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A Rational Convex Program for Linear Arrow-Debreu Markets∗

Nikhil R. Devanur† Jugal Garg‡ László A. Végh§

March 3, 2017

Abstract

We give a new, flow-type convex program describing equilibrium solutions to linear Arrow-Debreu
markets. Whereas convex formulations were previously known ([17, 15, 6]), our program exhibits several
new features. It gives a simple necessary and sufficient condition and a concise proof of the existence
and rationality of equilibria, settling an open question raised by Vazirani [21]. As a consequence we also
obtain a simple new proof of Mertens’s [16] result that the equilibrium prices form a convex polyhedral
set.

1 Introduction

The exchange market model is a classical model of a market along with a notion of equilibrium, introduced
by Walras in [24]. In this model, agents arrive at the market with an initial endowment of divisible goods,
and a utility function for consuming goods. A market equilibrium assigns prices to the goods such that
when every agent uses the revenue from selling her initial endowment for purchasing a bundle of goods
that maximizes her utility, the market clears, i.e, the total demand for every good is equal to its supply.
The celebrated theorem by Arrow and Debreu [1] proves the existence of a market equilibrium under
mild necessary conditions on the utility functions - therefore it is commonly known as the Arrow-Debreu
market model. Since then, understanding equilibrium behavior and computing equilibrium prices has
been extensively studied in mathematical economics and more recently in theoretical computer science.

In this paper we study the linear Arrow-Debreu model, where the utility functions of agents are linear.
Let us first mention results pertaining to a well-studied further special case, the linear Fisher model, that
was formulated by Fisher in 1891, who also studied the computability of equilibrium, via a hydraulic
machine no less! (See Brainard and Scarf [4] for a fascinating account.) In this model, the agents are
separated into two types, buyers and sellers; buyers arrive to the market with a certain amount of money
they wish to spend on goods offered by the sellers. This model turned out to be substantially easier from
a computational perspective than the linear Arrow-Debreu model. A convex programming formulation
was given by Eisenberg and Gale [11]. The problem of equilibrium computation was introduced to the
theoretical computer science community by Devanur et al. [8], who gave a polynomial time combinatorial
primal-dual algorithm. This initiated an intensive line of research, most notable among which is a strongly
polynomial time algorithm by Orlin [19]; for a survey, see [18, Chapter 5] or [21]. Also, Shmyrev [20] gave
a new type of convex program (which was discovered independently by Birnbaum et al. [2]) capturing
the equilibria.

Let us now turn to the linear Arrow-Debreu model. The first important algorithmic result was a finite
Lemke-type path following algorithm for finding an equilibrium solution by Eaves [10]. A remarkable
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consequence of this algorithm is that when the utilities are given by rational numbers, there also exists
an equilibrium among rational numbers.

The history of convex programming formulations for the linear Arrow-Debreu model is somewhat
convoluted. Jain [15] formulated a convex program whose solutions correspond to market equilibria; this
can be used to obtain a polynomial time algorithm via the Ellipsoid algorithm. It turned out later that the
same convex program was already formulated by Nenakov and Primak in [17]. Interestingly, the computer
science community so far seems to have been unaware of the paper by Cornet [6] giving a similar, yet
better convex program. This is not mentioned even in the survey paper by Codenotti et al. [5] exploring
the background of the problem. (These convex programs will be exhibited in Section 3.)

An unsatisfactory aspect of the program in [15, 17] is that it fails to show the existence of an equilib-
rium; it only shows that if there exists an equilibrium, then any feasible solution to the convex program
is one. In contrast, Cornet’s program provides a proof of existence assuming that a stronger sufficient
condition given by Gale in [13] holds. However it fails to show it for the weaker necessary and sufficient
condition given by Gale in [14]. An efficient interior point algorithm to compute an equilibrium was given
by Ye [25] based on the convex program in [15, 17]. An important recent result is a combinatorial primal-
dual algorithm by Duan and Mehlhorn [9]; this does not rely on the convex programming formulation but
adapts techniques from the algorithm by Devanur et al. [8] for linear Fisher markets.

The convex programs [17, 15] and [6] for the linear Arrow-Debreu model is of substantially different
nature from those [11, 20, 2] for the linear Fisher model. The latter ones have linear constraints only,
with separable convex objectives, in contrast to the nonlinear constraints in [17, 15]. Whereas [6] is
formulated with only very simple linear constraints, the max-min type objective in fact hides similar
nonlinear constraints.

The feasible region for both formulations for the linear Fisher model are indeed classical polyhedra,
[11] a generalized flow polyhedron and [20, 2] a circulation polyhedron. This also explains why for the
linear Fisher model, classical flow techniques are applicable (see [23, 22]) and strongly polynomial time
algorithms exist. Also interestingly, the convex programs of [11] and [20, 2] fall into the class of rational
convex programs, defined by Vazirani [21]: for a rational input, there exists a rational optimal solution
with bitsize bounded polynomially in the input size. For the previous programs [6, 17, 15] the proof of
the existence of a rational optimal solution requires further nontrivial arguments (e.g. [10, 9]). An open
problem in [21] asks for the existence of a rational convex program for the linear Arrow-Debreu model
with a simple, direct proof of rationality.

In this paper, we exhibit a rational convex program for the linear Arrow-Debreu model, that also
guarantees the existence of an equilibrium, thus settling the open questions of [21]. Our convex program
draws from the convex programs in [11, 20, 2]; more precisely, it is a combination of the convex program
of [20, 2] and a dual program described in [7]. The objective function has terms from both the convex
programs and there are two sets of constraints, one describing a circulation polyhedron as in [20, 2], and
another from the dual program. In fact, in Section 4 we explain how we obtained the formulation from
these two programs for linear Fisher markets. The main technical contribution is to show the existence
of an equilibrium based on the Karush-Kuhn-Tucker (KKT) conditions for this convex program. Our
program is feasible if and only if Gale’s [14] necessary and sufficient conditions on the existence of equilibria
hold. The existence of a rational optimal solution for rational input follows by showing that there exists
an optimal solution that is an extreme point of the feasible region.

Now we give a formal description of the model and give our convex program. We are given set A of
n agents, and assume that there is a one-to-one mapping between agents and goods, every agent i ∈ A
arrives with one divisible unit of good of type i. This is without loss of generality: the general case
with an arbitrary set of goods and arbitrary initial endowments can be easily reduced to this setting; see
Section 3. The utility of agent i for the good of agent j is uij ≥ 0. The directed graph (A,E) contains
an arc ij for every pair with uij > 0; it may also contain loops expressing that some agents are interested
in their own goods. We make the standard assumption that for each agent i ∈ A, E contains at least one
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incoming and one outgoing arc incident to i.
By a market equilibrium, we mean a set of prices p : A → R+ and allocations x : E → R+ satisfying

the following conditions.

• Market clearing: Demand equals supply.

–
∑

i∈A xij = 1, for every j ∈ A, i.e., every good is fully sold.

– pi =
∑

j∈A xijpj for every i ∈ A, i.e., the money spent by agent i equals his income pi.

• Optimal bundle: Every agent is allocated a utility maximizing bundle subject to its budget con-
straint. That reduces to

– For every i ∈ A, if xij > 0 then uij/pj is the maximal value over j ∈ A.

– pi > 0 for every i ∈ A;

It is easy to see that the following condition is necessary for the existence of an equilibrium:

For every strongly connected component S ⊆ E of the digraph (A,E),

if |S| = 1 then there is a loop incident to the node in S.
(?)

Indeed, assume {k} is a singleton strongly connected component without a loop. Let T denote the set of
nodes different from k that can be reached on a directed path in E from k. In an equilibrium allocation,
the agents in T ∪{k} spend all their money on the goods of the agents in T ; this implies pk = 0, contrary
to our assumption.

We formulate the following convex program, with variables pi representing the prices, the βi’s the
inverse best bang-per-bucks, and yij the money paid by agent i to agent j.

min
∑
i∈A

pi log
pi
βi
−
∑
ij∈E

yij log uij∑
i:ij∈E

yij = pj ∀j ∈ A

∑
j:ij∈E

yij = pi ∀i ∈ A

uijβi ≤ pj ∀ij ∈ E
pi ≥ 1 ∀i ∈ A

y, β ≥ 0

(CP)

Theorem 1. Consider an instance of the linear Arrow-Debreu market given by the graph (A,E) and the
utilities u : E → R+. The convex program (CP) is feasible if and only if (?) holds, and in this case the
optimum value is 0, and the prices pi in an optimal solution give a market equilibrium with allocations
xij = yij/pj. Further, if all utilities are rational numbers, then there exists a market equilibrium with all
prices and allocations also rational, of bitsize polynomially bounded in the input size.

Here, the bitsize of the rational number p/q is defined as dlog2 pe + dlog2 qe. The rational optimum
property follows by observing that there exists an optimal extremal point solution. The following results
easily follow from the above theorem:

Corollary 2. The following hold for linear Arrow-Debreu markets.

(i) For every agent the utility is the same at every equilibrium.

(ii) The vectors (y, p) at equilibrium form a convex set. In particular, the set of price vectors at equilib-
rium is convex.
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Property (i) was already proved by Gale [14] and also follows from Cornet [6]. Whereas the convexity
of equilibrium prices was proved by Mertens [16] and by Florig [12], both these proofs are quite involved,
whereas it is a straightforward consequence of Theorem 1. We are not aware of previous proofs on the
convexity of y. In contrast, Cornet [6] proved that (x, log p) is convex at equilibria; here xij = yij/pj is
the amount of good j allocated to agent i.

The Lagrangian dual of (CP) is similar to Cornet’s program [6] (see (CP-C) in Section 3) but is
different from it. Also, analyzing the optimal Lagrange multipliers for (CP) we can derive the feasibility
convex program [17, 15]; these correspondences will be explained in Section 3. Our program exhibits some
new and advantageous features as compared to Cornet’s:

• The program (CP) provides necessary and sufficient condition of the existence of equilibria. In
contrast, Cornet’s program provides only a stronger sufficient condition given by Gale [13].

• The program (CP) is feasible if and only if there exists an equilibrium. In contrast, Cornet’s program
can be feasible also if there exists no equilibrium; in this case the objective is unbounded.

• The program (CP) demonstrates the existence of a rational equilibrium in a very simple way. Ra-
tionality can also be derived for the previous programs, but it requires further nontrivial arguments.

• All constraints in (CP) are linear.

• Our program establishes links to known convex programs for the Fisher model.

We think that the discovery of this convex program will pave the way for more efficient (and in particular,
strongly polynomial time) algorithms for this model.

The rest of the paper is structured as follows. Section 2 is dedicated to the proof of Theorem 1.
This is based on the KKT conditions, however, the argument is not straightforward, in contrast to similar
arguments for the convex programs of [11, 20, 2]. Section 3 shows the equivalence of our existence condition
(?) to previous results by Gale [13, 14], exhibits the previous convex programs [6, 17, 15], and explains
the correspondence between our formulation (CP) and these programs. The final Section 4 describes the
intuition that lead us to the formulation (CP).

2 Proof of Theorem 1

Let us first verify that (CP) is actually a convex program. The feasible region is defined by linear
constraints, so we only have to check that the objective is convex. The terms corresponding to the yij ’s
are linear. The term

∑
i∈A pi log pi

βi
is the relative entropy of p and β and is well-known to be convex in

the nonnegative variables pi and βi.
1 Let us now verify the feasibility claim.

Claim 3. The convex program (CP) is feasible if and only if (?) holds.

Proof. Assume that (?) is violated, that is, there is a strongly connected component consisting of a single
node i0, and there is no loop in E incident to i0 (that is, ui0i0 = 0.) For a contradiction, assume (CP)
admits a feasible solution (y, p, β). Then y gives a feasible circulation on the graph (A,E) such that there
is a positive amount of flow entering (and leaving) every node. The circulation y can be decomposed to
a weighted sum of directed cycles: y =

∑t
k=1wkχCk , where for each 1 ≤ k ≤ t, χCk is the 0-1 incidence

1Let us give a simple proof. We need to verify that for every q, b, q′, b′ ≥ 0 and 0 < λ < 1, we have

λq log
q

b
+ (1 − λ)q′ log

q′

b′
≥ (λq + (1 − λ)q′) log

λq + (1 − λ)q′

λb+ (1 − λ)b′
.

This can be derived using the convexity of x log x for q/b, q′/b′ with the linear combination λ∗ = λb
λb+(1−λ)b′ .
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vector of a directed cycle Ck, and wk ≥ 0. Clearly every cycle Ck must be contained inside a strongly
connected component. Hence no cycle may be incident to i0, that is, the flow entering this node is 0, a
contradiction.

Assume now that (?) is satisfied. Consequently, there is a directed cycle Ci in (V,A) incident to every
node i. Set y =

∑
i∈A χCi , and let pi denote the amount of y entering the node i. This gives a feasible

solution to (CP) with βi = minj∈A
pj
uij

.

Claim 4. The objective value in (CP) is non-negative, and it is 0 if and only if the prices pi and the
allocations xij = yij/pj form a market equilibrium. Conversely, for every market equilibrium p′i, x

′
ij,

we get an optimal solution to (CP) by setting pi = αp′i, yij = αp′jx
′
ij, βi = minj∈A αp

′
j/uij, where

α = 1/min{1,mini∈A pi}.

Proof. By the third inequality, − log uij ≥ log βi − log pj . Hence the second term in the objective is at
least

∑
ij∈E

(log βi − log pj)yij =
∑
i∈A

log βi

 ∑
j:ij∈E

yij

−∑
j∈A

log pj

 ∑
i:ij∈E

yij

 =

∑
i∈A

pi log βi −
∑
j∈A

pj log pj = −
∑
i∈A

pi log
pi
βi
.

This implies that the objective value is ≥ 0. Moreover, the lower bound is tight if and only if uijβi = pj
whenever yij > 0. This is equivalent to all transactions being best bang-per-buck purchases. It is easy to
verify that the solution represents a market equilibrium. The second part also follows easily.

The proof of the assertion in Theorem 1 that optimal solutions to (CP) correspond to market equilibria
is complete by the following lemma.

Lemma 5. Whenever (CP) is feasible, the optimum value is 0.

Let us now formulate the Karush-Kuhn-Tucker conditions on optimality. Since all constraints in (CP)
are linear, these are necessary and sufficient for optimality. Consider an optimal solution (p, y, β), and let
us associate Lagrange multipliers δj , γi, wij and τi to the inequalities in the order as described in (CP).
We obtain the following conditions.

−δj + γi ≤ − log uij ∀ij ∈ E (1)

δi − γi +
∑
j:ji∈E

wji + τi = log
pi
βi

+ 1 ∀i ∈ A (2)

−
∑
j:ij∈E

uijwij ≤ −
pi
βi
∀i ∈ A (3)

Also, (1) must be tight for all yij > 0, and (3) must be tight for all βi > 0. Further, τi > 0 implies pi = 1,
and wij > 0 implies uijβi = pj . Note that in an optimal solution every βi > 0, and hence (3) always holds
with equality. We can therefore derive the following from (3):

pi =
∑
j:ij∈E

uijβiwij =
∑
j:ij∈E

pjwij . (4)

The following remark can be interpreted as a “self-duality” property: a market equilibrium does not
only provide a primal optimal solution to (CP) but also optimal Lagrange multipliers.

Remark 6. Assume there exists a market equilibrium (p, x); by re-scaling, we may assume pi ≥ 1 for
all i ∈ A. As in Claim 4, p, yij = pjxij and βi = mini∈A pj/uij give an optimal solution to (CP). It
is straightforward to check that γj = log βj, δj = log pj, wij = xij and τ = 0 give optimal Lagrange
multipliers.
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The next claim expresses the optimum objective value of (CP) in terms of the Lagrange multipliers.

Claim 7. Let (y, p, β) be a primal optimal solution, and let (γ, δ, w, τ) be optimal Lagrange multipliers.
Then ∑

i∈A
pi log

pi
βi
−
∑
ij∈E

yij log uij =
∑
i∈A

τi

Proof. By complementary slackness, (1) is tight whenever yij > 0. Taking the combination of these
equalities multiplied by yij , we get

−
∑
ij∈E

yij log uij =
∑
ij∈E

yij(γi − δj) =
∑
i∈A

(γi − δi)pi.

In the second equality, we used the flow conservation constraints in (CP). Next, let us add the equalities
(2) multiplied by pi. We obtain∑

i∈A

(
pi log

pi
βi

+ pi

)
=
∑
i∈A

(δi − γi)pi +
∑
i∈A

∑
j:ji∈E

wjipi +
∑
i∈A

τipi =

∑
i∈A

(δi − γi)pi +
∑
i∈A

pi +
∑
i∈A

τi.

Here we used (4) for the second term, and that pi = 1 whenever τi > 0 for the third term. Adding this
to the previous inequality proves the claim.

Using the previous claim, Lemma 5 follows from the next lemma.

Lemma 8. For the optimal Lagrange multipliers (γ, δ, w, τ), it follows that

τi = 0 ∀i ∈ A.

Proof. The proof is by induction on the number of agents |A|. We assume that for all markets with < |A|
agents, the assertion holds. Let us introduce qi := eδi and θi := eγi . These are quantities playing a similar
role to pi and βi: the conditions (1) can be rewritten as

uijθi ≤ qj ∀ij ∈ E,

and furthermore by complementary slackness it follows that if yij > 0 then equality must hold. The θi’s
are therefore the inverse best bang-per-buck values for the prices q. Let F ⊆ E denote the set of arcs
with uijβi = pj and H ⊆ E the set of arcs with uijθi = qj . By complementary slackness, supp(y) ⊆ H
and supp(w) ⊆ F . Let us define

α := max
i∈A

qi
pi
, S :=

{
i ∈ A :

qi
pi

= α

}
.

Claim 9. We have pi
βi
≤ qi

θi
for every i ∈ S. Further, if ij ∈ F , i ∈ S and pi

βi
= qi

θi
, then j ∈ S holds.

Proof. The first claim is equivalent to θi
βi
≤ α if i ∈ S. This follows since

θi = min
j∈A

qj
uij
≤ min

j∈A

αpj
uij

= αβi.

For the second part, assume for a contradiction that qj < αpj for some best bang-per-back arc ij ∈ F
with i ∈ S. This would imply that the inequality above is strict, giving a contradiction.
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Together with (2), this gives ∑
i∈A

wij ≤ 1− τj ∀j ∈ S, (5)

with equality only if
pj
βj

=
qj
θj

. Let

T := {i ∈ A : j ∈ S ∀ij ∈ F}

denote the sets of agents having all their best bang-per-buck goods in S with respect to prices p. Recall
that supp(w) ⊆ F . By the definition of T , we get from (4) that∑

j∈S
wijpj = pi ∀i ∈ T. (6)

Combining this with the straightforward
∑

j∈S yij ≤ pi, for all i ∈ T , we obtain∑
i∈T

∑
j∈S

wijpj ≥
∑
i∈T

∑
j∈S

yij .

Rearranging the sums gives ∑
j∈S

pj
∑
i∈T

wij ≥
∑
j∈S

∑
i∈T

yij (7)

The next step requires the following observation.

Claim 10. For every arc ij ∈ H with j ∈ S, it follows that i ∈ T .

Proof. For a contradiction, assume i /∈ T , that is, there exists a good j′ /∈ S with ij′ ∈ F . Then

θi =
qj
uij

= α
pj
uij
≥ αβi = α

pj′

uij′
>

qj′

uij′
≥ θi,

a contradiction.

Recall that supp(y) ⊆ H, and therefore if j ∈ S and yij > 0, then i ∈ T must hold by the above
Claim. Hence if j ∈ S, then

∑
i∈T yij = pj . Combining this with (5) and (7), we get∑

j∈S
(1− τj)pj ≥

∑
j∈S

pj
∑
i∈A

wij ≥
∑
j∈S

pj
∑
i∈T

wij ≥
∑
j∈S

∑
i∈T

yij =
∑
j∈S

pj . (8)

We must have equality throughout, and therefore for all j ∈ S it follows that τj = 0 and
pj
βj

=
qj
θj

; the

latter was a necessary condition for equality in (5). Now the second part of Claim 9 guarantees that
S ⊆ T .

Using (6), we have
∑

i∈T
∑

j∈S wijpj =
∑

i∈T pi. On the other hand, the above equalities guarantee∑
i∈T
∑

j∈S wijpj =
∑

i∈S pi. We can therefore conclude S = T . Moreover, the following holds.

Claim 11. No arc in supp(y) ∪ supp(w) enters or leaves the set S.

Proof. Recall that supp(y) ⊆ H and supp(w) ⊆ F . Since S = T , the definition of T implies that no arc
ij ∈ F leaves S; recall that supp(w) ⊆ F . The second inequality in (8) must hold with equality, implying
that wij = 0, whenever i ∈ A \S, j ∈ S. Claim 10 implies that no arc ij ∈ H enters S, and supp(y) ⊆ H.
The first to equalities in (CP) imply that

∑
i∈S,j∈A\S yij =

∑
i∈A\S,j∈S yij . Hence no arc with yij > 0

may leave S.
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If A = S, then the proof of Lemma 8 is complete. If S ( A, then consider the restrictions of (p, y, β)
and (γ, δ, w, τ) to A \ S, and to the arcs inside A \ S. The first gives a feasible solution to (CP) on the
restricted graph, whereas the second give optimal Lagrange multipliers, since the primal-dual slackness
conditions are satisfied. According to our assumption on S being a minimal counterexample, it follows
that τi = 0 for all i ∈ A \ S, completing the proof.

To complete the proof of Theorem 1, it is left to verify the claim on the existence of a rational
optimal solution. This will follow from the next structural observation; note that the feasible region is a
polyhedron.

Claim 12. There exists an optimal solution to (CP) that is an extremal point of the feasible region.

Proof. Consider an optimal solution z = (p, y, β) to (CP); by the above, we know that it corresponds to
a market equilibrium. As every point in the feasible region, z can be written as the sum of extremal rays
and a convex combination of extremal points. Pick an arbitrary extremal point z∗ = (p∗, y∗, β∗) from
the combination. We claim that this is also an optimal solution to (CP). By Claim 4, it suffices to show
that it corresponds to a market equilibrium, which is equivalent to uijβ

∗
i = p∗j whenever y∗ij > 0. For a

contradiction, assume uijβ
∗
i < p∗j and y∗ij > 0 holds for an ij ∈ E. Since z∗ is included in the convex

combination giving z, every strict inequality for z∗ must also be strict for z; this would contradict the
optimality of z.

Since every extremal point of a rational polyhedron is rational with polynomially bounded size, the
proof of Theorem 1 is complete. Next we derive the bound on the values of equilibrium prices and
allocation. For this, we assume that all uij ’s are integers, since scaling them by a constant does not
change the equilibrium.

Lemma 13. Assume all utilities are integers ≤ U and we let ∆ := 2n−1(n+ 3)n+
1
2Un. Then there exists

equilibrium prices p that are quotients of two integers ≤ ∆, along with allocations x that are quotients of
two integers ≤ ∆2.

Proof. From Claim 12, an optimal solution to (CP) is achieved at an extremal point, say z∗, of the
associated polyhedron. Let m denote the number of non-zero yij ’s at z∗. We claim that m ≤ 2n − 1.
Indeed, consider the bipartite graph (A,A,E′), where E′ = {(i, j) | yij > 0}, |E′| = m. If this graph
contains a cycle, then the yij ’s can be modified such that every binding constraint remains binding and
we get one more pair (i, j) with yij = 0, in a contradiction with v being a vertex.

Let Cz = b denote a subset of binding constraints for z∗ in the linear system defining the feasible
region of (CP), after removing the columns corresponding to the yij = 0 variables. The number of columns
is m+ 2n ≤ 4n− 1. Note that the 2n equalities corresponding to the nodes are linearly dependent, and
therefore the rank of the matrix C is at most m+ 2n− 1.

By Cramer’s rule, every yij , pj and βi is quotient of two integers bounded by the maximum sub-
determinant of (C, b). Using Hadamard’s bound, this is at most the product of the largest (m+ 2n− 1)
column norms of (C, b). Note that ||b|| ≤

√
n <

√
n+ 3, as the only constraints containing nonzero

constants are the pi ≥ 1 inequalities. The norm of each of the m the columns corresponding to the yij
variables is

√
2 as each yij is contained in two constraints with coefficient 1. Similarly, the norm of each

of the n columns corresponding to the pi’s is at most
√
n+ 3, and the norm of each of the n columns

corresponding to the βi’s is at most
√
nU . We need the largest m + 2n − 1 columns and therefore may

remove one of those of norm 2. From this, we can conclude that every pj and yij is quotient of two
integers bounded by ∆. Since the allocation xij = yij/pj , we get that every xij is quotient of two integers
bounded by ∆2.

Remark 14. The above bound can be further strengthened to ∆ = n!Un.
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3 Relation to previous work

3.1 Existence results

The Arrow-Debreu market is traditionally formulated in a more general setting. Besides the set of agents
A, there is a set of goods G, and each agent arrives to the market with an initial endowment wig ≥ 0 of
good g. A market is given asM = (A,G, u,w). Our setting corresponds to the special case when G = A,
and wij = 1 if i = j and 0 otherwise. We shall refer to our special case as bijective markets.

Again, a market equilibrium consists of prices p : G→ R>0 and allocations of goods xijg : A×A×G→
R+, where xijg represents the amount of good g sold by agent j to agent i such that:

•
∑

i∈A xijg = wjg, ∀j ∈ A, g ∈ G, i.e., every good of every agent is fully sold.

• For every i ∈ A, whenever xijg > 0 for some g ∈ G and j ∈ A, then uig/pg is the maximal value
over g ∈ G.

•
∑

j∈A,g∈G xijgpg =
∑

g∈Gwigpg, ∀i ∈ A, that is, the money spent by agent i equals his income.

• pi > 0 for every i ∈ A.

The general case can be easily reduced to bijective markets (see e.g. Jain [15]). First if a good is
included in the initial endowment of multiple agents, we give a different name for each such occurrence.
If an agent has k goods in the endowment, we split the agent into k copies with the same utility function,
each owning one of the goods.

Consider now a market in the general form M = (A,G, u,w). We say that a subset S of agents is
self-sufficient whenever uig > 0, for some i ∈ S implies that wi′g = 0, ∀i′ ∈ A \ S. That is, agents in S
are not interested in the goods owned by agents not in S. We say that a market is irreducible if there
exists no self-sufficient proper subset of the agents. The following sufficient condition was given by Gale
in 1957:

Theorem 15 ([13]). If the market M = (A,G, u,w) is irreducible then there exists an equilibrium.

The above condition is sufficient but not necessary. Later, Gale [14] gave a strengthening of the above
theorem. We say that a subset S of agents is super self-sufficient if in addition to above, ∃i ∈ S such that
wig > 0 and ui′g = 0,∀i′ ∈ S. That is, an agent in S owns a good for which no agent in S is interested.

Theorem 16 ([14]). There exists an equilibrium in the market M = (A,G, u,w) if and only if no subset
of A is super self-sufficient.

We show that in our special case of bijective markets (i.e. G = A, and wij = 1 if i = j and 0
otherwise), the existence condition in Theorem 1 is equivalent to that in Theorem 16.

Lemma 17. A bijective market is irreducible if and only if the directed graph (A,E) is strongly connected.
Further, (?) holds if and only if no subset of A is super self-sufficient.

Proof. The first part follows since in a bijective market a subset S ⊆ A of agents is self-sufficient if and
only if no arc enters S in the directed graph (A,E). For the second part, assume first that (?) is violated
for node k, and let T denote the set of nodes different from k that can be reached on a directed path in
E from k. Now let S = T ∪ {k}. It is easy to check that S is super self-sufficient, since wkk > 0 and
uik = 0,∀i ∈ S.

Conversely, assume there exists a super self-sufficient set S. According to the condition, there exist
k ∈ S, such that wkk > 0 and uik = 0,∀i ∈ S. Clearly k is a singleton component with no self-loop in the
strongly connected components of graph (A,E), verifying (?).

9



3.2 Previous convex programs

Let us first exhibit Cornet’s convex program [6]. It was originally given for the general case of arbitrary
endowments, but we present it here for bijective markets. Also, it was originally formulated with a max-
min objective over the feasible region

∑
i xij ≤ 1 for all j ∈ A, x ≥ 0; we unfold the max-min objective

here in the natural way. The variable xij corresponds to the amount of good j purchased by agent i,
whereas qi corresponds to the logarithm of the price of good i.

max t

t ≤
∑
k:ik∈E

uikxik − uijeqi−qj ∀ij ∈ E∑
j:ji∈E

xji ≤ 1 ∀i ∈ A

x ≥ 0

(CP-C)

Theorem 18 ([6]). If (CP-C) is bounded then t = 0, and (t, x, q) is an optimal solution if and only if
(x, p) corresponds to a market equilibrium where pi = eqi for all i ∈ A. Further, if the market is irreducible
then (CP-C) is bounded.

The proof uses a nontrivial argument on Lagrangian duality. Note that the existence of equilibrium
follows on under Gale’s sufficient condition from 1957 (Theorem 15), as opposed to (CP), where it follows
under the necessary and sufficient condition in Theorem 16.

According to Theorem 18 and Lemma 17, if the market is irreducible then t = 0, and
∑

j:ji∈E xji = 1
must hold for every i ∈ A. By taking logarithms we get that the following convex program has a feasible
solution:

qi − qj ≤ log

( ∑
k:ik∈E

uikxik

)
− log uij ∀ij ∈ E∑

j:ji∈E
xji = 1 ∀i ∈ A

x ≥ 0

(CP-J)

This is precisely the convex program by Nenakov and Primak [17], and by Jain [15].

We can write the Lagrangian dual of our program (CP), see Boyd and Vandenberghe [3]. This gives

max
∑
i∈A

τi

δi − δj + τi ≤ 1−
∑
k:ki∈E

wki + log

( ∑
k:ik∈E

uikwik

)
− log uij ∀ij ∈ E

τ,w ≥ 0

(CP-D)

Note that the variables in an optimal solution correspond to optimal Lagrange multipliers satisfying the
KKT-conditions (1)-(3). Theorem 1 implies that strong duality holds: if (CP) is feasible then there exists
a market equilibrium, that easily provides a solution (CP-D).

Despite certain similarities, this formulation appears to be different from (CP-C), namely, it has a
larger feasible region. Indeed, for every feasible solution of (CP-C), δ = q, w = x, τi = t gives a feasible
solution to (CP-D). Nevertheless, the converse is not true since

∑
i:ij∈E wij ≤ 1 may not hold for feasible

solutions of (CP-D).
We further note that following the argument of Section 2, we can derive the feasibility of (CP-C). It

follows that in an optimal solution we must have
∑

j:ji∈E wji = 1 and τi = 0 for all i ∈ A. Using these,
we can substitute x = w, q = δ. This yields a feasible solution to (CP-C).
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4 Intuition leading to the formulation

In this section we explain the intuition that lead us to the formulation (CP). The motivation was the
standard reduction of optimization LP to feasibility LP. Consider the primal and dual pair of linear
programs in the standard form:

max cTx

Ax ≤ b
x ≥ 0

min yT b

AT y ≥ c
y ≥ 0

From weak duality, cTx ≤ bT y for any feasible primal and dual solutions. Let us put all constraints
together and add bT y ≤ cTx:

Ax ≤ b
AT y ≥ cT

bT y ≤ cx
x, y ≥ 0

Optimal pairs of primal and dual solutions to the previous pair of programs are in one-to-one correspon-
dence with the feasible solutions to this program.

Let us now consider two convex programs for the linear Fisher market: one of Shmyrev [20] and
Birnbaum et al. [2], and the other, the dual of the Eisenberg-Gale convex program (see [7]). In Fisher’s
model there is a set of buyers A and another set of goods G. Buyer i arrives to the market with a budget
mi, and has linear utility uij ≥ 0 on good j; let E ⊆ A ×G denote the set of pairs with uij > 0. As we
study bijective markets, we assume A = G, and good i is initially owned by buyer i.

max
∑
j∈A

(pj − pj log pj)+
∑
ij∈E

yij log uij∑
i:ij∈E

yij = pj ∀j ∈ A

∑
j:ij∈E

yij = mi ∀i ∈ A

y, p ≥ 0

min
∑
i∈A

(pi −mi log βi)

uijβi ≤ pj ∀ij ∈ E
β ≥ 0

One can verify that the maximum is always at most the minimum. Let us now put the constraints
of the two programs together, set the objective as minimizing the dual minus the primal objective, and
formally substitute the constant mi with the variable pi. This leads to the convex program (CP).
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