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ABSTRACT

Ensemble simulation propagates a collection of initial states forward in time in a Monte Carlo fashion.

Depending on the fidelity of the model and the properties of the initial ensemble, the goal of ensemble

simulation can range from merely quantifying variations in the sensitivity of the model all the way to

providing actionable probability forecasts of the future. Whatever the goal is, success depends on the

properties of the ensemble, and there is a longstanding discussion in meteorology as to the size of initial

condition ensemble most appropriate for Numerical Weather Prediction. In terms of resource allocation: how

is one to divide finite computing resources between model complexity, ensemble size, data assimilation and

other components of the forecast system. One wishes to avoid undersampling information available from the

model’s dynamics, yet one also wishes to use the highest fidelity model available. Arguably, a higher fidelity

model can better exploit a larger ensemble; nevertheless it is often suggested that a relatively small ensemble,

say �16 members, is sufficient and that larger ensembles are not an effective investment of resources. This

claim is shown to be dubious when the goal is probabilistic forecasting, even in settings where the forecast

model is informative but imperfect. Probability forecasts for a ‘simple’ physical system are evaluated at

different lead times; ensembles of up to 256 members are considered. The pure density estimation context

(where ensemble members are drawn from the same underlying distribution as the target) differs from the

forecasting context, where one is given a high fidelity (but imperfect) model. In the forecasting context, the

information provided by additional members depends also on the fidelity of the model, the ensemble

formation scheme (data assimilation), the ensemble interpretation and the nature of the observational noise.

The effect of increasing the ensemble size is quantified by its relative information content (in bits) using a

proper skill score. Doubling the ensemble size is demonstrated to yield a non-trivial increase in the

information content (forecast skill) for an ensemble with well over 16 members; this result stands in

forecasting a mathematical system and a physical system. Indeed, even at the largest ensemble sizes considered

(128 and 256), there are lead times where the forecast information is still increasing with ensemble size.

Ultimately, model error will limit the value of ever larger ensembles. No support is found, however, for

limiting design studies to the sizes commonly found in seasonal and climate studies. It is suggested that

ensemble size be considered more explicitly in future design studies of forecast systems on all time scales.

Keywords: chaotic systems, data assimilation, ensemble forecasting, forecast value, predictability, probabilistic

forecasting, scoring rule, probability

1. Introduction

Probability forecasting of non-linear physical systems is

often achieved via a Monte Carlo approach: an ensemble of

initial conditions is propagated forward in time (Lorenz,

1969; Palmer et al., 1992; Toth and Kalnay, 1993; Leutbecher

and Palmer, 2008) and this ensemble might then be interpreted

as a probability distribution (Brocker and Smith, 2008).

Many open questions remain regarding relatively basic

issues of ensemble design given fixed, finite computational

resources. It is argued that increasing the ensemble size well

beyond 8 or 16 members can significantly increase the

information in a probability forecast. This is illustrated

both in chaotic mathematical systems (where the ‘model’ is

perfect) and a related physical system (an electronic circuit)
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where the mathematical structure of the model is imperfect.

Information in the forecast is quantified by I.J. Good’s

logarithmic skill score (Good, 1952) (hereafter called ignor-

ance or IGN), and interpreted both in terms of bits of

information and in perhapsmore familiar terms of improved

return on investment. In general, using larger ensembles

increases the information in the forecast, even for the largest

ensembles considered (contrasting 128 members with 256).

The details, however, are shown to vary with the lead time

evaluated, the fidelity of the model and the data assimilation

scheme. The major conclusion of this article is that the

experimental design of future ensemble forecast systems

should incorporate a more systematic evaluation of the

utility of larger ensembles.

The utility of ensemble forecasts inmeteorologywas noted

by Leith (1974), who showed that increasing the ensemble

size resulted in superior forecasts. In economics, the work of

Bates and Granger (1969) was revolutionary in making a

case for ensemble forecasts, arguing that ensemble forecasts

are superior to single forecasts as noted by Leith (1974),

however, ensembles were interpreted merely to obtain better

point forecasts; Leith (1974) found an eight-member en-

semble to be near optimal in minimising the root mean

square error of the ensemble mean.

Tennekes (1988) urged weather forecasting centres

around the world to issue quantitative predictions of the

skill of each individual forecast. If one considered the en-

semble mean as a point forecast, for instance, the ensemble

spread might provide a measure of uncertainty in as much

as it reflects the local sensitivity of the model to uncertainty

in the initial condition. Point-forecasting via the ensemble

mean is ill-advised, however, when there is useful infor-

mation in the distribution that would be lost. And when

interpreting the ensemble as a probability distribution, the

insights of Leith (1974) and Ferro et al. (2012) regarding

the ensemble mean as a point forecast simply do not apply.

The key point here is that selecting an ensemble size for

probabilistic forecasting is a different goal from optimising

the root-mean-square error of the ensemble mean.

Richardson (2001) addressed the question of ensemble

size in the case of categorical forecasts (where probabilities

are placed on a set of discrete, mutually exclusive events),

assuming that each ensemble is drawn from the same dis-

tribution as its outcome. Using the Brier score (Brier,

1950), reliability diagrams and the cost�loss ratio, he

concluded that the appropriate ensemble size varies with

the user. The Brier score lacks a general interpretation [its

interpretation as an (limited) approximation to the ignor-

ance score is revealed in Todter and Ahrens (2012)], and the

assumption that the ensemble members are drawn from the

same distribution as the outcome is unrealistic in practice.

Furthermore, the discussion focuses on binary events, rather

than a forecasting scenario with continuous variables.

Ferro et al. (2008) reviewed several papers that discuss

the effect of ensemble size on the Brier score, ranked

probability score and the continuous ranked probability

score, but questions of ensemble size were left open. Muller

et al. (2005) proposed a modified version of the ranked

probability score that would not be biased when ensembles

are small, without tackling the question of how large an

ensemble should be. Considering the ECMWF ensemble

prediction system, Buizza and Palmer (1998) studied the effect

of increasing ensemble size up to 32 members using the root-

mean-square error, spread-skill relation, receiver operating

characteristic (ROC) statistic, Brier score and ranked prob-

ability score. The probabilistic evaluation therein was re-

stricted to categorical events interpreted using a simple count

of model simulations. Simple ‘bin and count’ schemes to

obtain forecast probabilities are inferior to interpreting the

ensemble as a continuous distribution (Silverman, 1986).

Despite the foregoing efforts, the question of just how

large an ensemble should be remains a burning issue in

the meteorological community and a topic of sometimes

heated discussion. This article revisits this longstanding

question and suggests that the argument for small ensemble

size in probability forecasting has neither analytic support

nor empirical support; it considers ensemble size as a

problem in probability density forecasting and highlights the

benefits of a high fidelity (but imperfect) model and a good

ensemble formation scheme (i.e. good data assimilation).

Density forecasting requires interpreting a set of ensemble

members as a probability density function (Brocker and

Smith, 2008). Users who are interested in probabilities

of specific events such as threshold exceedance can of

course use density forecasts to estimate the probabilities of

such events. For a given ensemble size, such estimates are

expected to be superior to those obtained by a simple count

(Silverman, 1986). The following section presents tools for

assessing the skill of forecasts. It is followed by a treatment

of density estimation when each ensemble member and the

outcome are drawn from the same distribution. The choice

of ensemble size for probability forecasting, both for

imperfect models of mathematical systems and a physical

system, is then considered in Sections 4 and 5. While the

focus of this article is forecast skill, Section 6 provides a

discussion of other properties of forecast distributions.

Section 7 contains discussion with the take-home message

being that the enduring focus on smaller ensembles should

be put under increased scrutiny.

2. Quantifying the skill of a forecast system

The skill of forecast distributions can be contrasted within

an investment framework by quantifying the improvement

(or degradation) in the rate of return of an investment

strategy using those forecast systems. Such a framework,
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which is equivalent to traditional betting scenarios

(Kelly, 1956), is presented in this section. The focus here

is on the information content of the forecast distribution,

which directly reflects its operational value, as discussed in

this section.

Probability distributions havemanyproperties in addition

to their skill as forecasts. Notions of reliability [the extent to

which observed relative frequencies match forecast prob-

abilities (Brocker and Smith, 2007)], sharpness [a measure

of how concentrated distributions are independent of their

skill (Gneiting et al., 2007)] and resolution [the ability of a

forecasting system to resolve events with different frequency

distributions (Brocker, 2015)], each reflect aspects of the

forecast distribution or of the forecast�outcome archive.

Observations based on these properties are given in Section

6; additional details can be found in Appendix B. The focus

of this article, however, falls on the skill (information

content) of a probability forecast system regarding a target

outcome, not one of the myriad of properties held by the

probability distributions per se.

2.1. An investment framework

Consider two competing investors. Each investor uses a

forecast system based upon the same simulation model,

but the two systems use ensembles of different sizes. The

quantity of interest is then the expected growth rate of the

wealth of one system (the investor) given odds from

the other system (the bookmaker). If this rate is positive,

then the investor’s wealth will grow whilst it will fall

if the rate is negative. The expected rate of growth of the

investor’s wealth is reflected in the effective interest rate.

The symmetry properties of this measure are attractive:

changing the roles of the investor and bookmaker does

not alter the results. The use of effective interest rate to

communicate the value of probabilistic forecasts in meteor-

ology was proposed by Hagedorn and Smith (2009); as

illustrated in this section it reflects a proper skill score. The

continuous case is considered after first introducing the

betting strategy in the categorical case (Kelly, 1956).

2.1.1. The categorical case. Consider an investor with

a forecast probability distribution fpig
M

i¼1 on a set of

mutually exclusive events such that

XM

i¼1

pi ¼ 1: (1)

Given initial capital c0 to invest, consider the bookmaker

to offer odds according to his or her probability distribu-

tion fqig
M

i¼1 (not necessarily true probabilities of the

events), where
PM

i¼1 qi ¼ 1. The bookmaker issues the

odds1oi�1/qi. The investor places a stake si on category

i such that
PM

i¼1 si ¼ c0, this is the fully invested case: he or

she invests all the wealth during each round. In this case,

the strategy that maximises his or her expected rate of

growth of wealth is to set (Kelly, 1956)

si ¼ pic0: (2)

Kelly argued that, given belief in a probability distribution,

wealth should be distributed according to that probability

distribution. Think of what could happen if the investor

placed all his wealth only in those categories that posted

high odds. If none of those categories materialised, his

wealth would become zero. For similar reasons it is ill-

advised to place bets only on those categories for which

pi�qi in this ‘fully invested’ scheme [both Hagedorn and

Smith (2009) and Kelly (1956) discuss other schemes as

well]. Based on the stake placed according to eq. (2), the

investor will receive a payoff c1�sioi, when the ith category

materialises. This can be rewritten as

c1 ¼
pi

qi

c0: (3)

The investor’s wealth will either grow or shrink by a factor

r�pi/qi according to whether pi�qi or piBqi. Call the

factor r the return ratio.

Given two competing forecast systems, pt�(p1t,. . .,pNt)

and qt�(q1t,. . .,qNt) at time t, the return ratio correspond-

ing to the outcome falling in the itht bin is rt ¼ pitt

.
qitt

,

where it � {1,. . .,M}. Note that rt is not indexed by it for

notational economy since it is a random variable that

depends on t as well. If the game is played repeatedly, then

after time T

cT ¼ c0

YT

t¼1

rt: (4)

At a given instant, the wealth will either grow or shrink

according to whether rt�1 or rtB1, respectively. The

geometric average of our returns is given by

RT ¼

ffiffiffiffiffiffiffiffiffiffiffi
YT

t¼1

rt

T

vuut ; (5)

which gives the average factor by which the wealth grows

from one time step to another. The effective interest rate,

YT, for this investment is defined as

UT ¼ RT � 1: (6)

1For a probability q, the ‘to odds’ are defined as q

1�q
, whereas

Kelly’s ‘for odds’ are defined as 1
q
.
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Taking base two logarithms (to obtain results in bits) of

eq. (5) yields

logRT ¼
1

T

XT

t¼1

logrt ¼
1

T

XT

t¼1

log
pitt

qitt

¼ 1

T

XT

t¼1

logpitt
� 1

T

XT

t¼1

logqitt

¼ �hIGNip þ hIGNiq; (7)

where it � {1,. . .,M}, and hIGNip ¼ �ð1=TÞ
PT

t¼1 logpitt
is

the average ignorance score proposed by Good (1952).

The relative ignorance of forecast distributions fptg
T

t¼1

to forecast distributions fqtg
T
t¼1 is then defined by

�IGN�p,q��IGN�p��IGN�q. From eq. (7), one obtains

RT ¼ 2 � IGNh ip;qf g, after taking exponentials on both sides.

Upon substituting this term into eq. (6) one obtains

UT ¼ 2 � IGNh ip;qf g � 1: (8)

Define competitive advantage to be the improvement in

the effective interest rate, in percent, that using one fore-

cast system achieves against another forecast system; for

example, the competitive advantage of a forecast system

using the same simulation model but with a larger ensemble

size is considered in this paper. Equation (8) shows the

simple relationship between relative ignorance and the

effective interest rate. Thus the effective interest rate

reflects a proper skill score; discussion of the competitive

advantage gained (rather than bits of information added)

can sometimes ease communication of forecast value.

2.1.2. The continuous case. Binning continuous target

variables and then evaluating the resulting categorical

forecasts runs the risk of loss both of generality and of

robustness, as the relevance of the results may depend on

the particular categories, binning method, and so on.

Furthermore, ensemble members need not be interpreted

as reflecting actual probabilities directly; estimating prob-

abilities by counting the fraction of members that fall into a

particular category is ill-advised, due to the effects of model

error, finite ensemble size and the quality of data assimila-

tion, amongst other reasons. This argues for interpreting

the ensembles as probability densities. The ignorance

score is used to estimate free parameters in the ensemble

interpretation; this is described in detail in the next section.

All forecast evaluations in this article are out of sample.

Given that two competing forecast systems have densities

ft(x) and gt(x), the probability of the ith bin can

be obtained as pi;t ¼
R xi

xi�1
ftðxÞdx and qi;t ¼

R xi

xi�1
gtðxÞdx,

where i�1,. . .,M. Using a first-order approximation as

max{jxi�xi-1j}00, yields the return for the investor at

time t as rt�ft(jt)/gt(jt), where jt is the outcome at time t.

Parameters which minimise the ignorance score (out of

sample) will maximise the growth rate of an investor’s

stake; this holds for the house as well. In competition, it is

the relative skill of the two forecast systems that determines

which ‘growth rate’ is positive and which is negative.

3. Density estimation

In this section, the quality of distributions for different

ensemble sizes is considered purely in the context of

estimating the distribution from which the ensemble mem-

bers were drawn. In this case kernel density estimation

(Silverman, 1986) is appropriate. Alternatively when the

outcome is not drawn from the same distribution as the

ensemble members, kernel dressing (Brocker and Smith,

2008) is used (see Section 4). In this section, only the normal

distribution and a mixture of normals are considered. The

value of increasing the ensemble size is quantified via the

competitive advantage introduced in Section 2.1.

The standard normal is:

/ðxÞ ¼ 1ffiffiffiffiffiffi
2p
p e�x2=2: (9)

The Gaussian mixture considered is

pðxÞ ¼ 1

3
/1ðxÞ þ

2

3
/2ðxÞ; (10)

where

/iðxÞ ¼
1ffiffiffiffiffiffi
2p
p e�ðx�liÞ

2=2; (11)

with m1�2 and m2��2. The mean of this mixture

distribution is m��2/3 and its variance is s2�41/9. One

can also consider the effect of ensemble size on the

estimation of the normal distribution of mean m and

variance s2, which is equal to those of the foregoing

mixture distribution.

In order to mimic the scenario in forecasting, consider

drawing D distinct n-member ensembles. This n is called

the ensemble size. Statistically insightful evaluations of

forecasting performance will assess performance over

forecast�outcome pairs. Consider the set of D ensem-

bles to be X ðd;nÞ
� �D

d¼1
, where each member of the set

X ðd;nÞ ¼ X
ðdÞ
1 ;X

ðdÞ
2 ; . . . ;X ðd;nÞn

� �
constitutes an ensemble

drawn from some underlying distributions (either the

normal distribution or the mixture). For each ensemble,

estimate the underlying density using a sum of kernels via

(Parzen, 1962; Silverman, 1986)

qðdÞn ðx; rnÞ ¼
1

nrn

ffiffiffiffiffiffi
2p
p

Xn

i¼1

exp � x� X
ðdÞ
i

h i2

=2r2
n

� �
; (12)
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where Gaussian kernels with kernel width sn�0 are

employed. In this case the kernel width is taken to be

uniform over all ensembles of a given size n. For each X(d,n),

an outcome Y(d) is randomly selected from the underlying

distribution. The ignorance score is

hIGNiqn
¼ �

XD

d¼1

logqnðY ðdÞ; rnÞ: (13)

In the forecast systems in subsequent discussions, the kernel

width was selected by minimising the ignorance score (the

results presented are out of sample). In the subsequent calcu-

lations, set D�512 and the ensemble size n � {1,2,. . .,128}.

The variance of the distribution given by eq. (12) is

V ðdÞn ¼ r2
n þ

1

n

Xn

i¼1

X
ðdÞ
i � ld

� �2

; (14)

where md is the ensemble mean.

The graphs in Fig. 1 correspond to the standard normal

distribution (purple line) and the mixture distribution (blue

dashed line). For a given distribution, the kernel width is

chosen separately for each ensemble size to minimise IGN

[see eq. (13)].

Note that eq. (13) evaluates continuous probability

density functions (PDFs) whilst the discussion near eq. (7)

considers discrete probabilities. In each case, the forecast

system with lower IGN will (in expectation) yield better

investment returns. The top left graphs show the competitive

advantage gained over a forecaster using ensemble half the

size. The top right panel of Fig. 1 presents corresponding

graphs of IGN, the logarithmic scoring rule; note that

the competitive advantage mirrors the ignorance score.

Considering graphs of competitive advantage, it is evident

that doubling the ensemble size results in a competitive

advantage of at least 1 % (2 %) when the underlying

distributions are normal (bimodal). Notice also that, except

20 40 60 80 100 120
ensemble size

0

5

10

15

20

25

co
m

pe
tit

iv
e 

ad
va

nt
ag

e 
(in

te
re

st
 r

at
e 

%
)

normal
mixture

20 40 60 80 100 120
ensemble size

–0.2

–0.18

–0.16

–0.14

–0.12

–0.1

–0.08

–0.06

–0.04

–0.02

0

re
la

tiv
e 

ig
no

ra
nc

e

normal
mixture

20 40 60 80 100 120
ensemble size

0

0.5

1

1.5

2

2.5

3

3.5

op
t

σ

normal
mixture

20 40 60 80 100 120
ensemble size

95.5

96

96.5

97

97.5

98

re
lia

bi
lit

y 
(%

)

normal
mixture

Fig. 1. Simple Gaussian and mixture distributions. Top left: Graph of competitive advantage when the ensemble size is doubled as a

function of the final ensemble size (shown on the horizontal axis). That is, this is the IGN of an ensemble relative to an ensemble half its

size. Top right: Change in IGN when the ensemble size is doubled as a function of the final ensemble size. Note the inverse relationship

between competitive advantage and relative ignorance. Bottom left: Graph of kernel width versus ensemble size. Bottom right: Graphs of

the reliabilityPIT as a function of ensemble size. The underlying distributions are the standard normal (solid purple) and a mixture (blue

dashed) of normals, p(x), given in eq. (10). For each distribution, at a given ensemble size, the kernel width was chosen to minimise IGN.

The bars on the left graphs are the 95 % bootstrap re-sampling intervals. Note that the smallest value of the ensemble size in the above

graphs is n�1 (a so-called singleton ensemble).
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at the smallest ensemble sizes, the competitive advantage

is always greater for the mixture distribution than it is for

the normal distributions. Intuitively, one expects a larger

ensemble size to capture a bimodal distribution than a

unimodal one. To assess this, a normal distribution is

compared with a mixture distribution of equal mean and

variance. Bimodality of the mixture distribution plays

a central role in the increased competitive advantage

when the ensemble size is doubled. Distributions with

additional fine structure are expected to benefit more, in

terms of competitive advantage, when the ensemble size is

doubled. This point is revisited in the discussion of pro-

babilistic forecasting in the next section. The lower panels

of Fig. 1 present the kernel width at which ignorance is

minimised and the reliabilityPIT for each of the two dis-

tributions as a function of ensemble size; these properties

are discussed in Section 6.

4. Probabilistic forecasting

In this section the effect of increasing the ensemble size is

considered in a forecasting context with measurement error

(i.e. observational noise). In the perfect model scenario

(PMS), two cases are considered. In the first case one

forecasts from random perturbations of the initial condi-

tions; this ensemble formation scheme will be called inverse

observational noise (IN). In the second case, the initial

ensembles consist of members that are more consistent

with the system’s dynamics; call this ensemble formation

scheme, collapsed noise (CN) (Hansen and Smith, 2001).

In order to mitigate both the finite ensemble size and

model error in probabilistic forecasting, Brocker and Smith

(2008) suggested blending a distribution based upon the

ensemble at time t, qðtÞn with the climatological distribution

r(x). The forecast distribution then becomes

f ðtÞn ðxÞ ¼ anqðtÞn ðxÞ þ ð1� anÞqðxÞ; (15)

where an � [0,1] is the blending parameter. The blending

parameter mitigates both model error and the finite size of

the ensemble. For a finite ensemble, one may find anB1

even within the perfect model, while a value of an�0

indicates lack of any useful information in the forecast

system’s ensemble. The climatology is estimated from past

data. The variance of the blended distribution is given by

U ðtÞn ¼ anV ðtÞn þ ð1� anÞVc þ anð1� anÞðlt � lcÞ
2
; (16)

where V ðtÞn is the ensemble variance, mt is the ensemble

mean, mc is the climatological mean and Vc is the variance

of the climatological distribution r(x).

4.1. Perfect model scenario

PMS was introduced to draw attention to a situation often

assumed explicitly in forecast studies but arguably never

achieved in operational practice (Smith, 2002). PMS

is the endpoint, the target, of Teller’s Perfect Model

Model (Teller, 2001), a goal he recommends scientists might

better abandon. Chatfield (2001) discusses (too frequent)

failures of statistical inference (including forecast uncer-

tainty) as arising due to similar faulty assumptions. In PMS

one has access to mathematical equations equivalent (dif-

feomorphic) to those that generated the observations: the

mathematical model is structurally equivalent to the ‘data

generating mechanism’ sometimes referred to as ‘Truth’ and

called the ‘system’ in this paper. Within PMS there may or

may not be uncertainty in parameter values (in this article the

True parameter values are known exactly within PMS).

Similarly there may or may not be uncertainty in the initial

conditions (in this article it is assumed that there is).

Note that if the model is chaotic then observational noise

implies the actual initial condition cannot be identified

(MacEachern and Berliner, 1995; Lalley, 1999; Judd and

Smith, 2001) even with a series of observations extending to

the infinite past. A perfect ensemble is a set of points drawn

from the same statistical distribution from which the target

outcome state is drawn; this distribution is conditioned

on the observational noise model, which is known exactly

within PMS. Under PMS a perfect ensemble is said to be

‘accountable’ in the sense of Smith (1995) and Popper (1972);

this property has also been called ‘fairness’ (Ferro, 2014).

Simulation of physical dynamical systems is never math-

ematically precise, as all models of physical systems have

structural model error. Thus, when forecasting physical

systems every model is inadequate in that its fundamental

functional form is flawed. In this case, chaotic models

cannot be expected to shadow the target system indefinitely

[Note, however, the Russell Map of Smith (1997)]. When-

ever the mathematical structure of the model differs from

that of the system, one is in the Imperfect Model Scenario.

Within PMS, uncertainty of initial condition or uncertainty

of parameter value can be treated within the Bayesian

framework; structural model error is a distinct challenge not

to be confused with imprecisely known (but well-defined)

real numbers.

4.1.1. The Moore�Spiegel 1966 system. The effect of

progressively doubling the ensemble size on forecast

performance in numerical studies of the third-order ordin-

ary differential equation Moore�Spiegel system (Moore

and Spiegel, 1966) is considered in this section. A major

motivation for using this particular system of ordinary dif-

ferential equations is the existence of a physical electronic
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circuit (Machete, 2008, 2013b) designed so as to have

related dynamics. The Moore�Spiegel system is

_x ¼ y;

_y ¼ �yþ Rx� Cðxþ zÞ � Rxz2;

_z ¼ x;

(17)

with traditional parameters G � [0,50] and R�100. The

discussion below focuses on the variable z, which represents

the height of an ionised gas parcel in the atmosphere of a star.

Consider the parameter values G�36 and R�100 at which

the system is chaotic.2 Recall that Lyapunov exponents,

which refer only to long-term averages and infinitesimal

uncertainties, can provide misleading measures of predict-

ability (Smith, 1994; Smith et al., 1999). Nevertheless,

note that at these parameters the Moore�Spiegel system is

chaotic with a leading Lyapunov exponent of 0.32 (base

two) and an (arithmetic) average doubling time of 1.2 time

units (Smith et al., 1999) for infinitesimal uncertainties.

Like the Lorenz system (Lorenz, 1963), the Moore�Spiegel
system arises in the context of thermal convection but in

the case of a stellar atmosphere. The Poincare’ section of

the Moore�Spiegel system near the origin (an unstable

fixed point) lead Balmforth and Craster (1997) to argue

that the dynamics of this system can be related to those

of the Lorenz system. At these parameter values, the

forecast systems for Moore�Spiegel exhibits variations in

the growth of forecast uncertainty as a function of position

in state space (Smith et al., 1999; Machete, 2008), a pro-

perty shared with models of the Earth’s weather (Palmer

and Zanna, 2013) and the Lorenz system. The dynamics

of infinitesimal uncertainties, properties of the ordinary

differential equations themselves independent of any fore-

cast system, also vary with position in the Lorenz and

Moore�Spiegel systems (Smith et al., 1999).

Predictability in a chaotic system is a property of a

forecast system, not merely the underlying deterministic

dynamical system. In addition to verifying observations

from the target dynamical system (the ‘data generating

mechanism’ whatever it may actually be), a forecast system

includes the observational network (fixed and adaptive),

full data assimilation scheme, dynamical simulation model(s),

properties of the ensemble and the ensemble interpretation

scheme, and so on; in short, every aspect of the opera-

tional forecast system that has any impact on the fore-

cast generated. This means that one cannot quantify the

predictability of the Moore�Spiegel system itself. The

predictability, as reflected in the decay of forecast skill

with lead time, of the Moore�Spiegel system under each of

two different forecast systems is shown in Fig. 2. The two

forecast systems are based on different data assimilation

algorithms (namely IN and CN as noted above); these are

introduced in the next two sub-sections. Note that the

decay of predictability in the right panel is much slower

than the decay in the left panel. Similarly, the utility of

increasing the ensemble size can be expected to vary with

other aspects of the forecast system, as demonstrated in the

next sub-section. Such observations suggest that more

systematic consideration of ensemble size in the design of

forecast systems would be of value.

4.1.2. Inverse observational noise ensemble formation.

Multiple ensemble forecasts were made for the Moore�
Spiegel system, launched from (near) 1024 observations

separated in steps of 2.56 time units along a trajectory.

These points in time, which reflect the system state, are the

focus about which forecasts are initialised and are hereafter

simply called ‘launch points’. Initial condition ensembles

were formed about the observation at each launch time.

Inverse observational noise ensembles were generated by

perturbing each launch point with Gaussian innovations

of the same covariance matrix as the observational noise

[In this special case, the inverse noise (IN) model has the

same covariance matrix as the observational noise)]. Each

ensemble of simulations is iterated forward under the

Moore�Spiegel system for a duration of 2.56 time units

and interpreted as a density forecast; the kernel width

and blending parameters were selected to minimise mean

ignorance over a training-set of 1024 IN forecast�outcome

pairs for each lead time and ensemble size.

Figure 3 shows the competitive advantage increases as

ensemble size increases. The left panel shows the competitive

advantage relative to an ensemble of size 8, the right panel

relative to an ensemble of size 16. Clearly increasing the

ensemble size well above the value of 8 or 16 is beneficial;

arguably it is still increasing at the largest ensemble sizes

considered in these graphs (128). While noting that small

ensembles were sufficient to provide a good root-mean-

square estimate of the ensemble mean, Leith (1974) also

suggested moving beyond root-mean-square error, and that

a better measure would reflect maximising the user’s

expected gain. Inasmuch as the ignorance score reflects

utility, our results are consistent with Leith’s insight.

The panels in Fig. 4 reflect vertical slices through Fig. 3, one

panel with ensemble size 32, the other with ensemble size 128.

2The system is integrated with a fourth-order Runge�Kutta

method, initialised with a randomly chosen initial condition near

the origin; transient states were discarded. The integration time

step used is 0.01 and states were recorded every four steps; thus,

the time step between any successive data points is 0.04. The

observations are true states corrupted with zero-mean, uncorre-

lated additive Gaussian noise such that each variable had a signal

to noise ratio of 10:1. (The standard deviation of the observational

noise added to the true z variable is 0.1; in the Moore�Spiegel
system sz:1.13.)
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The right panels of Fig. 4 show the corresponding ignorance

scores, illustrating the (inverse) relationship between ignor-

ance and competitive advantage.

The competitive advantage gained by doubling the

ensemble size as a function of the final ensemble size under

IN is shown in the left panel of Fig. 5. Note that as the

ensemble size is doubled, competitive advantage is positive

at all lead times considered. Most of the higher lead times

yield competitive advantages greater than 1 %.

The left panel of Fig. 6 shows the blending parameter as

a function of ensemble size for a forecast system using IN

data assimilation. In general, the blending parameter tends

to rise as a function of ensemble size. That is, the clima-

tology is weighted more highly in smaller ensembles. Note

however that at some intermediate lead times (those plotted

as lighter blue and yellow, for instance) the value of an for

large ensemble sizes falls below that of both shorter and

longer lead time forecasts. This is shown more clearly in

Fig. 7, where the blending parameter for various ensemble

sizes is shown as a function of lead time. On the left, notice

the oscillatory behaviour of the blending parameter (as a

function of lead time), especially for larger ensemble sizes.

This might be a feature of the chaotic nature of the under-

lying dynamics due to variations in predictability across

time scales (Smith, 1994) or may be due to the macroscopic

structure of this particular attractor. The decrease in the

blending factor as a function of lead time reflects a number

of different effects, from issues of data assimilation to model

inadequacy. In light of this, a more effective ensemble

formation scheme is considered in the next section.
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Fig. 2. Moore�Spiegel system. The decay of predictability with time of two forecasts systems of the Moore�Spiegel system. Ignorance

relative to climatology is shown as a function of lead time for ensembles of size 2, 4, 8, 16, 32, 64 and 128. Lead-time is reflected by colour.

The forecast systems differ in the data assimilation scheme used; Left: The inverse noise (IN) method. Right: The collapsed noise (CN)

method. Note the forecast system using CN gives systematically more skilful forecasts. Note that the larger ensembles routinely show

greater skill at each lead time for each system.
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Fig. 3. Moore�Spiegel systemwith inverse noise. Graphs of competitive advantage when increasing the ensemble size relative to a reference

ensemble size. Left: Reference ensemble-size is 8. Right: Reference ensemble-size is 16. The colour bars indicate lead time. Note that when the

competitive advantage is sloping upward towards the right-hand side of each graph, the benefit of increasing the ensemble size is still increasing

at the largest ensembles tested. At shorter lead times (dark blue) the benefit tends to be greater than longer lead times (dark red).
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4.1.3. Collapsed noise ensemble formation. The dynamic

of a dissipative chaotic system induces a natural measure

(which sometimes falls on a strange attractor) in the system

state space (Eckmann and Ruelle, 1985). This distribution

would yield an ideal climatology in meteorological terms.

For instance, the distribution of temperature at a given

geographical point is the marginal distribution of a higher

dimensional climatological distribution. Given a noisy

lead time
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Fig. 4. Moore�Spiegel system with inverse noise. The two graphs on the left show the competitive advantage as a function of lead-time

for an ensemble size of 32 relative to 16 as a functions of lead-time (top) and 128 relative to 16 (bottom). Each curve corresponds to a slice

through Fig. 3. The IGN scores for the same comparisons are shown on the right. Note the symmetry between ignorance and competitive

advantage [flipping over (y 0 �y) in a graph in the right column leads yields the pattern of a curve on the left].
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Fig. 5. Doubling the ensemble size in the Moore�Spiegel system. Left: Graphs of competitive advantage gained by doubling the

ensemble size of IN forecast systems as a function of the final ensemble size. Right: Graphs of competitive advantage gained by doubling

the ensemble size of CN forecast systems as a function of the final ensemble size. Each line on a given graph corresponds to the forecast lead

time according to the corresponding colour bar. Note that doubling the ensemble size is demonstrably beneficial at all lead times, and the

(more expensive) CN-based forecast systems tend to benefit more than the IN-based systems, especially at longer lead times.
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observation of the state of the system, there will be a

distribution consistent with both the observational uncer-

tainty (the noise model) and the dynamics of the system (as

reflected in the local detailed structure of the climatological

distribution). Ideally, an accountable ensemble would be

drawn from a set of indistinguishable states of a perfect

model, states consistent with the observations, the dy-

namics and the noise model (Judd and Smith, 2004); only

the simpler target of a dynamically consistent distribution

(defined below) is attempted in this article.

Inmeteorology, obtaining the initial state (or distribution)

is referred to as data-assimilation (e.g. see Lorenc, 1986;

Kretschmer et al., 2015; Stull, 2015). Traditional data

assimilation typically aims to determine a single state by

minimising the misfit between a model trajectory and ob-

servations within the corresponding assimilation window.

The benefit of increasing ensemble size can be expected to

vary with the data assimilation scheme used to construct the

ensembles. Sampling the set of indistinguishable states is

computationally costly. Hansen and Smith (2001) suggested

that one might sample an alternative distribution in which

the states are ‘more consistent’ with the model dynamics

than in the IN approach yet less expensive than sampling the

natural measure. Given initial candidates drawn from an IN

distribution at the beginning of an assimilation window, it

was suggested that one retain candidates weighted by their

consistency with all the observations in an assimilation

window yielding a dynamically consistent initial distribution.

The method used in subsequent discussions employs a

weaker constraint: the same initial candidates are selected at

the beginning of the assimilation window; whether or not

they are included in the ensemble is then based only on their
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Fig. 6. Moore�Spiegel system. Graphs of blending parameter (an) versus ensemble size determined by minimising the average ignorance

score over a forecast�outcome archive. Left: IN-based forecast systems. Right: CN-based forecast systems. Note the systematic increase of

an with ensemble size in each panel. The colour bars on the right of each panel correspond to lead time.
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Fig. 7. Moore�Spiegel system. Graphs of blending parameter (an) versus lead time under each of the two data assimilation strategies.

Left: IN-based forecast systems. Right: CN-based forecast systems. In the IN-based systems the general decrease in an with lead-time is

rather complex; nevertheless the value of an for these systems is systematically lower than that for the CN-based systems, and thus the

weight on climatology is significantly greater. In the CN-based forecast systems, the decrease is more regular; interestingly at a given lead-

time the value of an is greater for the larger lead-times. This suggests a potentially resolvable shortcoming in the CN data assimilation

scheme. The colour bar on the right-hand side of each graph indicates the number of ensemble members.
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distance to observation at the launch time (the most recent

end of the assimilation window). Details of this ‘final-time

CN’ algorithm are in Appendix A.

The competitive advantage graphs for IN-based forecast

systems and CN-based forecast systems are shown in the

right panel of Fig. 5. Notice that the longer lead-time

performance under CN benefits more from increases in the

ensemble size than under IN. In particular, when the

ensemble size doubles to 128, the longer lead time graphs

yield competitive advantage of at least 2 % per trial. It is

evident that doubling the ensemble size generally benefits

the forecast system using CN more than the one using

IN at longer lead times and larger ensemble sizes. At the

shortest lead times (B0.05) the forecast system using IN

shows a larger benefit.

The quality of the ensemble formation scheme is also

reflected in the blending parameter (see Fig. 6), which

increases as the ensemble size increases: the forecasts have

increased skill and the ensemble component of the forecast

distribution is weighted more heavily relative to climatol-

ogy. This increase with ensemble size tends to be slower

for longer lead-time forecasts; note also the behaviour of

the blending parameter. Graphs of the blending parameter

corresponding to the CN ensemble shown in the right panels

of Figs. 6 and 7 lie in striking contrast to those corresponding

to IN ensembles inasmuch as the CN blending parameters

increase, approaching one for all lead times (signalling a

significant increase in information content of the distribu-

tion of ensembles members), while the blending parameters

of the IN ensembles appear to saturate at an significantly

less than one.

Values of the blending parameter an which are less

than one suggest imperfection somewhere in the forecasting

system; possible imperfections include flawed ensemble

initialisation strategies, suboptimal parameter selection,

structural model error (Orrel et al., 2001), a poor ensemble

interpretation and an ensemble of finite size. Chaos cannot

be blamed for these imperfections since a perfect initial

ensemble evolved forward in time under a perfect model

with the correct parameters can yield forecast distributions

that are perfectly consistent with observations of the system

(i.e. they are accountable; their performance is hindered

only by containing a finite number of members). Figure 6

suggests that in this case significant improvement in forecast

skill is achieved by improving the data assimilation scheme

and increasing the ensemble size. The improvement in skill

using CN data assimilation is clear in each panel of Fig. 8.

The left panel shows the skill of CN relative to IN as a

function of lead-time for several different ensemble sizes. In

every case, the value is negative indicating that CN outper-

forms IN, and for longer lead times this relative advantage

increases as the ensemble size increases, although the

increase is smaller for larger ensemble sizes. The right panel

shows the skill of CN-based systems relative to IN-based

systems as a function of ensemble size, for a variety of lead-

times. Note that at longer lead-times (coloured red or

orange) the curves appear to be downward sloping even at

the largest ensemble sizes; this would indicate that the more
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Fig. 8. Contrasting skill due to data assimilation scheme: Moore�Spiegel system. The skill of competing forecast systems which differ only

in the data assimilation scheme is contrasted in the Moore�Spiegel system: each panel shows IGN of CN-based forecasts relative to those of

IN-based forecasts, thus negative values imply more skill in the CNmethod. Note that all values are negative. Left: Ignorance as a function of

lead time for four ensemble sizes (16, 32, 64 and 128). Note that the forecast system using CN gains additional skill above the one using IN as

the ensemble size increases. Right: Ignorance as a function of ensemble size for a variety of lead times (as indicated by the colour bar on the

right-hand side of the panel). Note that the benefit of using CN is greatest in the medium range, lead times between 0.5 and 0.9; while the

advantage continues to exceed half a bit (a 40% gain in probability, on average) at longer lead times, it is less than a tenth of a bit at short lead

times. This suggests that the CN data assimilation might require improvement (to justify its added cost) if the focus is on shorter lead times.

Also note in the right panel that for longer lead times (reddish) the skill curves are still sloping down even at the largest ensembles tested,

indicating that the CN-based forecasts are improving faster as the ensemble size is increased even at the largest ensembles tested.
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expensive data assimilation scheme (CN) benefits more

(obtains a larger an) from increasing the ensemble size even

at the largest sizes tested.

The increase in competitive advantage (under CN) in

Fig. 5 indicates that doubling the ensemble size can yield

a competitive advantage of 2.5 % even at the largest

ensemble sizes considered. Comparing these with the IN

case in Fig. 5, it is clear that at longer lead times, more

improvement is made under CN. Graphs of the competitive

advantage obtained when competing with a forecast system

issuing odds based on ensemble sizes of 8 and 16 respectively

are shown in Fig. 9.

Forecast distributions derived from the same initial

ensemble of 128 members are shown in Fig. 10; two lead

times are shown. Notice that the longer lead time distribu-

tion does not appear to beGaussian; in any event aGaussian

distribution evolving under a non-linear model will inevi-

tably become non-Gaussian. The results of the previous

section suggest that (relevant) complexity in the longer

lead time distributions will increase the value-added by

increasing the ensemble size. In numerical weather predic-

tion, it is common to interpret an ensemble as a Gaussian

distribution; this procedure can lead to relatively poor fore-

cast skill (Brocker and Smith, 2008). The results presented

here reinforce the suggestion that kernel dressing is to be

preferred: ensemble interpretations which merely fit pre-

dictive distributions using symmetric unimodal distributions

can reduce the utility (information content) available in

larger ensemble sizes.

5. Imperfect model scenario: a physical circuit

Insights based upon mathematically known dynamical

systems do not always generalise to real-world systems;

this is no doubt in part due to their having a well-defined

mathematical target in the first case. It is of value to evaluate

claims in forecasts of actual systems. An electronic circuit

designed to mimic theMoore�Spiegel system is used for this

purpose. Voltages corresponding to the three variables were

collected with a sampling frequency of 10 kHz (i.e. every

0.1ms). A data-based model of the circuit was constructed

using radial basis functions in a four-dimensional delay

space, based on the voltage signal that mimics the z variable

in the Moore�Spiegel system. Further details of the circuit

and this model can be found in Machete (2013b). As before,

1024 launch points were considered, allowing 64 time steps

between consecutive launch points. A maximum forecast

lead time of 128 time steps is considered, with ensemble

of size n where n takes on integer values within the set

{1,2,. . .,256}. In terms of the ignorance of forecasts relative

to climatology, the predictability of the circuit at the longest

lead time considered (128 time steps) is comparable to that

of 8-day ahead weather forecasts (Brocker and Smith, 2008)

under this model.

First consider IN ensembles where, following earlier

work (Machete and Moroz, 2012), a standard deviation

of 10�2 was used. Graphs demonstrating the value of

doubling the ensemble size in this case are shown in Fig. 11.

As before, the different lines correspond to lead times

according to the colour bar on the right-hand side. Note

that there is less improvement from increasing the ensemble

size at longer lead times. This observation is more evident

on graphs of competitive advantage over ensemble sizes of

8 and 16 shown in Fig. 12. The lead times considered all

correspond to forecasts with predictive skill relative to

climatology.

At the longer lead times, the ensembles under the model

dynamics represent the dynamics of the target system less

well. This decreases the benefit from increasing the ensemble

size. Nevertheless, the benefit of ensembles with more than
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Fig. 9. Moore�Spiegel system with collapsed noise. Graphs of competitive advantage when increasing the ensemble size relative to a

reference ensemble-size. Left: Reference ensemble-size is 8. Right: Reference ensemble-size is 16. Contrasting this figure with its counterpart

(Fig. 3) suggests that for all but the shortest lead times, using the CN algorithm increases the gain obtained by these increases in ensemble

size. The colour bar on the right-hand side of each graph indicates the lead time.
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16members remains significant in this imperfect model case.

Note the upward sloping lines on the right panel of Fig. 12,

which indicate that forecasts are improved by increasing the

ensemble size even at the largest ensembles considered. For

shorter lead-times this improvement is striking.

6. Quantifying reliability, resolution and other

properties of forecast distributions

Probability distributions have many properties. Some of

these properties (like IGN) reflect their information con-

tent regarding target outcomes, while other properties (like

variance) reflect only properties of the distribution itself.

Only forecast skill reflects the value of the forecast. In this

section, other properties are considered. A probability

forecast system is arguably reliable if its forecast probabil-

ities are consistent with the relative frequency(s) of the

outcome observed. Of the many measures of reliability, a

measure based on the probability integral transform,

reliabilityPIT, is considered below. Resolution is quantified

by the area under the ROC curve, denoted resolutionROC.

These measures are defined in Appendix B.1. Note that the

application of such summary statistics often requires

abandoning the evaluation of full probability forecasting

of continuous variables, as those statistics consider merely

binary (or other few-tile) forecasts. Graphs of reliabilityPIT
for the blended distributions are shown in Fig. 1 and for

Moore�Spiegel System in Fig. 13.

The lower right panel of Fig. 1 shows reliabilityPIT for

the two Gaussian mixture distributions of Section 3 as

functions of ensemble size. In both cases, as the ensemble

size increases from one, reliabilityPIT first decreases (until

an ensemble size of about eight) and then increases

monotonically. The reliabilityPIT of the Gaussian distribu-

tion falls more steeply and rises more slowly than that of

the mixture.
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Fig. 11. Circuit with inverse noise. Left: Graphs of competitive advantage of an ensemble versus an ensemble half its size. All forecast
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flat) at smaller ensemble sizes than in the case of IN-based forecasts of Moore�Spiegel. Each line on a given graph corresponds to the
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Fig. 10. Moore�Spiegel with collapsed noise. Two illustrative forecast distributions corresponding to the same initial ensemble; the

ensemble size n�128. The left panel at lead time t�0.16 shows a distribution that might be well described as normally distributed. The

right panel, at longer lead time t�2.56, would be less well described by a normal distribution.
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Contrast this graph with graphs of reliabilityPIT of

forecasts of the Moore�Spiegel system and the circuit in

Fig. 13. As in the density estimation case, these graphs

generally show an initial decrease in reliabilityPIT with

increasing ensemble size, and followed by a steady increase.

This general behaviour is seen at all lead times considered in

the Moore�Spiegel case. Interestingly, the early lead time

forecasts of the circuit (darker blues in the right panel of

Fig. 13) show a different behaviour in that the reliabilityPIT
continues to decrease with increasing ensemble size.

Observations like this are the value of the reliability and

resolution measures, as they can inspire insights that lead to

the improvement of forecast skill.3 Also note the decrease

in reliabilityPIT at longer lead times for the circuit (right

panel of Fig. 13). This decrease is effectively monotonic, in

contrast to the pure density estimation. While the impact of

model error is expected to increase with lead time, it is

unclear why as ensemble size increases a good ensemble

interpretation scheme would not counter this decrease in

reliabilityPIT, resulting in values of reliabilityPIT which were

roughly constant.

The competitive advantage gained by increasing ensemble

size occurs not, of course, because the forecast distributions

achieve a better reliabilityPIT or become sharper per se, but

rather because more probability is placed on the outcome

as the ensemble size is increased. Under CN, the sharpness

of forecast distributions (not shown) increases a good deal

at shorter lead times, highlighting the potential benefits of

an effective data assimilation scheme. It is critical to note,

however, that an increase in sharpness only adds to infor-

mation content or the economic benefit if the relative

ignorance decreases.

Richardson (2001) andWeigel et al. (2007) considered the

effects of ensemble size on reliability (or calibration) based

on the decomposition of the Brier score, effectively assessing

probabilistic calibration. One should not, however, expect

perfectly calibrated forecasts in practice (Gneiting et al.,

2007; Machete, 2013a). Even under a perfect model, perfect

calibration would require that the initial distributions be

accountable, that is consistent both with the long-term

dynamics of the target system and with the observations

given the statistics of the observational noise (Smith, 1995).

This is unlikely to be the case (Judd and Smith, 2004).

Note that many properties of the distributions (such as

ROC curves shown in Fig. 14) saturate at relatively small

ensemble sizes, while the skill of the forecast continues to

increase, illustrating that those measures do not reflect skill.

It is the skill of a forecast system, neither its components nor

the averaged properties of the forecast distributions, which

determines forecast value.

Forecast skill is best reflected by (a subset of) proper skill

scores. The limited utility of reliability per se is not sur-

prising; note for example that a climatological distribution

is reliable by construction, yet it will be outperformed by a

less reliable probability distribution conditioned on current

observations with significantly more skill. This insight is

not new and Bross highlighted this point over half a century

ago [note that Bross (1953) used the word ‘validity’ rather

than ‘reliability’]. Reliability, however defined, is but just

one aspect of a forecast system. A more complete investiga-

tion of various measures of reliability (and other forms of

calibration) and of resolution would be of value.

7. Discussion and conclusions

How might this study, considering only low-dimensional

mathematical systems and data from a physical circuit,

aid the design of operational forecast systems? First, it

argues strongly for the evaluation of information provided

by larger ensembles at the design stage (Palmer et al., 2004;

Doblas-Reyes et al., 2005; Smith et al., 2014). There has been

resistance to considering more than nine members in these

hindcast studies; the restrictions this placed on evaluating

the value of ENSEMBLES4 are documented in Smith

et al. (2014). While a detailed investigation of ensemble

design is beyond the scope of this article, it is noted in passing

that a more effective experimental design need not require

the computational cost of running massive ensembles for

every hindcast launch date. Second, improvements in the

ensemble formation scheme (data assimilation designed

explicitly to generate ensembles) can significantly increase

the information provided by larger ensembles. More gen-

erally, it is conjectured that the better the simulation model,

the greater the benefit of increasing the size of the ensemble.

Computational resourcesmay be fixed, of course, but amore

informative forecast system arguably justifies increased

computational resource.

The longstanding question of the appropriate size for a

forecast ensemble-size has been considered both in PMS and

in the imperfect model scenario. Model inadequacy and the

particular ensemble-formation scheme place a limit on the

gain achievable by increasing the ensemble size. A good

3It can be argued that, in the case of and only of binary forecasts,

reliability measures can be used to ‘recalibrate’ the forecast once

the forecast�outcome archive is sufficiently large. In cases where

the causes of miscalibration are robust (unchanging), this can be

approached simply by forecasting the relative frequency corre-

sponding to the actual forecast system. As the focus of this article

is on evaluating probability forecasts of continuous variables, this

avenue is not pursued further. We are grateful to an anonymous

reviewer for stressing the possibility of doing so.

4ENSEMBLES was a large multi-model seasonal hindcast project

(Alessandri et al., 2011, and citations thereof).
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ensemble formation scheme and a good ensemble inter-

pretation can each enhance the benefit of increasing

the ensemble size well above 16 members. Some previous

studies have focused on the effect of one additional member

on the quality of the ensemble (Richardson, 2001; Ferro

et al., 2008) in a root-mean-square sense. Even in this

context, Smith et al. (2014) have shown that probabilistic

evaluation can lead to insights different from those where

the evaluation is restricted to the ensemble mean as a point-

forecast.

The approach in this article is more information theoretic:

It assessed the effect of doubling the ensemble size on

probabilistic-forecast quality as measured by ignorance

(Good’s logarithmic score), which reflects the information

contained in the forecast. In PMS under a good ensemble

formation scheme, doubling the ensemble size still resulted

in a non-trivial improvement in competitive advantage,

averaging an increase of at least 2 % (per forecast), even for

ensembles of size 128. If this first appears to be only a small

advantage, consider the fact that, compounded daily,

an initial investment would be multiplied by a factor of

1377 after one year! The competitive advantage was greater

on longer lead times. An analysis of traditional kernel

density estimation suggests that inasmuch as the magnitude

of the advantage varies with properties of the underlying

distribution, more complex distributions benefit more

from increasing the ensemble size than simple unimodal

distributions. This is consistent with much of the competi-

tive advantage at longer lead times arising from the non-

Gaussian nature of the forecast distributions at these
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Fig. 12. Circuit with inverse noise. Graphs of competitive advantage when increasing the ensemble size relative to a reference ensemble-

size. Left: Reference ensemble-size is 8. Right: Reference ensemble-size is 16. The colour bars indicate lead time. Note that when the

competitive advantage is sloping upward towards the right-hand side of each graph, the benefit of increasing the ensemble size is still

increasing at the largest ensembles tested. At shorter lead times (dark blue) the benefit tends to be more than longer lead times (dark red).

The colour bar on the right-hand side of each graph indicates the lead time. The occasional glitches (short, sharp drop-outs of low skill) are

due to a well understood flaw in our automated kernel-selection algorithm.
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Fig. 13. Quantifying reliabilityPIT. Graphs of reliability PIT as a function of ensemble size. Left: Moore�Spiegel system under CN-based

forecast systems. Right: Circuit under IN-based Forecast systems. Here forecasts of the circuit, for which the model is imperfect, display two

qualitative differences from the Moore�Spiegel system and the mixture distributions shown in Fig. 1. First, at the shortest lead times (dark

blue) reliabilityPIT decreases significantly with ensemble size. Second, at the longest lead times (orange and red) there is a slow decrease in

reliabilityPIT rather than a plateau. The occasional glitches are due to a well understood flaw in our automated kernel selection algorithm.
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lead times. Cases where complicated forecast distributions

systematically outperform Gaussian forecast distributions

out of sample reflect this effect, even when traditional

null hypothesis tests (given small ensembles) fail to detect a

statistically significant departure from normality. In any

case, given a non-linear model, an initially Gaussian

distribution will evolve to become non-Gaussian (McSharry

and Smith, 1999).

Outside PMS, forecasts at longer lead times benefit less

from increasing the ensemble size. This is consistent with

structural model error having a greater impact at longer

lead times than at shorter lead times: at longer lead times

even arbitrarily large ensembles would provide limited

information regarding the relevant target distribution.

The effect of improved data assimilation within PMS can

be gleaned from the right panel of Fig. 8. Notice that for

each ensemble size shown the relative ignorance is negative,

signalling that there is improvement in the probabilistic

forecast skill due to implementing the data assimilation

scheme. Also note that this relative advantage is maintained

as the ensemble size increases (each curve is fairly horizontal

for all but the smallest ensemble sizes).

While only one target variable has been considered in

determining how large an ensemble size should be, the

approach above can be extended to the multivariate forecast

target case. Forecast distributions for different target

variables may have very different properties (some may be

positive definite, for instance) suggesting that the desired

ensemble size for different target variables may differ as

well, unless an elegant ensemble interpretation is available.

The use of a novel ensemble-formation scheme based upon

the work of Hansen and Smith (2001) illustrates significant

improvements given a more effective ensemble formation

scheme. The fact that the simple data assimilation scheme

employed above will no doubt prove inferior to alternative

ensemble-formation schemes does not detract from our
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resolution. Left: For the Moore�Spiegel system under CN-based forecast systems. Right: For the Circuit under IN-based forecast systems.

The colour bar on the right-hand side indicates the forecast lead time.
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Fig. 15. Decay of predictability of the circuit in two forecast systems based on different data assimilation schemes. IGN score of

forecasts of the circuit relative to climatology for eight ensemble sizes. The two forecast systems use different data assimilation methods.

Left: A inverse noise (IN)-based forecast system. Right: Collapsed noise (CN)-based forecast system, with an assimilation window of two

steps. Note that the gain from merely moving from an IN-based forecast system to a CN-based forecast system alone is much greater than

the gain from increasing the ensemble size by a factor of 128 in the IN-based forecast system.
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point: better ensemble formation schemes are expected to

increase the benefit of increasing ensemble size.

A central argument of this article is well-captured in

Fig. 15, which shows the skill of two forecast systems of

the circuit with lead time; each system is shown for a variety

of ensemble sizes. In each panel there is an effectively

monotonic increase in skill each time the ensemble size

is doubled. The uniformity of this improvement is much

clearer in the left panel, which reflects the skill of the

forecast systems using IN assimilation. Note that the im-

provement shown in the right panel, which reflects the skill

of the forecast systems using CN assimilation, is rather

different: the gain from doubling the ensemble size is much

less in absolute terms (bits). In addition, the gain in skill in

moving from IN data assimilation to CN data assimilation

dwarfs the improvement obtained after significant increases

in the ensemble size of the forecast system using IN. The

argument of this article is not that larger ensembles are

always justified, but rather that decisions regarding resource

allocation and forecast system design are better informed

when the information gain of altering the ensemble size (and

data assimilation method) are explored explicitly. The cost

of quantifying the value of larger ensembles is, relatively,

modest. In the case of Fig. 15, increasing the ensemble size

to (at least) 256 increases the skill of the forecast, and at the

same time, the larger investment required to change data

assimilation scheme yields a much larger improvement in

the information content of out-of-sample forecasts.

In forecasts of mathematical chaotic systems and in

forecasts of a physical system, more information can be

gleaned from ensemble forecasts by increasing the ensemble

size well beyond ‘16’. While the general thrust of these

arguments hold in forecasting more complicated physical

systems, the quantitative results will depend on model

quality, the data assimilation scheme, the ensemble inter-

pretation method and the target system observable. We

hope this article has given sufficient evidence to justify

further exploration of the information larger ensembles

provide in operational forecast systems.
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9. Appendix

A. Data assimilation

Given a time series of observations {s(t)}t]0 and that the

underlying dynamics are described by the function 8(x,t)
where x � <m (the state vector is m-dimensional) and the

initial state is x(0)�x0, then the state at time t is given by

xt ¼ uðx0; tÞ; (A.1)

where xt and x(t) have the same meaning. Usually, one

cannot know the true state x(t). If h is the observation

function, then

st ¼ hðxtÞ þ et; (A.2)

where ot is the observational error. In the algorithm given

below, the observation function is taken to be the identity

operator and the uncertainty solely due to additive noise.

Assume that E½et� ¼ 0 and E½ete
0
t� ¼ diagðd2

1; d
2
2; . . . ; d2

mÞ,
that is, the observational errors have no bias and are

spatially uncorrelated. Consider an initial observation

sðt0Þ ¼ st0
and let ei be a unit vector whose ith entry is

one and the rest of the entries are zero. The parameter di is

the standard deviation of the observational noise corre-

sponding to the ith coordinate. Typically, one has a non-

linear model of the model dynamics f( �,t) so that given a

point z0, we can iterate it forward under the dynamics to

obtain zt�f(z0,t). In the perfect model scenario (PMS),

f( �,t) coincides with 8( �,t). Data assimilation then is a

process of (often using the dynamical model) estimating

initial conditions which define ensemble members. In the

following algorithm of our simplified data assimilation

scheme, jmax is a fixed integer denoting the maximum

number of searches for a collapsed noise (CN) ensemble

member, j is the integer that counts the number of searches

for initial ensemble members and ta is the length (in time)

of the assimilation window. Denote a Gaussian random

vector by n 2 Nð0;RÞ, where R ¼ diagðd2
1; d

2
2; . . . ; d2

mÞ, and
fix an integer k, which is the number of standard deviations

within which an assimilation point zt0
is considered

indistinguishable from the launch point st0
. Let Bðst0

Þ be
an initial ensemble at the launch point. The number of

ensemble members is denoted by jBðst0
Þj. The algorithm is

given below:

(1) Set Bðst0
Þ ¼ ;; and j�0.

(2) Perturb the observation s(t0 � ta) to obtain a new

point y�s(t0 � ta)�j and set j�j�1.

(3) If j5 jmax, compute f(y,ta) and go to (5).
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(4) If j�jmax, generate a new vector j to obtain a new

point zt0
¼ st0

þ n and set Bðst0
Þ ¼ Bðst0

Þ [ fzt0
g,

j�0 and then go to (6).

(5) If jh/ðy; saÞ � st0
; e iij � kdi for all i, set

Bðst0
Þ ¼ Bðst0

Þ [ f/ðy; saÞg5 and go to (6).

(6) If jBðst0
Þj ¼ n, then stop. Otherwise if j�jmax set

j�jmax�1 and go to (4) else if jBjmax go to (2).

The aim of the above ensemble formation procedure is to

evolve a random set of initial states near the observations at

time t�t0 � ta forward in time to t�t0, and then use those

which remain consistent with the observations at (up to)

t�t0 for the ensemble. This effectively collapses onto a set

of states that are dynamically consistent with the system’s

dynamics. Step (1) sets the initial ensemble within the

neighbourhood of a current observation to an empty set.

Step (2) generates random states at the beginning of the

assimilation window that are consistent with the observa-

tional error model (A2). Step (3) generates a potential

member of the initial ensemble using the model dynamics.

Step (4) curtails the search if an insufficient number of

neighbours have not been found in good time; the integer

jmax defines the threshold that restricts the maximum time

allocated for the search. Step (5) assesses whether the point

at the end of the assimilation window is within some

neighbourhood of the current observation; if it is, then it is

taken to be a member of the CN initial ensemble, B(s0). The

resulting initial ensemble B(s0) should be approximately

distributed more consistently with the climatological dis-

tribution and be consistent with the model dynamics.

Another possibility to avoid the cost of long searches is

to adjust k for this initial condition; this option will be

reported in future work. Alternatively, the search for

members stops when the required ensemble size is reached

[Step (6)].

In the experiments reported above, jmax�512 with k�3

for MS system and k�1 for the circuit, ta�6.4 for the MS

system (and two time steps for the circuit); n took on each

integer value in the set {1,2,. . .,128} for the MS system and

n � {1,2,. . .,256} for the circuit. A time series of the

Moore�Spiegel system was generated such that the time

step between successive points was 0.04. From this time

series, 1024 launch points were sampled such that there

were 128 time steps between successive launch points.

Ensemble forecasts were then made from the 1024 launch

points up to lead times of 128 time steps, based on initial

ensembles being generated via the CN scheme.

B. Properties of forecast distributions

B.1. Reliability

Statistical consistency between the forecast probabilities and

corresponding outcomes is a desirable property of prob-

ability forecasts; one aspect of this property is termed

reliability (Brier, 1950) in meteorology and calibration in

economics (Dawid, 1984; Diebold et al., 1998; Gneiting

et al., 2007). The meteorological community uses ‘reliability

diagrams’ to assess reliability (Brier, 1950; Brocker and

Smith, 2007) whilst the economics community tends to use

probability integral transforms. A reliability diagram is ob-

tained by plotting predicted probabilities against observed

relative frequencies: if the forecast system is reliable, the

relative frequencies will lie near the diagonal, the relevant

distance depending on the number of forecasts, the precise

probabilities and so on. Brocker and Smith (2007) provided

a straightforward approach to interpreting reliability dia-

grams andnoted that visual inspection is at best uninformative.

The probability integral transform provides one summary

statistic which can be used to compare the reliability of two

forecasting systems (Dawid, 1984).

Consider a sequence of density forecasts, ftf g
T

t¼1, and

corresponding observations (i.e. outcomes) xtf g
T

t¼1. If the

cumulative distribution function for each ft(x) is Ft(x), then

the corresponding probability integral transform is given

by zt�Ft(xt). In finance and economics, a forecasting

model is said to be correctly specified (or perfectly

calibrated) if zt�
iid

U ½0; 1� (Diebold et al., 1998; Corradi

and Swanson, 2006), where ‘U[0,1]’ stands for uniformly

distributed on the interval 0 to1. Machete (2013a) argued

that this requirement is not satisfied by operational

forecasting models.

The aim is a summary measure of reliability for im-

perfect forecast systems. First note that a sequence of

probability integral transforms ztf g
T

t¼1 can be used to form

an empirical distribution function

UtðpÞ ¼
1

T

XT

t¼1

Iðp� ztÞ: (B.1)

Reliability can then be assessed by computing the L1 norm

(Hora, 2004),

L1½UtðpÞ; p� ¼
Z 1

0

jUtðpÞ � pjdp: (B.2)

This norm is a measure of miscalibration and details of its

computation can be found in Hora (2004). Noting that the

norm attains the minimum of 1/4T and the maximum of

1/2, Hora (2004) inverts and rescales the norm to obtain a

5Given two vectors, a�(a1,. . .,am) and b�(b1,. . .,bm), the inner

product of the two vectors is ha; bi ¼
Pm

i¼1 aibi. It follows that

�a,ei��ai.
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measure of probabilistic calibration, which is a measure of

the degree of reliability. This measure is given by

C½UtðpÞ; p� ¼
1� 2L1½UtðpÞ; p�

1� ð1=2TÞ
� ð100%Þ; (B.3)

which takes values between 0 and 100 %, larger values

corresponding to greater reliability; this measure or statistic

is referred to as reliabilityPIT due to its dependence on

probability integral transforms and it is positively oriented.

Alternative measures of reliability can be defined.

Note that Machete (2013a) suggested an alternative form

of calibration proposed by Gneiting et al. (2007), called

marginal calibration. Given a sequence of forecasts

GtðxÞf gT

t¼1, a forecasting system is said to be marginally

calibrated if

1

T

XT

t¼1

FtðxÞ ¼
1

T

XT

t¼1

GtðxÞ: (B.4)

While beyond the scope of this article, further investigation

of marginal calibration is of interest.

B.2. Resolution

In the recent work of Brocker (2015), a forecasting scheme

is said to have no resolution if the forecasts are independent

from the observations. This definition is said to be con-

sistent with that of the WWRP/WGNE Joint Working

Group on Forecast Verification. Equivalently, a forecast-

ing scheme has no resolution if the conditional probability

of the forecast given the observation does not depend on

that observation (Brocker, 2015).

The resolution of a binary forecasting scheme can be

quantified by computing the area under an ROC curve.

This area is applicable to binary observations or events

(Brocker, 2015), but extensions are given in Mason and

Graham (2002). In order to present this metric, let Y be an

observation with Y � {0,1}. Assume that L is the forecast

probability that Y�1. Hence the probability that Y�0 is

1 � L. Here L is taken to be a random variable taking

values between 0 and 1.

The hit rate can then be defined as

HðkÞ ¼ PrðK > kjY ¼ 1Þ (B.5)

and the so-called false-alarm rate as

FðkÞ ¼ PrðK > kjY ¼ 0Þ: (B.6)

Forecasts and observations are independent provided

H(l)�F(l) for all l � [0,1] (Brocker, 2015). Hence a

forecasting system has no resolution if this equality holds.

Furthermore, the ROC curve is simply a graph ofH against

F. It is a monotonic increasing function whose shape

depends on the statistics of L and Y. The foregoing equality

can be tested using the Mann�Whitney U-statistic, which

statistic is an estimate of the area under an ROC curve up

to some factors. To estimate this statistic, given the data

set A ¼ KðmÞ;Y ðmÞf g;m ¼ 1; . . . ;M½ �, sorted such that

the L’s are in ascending order, the quantity

dAUC ¼ 1

M0M1

XM

m¼1

mY ðmÞ �M1ðM1 þ 1Þ
2

( )
(B.7)

is an estimate of the area under an ROC curve, with M1

being the sum of all values of Y and M0�M � M1. Note

that the bracketed term in eq. (B.7) is the Mann�Whitney

statistic. In computations for quantifying the resolution

of a forecasting scheme, Y�1 will be the event that the

observation is less than the climatological mean. The

statistic for resolution is called resolutionROC and it is

positively oriented.
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