE ERROR No No Yes Rejected
948 GARAGE AIRPORT Yes Yes No Accepted
950 GARAGE SUBURBS1 Yes Yes No Accepted

Table 2: Results of checking our probe against traces from different buses serving the 100 route.

Looking at the results from the CARMA Eclipse Plugin shown in Figure 9, the bus is initially in
the garage (probe state is GARAGE) but immediately violates the allowable conditions on its latitude and
longitude coordinates on leaving the garage (probe state is ERROR). The error state of the probe is an
absorbing state so once the probe has entered this state it will not escape to any non-error state even if
the bus later corrects its position to rejoin the correct route for the service.

Our method of compiling measurement data into concrete components and evaluating it with a probe
component has had the desired outcome of finding erroneous behaviour in an unlabelled collection of
correct and incorrect trajectories. Bus 947 has been identified as having diverged from the expected route.
We now look at its trajectory as a latitude-longitude trace and see if we can conjecture what happened to
cause this deviation. Comparing the position with a map of the city of Edinburgh we see that the bus has
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Figure 9: The route of bus number 947 in the fleet. The bus is initially in the garage at the beginning of
the trace but enters the ERROR state immediately on exiting the garage.

taken a route away from the city centre towards the coast. A second Transport for Edinburgh garage is
located here, and we can conjecture that this bus had a fault or needed some maintenance activity before
it was able to serve the 100 route. After visiting the second garage the (now, presumably, repaired) bus
returns to the city centre and begins its service from there, as detailed in Figure 10.
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Figure 10: The route of bus number 947 in the fleet, assigned to service 100. The route includes the
expected locations of the airport (in the bottom left hand corner, in blue), suburban area 1 (in purple),
suburban area 2 (in orange), the city centre (in green), and the garage (in black), as well as the unexpected
locations of suburban area 3 (in yellow) and garage 2 (in the top right-hard corner, in cyan).

3.4 Practicality of the method

In our case study here we used GPS measurement data from bus journeys to build our concrete com-
ponents. The position of the bus is sampled every minute of a twenty-four hour period, thus giving us
approximately 1,440 timestamped records of the latitude and longitude of the bus. The measurement
data is compiled into a CARMA model by a Python script; this CARMA model is 14,546 lines long.
This CARMA model is then compiled into a Java application by the CARMA Eclipse Plugin; this Java
application is 81,162 lines long.

The current compilation strategy employed by the CARMA compiler is to compile a CARMA com-
ponent into a single Java method. For hand-built components created by the modeller this approach
has no significant disadvantages but for large generated concrete components this approach runs the risk
of overflowing the maximum Java method size of 65,534 bytes. If working with very large measure-
ment data sets, over longer time periods or with finer sampling granularity, then it would be necessary to
change the CARMA compilation strategy to compile CARMA processes into individual methods instead
and have the compilation images of CARMA components call these methods, thereby moving the prob-
lem of maximum method size to reappear again only for CARMA processes which have many attributes
and very large update blocks.
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4 Related work

In this work we have considered using data concretely as process components in a model. In earlier work,
van der Aalst et al have devised algorithms for extracting compact process descriptions from data such
as system event logs. These algorithms are necessarily incomplete and cannot always find a compact
process representation which faithfully encodes an expansive event log. Nonetheless, these workflow
mining [1] and process mining [13] approaches give valuable insights into large data sets by identifying
likely causal relations between events and variants of the α algorithm which underlies the workflow
mining approach are able to rediscover large classes of processes from event logs.

The Traviando simulation trace analyser can also be applied to inverse problems like these, in that it
can be used to generate so-called likely invariants from a finite execution trace. These likely invariants
can then be used to help formulate a compact model of a process which would generate such an event
trace [11].

5 Conclusions

We have shown a method of checking liveness and safety properties of CARMA models in which some
components of the system which is being modelled are represented without abstraction, using concrete
components which are generated automatically from data. The properties which can be checked are
those which can be expressed by finite-state automata (“probes”) whose state-to-state transitions are
guarded by predicates over the values of component attributes or parameters passed by communication
actions. Checking is automatically performed by the CARMA Eclipse Plugin which can generate both
graphs of the transitions of the probes and graphs of the changes in underlying values within the model
(such as component attributes). Using this we were able to detect from an unlabelled set of trajectories
the trajectory which failed to satisfy the requirements of a specified bus route. The methods used are
generally applicable to any problem where data plays a significant role and whose correctness criterion
can be expressed automata-theoretically.

Our interests for future work on this topic include generating probe components directly from route
descriptions which list the bus stops on the route together with their latitude and longitude coordinates.
Additionally, we wish to add instrumentation to probes in order that they can count visits to the regions
of interest on the route, enabling stronger liveness properties to be expressed.
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