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Abstract

We describe a seriation algorithm for ranking a set of items given pairwise comparisons
between these items. Intuitively, the algorithm assigns similar rankings to items that com-
pare similarly with all others. It does so by constructing a similarity matrix from pairwise
comparisons, using seriation methods to reorder this matrix and construct a ranking. We
first show that this spectral seriation algorithm recovers the true ranking when all pairwise
comparisons are observed and consistent with a total order. We then show that ranking
reconstruction is still exact when some pairwise comparisons are corrupted or missing, and
that seriation based spectral ranking is more robust to noise than classical scoring meth-
ods. Finally, we bound the ranking error when only a random subset of the comparions
are observed. An additional benefit of the seriation formulation is that it allows us to
solve semi-supervised ranking problems. Experiments on both synthetic and real datasets
demonstrate that seriation based spectral ranking achieves competitive and in some cases
superior performance compared to classical ranking methods.

Keywords: Ranking, seriation, spectral methods

1. Introduction

We study the problem of ranking a set of n items given pairwise comparisons between these
items1. The problem of aggregating binary relations has been formulated more than two
centuries ago, in the context of emerging social sciences and voting theories (de Borda, 1781;
de Condorcet, 1785). The setting we study here goes back at least to (Zermelo, 1929; Kendall
and Smith, 1940) and seeks to reconstruct a ranking of items from pairwise comparisons
reflecting a total ordering. In this case, the directed graph of all pairwise comparisons,
where every pair of vertices is connected by exactly one of two possible directed edges, is
usually called a tournament graph in the theoretical computer science literature or a “round

1. A subset of these results appeared at NIPS 2014.
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robin” in sports, where every player plays every other player once and each preference marks
victory or defeat. The motivation for this formulation often stems from the fact that in
many applications, e.g. music, images, and movies, preferences are easier to express in
relative terms (e.g. a is better than b) rather than absolute ones (e.g. a should be ranked
fourth, and b seventh). In practice, the information about pairwise comparisons is usually
incomplete, especially in the case of a large set of items, and the data may also be noisy,
that is some pairwise comparisons could be incorrectly measured and inconsistent with a
total order.

Ranking is a classical problem but its formulations vary widely. In particular, assump-
tions about how the pairwise preference information is obtained vary a lot from one reference
to another. A subset of preferences is measured adaptively in (Ailon, 2011; Jamieson and
Nowak, 2011), while (Freund et al., 2003; Negahban et al., 2012) extract them at random.
In other settings, the full preference matrix is observed, but is perturbed by noise: in e.g.
(Bradley and Terry, 1952; Luce, 1959; Herbrich et al., 2006), a parametric model is assumed
over the set of permutations, which reformulates ranking as a maximum likelihood problem.

Loss functions, performance metrics and algorithmic approaches vary as well. Kenyon-
Mathieu and Schudy (2007), for example, derive a PTAS for the minimum feedback arc set
problem on tournaments, i.e. the problem of finding a ranking that minimizes the number
of upsets (a pair of players where the player ranked lower on the ranking beats the player
ranked higher). In practice, the complexity of this method is relatively high, and other
authors (see e.g. Keener, 1993; Negahban et al., 2012) have been using spectral methods
to produce more efficient algorithms (each pairwise comparison is understood as a link
pointing to the preferred item). In other cases, such as the classical Analytic Hierarchy
Process (AHP) (Saaty, 1980; Barbeau, 1986) preference information is encoded in a “re-
ciprocal” matrix whose Perron-Frobenius eigenvector provides the global ranking. Simple
scoring methods such as the point difference rule (Huber, 1963; Wauthier et al., 2013) pro-
duce efficient estimates at very low computational cost. Website ranking methods such as
PageRank (Page et al., 1998) and HITS (Kleinberg, 1999) seek to rank web pages based on
the hyperlink structure of the web, where links do not necessarily express consistent prefer-
ence relationships (e.g. a can link to b and b can link c, and c can link to a). (Negahban et al.,
2012) adapt the PageRank argument to the ranking from pairwise comparisons and Vigna
(2009) provides a review of ranking algorithms given pairwise comparisons, in particular
those involving the estimation of the stationary distribution of a Markov chain. Ranking
has also been approached as a prediction problem, i.e. learning to rank (Schapire et al.,
1998; Rajkumar and Agarwal, 2014), with (Joachims, 2002) for example using support vec-
tor machines to learn a score function. Finally, in the Bradley-Terry-Luce framework, where
multiple observations on pairwise preferences are observed and assumed to be generated by
a generalized linear model, the maximum likelihood problem is usually solved using fixed
point algorithms or EM-like majorization-minimization techniques (Hunter, 2004). Jiang
et al. (2011) describes the HodgeRank algorithm, which formulates ranking given pairwise
comparisons as a least-square problem. This formulation is based on Hodge theory and pro-
vides tools to measure the consistency of a set of pairwise comparisons with the existence
of a global ranking. Duchi et al. (2010, 2013) analyze the consistency of various ranking
algorithms given pairwise comparisons and a query. Preferences are aggregated through
standard procedures, e.g., computing the mean of comparisons from different users, then
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ranking are derived using classical algorithms, e.g., Borda Count, Bradley-Terry-Model
maximum likelihood estimation, least squares, odd-ratios (Saaty, 2003).

Here, we show that the ranking problem is directly related to another classical ordering
problem, namely seriation. Given a similarity matrix between a set of n items and assuming
that the items can be ordered along a chain (path) such that the similarity between items
decreases with their distance within this chain (i.e. a total order exists), the seriation
problem seeks to reconstruct the underlying linear ordering based on unsorted, possibly
noisy, pairwise similarity information. Atkins et al. (1998) produced a spectral algorithm
that exactly solves the seriation problem in the noiseless case, by showing that for similarity
matrices computed from serial variables, the ordering of the eigenvector corresponding to
the second smallest eigenvalue of the Laplacian matrix (a.k.a. the Fiedler vector) matches
that of the variables. In practice, this means that performing spectral ordering on the
similarity matrix exactly reconstructs the correct ordering provided items are organized in
a chain.

We adapt these results to ranking to produce a very efficient spectral ranking algorithm
with provable recovery and robustness guarantees. Furthermore, the seriation formulation
allows us to handle semi-supervised ranking problems. Fogel et al. (2013) show that seriation
is equivalent to the 2-SUM problem and study convex relaxations to seriation in a semi-
supervised setting, where additional structural constraints are imposed on the solution.
Several authors (Blum et al., 2000; Feige and Lee, 2007) have also focused on the directly
related Minimum Linear Arrangement (MLA) problem, for which excellent approximation
guarantees exist in the noisy case, albeit with very high polynomial complexity.

The main contributions of this paper can be summarized as follows. We link seriation
and ranking by showing how to construct a consistent similarity matrix based on consistent
pairwise comparisons. We then recover the true ranking by applying the spectral seriation
algorithm in (Atkins et al., 1998) to this similarity matrix (we call this method SerialRank in
what follows). In the noisy case, we then show that spectral seriation can perfectly recover
the true ranking even when some of the pairwise comparisons are either corrupted or missing,
provided that the pattern of errors is somewhat unstructured. We show in particular that,
in a regime where a high proportion of comparisons are observed, some incorrectly, the
spectral solution is more robust to noise than classical scoring based methods. On the other
hand, when only few comparisons are observed, we show that for Erdös-Rényi graphs, i.e.,
when pairwise comparisons are observed independently with a given probability, Ω(n log4 n)
comparisons suffice for `2 consistency of the Fiedler vector and hence `2 consistency of the
retreived ranking w.h.p. On the other hand we need Ω(n3/2 log4 n) comparisons to retrieve
a ranking whose local perturbations are bounded in `∞ norm. Since for Erdös-Rényi graphs
the induced graph of comparisons is connected with high probability only when the total
number of pairs sampled scales as Ω(n log n) (aka the coupon collector effect), we need at
least that many comparisons in order to retrieve a ranking, therefore the `2 consistency
result can be seen as optimal up to a polylogarithmic factor. Finally, we use the seriation
results in (Fogel et al., 2013) to produce semi-supervised ranking solutions.

The paper is organized as follows. In Section 2 we recall definitions related to seriation,
and link ranking and seriation by showing how to construct well ordered similarity matrices
from well ranked items. In Section 3 we apply the spectral algorithm of (Atkins et al., 1998)
to reorder these similarity matrices and reconstruct the true ranking in the noiseless case.
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In Section 4 we then show that this spectral solution remains exact in a noisy regime where
a random subset of comparisons is corrupted. In Section 5 we analyze ranking perturbation
results when only few comparisons are given following an Erdös-Rényi graph. Finally, in
Section 6 we illustrate our results on both synthetic and real datasets, and compare ranking
performance with classical MLE, spectral and scoring based approaches.

2. Seriation, Similarities & Ranking

In this section we first introduce the seriation problem, i.e. reordering items based on
pairwise similarities. We then show how to write the problem of ranking given pairwise
comparisons as a seriation problem.

2.1 The Seriation Problem

The seriation problem seeks to reorder n items given a similarity matrix between these items,
such that the more similar two items are, the closer they should be. This is equivalent to
supposing that items can be placed on a chain where the similarity between two items
decreases with the distance between these items in the chain. We formalize this below,
following (Atkins et al., 1998).

Definition 1 We say that a matrix A ∈ Sn is an R-matrix (or Robinson matrix) if and
only if it is symmetric and Ai,j ≤ Ai,j+1 and Ai+1,j ≤ Ai,j in the lower triangle, where
1 ≤ j < i ≤ n.

Another way to formulate R-matrix conditions is to impose Aij ≥ Akl if |i− j| ≤ |k− l|
off-diagonal, i.e. the coefficients of A decrease as we move away from the diagonal. We
also introduce a definition for strict R-matrices A, whose rows and columns cannot be
permuted without breaking the R-matrix monotonicity conditions. We call reverse identity
permutation the permutation that puts rows and columns 1, 2, . . . , n of a matrix A in reverse
order n, n− 1, . . . , 1.

Definition 2 An R-matrix A ∈ Sn is called strict-R if and only if the identity and reverse
identity permutations of A are the only permutations reordering A as an R-matrix.

Any R-matrix with only strict R-constraints is a strict R-matrix. Following (Atkins
et al., 1998), we will say that A is pre-R if there is a permutation matrix Π such that
ΠAΠT is an R-matrix. Given a pre-R matrix A, the seriation problem consists in finding a
permutation Π such that ΠAΠT is an R-matrix. Note that there might be several solutions
to this problem. In particular, if a permutation Π is a solution, then the reverse permutation
is also a solution. When only two permutations of A produce R-matrices, A will be called
pre-strict-R.

2.2 Constructing Similarity Matrices from Pairwise Comparisons

Given an ordered input pairwise comparison matrix, we now show how to construct a
similarity matrix which is strict-R when all comparisons are given and consistent with the
identity ranking (i.e., items are ranked in increasing order of indices). This means that the
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similarity between two items decreases with the distance between their ranks. We will then
be able to use the spectral seriation algorithm by (Atkins et al., 1998) described in Section 3
to reconstruct the true ranking from a disordered similarity matrix.

We first show how to compute a pairwise similarity from pairwise comparisons between
items by counting the number of matching comparisons. Another formulation allows us to
handle the generalized linear model. These two examples are only two particular instances of
a broader class of ranking algorithms derived here. Any method which produces R-matrices
from pairwise preferences yields a valid ranking algorithm.

2.2.1 Similarities from Pairwise Comparisons

Suppose we are given a matrix of pairwise comparisons C ∈ {−1, 0, 1}n×n such that Ci,j =
−Cj,i for every i 6= j and

Ci,j =


1 if i is ranked higher than j
0 if i and j are not compared or in a draw
−1 if j is ranked higher than i

(1)

setting Ci,i = 1 for all i ∈ {1, . . . , n}. We define the pairwise similarity matrix Smatch as

Smatch
i,j =

n∑
k=1

(
1 + Ci,kCj,k

2

)
. (2)

Since Ci,kCj,k = 1, if Ci,k and Cj,k have matching signs, and Ci,kCj,k = −1 if they have
opposite signs, Smatch

i,j counts the number of matching comparisons between i and j with
other reference items k. If i or j is not compared with k, then Ci,kCj,k = 0 and the term
(1 + Ci,kCj,k)/2 has an neutral effect on the similarity of 1/2. Note that we also have

Smatch =
1

2

(
n11T + CCT

)
. (3)

The intuition behind the similarity Smatch is easy to understand in a tournament setting:
players that beat the same players and are beaten by the same players should have a similar
ranking.

The next result shows that when all comparisons are given and consistent with the
identity ranking, then the similarity matrix Smatch is a strict R-matrix. Without loss of
generality, we assume that items are ranked in increasing order of their indices. In the
general case, we can simply replace the strict-R property by the pre-strict-R property.

Proposition 3 Given all pairwise comparisons between items ranked according to the iden-
tity permutation (with no ties), the similarity matrix Smatch constructed in (2) is a strict
R-matrix and

Smatch
i,j = n− |i− j| (4)

for all i, j = 1, . . . , n.
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Proof Since items are ranked as 1, 2, . . . , n with no ties and all comparisons given, Ci,j = −1
if i < j and Ci,j = 1 otherwise. Therefore we obtain from definition (2)

Smatch
i,j =

min(i,j)−1∑
k=1

(
1 + 1

2

)
+

max(i,j)−1∑
k=min(i,j)

(
1− 1

2

)
+

n∑
k=max(i,j)

(
1 + 1

2

)
= n− (max(i, j)−min(i, j))

= n− |i− j|

This means in particular that Smatch is strictly positive and its coefficients are strictly de-
creasing when moving away from the diagonal, hence Smatch is a strict R-matrix.

2.2.2 Similarities in the Generalized Linear Model

Suppose that paired comparisons are generated according to a generalized linear model
(GLM), i.e., we assume that the outcomes of paired comparisons are independent and for
any pair of distinct items, item i is observed ranked higher than item j with probability

Pi,j = H(νi − νj) (5)

where ν ∈ Rn is a vector of skill parameters and H : R → [0, 1] is a function that is
increasing on R and such that H(−x) = 1 − H(x) for all x ∈ R, and limx→−∞H(x) = 0
and limx→∞H(x) = 1. A well known special instance of the generalized linear model is the
Bradley-Terry-Luce model for which H(x) = 1/(1 + e−x), for x ∈ R.

Let mi,j be the number of times items i and j were compared, Csi,j ∈ {−1, 1} be the
outcome of comparison s and Q be the matrix of corresponding sample probabilities, i.e. if
mi,j > 0 we have

Qi,j =
1

mi,j

mi,j∑
s=1

Csi,j + 1

2

and Qi,j = 1/2 in case mi,j = 0. We define the similarity matrix Sglm from the observations
Q as

Sglm
i,j =

n∑
k=1

1{mi,kmj,k>0} (1− |Qi,k −Qj,k|) +
1{mi,kmj,k=0}

2
. (6)

Since the comparison observations are independent we have that Qi,j converges to Pi,j as

mi,j goes to infinity and the central limit theorem implies that Sglm
i,j converges to a Gaussian

variable with mean
n∑
k=1

(1− |Pi,k − Pj,k|) .

The result below shows that this limit similarity matrix is a strict R-matrix when items are
properly ordered.

Proposition 4 If items are ordered according to the order in decreasing values of the skill
parameters, the similarity matrix Sglm is a strict R matrix with high probability as the
number of observations goes to infinity.
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Proof Without loss of generality, we suppose the true order is 1, 2, . . . , n, with ν(1) > . . . >
ν(n). For any i, j, k such that i > j, using the GLM assumption (i) we get

Pi,k = H(ν(i)− ν(k)) < H(ν(j)− ν(k)) = Pj,k.

Since empirical probabilities Qi,j converge to Pi,j , when the number of observations is large
enough, we also have Qi,k < Qj,k for any i, j, k such that i > j (we focus w.l.o.g. on the

lower triangle), and we can therefore remove the absolute value in the expression of Sglm
i,j

for i > j. Hence for any i > j we have

Sglm
i+1,j − S

glm
i,j = −

n∑
k=1

|Qi+1,k −Qj,k|+
n∑
k=1

|Qi,k −Qj,k|

=

n∑
k=1

(Qi+1,k −Qj,k)− (Qi,k −Qj,k)

=
n∑
k=1

Qi+1,k −Qi,k < 0.

Similarly for any i > j, Sglm
i,j−1 − S

glm
i,j < 0, so Sglm is a strict R-matrix.

Notice that we recover the original definition of Smatch in the case of binary comparisons,
though it does not fit in the Generalized Linear Model. Note also that these definitions can
be directly extended to the setting where multiple comparisons are available for each pair
and aggregated in comparisons that take fractional values (e.g., a tournament setting where
participants play several times against each other).

3. Spectral Algorithms

We first recall how spectral ordering can be used to recover the true ordering in seriation
problems. We then apply this method to the ranking problem.

3.1 Spectral Seriation Algorithm

We use the spectral computation method originally introduced in (Atkins et al., 1998) to
solve the seriation problem based on the similarity matrices defined in the previous section.
We first recall the definition of the Fiedler vector (which is shown to be unique in our setting
in Lemma 7).

Definition 5 The Fiedler value of a symmetric, nonnegative and irreducible matrix A is
the smallest non-zero eigenvalue of its Laplacian matrix LA = diag(A1) − A. The corre-
sponding eigenvector is called Fiedler vector and is the optimal solution to min{yTLAy :
y ∈ Rn, yT1 = 0, ‖y‖2 = 1}.

The main result from (Atkins et al., 1998), detailed below, shows how to reorder pre-R
matrices in a noise free case.
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Proposition 6 (Atkins et al., 1998, Th. 3.3) Let A ∈ Sn be an irreducible pre-R-matrix
with a simple Fiedler value and a Fiedler vector v with no repeated values. Let Π1 ∈ P
(respectively, Π2) be the permutation such that the permuted Fiedler vector Π1v is strictly
increasing (decreasing). Then Π1AΠT

1 and Π2AΠT
2 are R-matrices, and no other permuta-

tions of A produce R-matrices.

The next technical lemmas extend the results in Atkins et al. (1998) to strict R-matrices
and will be used to prove Theorem 10 in next section. The first one shows that without
loss of generality, the Fiedler value is simple.

Lemma 7 If A is an irreducible R-matrix, up to a uniform shift of its coefficients, A has
a simple Fiedler value and a monotonic Fiedler vector.

Proof We use (Atkins et al., 1998, Th. 4.6) which states that if A is an irreducible R-matrix
with An,1 = 0, then the Fiedler value of A is a simple eigenvalue. Since A is an R-matrix,
An,1 is among its minimal elements. Subtracting it from A does not affect the nonnegativity
of A and we can apply (Atkins et al., 1998, Th. 4.6). Monotonicity of the Fiedler vector
then follows from (Atkins et al., 1998, Th. 3.2).

The next lemma shows that the Fiedler vector is strictly monotonic if A is a strict
R-matrix.

Lemma 8 Let A ∈ Sn be an irreducible R-matrix. Suppose there are no distinct indices
r < s such that for any k 6∈ [r, s], Ar,k = Ar+1,k = . . . = As,k, then, up to a uniform shift,
the Fiedler value of A is simple and its Fiedler vector is strictly monotonic.

Proof By Lemma 7, the Fiedler value of A is simple (up to a uniform shift of A). Let
x be the corresponding Fiedler vector of A, x is monotonic by Lemma 7. Suppose [r, s]
is a nontrivial maximal interval such that xr = xr+1 = . . . = xs, then by (Atkins et al.,
1998, lemma 4.3), for any k 6∈ [r, s], Ar,k = Ar+1,k = . . . = As,k, which contradicts the initial
assumption. Therefore x is strictly monotonic.

In fact, we only need a small portion of the R-constraints to be strict for the previous
lemma to hold. We now show that the main assumption on A in Lemma 8 is equivalent to
A being strict-R.

Lemma 9 An irreducible R-matrix A ∈ Sn is strictly R if and only if there are no distinct
indices r < s such that for any k 6∈ [r, s], Ar,k = Ar+1,k = . . . = As,k.

Proof Let A ∈ Sn an R-matrix. Let us first suppose there are no distinct indices r < s
such that for any k 6∈ [r, s], Ar,k = Ar+1,k = . . . = As,k. By Lemma 8 the Fiedler value of
A is simple and its Fiedler vector is strictly monotonic. Hence by Proposition 6, only the
identity and reverse identity permutations of A produce R-matrices. Now suppose there
exist two distinct indices r < s such that for any k 6∈ [r, s], Ar,k = Ar+1,k = . . . = As,k. In
addition to the identity and reverse identity permutations, we can locally reverse the order
of rows and columns from r to s, since the sub matrix Ar:s,r:s is an R-matrix and for any
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Algorithm 1 (SerialRank)

Input: A set of pairwise comparisons Ci,j ∈ {−1, 0, 1} or [−1, 1].
1: Compute a similarity matrix S as in §2.2
2: Compute the Laplacian matrix

LS = diag(S1)− S (SerialRank)

3: Compute the Fiedler vector of S.
Output: A ranking induced by sorting the Fiedler vector of S (choose either increasing or

decreasing order to minimize the number of upsets).

k 6∈ [r, s], Ar,k = Ar+1,k = . . . = As,k. Therefore at least four different permutations of A
produce R-matrices, which means that A is not strictly R.

3.2 SerialRank: a Spectral Ranking Algorithm

In Section 2, we showed that similarities Smatch and Sglm are pre-strict-R when all com-
parisons are available and consistent with an underlying ranking of items. We now use
the spectral seriation method in (Atkins et al., 1998) to reorder these matrices and pro-
duce a ranking. Spectral ordering requires computing an extremal eigenvector, at a cost of
O(n2 log n) flops (Kuczynski and Wozniakowski, 1992). We call this algorithm SerialRank
and prove the following result.

Theorem 10 Given all pairwise comparisons for a set of totally ordered items and assum-
ing there are no ties between items, algorithm SerialRank, i.e., sorting the Fiedler vector of
the matrix Smatch defined in (3), recovers the true ranking of items.

Proof From Proposition 3, under assumptions of the proposition Smatch is a pre-strict
R-matrix. Now combining the definition of strict-R matrices in Lemma 9 with Lemma 8,
we deduce that Fiedler value of Smatch is simple and its Fiedler vector has no repeated
values. Hence by Proposition 6, only the two permutations that sort the Fiedler vector
in increasing and decreasing order produce strict R-matrices and are candidate rankings
(by Proposition 3 Smatch is a strict R-matrix when ordered according to the true ranking).
Finally we can choose between the two candidate rankings (increasing and decreasing) by
picking the one with the least upsets.

Similar results apply for Sglm given enough comparisons in the Generalized Linear
Model. This last result guarantees recovery of the true ranking of items in the noise-
less case. In the next section, we will study the impact of corrupted or missing comparisons
on the inferred ranking of items.

9
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4. Exact Recovery with Corrupted and Missing Comparisons

In this section we study the robustness of SerialRank using Smatch with respect to noisy
and missing pairwise comparisons. We will see that noisy comparisons cause ranking ambi-
guities for the point score method and that such ambiguities are to be lifted by the spectral
ranking algorithm. We show in particular that the SerialRank algorithm recovers the exact
ranking when the pattern of errors is random and errors are not too numerous. We first
study the impact of one corrupted comparison on SerialRank, then extend the result to
multiple corrupted comparisons. A similar analysis is provided for missing comparisons as
Corollary 27. in the Appendix. Finally, Proposition 14 provides an estimate of the number
of randomly corrupted entries that can be tolerated for perfect recovery of the true ranking.
We begin by recalling the definition of the point score of an item.

Definition 11 The point score wi of an item i, also known as point-difference, or row-sum
is defined as wi =

∑n
k=1Ck,i, which corresponds to the number of wins minus the number

of losses in a tournament setting.

In the following we will denote by w the point score vector.

Proposition 12 Given all pairwise comparisons Cs,t ∈ {−1, 1} between items ranked ac-
cording to their indices, suppose the sign of one comparison Ci,j (and its counterpart Cj,i)
is switched, with i < j. If j − i > 2 then Smatch defined in (3) remains strict-R, whereas
the point score vector w has ties between items i and i+ 1 and items j and j − 1.

Proof We give some intuition for the result in Figure 1. We write the true score and
comparison matrix w and C, while the observations are written ŵ and Ĉ respectively. This
means in particular that Ĉi,j = −Ci,j = 1 and Ĉj,i = −Cj,i = −1. To simplify notations we
denote by S the similarity matrix Smatch (respectively Ŝ when the similarity is computed
from observations). We first study the impact of a corrupted comparison Ci,j for i < j on
the point score vector ŵ. We have

ŵi =
n∑
k=1

Ĉk,i =
n∑
k=1

Ck,i + Ĉj,i − Cj,i = wi − 2 = wi+1,

similarly ŵj = wj−1, whereas ŵk = wk for k 6= i, j. Hence, the incorrect comparison induces
two ties in the point score vector w. Now we show that the similarity matrix defined in (3)
breaks these ties, by showing that it is a strict R-matrix. Writing Ŝ in terms of S, we get
for any t 6= i, j

[ĈĈT ]i,t =
∑
k 6=j

(
Ĉi,kĈt,k

)
+ Ĉi,jĈt,j =

∑
k 6=j

(Ci,kCt,k) + Ĉi,jCt,j =

{
[CCT ]i,t − 2 if t < j[
CCT

]
i,t

+ 2 if t > j.

Thus we obtain

Ŝi,t =

{
Si,t − 1 if t < j
Si,t + 1 if t > j,

(remember there is a factor 1/2 in the definition of S). Similarly we get for any t 6= i, j

Ŝj,t =

{
Sj,t + 1 if t < i
Sj,t − 1 if t > i.

10
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Finally, for the single corrupted index pair (i, j), we get

Ŝi,j =
1

2

n+
∑
k 6=i,j

(
Ĉi,kĈj,k

)
+ Ĉi,iĈj,i + Ĉi,jĈj,j

 = Si,j − 1 + 1 = Si,j .

The diagonal of S is not impacted since [ĈĈT ]i,i =
∑n

k=1

(
Ĉi,kĈi,k

)
= n. For all other

coefficients (s, t) such that s, t 6= i, j, we also have Ŝs,t = Ss,t, which means that all rows
or columns outside of i, j are left unchanged. We first observe that these last equations,
together with our assumption that j − i > 2 and the fact that the elements of the exact S
in (4) differ by at least one, imply that

Ŝs,t ≤ Ŝs+1,t and Ŝs,t+1 ≤ Ŝs,t, for s < t

so Ŝ remains an R-matrix. Note that this result remains true even when j − i = 2, but
we need some strict inequalities to show uniqueness of the retrieved order. Indeed, because
j − i > 2 all these R constraints are strict except between elements of rows i and i+ 1, and
rows j − 1 and j (and similarly for columns). These ties can be broken using the fact that

Ŝi,j−1 = Si,j−1 − 1 < Si+1,j−1 − 1 = Ŝi+1,j−1 − 1 < Ŝi+1,j−1

which means that Ŝ is still a strict R-matrix (see Figure 1) since j−1 > i+1 by assumption.

We now extend this result to multiple errors.

Proposition 13 Given all pairwise comparisons Cs,t ∈ {−1, 1} between items ranked ac-
cording to their indices, suppose the signs of m comparisons indexed (i1, j1), . . . , (im, jm)
are switched. If the following condition (7) holds true,

|s− t| > 2, for all s, t ∈ {i1, . . . , im, j1, . . . , jm} with s 6= t, (7)

then Smatch defined in (3) remains strict-R, whereas the point score vector w has 2m ties.

Proof We write the true score and comparison matrix w and C, while the observations
are written ŵ and Ĉ respectively, and without loss of generality we suppose il < jl. This
implies that Ĉil,jl = −Cil,jl = 1 and Ĉjl,il = −Cjl,il = −1 for all l in {1, . . . ,m}. To simplify
notations, we denote by S the similarity matrix Smatch (respectively Ŝ when the similarity
is computed from observations).

As in the proof of Proposition 12, corrupted comparisons indexed (il, jl) induce shifts
of ±1 on columns and rows il and jl of the similarity matrix Smatch, while Smatch

il,jl
values

remain the same. Since there are several corrupted comparisons, we also need to check the
values of Ŝ at the intersections of rows and columns with indices of corrupted comparisons.
Formally, for any (i, j) ∈ {(i1, j1), . . . (im, jm)} and t 6∈ {i1, . . . , im, j1, . . . , jm}

Ŝi,t =

{
Si,t + 1 if t < j
Si,t − 1 if t > j,

11
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Similarly for t 6∈ {i1, . . . , im, j1, . . . , jm}

Ŝj,t =

{
Sj,t − 1 if t < i
Sj,t + 1 if t > i.

Let (s, s′) and (t, t′) ∈ {(i1, j1), . . . (im, jm)}, we have

Ŝs,t = 1
2

(
n+

∑
k 6=s′,t′

(
Ĉs,kĈt,k

)
+ Ĉs,s′Ĉt,s′ + Ĉs,t′Ĉt,t′

)
= 1

2

(
n+

∑
k 6=s′,t′ (Cs,kCt,k)− Cs,s′Ct,s′ − Cs,t′Ct,t′

)
Without loss of generality we suppose s < t, and since s < s′ and t < t′, we obtain

Ŝs,t =

{
Ss,t if t > s′

Ss,t + 2 if t < s′.

Similar results apply for other intersections of rows and columns with indices of corrupted
comparisons (i.e., shifts of 0, +2, or −2). For all other coefficients (s, t) such that s, t 6∈
{i1, . . . , im, j1, . . . , jm}, we have Ŝs,t = Ss,t. We first observe that these last equations,
together with our assumption that jl − il > 2, mean that

Ŝs,t ≤ Ŝs+1,t and Ŝs,t+1 ≤ Ŝs,t, for any s < t

so Ŝ remains an R-matrix. Moreover, since jl − il > 2 all these R constraints are strict
except between elements of rows il and il + 1, and rows jl − 1 and jl (similar for columns).
These ties can be broken using the fact that for k = jl − 1

Ŝil,k = Sil,k − 1 < Sil+1,k − 1 = Ŝil+1,k − 1 < Ŝil+1,k

which means that Ŝ is still a strict R-matrix since k = jl − 1 > il + 1. Moreover, using the
same argument as in the proof of Proposition 12, corrupted comparisons induces 2m ties in
the point score vector w.

For the case of one corrupted comparison, note that the separation condition on the pair
of items (i, j) is necessary. When the comparison Ci,j between two adjacent items is cor-
rupted, no ranking method can break the resulting tie. For the case of arbitrary number of
corrupted comparisons, condition (7) is a sufficient condition only. We study exact ranking
recovery conditions with missing comparisons in the Appendix, using similar arguments.
We now estimate the number of randomly corrupted entries that can be tolerated while
maintaining exact recovery of the true ranking.

Proposition 14 Given a comparison matrix for a set of n items with m corrupted com-
parisons selected uniformly at random from the set of all possible item pairs. Algorithm Se-
rialRank guarantees that the probability of recovery p(n,m) satisfies p(n,m) ≥ 1 − δ, pro-
vided that m = O(

√
δn). In particular, this implies that p(n,m) = 1 − o(1) provided that

m = o(
√
n).

12
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Proof Let P be the set of all distinct pairs of items from the set {1, 2, . . . , n}. Let X be the
set of all admissible sets of pairs of items, i.e. containing each X ⊆ P such that X satisfies
condition (7). We consider the case of m ≥ 1 distinct pairs of items sampled from the set
P uniformly at random without replacement. Let Xi denote the set of sampled pairs given
that i pairs are sampled. We seek to bound p(n,m) = Prob(Xm ∈ X ). Given a set of pairs
X ∈ X , let T (X) be the set of non-admissible pairs, i.e. containing (i, j) ∈ P \X such that
X ∪ (i, j) /∈ X . We have

Prob(Xm ∈ X ) =
∑

x∈X :|x|=m−1

(
1− |T (x)|
|P| − (m− 1)

)
Prob(Xm−1 = x). (8)

Note that every selected pair from P contributes at most 15n non-admissible pairs. Indeed,
given a selected pair (i, j), a non-admissible pair (s, t) should respect one of the following
conditions |s − i| ≤ 2, |s − j| ≤ 2, |t − i| ≤ 2, |t − j| ≤ 2 or |s − t| ≤ 2. Given any item s,
there are 15 possible choice of t to output a non-admissible pair (s, t), resulting in at most
15n non-admissible pairs for the selected pair (i, j).

Hence, for every x ∈ X we have

|T (x)| ≤ 15n|x|.

Combining this with (8) and the fact that |P| =
(
n
2

)
, we have

Prob(Xm ∈ X ) ≥

(
1− 15n(

n
2

)
− (m− 1)

(m− 1)

)
Prob(Xm−1 ∈ X ).

From this it follows

p(n,m) ≥
m−1∏
i=1

(
1− 15n(

n
2

)
− (i− 1)

i

)

≥
m−1∏
i=1

(
1− i

a(n,m)

)
where

a(n,m) =

(
n
2

)
− (m− 1)

15n
.

Notice that when m = o(n) we have
(

1− i
a(n,m)

)
∼ exp(−30i/n) and

m−1∏
i=1

(
1− i

a(n,m)

)
∼

m−1∏
i=1

exp(−30i/n) ∼ exp

(
−15m2

n

)
for large n.

Hence, given δ > 0, p(n,m) ≥ 1− δ provided that m = O(
√
nδ). If δ = o(1), the condition

is m = o(
√
n).

13
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5. Spectral Perturbation Analysis

In this section we analyze how SerialRank performs when only a small fraction of pairwise
comparisons are given. We show that for Erdös-Rényi graphs, i.e., when pairwise compar-
isons are observed independently with a given probability, Ω(n log4 n) comparisons suffice
for `2 consistency of the Fiedler vector and hence `2 consistency of the retreived ranking
w.h.p. On the other hand we need Ω(n3/2 log4 n) comparisons to retrieve a ranking whose
local perturbations are bounded in `∞ norm. Since Erdös-Rényi graphs are connected with
high probability only when the total number of pairs sampled scales as Ω(n log n), we need
at least that many comparisons in order to retrieve a ranking, therefore the `2 consistency
result can be seen as optimal up to a polylogarithmic factor.

Our bounds are mostly related to the work of (Wauthier et al., 2013). In its simplified
version (Theorem 4.2 Wauthier et al., 2013) shows that when ranking items according to
their point score, for any precision parameter µ ∈ (0, 1), sampling independently with fixed

probability Ω
(
n logn
µ2

)
comparisons guarantees that the maximum displacement between

the retrieved ranking and the true ranking, i.e., the `∞ distance to the true ranking, is
bounded by µn with high probability for n large enough.

Sample complexity bounds have also been studied for the Rank Centrality algorithm
(Dwork et al., 2001; Negahban et al., 2012). In their analysis, (Negahban et al., 2012)
suppose that some pairs are sampled independently with fixed probability, and then k
comparisons are generated for each sampled pair, under a Bradley-Terry-Luce model (BTL).
When ranking items according to the stationary distribution of a transition matrix estimated
from comparisons, sampling Ω(n·polylog(n)) pairs are enough to bound the relative `2 norm
perturbation of the stationary distribution. However, as pointed out by (Wauthier et al.,
2013), repeated measurements are not practical, e.g., if comparisons are derived from the
outcomes of sports games or the purchasing behavior of a customer (a customer typically
wants to purchase a product only once). Moreover, (Negahban et al., 2012) do not provide
bounds on the relative `∞ norm perturbation of the ranking.

We also refer the reader to the recent work of Rajkumar and Agarwal (2014), who provide
a survey of sample complexity bounds for Rank Centrality, maximum likelihood estimation,
least-square ranking and an SVM based ranking, under a more flexible sampling model.
However, those bounds only give the sampling complexity for exact recovery of ranking,
which is usually prohibitive when n is large, and are more difficult to interpret.

Finally, we refer the interested reader to (Huang et al., 2008; Shamir and Tishby, 2011)
for sampling complexity bounds in the context of spectral clustering.

Limitations. We emphasize that sampling models based on Erdös-Rényi graphs are not
the most realistic, though they have been studied widely in the literature (see for instance
Feige et al., 1994; Braverman and Mossel, 2008; Wauthier et al., 2013). Indeed, pairs are
not likely to be sampled independently. For instance, when ranking movies, popular movies
in the top ranks are more likely to be compared. Corrupted comparisons are also more
likely between items that have close rankings. We hope to extend our perturbation analysis
to more general models in future work.

A second limitation of our perturbation analysis comes from the setting of ordinal com-
parisons, i.e., binary comparisons, since in many applications, several comparisons are pro-
vided for each sampled pair. Nevertheless, the setting of ordinal comparisons is interesting

14
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for the analysis of SerialRank, since numerical experiments suggest that it is the setting for
which SerialRank provides the best results compared to other methods. Note that in prac-
tice, we can easily get rid of this limitation (see Section 2.2.2 and 6). We refer the reader to
numerical experiments in Section 6, as well as a recent paper by Cucuringu (2015), which
introduces another ranking algorithm called SyncRank, and provides extensive numerical
experiments on state-of-the-art ranking algorithms, including SerialRank.

Choice of Laplacian: normalized vs. unnormalized. In the spectral clustering
literature, several constructions for the Laplacian operators are suggested, namely the un-
normalized Laplacian (used in SerialRank), the symmetric normalized Laplacian, and the
non-symmetric normalized Laplacian. Von Luxburg et al. (2008) show stronger consistency
results for spectral clustering by using the non-symmetric normalized Laplacian. Here, we
show that the Fiedler vector of the normalized Laplacian is an affine function of the rank-
ing, hence sorting the Fiedler vector still guarantees exact recovery of the ranking, when all
comparisons are observed and consistent with a global ranking. In contrast, we only get an
asymptotic expression for the unnormalized Laplacian (cf. section A). This motivated us
to provide an analysis of SerialRank robustness based on the normalized Laplacian, though
in practice the use of the unnormalized Laplacian is valid and seems to give better results
(cf. Figures 2 and 5).

Notations. Throughout this section, we only focus on the similarity Smatch in (3)
and write it S to simplify notations. W.l.o.g. we assume in the following that the true
ranking is the identity, hence S is an R-matrix. We write ‖ · ‖2 the operator norm of
a matrix, which corresponds to the maximal absolute eigenvalue for symmetric matrices.
‖ · ‖F denotes the Frobenius norm. We refer to the eigenvalues of the Laplacian as λi, with
λ1 = 0 ≤ λ2 ≤ . . . ≤ λn. For any quantity x, we denote by x̃ its perturbed analogue.
We define the residual matrix R = S̃ − S and write f the normalized Fiedler vector of the
Laplacian matrix LS . We define the degree matrix DS = diag(D1) the diagonal matrix
whose elements are the row-sums of matrix S. Whenever we use the abreviation w.h.p.,
this means that the inequality is true with probability greater than 1 − 2/n. Finally, we
will use c > 0 for absolute constants, whose values are allowed to vary from one equation
to another.

We assume that our information on preferences is both incomplete and corrupted.
Specifically, pairwise comparisons are independently sampled with probability q and these
sampled comparisons are consistent with the underlying total ranking with probability p.
Let us define C̃ = B◦C the matrix of observed comparisons, where C is the true comparison
matrix defined in (1), ◦ is the Hadamard product and B is a symmetric matrix with entries

Bi,j =


0 with probability 1− q
1 with probability qp
−1 with probability q(1− p).

In order to obtain an unbiased estimator of the comparison matrix defined in (1), we
normalize C̃ by its mean value q(2p− 1) and redefine S̃ as

S̃ =
1

q2(2p− 1)2
C̃C̃T + n11T .

For ease of notations we have dropped the factor 1/2 in (3) w.l.o.g. (positive multiplicative
factors of the Laplacian do not affect its eigenvectors).
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5.1 Results

We now state our main results. The first one bounds `2 perturbations of the Fiedler vector
f with both missing and corrupted comparisons. Note that f and f̃ are normalized.

Theorem 21 For every µ ∈ (0, 1) and n large enough, if q > log4 n
µ2(2p−1)4n

, then

‖f̃ − f‖2 ≤ c
µ√

log n

with probability at least 1− 2/n, where c > 0 is an absolute constant.

As n goes to infinity the perturbation of the Fiedler vector goes to zero, and we can
retrieve the “true” ranking by reordering the Fiedler vector. Hence this bounds provides `2
consistency of the ranking, with an optimal sampling complexity (up to a polylogarithmic
factor).

The second result bounds local perturbations of the ranking with π referring to the
“true” ranking and π̃ to the ranking retrieved by SerialRank.

Theorem 24 For every µ ∈ (0, 1) and n large enough, if q > log4 n
µ2(2p−1)4

√
n

, then

‖π̃ − π‖∞ ≤ cµn

with probability at least 1− 2/n, where c > 0 is an absolute constant.

This bound quantifies the maximum displacement of any item’s ranking. µ can be
seen a “precision” parameter. For instance, if we set µ = 0.1, Theorem 24 means that we
can expect the maximum displacement of any item’s ranking to be less than 0.1 · n when
observing c2 · 100 · n

√
n · log4 n comparisons (with p = 1).

We conjecture Theorem 24 still holds true if the condition q > log4 n/µ2(2p− 1)4√n is
replaced by the weaker condition q > log4 n/µ2(2p− 1)4n.

5.2 Sketch of the proof.

The proof of these results relies on classical perturbation arguments and is structured as
follows.

• Step 1: Bound ‖D̃S − DS‖2, ‖S̃ − S‖2 with high probability using concentration
inequalities on quadratic forms of Bernoulli variables and results from (Achlioptas
and McSherry, 2007).

• Step 2. Show that the normalized Laplacian L = I−D−1S has a linear Fiedler vector
and bound the eigengap between the Fiedler value and other eigenvalues.

• Step 3. Bound ‖f̃ − f‖2 using Davis-Kahan theorem and bounds of steps 1 and 2.

• Step 4. Use the linearity of the Fiedler vector to translate this result into a bound
on the maximum displacement of the retrieved ranking ‖π̃ − π‖∞.

We now turn to the proof itself.
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5.3 Step 1: Bounding ‖D̃S −DS‖2 and ‖S̃ − S‖2
Here, we seek to bound ‖D̃S−DS‖2 and ‖S̃−S‖2 with high probability using concentration
inequalities.

5.3.1 Bounding the norm of the degree matrix

We first bound perturbations of the degree matrix with both missing and corrupted com-
parisons.

Lemma 15 For every µ ∈ (0, 1) and n ≥ 100, if q ≥ log4 n
µ2(2p−1)4n

then

‖D̃S −DS‖2 ≤
3µn2

√
log n

with probability at least 1− 1/n.

Proof Let R = S̃ − S and δ = diagDR = diag((S̃ − S)1). Since DS and D̃S are diagonal
matrices, ‖D̃S −DS‖2 = max |δi|. We first seek a concentration inequality for each δi and
then derive a bound on ‖D̃S −DS‖2.

By definition of the similarity matrix S and its perturbed analogue S̃ we have

Rij =

n∑
k=1

CikCjk

(
BikBjk

q2(2p− 1)2
− 1

)
.

Hence

δi =
n∑
j=1

Rij =
n∑
j=1

n∑
k=1

CikCjk

(
BikBjk

q2(2p− 1)2
− 1

)
.

Notice that we can arbitrarily fix the diagonal values of R to zeros. Indeed, the similarity
between an element and itself should be a constant by convention, which leads to Rii =
S̃ii − Sii = 0 for all items i. Hence we could take j 6= i in the definition of δi, and we can
consider Bik independent of Bjk in the associated summation.

We first seek a concentration inequality for each δi. Notice that

δi =

n∑
j=1

n∑
k=1

CikCjk

(
BikBjk

q2(2p− 1)2
− 1

)

=

n∑
k=1

 CikBik
q(2p− 1)

n∑
j=1

Cjk

(
Bjk

q(2p− 1)
− 1

)
︸ ︷︷ ︸

Quad

+
n∑
k=1

n∑
j=1

CikCjk

(
Bik

q(2p− 1)
− 1

)
︸ ︷︷ ︸

Lin

.

The first term (denoted Quad in the following) is quadratic with respect to the Bjk
while the second term (denoted Lin in the following) is linear. Both terms have mean zero
since the Bik are independent of the Bjk. We begin by bounding the quadratic term Quad.

Let Xjk = Cjk

(
1

q(2p−1)Bjk − 1
)

. We have

E(Xjk) = Cjk

(
qp−q(1−p)
q(2p−1) − 1

)
= 0,
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var(Xjk) =
var(Bjk)

q2(2p− 1)2
=

1

q2(2p− 1)2
(q − q2(2p− 1)2) =

1

q(2p− 1)2
− 1 ≤ 1

q(2p− 1)2
,

and

|Xjk| =
∣∣∣∣ Bjk
q(2p− 1)

− 1

∣∣∣∣ ≤ 1 +
1

q(2p− 1)
≤ 2

q(2p− 1)
≤ 2

q(2p− 1)2
.

By applying Bernstein’s inequality for any t > 0

Prob

∣∣∣∣∣∣
n∑
j=1

Xjk

∣∣∣∣∣∣ > t

 ≤ 2 exp

(
−q(2p− 1)2t2

2(n+ 2t/3)

)
≤ 2 exp

(
−q(2p− 1)2t2

2(n+ t)

)
. (9)

Now notice that

Prob(|Quad| > t) = Prob

∣∣∣∣∣∣
n∑
k=1

Cik Bik
q(2p− 1)

n∑
j=1

Xjk

∣∣∣∣∣∣ > t


≤ Prob

 n∑
k=1

(
|Bik|

q(2p− 1)

)
max
l
|
n∑
j=1

Xjl| > t

 .

By applying a union bound to the first Bernstein inequality (9), for any t > 0

Prob

max
l

∣∣∣∣∣∣
n∑
j=1

Xjl

∣∣∣∣∣∣ > √t
 ≤ 2n exp

(
−tq(2p− 1)2

2(n+
√
t)

)
.

Moreover, since E |Bik| = q we also get from Bernstein’s inequality that for any t > 0

Prob

(
n∑
k=1

|Bik|
q(2p− 1)

>
n

2p− 1
+
√
t

)
≤ exp

(
−tq(2p− 1)2

2(n+
√
t)

)
.

We deduce from these last three inequalities that for any t > 0

Prob(|Quad| > t) ≤ (2n+ 1) exp

(
−tq(2p− 1)2

2(n+
√
t)

)
.

Taking t = µ2(2p − 1)2n2/ log n and q ≥ log4 n
µ2(2p−1)4n

, with µ ≤ 1, we have
√
t ≤ n and we

deduce that

Prob

(
|Quad| > 2µn2

√
log n

)
≤ (2n+ 1) exp

(
− log3 n

4

)
. (10)

We now bound the linear term Lin.

Prob(|Lin| > t) = Prob

∣∣∣∣∣∣
n∑
j=1

n∑
k=1

CikCjk

(
Bik

q(2p− 1)
− 1

)∣∣∣∣∣∣ > t


≤ Prob

 n∑
k=1

|Cik|max
l
|
n∑
j=1

Xjl| > t


≤ Prob

max
k
|
n∑
j=1

Xjk| > t/n

 ,
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hence

Prob(|Lin| > t) ≤ 2n exp

(
−t2q(2p− 1)2

2n2(n+ t/n)

)
.

Taking t = µn2/(log n)1/2 and q ≥ log4 n
µ2(2p−1)4n

, with µ ≤ 1, we have t ≤ n2 and we deduce

that

Prob(|Lin| > t) ≤ 2n exp

(
− log3 n

4

)
. (11)

Finally, combining equations (10) and (11), we obtain for q ≥ log4 n
µ2(2p−1)4n

, with µ ≤ 1

Prob

(
|δi| >

3µn2

√
log n

)
≤ (4n+ 1) exp

(
− log3 n

4

)
.

Now, using a union bound, this shows that for q ≥ log4 n
µ2(2p−1)4n

,

Prob

(
max |δi| >

3µn2

√
log n

)
≤ n(4n+ 1) exp

(
− log3 n

4

)
,

which is less than 1/n for n ≥ 100.

5.3.2 Bounding perturbations of the comparison matrix C

Here, we adapt results in (Achlioptas and McSherry, 2007) to bound perturbations of the
comparison matrix. We will then use bounds on the perturbations of C to bound ‖S̃−S‖2.

Lemma 16 For n ≥ 104 and q ≥ log3 n
n ,

‖C − C̃‖2 ≤
c

2p− 1

√
n

q
, (12)

with probability at least 1− 2/n, where c is an absolute constant.

Proof The main argument of the proof is to use the independence of the Cij for i < j in
order to bound ‖C̃ − C‖2 by a constant times σ

√
n, where σ is the standard deviation of

Cij . To isolate independent entries in the perturbation matrix, we first need to break the
anti-symmetry of C̃ − C by decomposing X = C̃ − C into its upper triangular part and
its lower triangular part, i.e., C̃ − C = Xup + Xlow, with Xup = −XT

low (diagonal entries
of C̃ − C can be arbitrarily set to 0). Entries of Xup are all independent, with variance
less than the variance of C̃ij . Indeed, lower entries of Xup are equal to 0 and hence have
variance 0. Notice that

‖C̃ − C‖2 = ‖Xup +Xlow‖2 ≤ ‖Xup‖2 + ‖Xlow‖2 ≤ 2‖Xup‖2,

so bounding ‖Xup‖2 will give us a bound on ‖X‖2. In the rest of the proof we write Xup

instead of X to simplify notations. We can now apply (Achlioptas and McSherry, 2007,
Th. 3.1) to X. Since

Xij = C̃ij − Cij = Cij

(
Bij

q(2p− 1)
− 1

)
,
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we have (cf. proof of Lemma 15) E(Xij) = 0, var(Xij) ≤ 1
q(2p−1)2

, and |Xij | ≤ 2
q(2p−1) .

Hence for a given ε > 0 such that

4

q(2p− 1)
≤
(

log(1 + ε)

2 log(2n)

)2 √
2n

√
q(2p− 1)

, (13)

for any θ > 0 and n ≥ 76,

Prob

(
‖X‖2 ≥ 2(1 + ε+ θ)

1
√
q(2p− 1)

√
2n

)
< 2 exp

(
−16

θ2

ε4
log3 n

)
. (14)

For q ≥ (log 2n)3

n and taking ε ≥ exp(
√

(16/
√

(2))) − 1 (so log(1 + ε)2 ≥ 16/
√

2) means
inequality (13) holds. Taking (14) with ε = 30 and θ = 30 we get

Prob

(
‖X‖2 ≥

2
√

2(1 + 30 + 30)

2p− 1

√
n

q

)
< 2 exp

(
−10−2 log3 n

)
. (15)

Hence for n ≥ 104, we have log3 n > 100 and

Prob

(
‖X‖2 ≥

173

2p− 1

√
n

q

)
< 2/n.

Noting that log 2n ≤ 1.15 log n for n ≥ 104, we obtain the desired result by choosing
c = 2× 173×

√
1.15 ≤ 371.

5.3.3 Bounding the perturbation of the similarity matrix ‖S‖.

We now seek to bound ‖S̃ − S‖ with high probability.

Lemma 17 For every µ ∈ (0, 1), n ≥ 104, if q > log4 n
µ2(2p−1)2n

, then

‖S̃ − S‖2 ≤ c
µn2

√
log n

,

with probability at least 1− 2/n, where c is an absolute constant.

Proof Let X = C̃ − C. We have

C̃C̃T = (C +X)(C +X)T = CCT +XXT +XCT + CXT ,

hence
S̃ − S = XXT +XCT + CXT ,

and
‖S̃ − S‖2 ≤ ‖XXT ‖2 + ‖XCT ‖2 + ‖CXT ‖2 ≤ ‖X‖22 + 2‖X‖2‖C‖2.

From Lemma 16 we deduce that for n ≥ 104 and q ≥ log4 n
n , with probability at least 1−2/n

‖S̃ − S‖2 ≤
c2n

q(2p− 1)2
+

2c

2p− 1

√
n

q
‖C‖2. (16)
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Notice that ‖C‖22 ≤ Tr(CCT ) = n2, hence ‖C‖2 ≤ n and

‖S̃ − S‖2 ≤
c2n

q(2p− 1)2
+

2cn

2p− 1

√
n

q
. (17)

By taking q > log4 n
µ2(2p−1)2n

, we get for n ≥ 104 with probability at least 1− 2/n

‖S̃ − S‖2 ≤
c2µ2n2

log4 n
+

2cµn2

log2 n
.

Hence setting a new constant c with c = max(c2(log 104)−7/2, 2c(log 104)−3/2) ≤ 270,

‖S̃ − S‖2 ≤ c
µn2

√
log n

with probability at least 1− 2/n, which is the desired result.

5.4 Step 2: Controlling the eigengap

In the following proposition we show that the normalized Laplacian of the similarity matrix
S has a constant Fiedler value and a linear Fiedler vector. We then deduce bounds on the
eigengap between the first, second and third smallest eigenvalues of the Laplacian.

Proposition 18 Let Lnorm = I−D−1S be the non-symmetric normalized Laplacian of S.
Lnorm has a linear Fiedler vector, and its Fiedler value is equal to 2/3.

Proof Let xi = i− n+1
2 (x is linear with mean zero). We want to show that Lnormx = λ2x

or equivalently Sx = (1 − λ2)Dx. We develop both sides of the last equation, and use the
following facts

Si,j = n− |j − i|,
n∑
k=1

k =
n(n+ 1)

2
,

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

We first get an expression for the degree of S, defined by d = S1 =
∑n

i=1 Si,k, with

di =

i−1∑
k=1

Si,k +

n∑
k=i

Si,k

=

i−1∑
k=1

(n− i+ k) +

n∑
k=i

(n− k + i)

=
n(n− 1)

2
+ i(n− i+ 1).

Similarly we have

n∑
k=1

kSi,k =
i−1∑
k=1

k(n− i+ k) +
n∑
k=i

k(n− k + i)

=
n2(n+ 1)

2
+
i(i− 1)(2i− 1)

3
− n(n+ 1)(2n+ 1)

6
− i2(i− 1) + i

n(n+ 1)

2
.
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Finally, setting λ2 = 2/3, notice that

[Sx]i =
n∑
k=1

Si,k

(
k − n+ 1

2

)

=
n∑
k=1

kSi,k −
n+ 1

2
di

=
1

3

(
n(n− 1)

2
+ i(n− i+ 1)

)(
i− n+ 1

2

)
= (1− λ2)dixi,

which shows that Sx = (1− λ2)Dx.

The next corollary will be useful in following proofs.

Corollary 19 The Fiedler vector f of the unperturbed Laplacian satisfies ‖f‖∞ ≤ 2/
√
n.

Proof We use the fact that f is collinear to the vector x defined by xi = i− n+1
2 and verifies

‖f‖2 = 1. Let us consider the case of n odd. The Fiedler vector verifies fi = i−(n+1)/2
an

, with

a2
n = 2

(n−1)/2∑
k=0

k2 =
2

6

n− 1

2

(
n− 1

2
+ 1

)
((n− 1) + 1) =

n3 − n
12

.

Hence

‖f‖∞ = fn =
n− 1

2an
≤
√

3

n− 1
≤ 2√

n
for n ≥ 5.

A similar reasoning applies for n even.

Lemma 20 The minimum eigengap between the Fiedler value and other eigenvalues is
bounded below by a constant for n sufficiently large.

Proof The first eigenvalue of the Laplacian is always 0, so we have for any n, λ2−λ1 = λ2 =
2/3. Moreover, using results from (Von Luxburg et al., 2008), we know that eigenvalues of
the normalized Laplacian that are different from one converge to an asymptotic spectrum,
and that the limit eigenvalues are “isolated”. Hence there exists n0 > 0 and c > 0 such
that for any n ≥ n0 we have λ3 − λ2 > c.

Numerical experiments show that λ3 converges to 0.93 . . . very fast when n grows towards
infinity.

5.5 Step 3: Bounding the perturbation of the Fiedler vector ‖f̃ − f‖2
We can now compile results from previous sections to get a first perturbation bound and
show `2 consistency of the Fiedler vector when comparisons are both missing and corrupted.
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Theorem 21 For every µ ∈ (0, 1) and n large enough, if q > log4 n
µ2(2p−1)4n

, then

‖f̃ − f‖2 ≤ c
µ√

log n
,

with probability at least 1− 2/n.

Proof In order to use Davis-Kahan theorem, we need to relate perturbations of the normal-
ized Laplacian matrix to perturbations of the similarity and degree matrices. To simplify
notations, we write L = I−D−1S and L̃ = I− D̃−1S̃.

Since the normalized Laplacian is not symmetric, we will actually apply Davis-Kahan
theorem to the symmetric normalized Laplacian Lsym = I−D−1/2SD−1/2. It is easy to see
that Lsym and L have the same Fiedler value, and that the Fiedler vector fsym of Lsym is
equal to D1/2f (up to normalization). Indeed, if v is the eigenvector associated to the ith

eigenvalue of L (denoted by λi), then

LsymD
1/2v = D−1/2(D − S)D−1/2D1/2v = D−1/2(D − S)v = D1/2(I−D−1S)v = λiD

1/2v.

Hence perturbations of the Fiedler vector of Lsym are directly related to perturbations of
the Fiedler vector of L.

The proof relies mainly on Lemma 15, which states that for n ≥ 100, denoting by d the
vector of diagonal elements of DS ,

‖DR‖2 = max |d̃i − di| ≤
3µn2

√
log n

with probability at least 1 − 2
n . Combined with the fact that di = n(n−1)

2 + i(n − i + 1)

(cf. proof of Proposition 18), this guarantees that di and d̃i are strictly positive. Hence
D−1/2 and D̃−1/2 are well defined. We now decompose the perturbation of the Laplacian
matrix. Let ∆ = D−1/2, we have

‖L̃sym − Lsym‖2 = ‖∆̃S̃∆̃−∆S∆‖2
= ‖∆̃S̃∆̃− ∆̃S∆̃ + ∆̃S∆̃−∆S∆‖2
= ‖∆̃(S̃ − S)∆̃ + ∆̃S∆̃−∆S∆̃ + ∆S∆̃−∆S∆‖2
= ‖∆̃(S̃ − S)∆̃ + (∆̃−∆)S∆̃ + ∆S(∆̃−∆)‖2
≤ ‖∆̃‖22‖S̃ − S‖2 + ‖S‖2(‖∆̃‖2 + ‖∆‖2)‖∆̃−∆‖2.

We first bound ‖∆̃−∆‖2. Notice that

‖∆̃−∆‖2 = max
i
|d̃−1/2
i − d−1/2

i |,

where di (respectively d̃i) is the sum of elements of the ith row of S (respectively S̃). Hence

‖∆̃−∆‖2 = max
i

∣∣∣√d̃i −√di∣∣∣√
d̃idi

= max
i

∣∣∣d̃i − di∣∣∣√
d̃idi(

√
d̃i +

√
di)

.

23



Fajwel Fogel, Milan Vojnovic and Alexandre d’Aspremont

Using Lemma 15 we obtain

‖∆̃−∆‖2 ≤ max
i

3µn2
√

logn
√
di(di − 3µn2

√
logn

) + di

√
di − 3µn2

√
logn

, i = 1, . . . , n, w.h.p.

Since di = n(n−1)
2 +i(n−i+1) (cf. proof of Proposition 18), for µ < 1 there exists a constant

c such that di > di− 3µn2
√

logn
> cn2. We deduce that there exists an absolute constant c such

that
‖∆̃−∆‖2 ≤

cµ

n
√

log n
w.h.p. (18)

Similarly we obtain that

‖∆‖2 ≤
c

n
w.h.p, (19)

and
‖∆̃‖2 ≤

c

n
w.h.p. (20)

Moreover, we have

‖S‖2 = ‖CCT + n11T ‖2 ≤ ‖C‖22 + n‖11T ‖2 ≤ 2n2.

Hence,

‖S‖2(‖∆̃‖2 + ‖∆‖2)‖∆̃−∆‖2 ≤
cµ√
log n

w.h.p,

where c := 4c2. Using Lemma 17, we can similarly bound ‖∆̃‖22‖S̃ − S‖2 and obtain

‖L̃sym − Lsym‖2 ≤
cµ√
log n

w.h.p, (21)

where c is an absolute constant. Finally, for small µ, Weyl’s inequality, equation (21)
together with Lemma 20 ensure that for n large enough with high probability |λ̃3 − λ2| >
|λ3−λ2|/2 and |λ̃1−λ2| > |λ1−λ2|/2. Hence we can apply Davis-Kahan theorem. Compiling
all constants into c we obtain

‖f̃sym − fsym‖2 ≤
cµ√
log n

w.h.p. (22)

Finally we relate the perturbations of fsym to the perturbations of f . Since fsym =
D1/2f
‖D1/2f‖2

, letting αn = ‖D1/2f‖, we deduce that

‖f̃ − f‖2 = ‖α̃n∆̃f̃sym − αn∆fsym‖2
= ‖∆(α̃nf̃sym − αnfsym) + α̃n(∆̃−∆)f̃sym‖2
≤ ‖∆‖2‖α̃nf̃sym − αnfsym‖2 + ‖α̃n‖2‖∆̃−∆‖2.

Similarly as for inequality (18), we can show that ‖D̃1/2‖ and ‖D1/2‖ are of the same order
O(n). Since ‖f‖2 = ‖f̃‖2 = 1, this is also true for ‖αn‖2 and ‖α̃n‖2. We conclude the proof
using inequalities (18), (19) and (22).
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5.6 Bounding ranking perturbations ‖π̃ − π‖∞
SerialRank’s ranking is derived by sorting the Fiedler vector. While the consistency result
in Theorem 21 shows the `2 estimation error going to zero as n goes to infinity, this is not
sufficient to quantify the maximum displacement of the ranking. To quantify the maximum
displacement of the ranking, as in (Wauthier et al., 2013), we need to bound ‖π̃ − π‖∞
instead.

We bound the maximum displacement of the ranking here with an extra factor
√
n

compared to the sampling rate in (Wauthier et al., 2013). We would only need a better
component-wise bound on S̃ − S to get rid of this extra factor

√
n, and we hope to achieve

it in future work.

The proof is in two parts: we first bound the `∞ norm of the perturbation of the Fiedler
vector, then translate this perturbation of the Fiedler vector into a perturbation of the
ranking.

5.6.1 Bounding the `∞ norm of the Fiedler vector perturbation

We start by a technical lemma bounding ‖(S̃ − S)f‖∞.

Lemma 22 Let r > 0, for every µ ∈ (0, 1) and n large enough, if q > log4 n
µ2(2p−1)4n

, then

‖(S̃ − S)f‖∞ ≤
3µn3/2

√
log n

with probability at least 1− 2/n.

Proof The proof is very much similar to the proof of Lemma 15 and can be found the
Appendix (section A.2).

We now prove the main result of this section, bounding ‖f̃ − f‖∞ with high probability
when roughly O(n3/2) comparisons are sampled.

Lemma 23 For every µ ∈ (0, 1) and n large enough, if q > log4 n
µ2(2p−1)4

√
n

, then

‖f̃ − f‖∞ ≤ c
µ√

n log n

with probability at least 1− 2/n, where c is an absolute constant.

Proof Notice that by definition L̃f̃ = λ̃2f̃ and Lf = λ2f . Hence for λ̃2 > 0

f̃ − f =
L̃f̃

λ̃2

− f

=
L̃f̃ − Lf

λ̃2

+
(λ2 − λ̃2)f

λ̃2

.
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Moreover

L̃f̃ − Lf = (I− D̃−1S̃)f̃ − (I−D−1S)f

= (f̃ − f) +D−1Sf − D̃−1S̃f̃

= (f̃ − f) +D−1Sf − D̃−1S̃f + D̃−1S̃f − D̃−1S̃f̃

= (f̃ − f) + (D−1S − D̃−1S̃)f + D̃−1S̃(f − f̃)

Hence
(I(λ̃2 − 1) + D̃−1S̃)(f̃ − f) = (D−1S − D̃−1S̃ + (λ2 − λ̃2)I)f. (23)

Writing Si the ith row of S and di the degree of row i, using the triangle inequality, we
deduce that

|f̃i − fi| ≤
1

|λ̃2 − 1|

(
|(d−1

i Si − d̃−1
i S̃i)f |+ |λ2 − λ̃2||fi|+ |d̃−1

i S̃i(f̃ − f)|
)
. (24)

It remains to bound each term separately, using Weyl’s inequality for the denominator
and previous lemmas for numerator terms, which is detailed in the Appendix (section A.2).

5.6.2 Bounding the `∞ norm of the ranking perturbation

First note that the `∞-norm of the ranking perturbation is equal to the number of pairwise
disagreements between the true ranking and the retrieved one, i.e., for any i

|π̃i − πi| =
∑
j<i

1f̃j>f̃i +
∑
j>i

1f̃j<f̃i .

Now we will argue that when i and j are far apart, with high probability

f̃j − f̃i = (f̃j − fj) + (fj − fi) + (fi − f̃i)

will have the same sign as j − i. Indeed |f̃j − fj | and |f̃i − fi| can be bounded with high
probability by a quantity less than |fj − fi|/2 for i and j sufficiently “far apart”. Hence,
|π̃i−πi| is bounded by the number of pairs that are not sufficiently “far apart”. We quantify
the term “far apart” in the following proposition.

Theorem 24 For every µ ∈ (0, 1) and n large enough, if q > log4 n
µ2(2p−1)2

√
n

, then

‖π̃ − π‖∞ ≤ cµn,

with probability at least 1− 2/n, where c is an absolute constant.

Proof We assume w.l.o.g. in the following that the true ranking is the identity, hence the
unperturbed Fiedler vector f is strictly increasing. We first notice that for any j > i

f̃j − f̃i = (f̃j − fj) + (fj − fi) + (fi − f̃i).
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Hence for any j > i

‖f̃ − f‖∞ ≤
|fj − fi|

2
=⇒ f̃j ≥ f̃i.

Consequently, fixing an index i0,∑
j>i0

1f̃j<f̃i0
≤
∑
j>i0

1
‖f̃−f‖∞>

|fj−fi0 |
2

.

Now recall that by Lemma 23, for q > log4 n
µ2(2p−1)2

√
n

‖f̃ − f‖∞ ≤ c
µ√

n log n

with probability at least 1− 2/n. Hence∑
j>i0

1f̃j<f̃i0
≤
∑
j>i0

1
‖f̃−f‖∞>

|fj−fi0 |
2

≤
∑
j>i0

1
cµ√
n logn

>
|fj−fi0 |

2

w.h.p.

We now consider the case of n odd (a similar reasoning applies for n even). We have

fj = j−(n+1)/2
an

for all j, with

a2
n = 2

(n−1)/2∑
k=0

k2 =
2

6

n− 1

2

(
n− 1

2
+ 1

)
((n− 1) + 1) =

n3 − n
12

.

Therefore

cµ√
n log n

>
|fj − fi0 |

2
⇐⇒ cµ√

n log n
>
|j − i0|

√
3

n3/2
⇐⇒ cµn√

3 log n
> |j − i0|.

Dividing c by
√

3, we deduce that∑
j>i0

1f̃j<f̃i0
≤
∑
j>i0

1 cµn√
logn

>|j−i0| =

⌊
cµn√
log n

⌋
≤ cµn√

log n
w.h.p.

Similarly ∑
j<i0

1f̃j>f̃i0
≤ cµn√

log n
w.h.p.

Finally, we obtain

|π̃i0 − πi0 | =
∑
j<i0

1f̃j>f̃i0
+
∑
j>i0

1f̃j<f̃i0
≤ cµn√

log n
w.h.p.,

where c is an absolute constant. Since the last inequality relies on ‖f̃ − f‖∞ ≤ cµ√
n logn

, it

is true for all i0 with probabilty 1− 2/n, which concludes the proof.
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6. Numerical Experiments

We now describe numerical experiments using both synthetic and real datasets to compare
the performance of SerialRank with several classical ranking methods.

6.1 Synthetic Datasets

The first synthetic dataset consists of a matrix of pairwise comparisons derived from a
given ranking of n items with uniform, randomly distributed corrupted or missing entries.
A second synthetic dataset consists of a full matrix of pairwise comparisons derived from a
given ranking of n items, with added “local” noise on the similarity between nearby items.
Specifically, given a positive integer m, we let Ci,j = 1 if i < j −m, Ci,j ∼ Unif[−1, 1] if
|i− j| ≤ m, and Ci,j = −1 if i > j +m. In Figure 2, we measure the Kendall τ correlation
coefficient between the true ranking and the retrieved ranking, when varying either the
percentage of corrupted comparisons or the percentage of missing comparisons. Kendall’s τ
counts the number of agreeing pairs minus the number of disagreeing pairs between two
rankings, scaled by the total number of pairs, so that it takes values between -1 and 1.
Experiments were performed with n = 100 and reported Kendall τ values were averaged
over 50 experiments, with standard deviation less than 0.02 for points of interest (i.e., with
Kendall τ > 0.8).

Results suggest that SerialRank (SR, full red line) produces more accurate rankings
than point score (PS, (Wauthier et al., 2013) dashed blue line), Rank Centrality (RC (Ne-
gahban et al., 2012) dashed green line), and maximum likelihood (BTL (Bradley and Terry,
1952), dashed magenta line) in regimes with limited amount of corrupted and missing com-
parisons. In particular SerialRank seems more robust to corrupted comparisons. On the
other hand, the performance deteriorates more rapidly in regimes with very high number
of corrupted/missing comparisons. For a more exhaustive comparison of SerialRank to
state-of-the art ranking algorithms, we refer the interested reader to a recent paper by Cu-
curingu (2015), which introduces another ranking algorithm called SyncRank, and provides
extensive numerical experiments.

6.2 Real Datasets

The first real dataset consists of pairwise comparisons derived from outcomes in the Top-
Coder algorithm competitions. We collected data from 103 competitions among 2742 coders
over a period of about one year. Pairwise comparisons are extracted from the ranking of
each competition and then averaged for each pair. TopCoder maintains ratings for each
participant, updated in an online scheme after each competition, which were also included
in the benchmarks. To measure performance in Figure 3, we compute the percentage of
upsets (i.e. comparisons disagreeing with the computed ranking), which is closely related
to the Kendall τ (by an affine transformation if comparisons were coming from a consistent
ranking). We refine this metric by considering only the participants appearing in the top
k, for various values of k, i.e. computing

lk =
1

|Ck|
∑
i,j∈Ck

1r(i)>r(j)1Ci,j<0, (25)
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where C are the pairs (i, j) that are compared and such that i, j are both ranked in the top
k, and r(i) is the rank of i. Up to scaling, this is the loss considered in (Kenyon-Mathieu
and Schudy, 2007).

This experiment shows that SerialRank gives competitive results with other ranking
algorithms. Notice that rankings could probably be refined by designing a similarity matrix
taking into account the specific nature of the data.

Table 1: Ranking of teams in the England premier league season 2013-2014.
Official Row-sum RC BTL SerialRank Semi-Supervised
Man City (86) Man City Liverpool Man City Man City Man City
Liverpool (84) Liverpool Arsenal Liverpool Chelsea Chelsea
Chelsea (82) Chelsea Man City Chelsea Liverpool Liverpool
Arsenal (79) Arsenal Chelsea Arsenal Arsenal Everton
Everton (72) Everton Everton Everton Everton Arsenal
Tottenham (69) Tottenham Tottenham Tottenham Tottenham Tottenham
Man United (64) Man United Man United Man United Southampton Man United
Southampton (56) Southampton Southampton Southampton Man United Southampton
Stoke (50) Stoke Stoke Stoke Stoke Newcastle
Newcastle (49) Newcastle Newcastle Newcastle Swansea Stoke
Crystal Palace (45) Crystal Palace Swansea Crystal Palace Newcastle West Brom
Swansea (42) Swansea Crystal Palace Swansea West Brom Swansea
West Ham (40) West Brom West Ham West Brom Hull Crystal Palace
Aston Villa (38) West Ham Hull West Ham West Ham Hull
Sunderland (38) Aston Villa Aston Villa Aston Villa Cardiff West Ham
Hull (37) Sunderland West Brom Sunderland Crystal Palace Fulham
West Brom (36) Hull Sunderland Hull Fulham Norwich
Norwich (33) Norwich Fulham Norwich Norwich Sunderland
Fulham (32) Fulham Norwich Fulham Sunderland Aston Villa
Cardiff (30) Cardiff Cardiff Cardiff Aston Villa Cardiff

6.3 Semi-Supervised Ranking

We illustrate here how, in a semi-supervised setting, one can interactively enforce some
constraints on the retrieved ranking, using e.g. the semi-supervised seriation algorithm
in (Fogel et al., 2013). We compute rankings of England Football Premier League teams
for season 2013-2014 (cf. figure 4 for seasons 2011-2012 and 2012-2013). Comparisons are
defined as the averaged outcome (win, loss, or tie) of home and away games for each pair
of teams. As shown in Table 1, the top half of SerialRank ranking is very close to the
official ranking calculated by sorting the sum of points for each team (3 points for a win,
1 point for a tie). However, there are significant variations in the bottom half, though the
number of upsets is roughly the same as for the official ranking. To test semi-supervised
ranking, suppose for example that we are not satisfied with the ranking of Aston Villa (last
team when ranked by the spectral algorithm), we can explicitly enforce that Aston Villa
appears before Cardiff, as in the official ranking. In the ranking based on the corresponding
semi-supervised seriation problem, Aston Villa is not last anymore, though the number of
disagreeing comparisons remains just as low (cf. Figure 3, right).
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7. Conclusion

We have formulated the problem of ranking from pairwise comparisons as a seriation prob-
lem, i.e. the problem of ordering from similarity information. By constructing an adequate
similarity matrix, we applied a spectral relaxation for seriation to a variety of synthetic and
real ranking datasets, showing competitive and in some cases superior performance com-
pared to classical methods, especially in low noise environments. We derived performance
bounds for this algorithm in the presence of corrupted and missing (ordinal) comparisons
showing that SerialRank produces state-of-the art results for ranking based on ordinal com-
parisons, e.g. showing exact reconstruction w.h.p. when only O(

√
n) comparisons are

missing. On the other hand, performance deteriorates when only a small fraction of com-
parisons are observed, or in the presence of very high noise. In this scenario, we showed that
local ordering errors can be bounded if the number of samples is of order O(n1.5polylog(n))
which is significantly above the optimal bound of O(n log n).

A few questions thus remain open, which we pose as future research directions. First of
all, from a theoretical perspective, is it possible to obtain an `∞ bound on local perturbations
of the ranking using only O(n polylog(n)) sampled pairs? Or, on the contrary, can we find
a lower bound for spectral algorithms (i.e. perturbation arguments) imposing more than
Ω(n polylog(n)) sampled pairs? Note that those questions hold for all current spectral
ranking algorithms.

Another line of research concerns the generalization of spectral ordering methods to more
flexible settings, e.g., enforcing structural or a priori constraints on the ranking. Hierarchical
ranking, i.e. running the spectral algorithm on increasingly refined subsets of the original
data should be explored too. Early experiments suggests this works quite well, but no
bounds are available at this point.

Finally, it would be interesting to investigate how similarity measures could be tuned for
specific applications in order to improve SerialRank predictive power, for instance to take
into account more information than win/loss in sports tournaments. Additional experiments
in this vein can be found in Cucuringu (2015).

Appendix A.

We now detail several complementary technical results.

A.1 Exact recovery results with missing entries

Here, as in Section 4, we study the impact of one missing comparison on SerialRank, then
extend the result to multiple missing comparisons.

Proposition 25 Given pairwise comparisons Cs,t ∈ {−1, 0, 1} between items ranked ac-
cording to their indices, suppose only one comparison Ci,j is missing, with j − i > 1 (i.e.,
Ci,j = 0), then Smatch defined in (3) remains strict-R and the point score vector remains
strictly monotonic.

Proof We use the same proof technique as in Proposition 12. We write the true score and
comparison matrix w and C, while the observations are written ŵ and Ĉ respectively. This
means in particular that Ĉi,j = 0. To simplify notations we denote by S the similarity
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matrix Smatch (respectively Ŝ when the similarity is computed from observations). We first
study the impact of the missing comparison Ci,j for i < j on the point score vector ŵ. We
have

ŵi =
n∑
k=1

Ĉk,i =
n∑
k=1

Ck,i + Ĉj,i − Cj,i = wi + 1,

similarly ŵj = wj − 1, whereas for k 6= i, j, ŵk = wk. Hence, w is still strictly increasing
if j > i+1. If j = i+1 there is a tie between wi and wi+1. Now we show that the similarity
matrix defined in (3) is an R-matrix. Writing Ŝ in terms of S, we get

[ĈĈT ]i,t =
∑
k 6=j

(
Ĉi,kĈt,k

)
+ Ĉi,jĈt,j =

∑
k 6=j

(Ci,kCt,k) =

{
[CCT ]i,t − 1 if t < j[
CCT

]
i,t

+ 1 if t > j.

We thus get

Ŝi,t =

{
Si,t − 1

2 if t < j
Si,t + 1

2 if t > j,

(remember there is a factor 1/2 in the definition of S). Similarly we get for any t 6= i

Ŝj,t =

{
Sj,t + 1

2 if t < i
Sj,t − 1

2 if t > i.

Finally, for the single corrupted index pair (i, j), we get

Ŝi,j =
1

2

n+
∑
k 6=i,j

(
Ĉi,kĈj,k

)
+ Ĉi,iĈj,i + Ĉi,jĈj,j

 = Si,j − 0 + 0 = Si,j .

For all other coefficients (s, t) such that s, t 6= i, j, we have Ŝs,t = Ss,t. Meaning all rows
or columns outside of i, j are left unchanged. We first observe that these last equations,
together with our assumption that j − i > 2, mean that

Ŝs,t ≥ Ŝs+1,t and Ŝs,t+1 ≥ Ŝs,t, for any s < t

so Ŝ remains an R-matrix. To show uniqueness of the retrieved order, we need j − i > 1.
Indeed, when j− i > 1 all these R constraints are strict, which means that Ŝ is still a strict
R-matrix, hence the desired result.

We can extend this result to the case where multiple comparisons are missing.

Proposition 26 Given pairwise comparisons Cs,t ∈ {−1, 0, 1} between items ranked ac-
cording to their indices, suppose m comparisons indexed (i1, j1), . . . , (im, jm) are missing,
i.e., Cil,jj = 0 for i = l, . . . ,m. If the following condition (26) holds true,

|s− t| > 1 for all s 6= t ∈ {i1, . . . , im, j1, . . . , jm} (26)

then Smatch defined in (3) remains strict-R and the point score vector remains strictly
monotonic.
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Proof Proceed similarly as in the proof of Proposition 13, except that shifts are divided by
two.

We also get the following corollary.

Corollary 27 Given pairwise comparisons Cs,t ∈ {−1, 0, 1} between items ranked according
to their indices, suppose m comparisons indexed (i1, j1), . . . , (im, jm) are either corrupted
or missing. If condition (7) holds true then Smatch defined in (3) remains strict-R.

Proof Proceed similarly as the proof of Proposition 13, except that shifts are divided by
two for missing comparisons.

A.2 Standard theorems and technical lemmas used in spectral perturbation
analysis (section 5)

We first recall Weyl’s inequality and a simplified version of Davis-Kahan theorem which can
be found in (Stewart and Sun, 1990; Stewart, 2001; Yu et al., 2015).

Theorem 28 (Weyl’s inequality) Consider a symmetric matrix A with eigenvalues λ1,
. . . , λn and Ã a symmetric perturbation of A with eigenvalues λ̃1, . . . , λ̃n,

max
i
|λ̃i − λi| ≤ ‖Ã−A‖2.

Theorem 29 (Variant of Davis-Kahan theorem (Corollary 3 Yu et al., 2015)) Let
A, Ã ∈ Rn be symmetric, with eigenvalues λ1 ≤ . . . ≤ λn and λ̃1 ≤ . . . ≤ λ̃n respectively.
Fix j ∈ {1, . . . , n}, and assume that min(λj − λj−1, λj+1 − λj) > 0, where λn+1 := ∞ and
λ0 := −∞. If v, ṽ ∈ Rn satisfy Av = λjv and Ãṽ = λ̃j ṽ, then

sin Θ(ṽ, v) ≤ 2‖Ã−A‖2
min(λj − λj−1, λj+1 − λj)

.

Moreover, if ṽT v ≥ 0, then

‖ṽ − v‖2 ≤
2
√

2‖Ã−A‖2
min(λj − λj−1, λj+1 − λj)

.

When analyzing the perturbation of the Fiedler vector f , we may always reverse the sign
of f̃ such that f̃T f ≥ 0 and obtain

‖f̃ − f‖2 ≤
2
√

2‖L̃− L‖2
min(λ2 − λ1, λ3 − λ2)

.

Lemma 30 Let r > 0, for every µ ∈ (0, 1) and n large enough, if q > log4 n
µ2(2p−1)4n

, then

‖(S̃ − S)f‖∞ ≤
3µn3/2

√
log n

with probability at least 1− 2/n.
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Proof The proof is very much similar to the proof of Lemma 15. Let R = S̃ − S. We have

Rij =
n∑
k=1

CikCjk

(
BikBjk

q2(2p− 1)2
− 1

)
.

Therefore, let δ = Rf

δi =
n∑
j=1

Rijfj =
n∑
j=1

n∑
k=1

CikCjk

(
BikBjk

q2(2p− 1)2
− 1

)
fj .

Notice that we can arbitrarily fix the diagonal values of R to zeros. Indeed, the similarity
between an element and itself should be a constant by convention, which leads to Rii =
S̃ii − Sii = 0 for all items i. Hence we could take j 6= i in the definition of di, and we can
consider Bik independent of Bjk in the associated summation.

We first obtain a concentration inequality for each δi. We will then use a union bound
to bound ‖δ‖∞ = max |δi|. Notice that

δi =

n∑
j=1

n∑
k=1

CikCjk

(
BikBjk

q2(2p− 1)2
− 1

)
fj

=

n∑
k=1

 CikBik
q(2p− 1)

n∑
j=1

Cjk

(
Bjk

q(2p− 1)
− 1

)
fj

+

n∑
k=1

n∑
j=1

CikCjk

(
Bik

q(2p− 1)
− 1

)
fj .

The first term is quadratic while the second is linear, both terms have mean zero since
the Bik are independent of the Bjk. We begin by bounding the quadratic term. Let
Xjk = Cjk(

1
q(2p−1)Bjk − 1)fj . We have

E(Xjk) = fjCjk(
qp−q(1−p)
q(2p−1) − 1) = 0,

var(Xjk) =
f2
j var(Bjk)

q2(2p− 1)2
=

f2
j

q2(2p− 1)2
(q − q2(2p− 1)2) ≤

f2
j

q(2p− 1)2
,

|Xjk| = |fj ||
Bjk

q(2p− 1)
− 1| ≤ 2|fj |

q(2p− 1)
≤ 2‖f‖∞
q(2p− 1)2

.

From corollary 19 ‖f‖∞ ≤ 2/
√
n. Moreover

∑n
j=0 f

2
j = 1 since f is an eigenvector. Hence,

by applying Bernstein inequality we get for any t > 0

Prob

| n∑
j=1

Xjk| > t

 ≤ 2 exp

(
−q(2p− 1)2t2

2(1 + 2t/(3
√
n))

)
≤ 2 exp

(
−q(2p− 1)2t2n

2(n+
√
nt)

)
. (27)

The rest of the proof is identical to the proof of Lemma 15, replacing t by
√
nt.
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Lemma 31 For every µ ∈ (0, 1) and n large enough, if q > log4 n
µ2(2p−1)4

√
n

, then

‖f̃ − f‖∞ ≤ c
µ√

n log n

with probability at least 1− 2/n, where c is an absolute constant.

Proof Notice that by definition L̃f̃ = λ̃2f̃ and Lf = λ2f . Hence for λ̃2 > 0

f̃ − f =
L̃f̃

λ̃2

− f

=
L̃f̃ − Lf

λ̃2

+
(λ2 − λ̃2)f

λ̃2

.

Moreover

L̃f̃ − Lf = (I− D̃−1S̃)f̃ − (I−D−1S)f

= (f̃ − f) +D−1Sf − D̃−1S̃f̃

= (f̃ − f) +D−1Sf − D̃−1S̃f + D̃−1S̃f − D̃−1S̃f̃

= (f̃ − f) + (D−1S − D̃−1S̃)f + D̃−1S̃(f − f̃)

Hence
(I(λ̃2 − 1) + D̃−1S̃)(f̃ − f) = (D−1S − D̃−1S̃ + (λ2 − λ̃2)I)f. (28)

Writing Si the ith row of S and di the degree of row i, using the triangle inequality, we
deduce that

|f̃i − fi| ≤
1

|λ̃2 − 1|

(
|(d−1

i Si − d̃−1
i S̃i)f |+ |λ2 − λ̃2||fi|+ |d̃−1

i S̃i(f̃ − f)|
)
. (29)

We will now bound each term separately. Define

Denom = |λ̃2 − 1|,
Num1 = |(d−1

i Si − d̃−1
i S̃i)f |,

Num2 = |λ2 − λ̃2||fi|,
Num3 = |d̃−1

i S̃i(f̃ − f)|.

Bounding Denom First notice that using Weyl’s inequality and equation (21) (cf. proof
of Theorem 21), we have with probability at least 1 − 2/n |λ̃2 − λ2| ≤ ‖LR‖2 ≤ cµ√

logn
.

Therefore there exists an absolute constant c such that with probability at least 1− 2/n

|λ̃2 − 1| > c.

We now proceed with the numerator terms.

Bounding Num2 Using Weyl’s inequality, corollary 19 and equation (21) (cf. proof of
Theorem 21), we deduce that w.h.p.

|λ2 − λ̃2||fi|| ≤
cµ√
n log n

,

where c is an absolute constant.
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Bounding Num1 We now bound |d−1
i Si − d̃−1

i S̃i|. We have

|(d̃−1
i S̃i − d−1

i Si)f | = |(d̃−1
i S̃i − d̃−1

i Si + d̃−1
i Si − d−1

i Si)f |
≤ |d̃−1

i ||(S̃i − Si)f |+ |(d̃
−1
i − d

−1
i )Sif |.

Using equation (18) from the proof of Theorem 21, we have w.h.p.

|d̃−1
i − d

−1
i | ≤

cµ

n2
√

log n
.

Moreover
|d̃−1
i | ≤ |d̃

−1
i − d

−1
i |+ |d

−1
i | ≤

c1µ

n2
√

log n
+
c2

n2
≤ c

n2

w.h.p., where c is an absolute constant. Therefore

|(d̃−1
i S̃i − d−1

i Si)f | ≤
cµ

n2
√

log n
|Sif |+

c

n2
|(S̃i − Si)f | w.h.p. (30)

Using the definition of S and corollary 19, we get

|Sif | ≤
n∑
j=1

Sij max
i
|fi| ≤ c

n2

√
n
≤ cn3/2, (31)

where c is an absolute constant. Using Lemma 22, we get

|(S̃i − Si)f | ≤
3µn3/2

√
log n

w.h.p. (32)

Combining (30), (31) and (32) we deduce that there exists a constant c such that

|(d̃−1
i S̃i − d−1

i Si)f | ≤
cµ√
n log n

w.h.p.

Bounding Num3 Finally we bound the remaining term |d̃−1
i S̃i(f̃ − f)|. By Cauchy-

Schwartz inequality we have,

|d̃−1
i S̃i(f̃ − f)| ≤ |d̃−1

i |‖S̃i‖2‖f̃ − f‖2.

Notice that
‖S̃i‖2 ≤ ‖Si‖2 + ‖S̃i − Si‖2 ≤ ‖Si‖2 + ‖S̃ − S‖2.

Since ‖Si‖22 ≤ ‖S1‖22 ≤
n(n+1)(2n+1)

6 and q > log4 n
µ2(2p−1)2

√
n

we deduce from Lemma 17 that

w.h.p. ‖S̃i‖2 ≤ cµn7/4
√

logn
, where c is an absolute constant, for n large enough. Moreover, as

shown above, |d̃−1
i | ≤

c
n2 and we also get from Theorem 21 that ‖f̃ −f‖2 ≤ cµ

n1/4
√

logn
w.h.p.

Hence we have

|d̃−1
i S̃i(f̃ − f)| ≤ cµ2n7/4

n2n1/4(log n)
≤ cµ√

n log n
w.h.p.,

where c is an absolute constant. Combining bounds on the denominator and numerator
terms yields the desired result.
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A.3 Numerical experiments with normalized Laplacian

As shown in figure 5, results are very similar to those of SerialRank with unnormalized
Laplacian. We lose a bit of performance in terms of robustness to corrupted comparisons.

A.4 Spectrum of the unnormalized Laplacian matrix

A.4.1 Asymptotic Fiedler value and Fiedler vector

We use results on the convergence of Laplacian operators to provide a description of the
spectrum of the unnormalized Laplacian in SerialRank. Following the same analysis as in
(Von Luxburg et al., 2008) we can prove that asymptotically, once normalized by n2, apart
from the first and second eigenvalue, the spectrum of the Laplacian matrix is contained in the
interval [0.5, 0.75]. Moreover, we can characterize the eigenfunctions of the limit Laplacian
operator by a differential equation, enabling to have an asymptotic approximation for the
Fiedler vector.

Taking the same notations as in (Von Luxburg et al., 2008) we have here k(x, y) =
1− |x− y|. The degree function is

d(x) =

∫ 1

0
k(x, y)dProb(y) =

∫ 1

0
k(x, y)d(y)

(samples are uniformly ranked). Simple calculations give

d(x) = −x2 + x+ 1/2.

We deduce that the range of d is [0.5, 0.75]. Interesting eigenvectors (i.e., here the second
eigenvector) are not in this range. We can also characterize eigenfunctions f and corre-
sponding eigenvalues λ by

Uf(x) = λf(x) ∀x ∈ [0, 1]

⇔ Mdf(x)− Sf(x) = λf(x)

⇔ d(x)f(x)−
∫ 1

0
k(x, y)f(y)d(y) = λf(x)

⇔ f(x)(−x2 + x+ 1/2)−
∫ 1

0
(1− |x− y|)f(y)d(y) = λf(x)

Differentiating twice we get

f ′′(x)(1/2− λ+ x− x2) + 2f ′(x)(1− 2x) = 0. (33)

The asymptotic expression for the Fiedler vector is then a solution to this differential equa-
tion, with λ < 0.5. Let γ1 and γ2 be the roots of (1/2 − λ + x − x2) (with γ1 < γ2). We
can suppose that x ∈ (γ1, γ2) since the degree function is nonnegative. Simple calculations
show that

f ′(x) =
A

(x− γ1)2(x− γ2)2
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is solution to (33), where A is a constant. Now we note that

1

(x− γ1)2(x− γ2)2
=

1

(γ1 − γ2)2(γ2 − x)2
+

1

(γ1 − γ2)2(γ1 − x)2

− 2

(γ1 − γ2)3(γ2 − x)
+

2

(γ1 − γ2)3(γ1 − x)
.

We deduce that the solution f to (33) satisfies

f(x) = B +
A

(γ1 − γ2)2

(
1

γ1 − x
+

1

γ2 − x

)
− 2A

(γ1 − γ2)3
(log(x− γ1)− log(γ2 − x)) ,

where A and B are two constants. Since f is orthogonal to the unitary function for x ∈ (0, 1),

we must have f(1/2) = 0, hence B=0 (we use the fact that γ1 = 1−
√

1+4α
2 and γ2 = 1+

√
1+4α
2 ,

where α = 1/2− λ).

As shown in figure 6 , the asymptotic expression for the Fiedler vector is very accurate
numerically, even for small values of n. The asymptotic Fiedler value is also very accurate
(2 digits precision for n = 10, once normalized by n2).

A.4.2 Bounding the eigengap

We now give two simple propositions on the Fiedler value and the third eigenvalue of the
Laplacian matrix, which enable us to bound the eigengap between the second and the third
eigenvalues.

Proposition 32 Given all comparisons indexed by their true ranking, let λ2 be the Fiedler
value of Smatch, we have

λ2 ≤
2

5
(n2 + 1).

Proof Consider the vector x whose elements are uniformly spaced and such that xT1 = 0
and ‖x‖2 = 1. x is a feasible solution to the Fiedler eigenvalue minimization problem.
Therefore,

λ2 ≤ xTLx.

Simple calculations give xTLx = 2
5(n2 + 1).

Numerically the bound is very close to the true Fiedler value: λ2/n
2 ≈ 0.39 and 2/5 =

0.4.

Proposition 33 Given all comparisons indexed by their true ranking, the vector v =
[α,−β, . . . ,−β, α]T where α and β are such that vT1 = 0 and ‖v‖2 = 1 is an eigenvec-
tor of the Laplacian matrix L of Smatch The corresponding eigenvalue is λ = n(n+ 1)/2.

Proof Check that Lv = λv.
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A.5 Other choices of similarities

The results in this paper shows that forming a similarity matrix (R-matrix) from pairwise
preferences will produce a valid ranking algorithm. In what follows, we detail a few options
extending the results of Section 2.2.

A.5.1 Cardinal comparisons

When input comparisons take continuous values between -1 and 1, several choice of simi-
larities can be made. First possibility is to use Sglm. An other option is to directly provide
1−abs(C) as a similarity to SerialRank. This option has a much better computational cost.

A.5.2 Adjusting contrast in Smatch

Instead of providing Smatch to SerialRank, we can change the “contrast” of the similarity,
i.e., take the similarity whose elements are powers of the elements of Smatch.

Scontrast
i,j = (Smatch

i,j )α.

This construction gives slightly better results in terms of robustness to noise on synthetic
datasets.

A.6 Hierarchical Ranking

In a large dataset, the goal may be to rank only a subset of top items. In this case, we can
first perform spectral ranking, then refine the ranking of the top set of items using either
the SerialRank algorithm on the top comparison submatrix, or another seriation algorithm
such as the convex relaxation in (Fogel et al., 2013). This last method also allows us to
solve semi-supervised ranking problems, given additional information on the structure of
the solution.
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Figure 1: The matrix of pairwise comparisons C (far left) when the rows are ordered ac-
cording to the true ranking. The corresponding similarity matrix Smatch is a strict
R-matrix (center left). The same Smatch similarity matrix with comparison (3,8)
corrupted (center right). With one corrupted comparison, Smatch keeps enough
strict R-constraints to recover the right permutation. In the noiseless case, the
difference between all coefficients is at least one and after introducing an error,
the coefficients inside the green rectangles still enforce strict R-constraints (far
right).
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Figure 2: Kendall τ (higher is better) for SerialRank (SR, full red line), point score (PS,
(Wauthier et al., 2013) dashed blue line), Rank Centrality (RC (Negahban et al.,
2012) dashed green line), and maximum likelihood (BTL (Bradley and Terry,
1952), dashed magenta line). In the first synthetic dataset, we vary the proportion
of corrupted comparisons (top left), the proportion of observed comparisons (top
right) and the proportion of observed comparisons, with 20% of comparisons being
corrupted (bottom left). We also vary the parameter m in the second synthetic
dataset (bottom right).
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Figure 3: Percentage of upsets (i.e. disagreeing comparisons, lower is better) defined in (25),
for various values of k and ranking methods, on TopCoder (left) and football data
(right).
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Figure 4: Percentage of upsets (i.e. disagreeing comparisons, lower is better) defined in (25),
for various values of k and ranking methods, on England Premier League 2011-
2012 season (left) and 2012-2013 season (right).
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Figure 5: Kendall τ (higher is better) for SerialRank with normalized Laplacian (SR, full
red line), row-sum (PS, (Wauthier et al., 2013) dashed blue line), rank centrality
(RC (Negahban et al., 2012) dashed green line), and maximum likelihood (BTL
(Bradley and Terry, 1952), dashed magenta line). In the first synthetic dataset,
we vary the proportion of corrupted comparisons (top left), the proportion of ob-
served comparisons (top right) and the proportion of observed comparisons, with
20% of comparisons being corrupted (bottom left). We also vary the parameter
m in the second synthetic dataset (bottom right).
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Figure 6: Comparison between the asymptotic analytical expression of the Fiedler vector
and the numeric values obtained from eigenvalue decomposition, for n = 10 (left)
and n = 100 (right).
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