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Category-measure duality: convexity, midpoint convexity
and Berz sublinearity

N. H. Bingham and A. J. Ostaszewski

Abstract. Category-measure duality concerns applications of Baire-category methods that
have measure-theoretic analogues. The set-theoretic axiom needed in connection with the
Baire category theorem is the Axiom of Dependent Choice, DC rather than the Axiom of
Choice, AC. Berz used the Hahn–Banach theorem over Q to prove that the graph of a
measurable sublinear function that is Q+-homogeneous consists of two half-lines through
the origin. We give a category form of the Berz theorem. Our proof is simpler than that
of the classical measure-theoretic Berz theorem, our result contains Berz’s theorem rather
than simply being an analogue of it, and we use only DC rather than AC. Furthermore, the
category form easily generalizes: the graph of a Baire sublinear function defined on a Banach
space is a cone. The results are seen to be of automatic-continuity type. We use Christensen
Haar null sets to extend the category approach beyond the locally compact setting where
Haar measure exists. We extend Berz’s result from Euclidean to Banach spaces, and beyond.
Passing from sublinearity to convexity, we extend the Bernstein–Doetsch theorem and related
continuity results, allowing our conditions to be ‘local’—holding off some exceptional set.
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1. Introduction

The Berz theorem of our title is his characterization of a function S : R → R

which is sublinear, that is—it is subadditive ([50, Ch. 3], [87]):

S(u + v) � S(u) + S(v),

and homogeneous with respect to non-negative integer scaling. Following Berz
[5], we call S sublinear on a set Σ if S is subadditive and

S(nx) = nS(x) for x ∈ Σ, n = 0, 1, 2, . . .

(here we do not require nx ∈ Σ), equivalently, if Σ is closed under non-negative
rational scaling,
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S(qx) = qS(x) for x ∈ Σ, q ∈ Q+ = Q ∩ [0,∞);

in words, S is positively Q-homogeneous on Σ and S(0) = 0. An important
class of functions with these two properties but with a more general domain
occurs in mathematical finance—the coherent risk measures introduced by
Artzner et al. [2] (cf. §6.5); for textbook treatments see [67], [36, 4.1]. In Sect. 4
we characterize such functions in the category setting when the domain is a
Banach space. Working in a locally convex Fréchet space and under various
axiomatic assumptions Ajtai [1], Wright [102], and Garnir [41], motivated by
semi-norm considerations, study the continuity of a subadditive function S
with the property S(2x) = 2S(x).

Berz used the Hahn–Banach theorem over Q to prove that the graph of
a (Lebesgue) measurable sublinear function consists of two half-lines through
the origin ([62, §16.4, 5]; cf. [8]). Recall that in a topological space X, a subset
H is Baire (has the Baire property, BP) if H = (V \MV ) ∪ MH for some open
set V and meagre sets MV ,MH in the sense of the topology on X; similarly
a function f : X → R is Baire if preimages of (Euclidean) open subsets of R
are Baire subsets in the topology of X. Our first result is the Baire version
of Berz’s theorem on the line. Below R± denotes the non-negative and non-
positive half-lines.

Theorem 1B (ZF + DC). For S : R → R sublinear and Baire, there are c± ∈ R

such that

S(x) = c±x, for x ∈ R±.

As we shall see in Sect. 3, Theorem 1B implies the classical Berz theorem
as a corollary:

Theorem 1M (ZF + DC, containing Berz [5] with AC). For S : R → R sub-
linear and measurable, there are c± ∈ R such that

S(x) = c±x, for x ∈ R±.

For the relative strengths of the usual Hahn–Banach theorem, HB and the
Axiom of Choice, AC, see [81,82]; Pincus and Solovay [83] provide a model
of set theory in which the Axiom of Dependent Choice(s), DC holds but HB
fails. HB is derivable from the Prime Ideal Theorem, PI, an axiom weaker than
AC: for literature see again [81,82]; moreover, HB for separable normed spaces
is not provable from DC [32, Cor. 4]. For more on this (with references), see
Appendix 1 of the fuller arXiv version of this paper.

Theorems 1B and 1M may be combined, into ‘Theorem 1(B+M)’, say. Fol-
lowing necessary topological preliminaries (Lemma S, Theorem BL; Steinhaus–
Weil property) in Sect. 2, the two cases are proved together in Sect. 3 bi-
topologically, by switching between the two relevant density topologies of
Sect. 2 ([13,17,22,75]). Here we also prove Theorem 2 (local boundedness
for subadditive functions) and Theorem 3, the corresponding continuity result.
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We introduce universal measurability (used in Sect. 4 in defining Christensen’s
notion of Haar null sets—in contexts where there may be no Haar measure—
[28,29]), and use this to note a variant on Theorem 2, Theorem 2H (‘H for
Haar’).

The sector between the lines c±x in the upper half-plane is a two-dimen-
sional cone. This suggests the generalization to Banach spaces that we prove
in Sect. 4 (Theorems 4B, 4M, 4F—‘F for F-space’).

The results above for the Baire/measurable functions on R are to be ex-
pected: they follow from the classical Bernstein–Doetsch continuity theorem
for locally bounded, midpoint convex functions on normed vector spaces, to
which we turn in Sect. 5 (see e.g. [62, 6.4.2] quoted for R

d, but its third proof
there applies more generally, as does Theorem B below, also originally for
R

d; see also [47, Ch. III]), once one proves their local boundedness (Sect. 3,
Th. 2), since a sublinear function is necessarily midpoint convex. Indeed, by
Q-homogeneity and subadditivity,

f

(
1
2
(x + y)

)
=

1
2

(f(x + y)) � 1
2

(f(x) + f(y))

(we remark that the inequality here generalizes to Jensen’s for dyadic rational
convex combinations). We handle the Berz sublinear case first (in Sect. 3), as
the arguments are simpler, and turn to mid-convexity matters in Sect. 5, where
we prove the following two results (for topological and convexity terminology
see respectively Sects. 2 and 5).

Theorem M (Mehdi’s Theorem, [68, Th. 4]; cf. [102]). For a Banach space X,
if S : X → R is midpoint convex and Baire, then S is continuous.

Theorem FS (cf. [35]). For a Banach space X, if S : X → R is midpoint convex
and universally measurable (or even H-measurable), then S is continuous.

For the Banach context both there and in Sect. 4, we rely on the following
dichotomy result, Theorem B, especially on its second assertion, which together
with an associated Corollary B in Sect. 4 (on boundedness), enables passage
from a general Banach space to a separable one (wherein the Christensen
theory of Haar null sets is available). See [24] and Appendix 2 of the fuller
arXiv version of this paper.

Theorem B (Blumberg’s Dichotomy Theorem, [24, Th. 1]; cf. [92]). For any
normed vector space X and S : X → R midpoint convex: for any x0 ∈ X,
either S is not continuous at x0 ∈ X, or there exists a sequence {xn}n∈N

converging to x0 with {S(xn)}n∈N unbounded above.
In particular, for a Banch space X, if for any closed separable subspace

B ⊆ X the restriction S|B is continuous (for instance S|B is locally bounded
above on B ), then S is continuous.
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In Sect. 5 we switch to a form of mid-convexity that is assumed to hold
only on a co-meagre or co-null set (so on an open set of a density topology—
see Sect. 2); we term this weak midpoint convexity (on a set Σ, say), and use
it to show in particular that a Baire/measurable midpoint convex function is
continuous and convex. We close in Sect. 6 with some complements.

Theorem 1B (under the usual tacit assumption ZF + AC) was given in [20,
Th. 5]. The results imply the classical results that Baire/measurable additive
functions are linear (see [16] for historical background); indeed, an additive
function A(.) is sublinear and A(−x) = −A(x), so c+ = −c−.

The primacy of category within category-measure duality is one of our
two main themes here. This is something we have emphasised before [13,16,
17]; with the key words transposed, Oxtoby [79] calls this measure-category
duality, so from a different viewpoint—he has next to no need of Steinhaus’s
theorem ([79, Ch. 4], cf. [75]), which is crucial for us. Our second main theme,
new here, is AC versus DC. As so much of the extensive relevant background
is still somewhat scattered, we have summarized what we need in detail in
an appendix (which has its own separate references); this may be omitted by
the expert (or uninterested) reader, and so is included only in the fuller arXiv
version of this paper (as Appendix 1).

Without further comment, we work with ZF + DC, rather than ZF + AC,
throughout the paper. It is natural that DC should dominate here. DC suffices
for the common parts of the Baire category and Lebesgue measure cases: for
the first, see Blair [23], and for the second, see Solovay (Appendix 1.3; [95, p.
25]). For the contrasts—or ‘wedges’—between them, see Appendix 1.5. It is
here that further set-theoretic assumptions become crucial; in brief, measure
theory needs stronger assumptions.

2. Topological preliminaries: Steinhaus–Weil property

Fundamental for our purposes is the Steinhaus–Weil property1 [21,22]—that
the difference set A − A has a non-empty interior for any non-negligible set A
with the Baire property, briefly: Baire set—as opposed to Baire topology. We
focus on Baire topological spaces on which the Steinhaus–Weil theorem holds.
(See [95, Remark to Th. 6.1] for failure of the Steinhaus–Weil property in a
group; cf. [61,88] for extensions of this property.) This is just what is needed
to make the infinite combinatorics used in our proofs work.

Call a an (outer) Lebesgue-density point of a set A if limδ↓0 |A ∩ (a − δ, a +
δ)|/2δ = 1, where |S| is the outer measure of S; the Lebesgue density theorem
asserts that almost all points of a set are density points. (On this point the

1 Initially, as in the Steinhaus–Piccard–Pettis context, this concerns R; the wider context
is due to Weil and concerns (Haar) measurability in locally compact groups [99, p. 50], cf.
[45]. These distinctions blur in our bitopological context.
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survey [27] is a classic. For further background see [100] and literature cited
there; cf. the recent [21].) By analogy, say that a is a Baire-density point of A
if V \A is meagre, for some open neighbourhood V of a; if A is Baire, then it
is immediate from BP that, except for a meagre set, all points of A are Baire
density points. Each of the category and measure notions of density defines
a density topology (denoted respectively DB/DL—with L denoting Lebesgue
measurable sets), in which a set W is density-open if all its points are cate-
gory/measure density points of W, the latter case was introduced by Goffman
and his collaborators—see [42,43]. Both refine the usual Euclidean topology,
E ; see [21] for properties common to both topologies. We call meagre/null sets
negligible, and say that quasi all points of a set have a property if, but for a
negligible subset, all have the property. These negligible sets form a σ-ideal;
see Fremlin [38], Lukes et al. [64], Wilczyński [21,100] for background, and
also [12,74]. Below (for use in Sect. 4) we consider a further σ-ideal: the (left)
Haar null sets (Solecki [94]–[96]) of a Banach space and by extension use the
same language of negligibles there. The corresponding density topologies may
also be studied via Hashimoto topologies (cf. [3,48], [64, 1C], [30]), obtained
by declaring as basic open the sets of the form U\N with U ∈ E and N the ap-
propriate negligible. (That these sets, even under DC, form a topology follows
from E being second countable—cf. [55, 4.2] and [21].)

The definition above of a Baire-density point may of course be repeated
verbatim in the context of any topology T on any set X by referring to B(T ),
the Baire sets of T . In particular, working with T = DL in place of E we
obtain a topology DB(DL). Since B(DL) = L (see [58, 17.47] and [13]),

DB = DB(E), DL = DB(DL).

Lemma S (Multiplicative Sierpiński Lemma; [12, Lemma S], cf. [91]). For
A,B Baire/measurable in (0,∞) with respective density points (in the cate-
gory/measure sense) a, b, and for n = 1, 2, . . . there exist positive rationals qn

and points an, bn converging (metrically) to a, b through A,B respectively so
that bn = qnan.

Proof. For n = 1, 2, . . . and the consecutive values ε = 1/n, the sets Bε(a) ∩ A
and Bε(b)∩B are Baire/measurable non-negligible. So by Steinhaus’s theorem
(see e.g. [62, §3.7], [7, Th. 1.1.1]; cf. [16]), the set [B ∩ Bε(b)] · [A ∩ Bε(a)]−1

contains interior points, and so in particular a rational point qn. Thus for
some an ∈ Bε(a) ∩ A and bn ∈ Bε(b) ∩ B we have qn = bna−1

n > 0, and as
|a − an| < 1/n and |b − bn| < 1/n, an → a, bn → b. �

Remark. The result above is a consequence of the Steinhaus–Weil property
regarded as a corollary of the Category Interior Theorem ([14, Th. 4.4]; cf.
[44,45]). The latter, applied to the topology D that is either of the above two
topologies DB/DL, asserts that U − V or UV −1 is an E-open nhd (of the
relevant neutral element) for U, V open under D, since D is a shift-invariant
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Baire topology satisfying the Weak Category Convergence condition of [13] for
either of the shift actions x �→ x + a, x �→ xa. The Category Interior Theorem
in turn follows from the Category Embedding Theorem ([13]; cf. [72]). Now
a ∈ Ao := intD(A), b ∈ Bo, as a and b are respectively density points of A and
B, and Bε(a) ∩ Ao and Bε(b) ∩ Bo are in D, as D refines E .

Our approach below is, as in Lemma S, via the Steinhaus–Weil property
of certain non-negligible sets Σ: 0 is a (usual) interior point of Σ − Σ. Our
motivation comes from some infinite combinatorics going back to Kestelman
[60] in 1947 that has later resurfaced in the work of several authors: Kemper-
man [59] in 1957, Borwein and Ditor [25] in 1978, Trautner [98] in 1987, Harry
Miller [71] in 1989, Grosse-Erdmann [45] in 1989, and [8–10,14] from 2008.
The Kestelman–Borwein–Ditor Theorem (KBD below) asserts (in particular)
that for any Baire/measurable non-negligible Σ and any null sequence zn → 0,
there are t ∈ Σ and an infinite M such that t + zm ∈ Σ for m ∈ M.

On R, KBD is both a consequence and a sharpening of the Baire Category
Theorem (BC below), for BC implies KBD, and conversely—the proof of KBD
requires a sequence of applications of BC [72]. The power of these ideas is
shown in the proof of the Uniform Convergence Theorem of regular variation
([7, Ch. 1], [9]).

None of this is special to R: one can work in a Polish abelian group. Then
KBD in this setting implies as an almost immediate consequence the Effros
Theorem ([76], cf. [69]), and so the Open Mapping Theorem [78], as well as
other classical results, for instance the Banach–Steinhaus Theorem—see the
survey [77] and the more recent developments in [21] and [22, Th. 2].

The significance of KBD is three-fold.
Firstly, if KBD applies for the non-negligible sets Σ of some family of sets,

then these sets have the Steinhaus–Weil property. If not, choose zn /∈ Σ − Σ
with zn → 0 (henceforth termed a ‘null’ sequence); now there are t ∈ Σ and
an infinite M such that t + zm ∈ Σ for m ∈ M, so zm = (t + zm) − t ∈ Σ − Σ,
a contradiction. A variant argument, relevant to Sect. 5, may be used for the
difference of two such sets Σ1 − Σ2 : for x1, x2 respective density points, work
as above with Σ := (Σ1 − x1) ∩ (Σ2 − x2) to obtain 0 ∈ int(Σ − Σ), i.e.
x1 − x2 ∈ int(Σ1 − Σ2); cf. [14].

Secondly, several proofs of KBD rely on elementary induction, i.e. recursion
through the natural numbers via DC (see Sect. 1). As a result our Berz-type
theorems depend only on DC rather than on the full strength of AC used by
Berz.

Finally, any application of KBD in a topological vector space context may
be deemed to take place in the separable subspace generated by the null se-
quence, so enabling restriction to the separable case.
Definition. For X a separable Banach space, say that the increasing sequence
of sets {Σm}m∈N quasi covers X (is a quasi cover of X) if

⋃∞
m=0 Σm is dense
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in X, and that f : X → R is quasi σ-continuous under the quasi cover if f |Σm

is continuous for each m = 0, 1, 2, . . ..
In applications X\

⋃∞
m=0 Σm will be negligible.

Separability is a natural condition in the next result—see the closing com-
ments in [103].

Theorem BL (Baire Continuity Theorem [15, Th. 11.8]; Baire–Luzin Theorem;
cf. [46, end of Section 55], [103, Th. II]). For a separable Banach space, if
f : X → R is Baire, or measurable with respect to a regular σ-finite measure
μ, then f is quasi σ-continuous with respect to some quasi cover {Σm}m∈N,
with the sets Σm being non-empty and respectively in DB or μ-non null μ-
measurable. Thus, for X = R under the Lebesgue measure, the sets Σm may
be taken non-empty density open, i.e. in DL = DB(DL).

Remarks. 1. In the category case, with Σm = Σ0 for all m and Σ0 co-meagre,
this is Baire’s Theorem ([79, Th. 8.1]). In the Lebesgue measure case this is a
useful form of Luzin’s Theorem formulated in [11]. The extension to a regular
(i.e. G-outer regular) σ-finite measure may be made via Egoroff’s Theorem (cf.
[46, §21 Th. A]).
2. Below, and especially in Sect. 5 (see for instance, the introductory paragraph
to Th. 6), it is helpful if the sets Σm are not only in DB but also norm dense. So,
in particular, sets that are locally co-meagre come to mind; however, any Baire
set that is locally co-meagre is co-meagre. (For Σ Baire, its quasi-interior—the
largest (regular) open set equal to Σ modulo a meagre set—is then locally
dense, so everywhere dense and so co-meagre.)
3. For f Baire, f |V is continuous in the usual sense (i.e. E → E) on a DB-open
set V [79, Th. 8.1].

In an infinite-dimensional separable Banach space: we cannot rely on the
Haar measure, as here it does not exist; but we can nevertheless rely on a
σ-ideal of sets whose ‘negligibility’ is predicated on the Borel probability mea-
sures of that space2. We recall below their definition and two key properties,
the first of which relies on separability (hence the frequent recourse below
to separable Banach subspaces): the Steinhaus–Weil property and the weak
extension of the Fubini theorem (WFT; see below) due to Christensen [28],
which may be applied here. For this we need to recall some definitions.

Firstly, for G a complete metric group (e.g. a Banach space viewed as an
additive group), B ⊆ G is universally measurable if B is measurable with re-
spect to every Borel measure on G—for background, see e.g. cf. [38, 434D, 432].
Examples are analytic subsets (see e.g. [86, Part 1 §2.9], or [58, Th. 21.10], [38,
434Dc]) and the σ-algebra that they generate. Beyond these are the provably

2 Also relevant here is their regularity: for their outer regularity (approximation by open
sets) see [80, Th. II.1.2], and their inner regularity (approximation by compacts—the Radon
property) see [80, Ths. II.3.1 and 3.2], the latter relying on completeness.
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Δ1
2 sets of [34]; for their definition see Appendix 1.1 in the extended arXiv

version of this paper.
Consistently with this, say that a function S : G → R is universally mea-

surable if S−1 takes open sets to universally measurable sets in G. Actually
we just need these inverse images to have universally measurable intersections
with closed separable subgroups of G.

Secondly, we need the σ-ideal of Haar null sets (defined below). This is
a generalization of Christensen [28,29] to a non-locally compact group of
the notion of a Haar measure-zero set: see again Hoffmann-Jørgensen [86,
Part 3, Th. 2.4.5] and Solecki [94–96] (and [51] in the function space setting).

Christensen [28] shows that in an abelian Polish group (G, ·) the family
H(G, ·) of Haar null sets forms a σ-ideal. This was extended for ‘ left Haar
null’ sets (see below) by Solecki [96, Th. 1] in the more general setting of (not
necessarily abelian) Polish groups (G, ·) amenable at 1, the scope of which he
studies, in particular proving that any abelian Polish group is amenable at
1 [96, Prop 3.3]; this includes, as additive groups, separable F - (and hence
Banach) spaces.

A subset of a Polish group G is left Haar null [96] if it is contained in a
universally measurable set B such that for some Borel probability measure μ
on G

μ(gB) = 0 (∀g ∈ G).

Solecki also considers the (in general) narrower family of Haar null sets (as
above, but now μ(gBh) = 0 for all g, h ∈ G). Below we work in vector spaces
and so the non-abelian distinctions vanish.

We can clarify the terminology in Theorem FS above: for X a separable
Banach space, Y ⊆ X is H-measurable (‘H’ for Haar) if Y = B ∪ H for some
universally measurable B and Haar-null H, and f : X → R is H-measurable if
f−1(U) is H-measurable for each open U ⊆ R.

With these concepts at hand, we turn to the two properties mentioned
above.

First, the Steinhaus–Weil Theorem holds for universally measurable sets
that are not Haar null; this was proved by Solecki (actually for left Haar
null [96, Th. 1(ii)]; cf. Hoffmann-Jørgensen [86, Part 3, Th. 2.4.6]) by im-
plicitly proving KBD. It may be checked that his proof uses only DC. One
may also show that the KBD theorem follows from amenability at 1: see
[22].

Next, Christensen’s WFT [28] (for a detailed proof, see [26]) concerns the
product H ×T of a locally compact group T, equipped with the Haar measure
η, and an arbitrary abelian Polish group H, and is a ‘one-way round’ theorem
(only for T -sections): if A ⊆ H × T is universally measurable, then A is Haar
null iff the sections A(h) := {t ∈ T : (h, t) ∈ A} are Haar measure-zero except
possibly for a Haar null set (in the sense above) of h ∈ H (i.e. for ‘quasi all’
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h ∈ H ). The ‘other way round’ (for H-sections) may fail, as was shown by
Christensen [28, Th. 6]. For another counter-example, see Jab�lońska [52].

3. Sublinearity and Berz’s Theorem

We begin with Theorem 2 on subadditive functions. We deal with the category
and measure versions together via the Steinhaus–Weil property, and use DC
rather than AC. The Lebesgue measurable case (with AC) is classical [50,
Ch. 7]. See also [8, Prop. 1], [62, Th. 16.2.2], [20, Prop. 7′].

Recalling that T is a Baire space topology if Baire’s theorem holds under
T , we say that a vector space X has a Steinhaus–Weil topology T if the
non-meagre Baire sets of T have the Steinhaus–Weil property. Thus E and DL
are Steinhaus–Weil topologies for R that are Baire topologies, by the classical
Steinhaus–Piccard–Pettis Theorems (see e.g. [16]).

As above, we say that S : X → R is T -Baire if S−1 takes (Euclidean)
open sets of R to T -Baire sets in X. Thus E-Baire means Baire in the usual
sense, and DL-Baire means Lebesgue measurable.

Theorem 2. For X a vector space with a Steinhaus–Weil, Baire topology T
and S : X → R subadditive: if S is T -Baire, then it is locally bounded.

Proof. Suppose |S(u + zn)| → ∞ for some u ∈ X and null sequence zn → 0.
As the level sets H±

n := {t : |S(±t)| � n} are T -Baire and T is Baire, for some
k the set H±

k is non-meagre. As T is Steinhaus–Weil, H±
k − H±

k has 0 in its
interior. So there is n ∈ N such that zm ∈ H±

k −H±
k for all m � n. For m � n,

choose am, bm ∈ H±
k with

zm = am − bm

for m � n. Then for all m � n

S(u) − 2k � S(u) − S(−am) − S(bm) � S(u + am − bm)
= S(u + zm) � S(u) + S(am) + S(−bm) � S(u) + 2k,

contradicting unboundedness. �

The key to Theorem 1B is Theorem 3 below. It may be regarded as a
subadditive analogue of Ostrowski’s Theorem for additive functions (cf. [16],
[66]). The result extends its counterpart in [17, Prop. 13], with a simpler proof,
and uses only DC (via KBD). As it depends on the Steinhaus–Weil property,
it handles the Baire and measurable cases together.

Theorem 3. If S : R → R is subadditive, locally bounded with S(0) = 0, and:

(i) there is a symmetric set Σ (i.e. Σ = −Σ) containing 0 with S|Σ contin-
uous at 0;
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(ii) for each δ > 0, Σ+
δ := Σ ∩ (0, δ) has the Steinhaus–Weil property

—then S is continuous at 0 and so everywhere.
In particular, this conclusion holds if there is a symmetric set Σ

containing 0 on which

S(u) = c±u for some c± ∈ R and all u ∈ Σ ∩ R+, or all u ∈ Σ ∩ R− resp.,

and Σ is Baire/measurable, non-negligible in each (0, δ) for δ > 0.

Proof. If S is not continuous at 0, then (see e.g. [50, 7.4.3], cf. [20, Prop. 7]))

∞ > λ+ := lim sup
t→0

S(t) > lim inf
t→0

S(t) � 0,

the first inequality by local boundedness at 0, the last by subadditivity. Choose
zn → 0 with S(zn) → λ+ > 0. Let ε = λ+/3. By continuity on Σ at 0, there
is δ > 0 with |S(t)| < ε for t ∈ Σ ∩ (−δ, δ). By the Steinhaus–Weil property
of Σδ there is n such that zm ∈ Σ+

δ − Σ+
δ for all m � n. Choose am, bm ∈ Σ+

δ

with zm = am − bm; so by subadditivity

S(zm) � S(am) + S(−bm) � 2ε.

Taking limits,

λ+ � 2ε < λ+.

This contradiction shows that S is continuous at 0. As in [50, Th. 2.5.2],
continuity at all points follows by noting that

S(x) − S(−h) � S(x + h) � S(x) + S(h).

The remaining assertion (implying S(0) = 0) follows from the Steinhaus–
Piccard–Pettis Theorem via Theorem 2, since continuity at 0 on Σ is implied
by

|c±u| � |u| · max{|c+|, |c−|}. �
Proofs of Theorems 1B and 1M. Let S : R → R be sublinear and either Baire
or measurable, that is, Baire in one of the two topologies DB(E) or DB(DL). By
Theorem BL S is quasi σ-continuous. Taking Σm as in Th. BL of Sect. 2 (with
m fixed), apply Lemma S to A = B = Σm ⊆ R+. Fix (non-zero!) a, b ∈ Σm;
as these are density points, there are an, bn ∈ Σm and qn ∈ Q+ so that

bn = qnan; a = limn an, b = limn bn.

As S is sublinear,

S(qnan)/S(an) = qn = bn/an → b/a.

But S|Σm is continuous at a and b, so

S(b)/S(a) = limn S(bn)/S(an) = b/a.

So on Σm, S(u) = cmu. But Σm ⊇ Σ0 �= ∅, so cm = c0 for all m. So S(x) = c0x
for x ∈ Σ+ :=

⋃
m∈N Σm, i.e. for almost all x > 0. Repeat for R− with an
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analogous set Σ− and put Σ := {0} ∪ Σ+ ∪ Σ−. We may assume −Σ = Σ
(otherwise pass to the subset Σ ∩ (−Σ), which is quasi all of R). By Th. 3, S
is continuous at 0 and so everywhere. In summary: S is linear on the dense
subset Σ+ ⊆ R+ and continuous, and likewise on the dense subset Σ− ⊆ R−.
So S is linear on the whole of R+, and on the whole of R−. �

For later use (in Sect. 4 below) we close this section with a variant on
Theorem 2, Theorem 2H (‘H for Haar’). The proof is the same as that of
Theorem 2 above, but needs a little introduction. Recall (from Sect. 2) that a
function S : X → R with X a Banach space is universally measurable if S−1

takes open sets to universally measurable sets (as in Sect. 2) in X; further we
say that a σ-ideal H of subsets of a topological vector space X (the ‘negligible
sets’) is proper if X /∈ H, and that H has the Steinhaus–Weil property if
universally measurable sets that are not in H have the interior point property.

Theorem 2H. Let X be a topological vector space carrying a proper σ-ideal
with the Steinhaus–Weil property. If S : X → R is subadditive and universally
measurable, then S is locally bounded.

4. Banach-space versions

In Theorem 4B and 4M below we extend the category and measure results in
Theorems 1B and 1M to the setting of a Banach space X. Since the conclusions
are derived from continuity (and local boundedness), our results are first es-
tablished for separable (sub-) spaces, which then extend to the non-separable
context, by Theorem B (Sect. 1). The key in each case is an appropriate ap-
plication of Theorem 2 (or Theorem 2H). The category case here is covered by
the Piccard-Pettis Theorem, true for non-meagre Baire sets in X; in fact more
is true, as variants of KBD hold in analytic groups with translation-invariant
metric—see [15, Ths. 1.2, 5.1] or [75, Th. 2], which also covers F -spaces, so
include Fréchet spaces (see the end of this section). In the absence of Haar
measure, the analogous ‘measure case’ arising from universal measurability is
technically more intricate, but nevertheless true —see below. It is here that
our methodology requires us to pass down to separable subspaces of a Banach
space X. That it suffices to reduce the case of a general Banach space X to
the separable case follows from the result below, a corollary of Theorem B
of Sect. 1. Henceforth we write Bδ,Σδ respectively for the closed unit ball
{x : ||x|| � δ} and the δ-sphere {x : ||x|| = δ}, and use the following notation
for lines and rays:

R(u) := {λu ∈ X : λ ∈ R}, R±(u) := {λu ∈ X : λ ∈ R± ∪ {0}}.
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Corollary B. For X a Banach space and S : X → R sublinear, if S|B is locally
bounded above for each closed separable subspace B, then {|S(x)|/||x|| : x �= 0}
is bounded.

Proof. By Theorem B, S is continuous on X , so there is δ > 0 with

||S(v)|| � 1 (||v|| � δ).

Furthermore, for any x �= 0 taking u := x/||x||, the restriction of S to the ray
R+(u) is positively homogeneous by Theorem 1B, and so

|S(x)| = |S(||x||u)| = |S(δu)||x||/δ| � ||x||/δ. �

The proof of the category case in Theorem 4B below would have been easier
had we used AC to construct the function c(x); but, as we wish to rely only
on DC, more care is needed.

We offer two proofs. The first uses Theorems 1B and 2 (and is laid out
so as to extend easily to the more demanding F -space setting of Theorem 4F
below); the second is more direct, but uses a classical selection (uniformization)
theorem, together with a Fubini-type theorem for negligible sets in a product
space. Both proofs have Banach-space ‘measure’ analogues.

Theorem 4B. For X a Banach space, and S : X → R Baire, if S is subadditive
and Q+-homogeneous, then

(i) S is continuous and convex with epigraph a convex cone pointed at 0, and
(ii) there is a bounded function c : X → R such that

S(x) = c(x)||x||.

First Proof. Since S is midpoint convex, and we first seek to establish con-
tinuity, we begin by establishing it for any separable subspace; we then use
Theorem and Corollary B above to draw the same conclusion about X itself.
Consequently, we may w.l.o.g. assume X is itself separable. By Theorem 2 ap-
plied to the usual meagre sets, S is locally bounded at 0, so there are M and
δ > 0 such that

|S(x)| � M (x ∈ Bδ).

In particular, for v ∈ Σδ, |S(v)| � M. For u ∈ X define a ray-restriction of S
by

fu(x) := S(x) (x ∈ R(u)).

For fixed u, as the mapping λ �−→ λu from R into X is continuous, the set
R(u) is σ-compact. So for any fixed u, fu is Baire; indeed, fu(x) ∈ (a, b) iff
S(x) ∈ (a, b) and x ∈ R(u), i.e.

{x : fu(x) ∈ (a, b)} = {x : S(x) ∈ (a, b)} ∩ R(u),
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and R(u) has the Baire property (being σ-compact). So by Th. 1B, for any
fixed u the function fu is continuous and there exist c± ∈ R with S(λu) = c±λ
according to the sign of λ. This justifies the definitions below for u ∈ X:

c+(u) := S(u), c−(u) := −S(−u).

Then, for fixed u, by the continuity of fu, S(λu) = λS(u) = c+(u)λ for
λ � 0, so that S is positively homogeneous on R+(u); likewise, S(λu) =
S((−λ)(−u)) = (−λ)S(−u) = c−(u)λ for λ � 0. Then for u = x/||x|| with
x �= 0, as v := δu ∈ Σδ,

|S(x)| = |S(||x||u)| = |S(v)| · ||x||/δ � (M/δ)||x||.
So S is continuous at 0, and so by subadditivity everywhere, as in the proof of
Theorem 3. By continuity (as S is positively homogeneous) S is fully convex
[85, Th. 4.7], as opposed to just midpoint convex (cf. Sect. 5); so its epigraph
is a convex cone pointed at the origin [85, Th. 13.2].

Finally, for x �= 0, take c(x) := S(x/||x||), which as above is bounded by
M/δ; then

S(x) = c(x)||x||. �
Second Proof. As above, we again assume that X is separable. By Theorem
BL (Sect. 2) there is a co-meagre subset Σ with S|Σ continuous. By passage to
Σ ∩ (−Σ) we may assume Σ is symmetric; we may also assume that Σ is a Gδ.
By the Kuratowski-Ulam Theorem [79, Th. 15.1], for quasi all x �= 0, say for
x ∈ D with D a Gδ-set, the ray R+(x)∩Σ is co-meagre on Σ. By the Steinhaus
Theorem, Sierpiński’s Lemma S applies. By Theorem 1B for s ∈ Σ ∩ R+(x)
there is c with S(s) = c||s|| (as s = x||s||/||x||). Now S|Σ is continuous so a
Borel function, as Σ is a Gδ, and for fixed x ∈ D, S(a)/||a|| is constant for
(density) points a of Σ ∩ R+(x). (This uses the isometry of R+(x) and R+.)
So by Novikov’s Theorem (see e.g. [56, p. x],—cf. [58, 36.14]) there is a Borel
function c : D → R such that S(x) = c(x)||x|| for x ∈ D. By Theorem 1B,
since S is bounded near the origin, c(x) is also bounded on D near 0 (as in the
previous proof). From this boundedness near 0, as in the proof of Theorem
3, S(x) is continuous for all x. By continuity, S is positively homogeneous, so
again convex with epigraph a convex cone pointed at the origin. �
Remarks. 1. In the first proof, one may show that S is continuous at 0 by
considering a (null) non-vanishing sequence zn → 0. Put un := zn/||zn||; by
DC select c±

n such that S(λun) = c±
n λ, according to the sign of λ. As S is

locally bounded at 0, there are M and δ > 0 such that

|S(x)| � M (x ∈ Bδ).

W.l.o.g. δ ∈ Q+, so for x = δun ∈ Bδ, |S(x)| = |c+
n δ| � M ; then |c+

n | � M/δ.
So

S(zn) = S(||zn||un) = c+
n ||zn|| � (M/δ)||zn|| → 0.
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2. The second proof uses the Fubini-like Kuratowski-Ulam Theorem [79, 15.1]
(cf. [28]). This can fail in a non-separable metric context, as shown in [84] (cf.
[70]), but see [39,97].

Either argument for Theorem 4B above has an immediate Lebesgue measure
analogue for X = R

d, and beyond that a Haar measure analogue for X a locally
compact group with Haar measure η, by the classical Fubini Theorem (see e.g.
[79, Th. 14.2]). But we may reach out further still for a measure analogue,
Theorem 4M below, by employing the σ-ideal of Haar null sets (Sect. 2). Whilst
our argument is simpler (through not involving radial open-ness), there is a
close relation to the result of [35], which is concerned with convex functions
S that are measurable in the following sense: S−1 takes open sets to sets
that, modulo Haar null sets, are universally measurable sets in X (we turn to
convexity in Sect. 5: see especially Th. 7 and 8). Below (recalling from Sect. 2)
a function S : G → R is universally measurable if S−1 takes open sets to
universally measurable sets in G; this means that, as in Th. 2 Sect. 3, the level
sets H±

n are universally measurable, so if G is amenable at 1, in particular if
G is an abelian Polish group, for some k ∈ N the level set H±

k is not Haar null
(since X =

⋃
n∈N H±

n is not Haar null). This aspect would remain unchanged
if the level sets were universally measurable modulo Haar null sets.

Theorem 4M. For X a Banach space, and S : X → R universally measurable:
if S is subadditive and Q+-homogeneous, then
(i) S is continuous and convex with epigraph a convex cone pointed at 0, and
(ii) there is a bounded function c : X → R such that

S(x) = c(x)||x||.
First Proof. Proceed as in the first proof of Theorem 4B (reducing as there to
separability), but in lieu of Theorem 2 apply Theorem 2H here to the σ-ideal
of Haar null sets H(X, +). �
Second Proof. Reduce as before to the separable case. With WFT above, as a
replacement for the Kuratowski-Ulam theorem, we may follow the proof strat-
egy in the second proof of Theorem 4B, largely verbatim. Regarding the line
R(x) (for x �= 0) as a locally compact group isomorphic to R, take μ := μΣ×η1

to be a probability measure with atomless spherical component μΣ (a proba-
bility on the unit sphere of X; this can be done since atomless measures form a
dense Gδ under the weak topology—cf. [80, Th. 8.1]) and radial component η1,
a probability on R absolutely continuous with respect to the Lebesgue (Haar)
measure. We claim that, for quasi all x, S|R+(x) is quasi σ-continuous on a
(Haar/Lebesgue) co-null set (via the Haar-absolutely continuous measure η1

above). For if not, there is a set C that is not Haar null with S|R+(x) not
quasi σ-continuous for x ∈ C. So there is u ∈ X with μ(u + C) > 0, and so
u + C is not radial. Put m(B) := μ(u + B) for Borel sets B, again a proba-
bility measure. By Theorem BL and WFT, S|R+(x) is quasi σ-continuous for
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m-almost all x, except on some set E with m(E) = 0. This is a contradiction
for points in C\E. Now continue as in Theorem 4B. �
F-spaces. Recall that an F -space is a topological vector space with topol-
ogy generated by a complete translation-invariant metric dX ([57, Ch. 1], [89,
Ch. 1]). Thus the topology is generated by the F -norm ||x|| := dX(0, x), which
satisfies the triangle inequality with ||αx|| � ||x|| for |α| � 1, and under it
scalar multiplication is jointly continuous. This continuity implies that a vec-
tor x can be scaled down to an arbitrarily small size. Consequently, the proofs
above may be re-worked to yield F-space versions of Theorems 4B and 4M.
However, in the absence of a norm (see §6.5 for normability), there is no isom-
etry between the rays R(x) below and R+, only an injection Δ : R(x) → R+.
We are thus left with a result that has a somewhat weaker representation of
S.

We need the F -norm to be unstarlike, in the sense that the ‘norm-length’
(i.e. the range of the norm) of all rays be the same, say unbounded for con-
venience. This last property holds for the Lp spaces for 0 < p < 1 with the
familiar F -norm ||f || :=

(∫
|f(t)|pdt

)1/p
.

Unstarlikeness is an F -norm, rather than a topological, property; it will
hold after re-norming, albeit with (0, 1) as the common range, when taking the
F -norm to be ||x|| := supn 2−n(||x||n/(1 + ||x||n)), for || · ||n a distinguishing
sequence of semi-norms, since ϕx,n(t) := t||x||n/(1 + t||x||n) maps [0,∞) onto
[0, 1). Examples here are provided by spaces of continuous functions such as
C(Ω), for Ω :=

⋃
n Kn with Kn ⊆ int(Kn+1) a chain of compact subsets of a

Euclidean space, and with ||f ||n := ||f |Kn
||∞ for || · ||∞ the supremum norm.

Likewise this holds in the subspace H(Ω) of holomorphic functions, and in
C∞(Ω) when ||f ||n := max{||Dαf ||∞ : |α| < n} for multi-indices α—see [89,
§1.44–47]). Being infinite-dimensional, none of them are normable as they are
either locally bounded or Heine-Borel (or both)—cf. [89, Th. 1.23].
Theorem 4F. For X an F -space and S : X → R Baire, if S is subadditive
and Q+-homogeneous, then

(i) S is continuous and convex with epigraph a convex cone pointed at 0, and
(ii) for any unstarlike F -norm || · || (with ||tx|| → ∞ (t → ∞) for all x �= 0),

there are a bounded function c : X → R, a constant δ, and a map Δ :
X → R+ with each Δ|R(x) an injection such that

S(x) = c(x)Δ(x), where ||x/Δ(x)|| = δ.

In particular, if X is normable with norm || · ||X , then Δ(x) = ||x||X/δ.

Proof. Let ||.|| be an unstarlike F -norm. For any x �= 0, the map ϕx : t �→ ||tx||
is a continuous injection with ϕx(0) = 0 and ϕx(1) = ||x||; so for all δ > 0
and ||x|| � δ we may define δ(x) := min{t : ||tx|| = δ}, the infimum being
attained. So ||δ(x)x|| = δ. The unstarlike property implies that δ(x) is likewise
well defined for all x �= 0.
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We now assume w.l.o.g. that X is separable, as in the earlier variants of
Th. 4, for the same reasons (though we need the F -norm analogue of Corollary
B, also valid—see below for the relevant positive homogeneity). Proceed as in
the first proofs of Theorems 4B and 4M, with a few changes, which we now
indicate. Of course we refer respectively to the σ-ideals of meagre sets and
Haar null sets.

With this in mind one deduces again positive homogeneity, and for some
M , δ > 0 thence, for x �= 0 and with v = δ(x)x ∈ Σδ, that as δ(x) > 0

|S(x)| = |S(v/δ(x))| = |S(v)|/δ(x) � M/δ(x).

Now δ(x) → ∞ as x → 0, and so S is continuous at 0; indeed, for each n ∈ N

the function x �→ ||nx|| is continuous at x = 0, so by DC there is a positive
sequence {η(n)}n∈N such that ||nx|| < δ for all x ∈ Bη(n). So δ(x) > n for
x ∈ Bη(n) and n ∈ N, and so

|S(x)| � M/δ(x) < M/n (x ∈ Bη(n)).

Thereafter, taking c(x) := c+(δ(x)x) = S(δ(x)x), which is bounded by M,

S(x) = S(δ(x)x/δ(x)) = c(x)Δ(x), where Δ(x) := 1/δ(x).

So ||x/Δ(x)|| = δ. If the F -norm is a norm, δ(x) := δ/||x||; then ||xδ(x)|| = δ,
so that Δ(x) := ||x||/δ. �

Theorem 4F implies Theorem 4B and 4M by taking c(x)/δ in place of c(x).

5. Convexity

We begin by recalling a classical result, Theorem BD below, which motivates
the themes of this section. These focus on the two properties of a function S
of midpoint convexity

S

(
1
2
(x + y)

)
� 1

2
(S(x) + S(y)) (x, y ∈ X)

(for X a vector space), and of convexity, which, for purposes of emphasis, we
also refer to (as in [68]) as full (or R-) convexity :

S((1 − t)x + ty) � (1 − t)S(y) + tS(y) (x, y ∈ X, t ∈ (0, 1)),

by considering the weaker property of weak midpoint convexity on a set Σ
(Sect. 1):

S

(
1
2
(x + y)

)
� 1

2
(S(x) + S(y)) (x, y ∈ Σ);

here we do not require (x + y)/2 ∈ Σ, in contrast to the still weaker property
of the restriction map S|Σ being midpoint convex. The latter does require that
(x + y)/2 lie in the domain Σ of the restriction map.
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It is instructive to observe that the indicator function 1P of the irrationals
P is weakly midpoint convex on P but not midpoint convex; we return to this
in Theorem 6 below.

In Theorems 5–7 below, we give local results, with the hypotheses holding
on a set Σ. The smaller Σ is, the more powerful (and novel) the conclusions
are. For instance, Σ might be locally co-meagre (and so co-meagre, as noted
in the remarks to the definition of quasi σ-continuity in Sect. 2).

Theorem BD (Bernstein–Doetsch Continuity Theorem, [62, §6.4]). For X a
normed vector space, if S : X → R is midpoint convex and locally bounded
above somewhere (equivalently everywhere), then S is continuous and so fully
convex.

Proof. This is immediate from Theorem B (see Sect. 1). See also the ‘third
proof’ in [62, §6.4], as the other two apply only in R

d. �
The theorem gives rise to a sharp dichotomy for midpoint convex func-

tions, similar to that for additive functions: they are either continuous every-
where or discontinuous everywhere (‘totally discontinuous’), since local bound-
edness (from above) is ‘transferable’ between points [62, Th. 6.2.1]. So on the
one hand, a Hamel basis yields discontinuous additive examples (the ‘Hamel
pathology’ of [7, §1.1.4]) and, on the other, a smidgen’s worth of regularity pre-
vents this—see Corollary 1 below —and midpoint convex functions are then
continuous.

A closely related result (for which see e.g. [93, Prop. 1.18]) we give as
Theorem BD* below, whose proof we include, as it is so simple.

Theorem BD*. For X a normed vector space, if S : X → R is fully convex
and locally bounded above, then S is continuous.

Proof. W.l.o.g. assume that S is bounded above in the unit ball, by K say
(otherwise translate to the origin and rescale the norm). For x �= 0 in the unit
ball, setting u = x/||x||, and first writing x as a convex combination of 0 and
u, then 0 as a convex combination of −u and x,

S(x) � (1 − ||x||)S(0) + ||x||S(u), (1 + ||x||)S(0) � ||x||S(−u) + S(x).

From here, for all x in the unit ball, |S(x) − S(0)| � (K + |S(0)|)||x||, since

||x||[S(0) − S(−u)] � S(x) − S(0) � ||x||[S(u) − S(0)]. �
Thus the emphasis in convexity theory is on generic differentiability; for

background see again [93]. In Theorem 6 below we derive continuity and full
(i.e. R-) convexity, as in Theorem BD [62, §6.4], for functions possessing the
weaker property of weak midpoint convexity on certain subsets Σ of their
domain with negligible complement, for instance co-meagre or co-null sets.
The results below vary their contexts between R and a general Banach space,
and refer to sets with the following Steinhaus–Weil property.
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Definition. We say that Σ is locally Steinhaus–Weil, or has the Steinhaus–
Weil property locally, if for x, y ∈ Σ and, for all δ > 0 sufficiently small, the sets
Σ+

z := Σ ∩ Bδ(z), for z = x, y, have the interior point property that Σ+
x − Σ+

y

has x − y in its interior. (As in Sect. 4 Bδ(x) is the closed ball about x of
radius δ.) See [14] for conditions under which this property is implied by the
interior point property of the sets Σ+

x − Σ+
x (cf. [4]). Note that if Σ has the

local Steinhaus–Weil property, then Σ and so cl(Σ) is dense in itself , which
will be relevant.

Examples of locally Steinhaus–Weil sets relevant here are the following:
(i) Σ density-open in the case X := R

n (by Steinhaus’s Theorem);
(ii) Σ locally non-meagre at all points x ∈ Σ (by the Piccard-Pettis

Theorem—such sets can be extracted as subsets of a second-category
set, using separability or by reference to the Banach Category Theorem
[75, Ch.16]);

(iii) Σ universally measurable and not Haar null at any point (by the
Christensen-Solecki Interior-points Theorem of Sect. 2—again such sets
can be extracted using separability);

(iv) Σ a Borel subset of a Polish abelian group and not Haar-meagre in the
sense of Darji [31] at any point (by Jab�lońska’s generalization of the
Piccard Theorem, [53, Th.2], cf. [54], and since Haar-meagre sets form a
σ-ideal [31, Th. 2.9]); see also §6.6.

In (ii) recall from Sect. 2 that if Σ has the Baire property and is locally
non-meagre, then it is co-meagre (since its quasi interior is everywhere dense).

For contrast with Corollary 2 below, we first note that local boundedness
of midpoint convex functions follows from regularity almost exactly as in the
subadditive case of Theorem 2 of Sect. 3.
Theorem 2′. For X a vector space with a Steinhaus–Weil, Baire topology T
and S : X → R midpoint convex: if S is T -Baire, then it is locally bounded.

Proof. Suppose |S(u + zn)| → ∞ for some u ∈ X and null sequence zn → 0.
As the level sets H±

n := {t : |S(±t)| � n} are T -Baire and T is Baire, for some
k the set H±

k is non-meagre. As T is Steinhaus–Weil, H±
k − H±

k has 0 in its
interior.

First suppose that S(u + zn) → +∞. Then there is n ∈ N such that
4zm ∈ H±

k − H±
k for all m � n . For m � n, choose am, bm ∈ H±

k with

4zm = am − bm

for m � n. Then, as

u + zm =
1
2
2u +

1
4
am +

1
4
(−bm),

for all m � n

S(u + zm) � 1
2
S(2u) +

1
4
S(am) +

1
4
S(−bm) � 1

2
S(2u) +

1
2
k,
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contradicting upper unboundedness.
If on the other hand S(u+zn) → −∞, then argue similarly, but now choose

k, n and am, bm ∈ H±
k so that

−2zm = am − bm,

for all m � n. Then

S(u/2) − 1
4
S(am) − 1

4
S(−bm) � 1

2
S(u + zm),

contradicting lower unboundedness. �

As with Theorem 2H (at the end of Sect. 3) here as well, Theorem 2′ has
a ‘Haar’-type variant with the same proof, which we need below in Cor. 1 and
Theorem FS (universally measurable case).
Theorem 2H′. Let X be a topological vector space carrying a proper σ-ideal
with the Steinhaus–Weil property. If S : X → R is midpoint convex and
universally measurable, then S is locally bounded.

These results immediately yield a Banach-space version of Theorem BD in
the separable context. The non-separable variant must wait.

Corollary 1. For a separable Banach space X , if S : X → R midpoint convex
is Baire or universally measurable, then it is locally bounded and so continuous.

Proof. Apply Theorem 2′ or 2H′ respectively to the σ-ideal of meagre or Haar
null sets. �

Our aim now is to identify in Theorem 5 below, for any function weakly
midpoint convex on a subset Σ of R, a canonical continuous convex function,
using continuity on sets Σ with the local Steinhaus–Weil property. This may be
compared to the upper-hull construction in [62, §6.3], which, however, refers to
the full domain of a function. Thereafter in Theorem 6, a variant of Theorem
BD, we will deduce continuity of a function on R that is midpoint convex on
just such a subset Σ, extending the result thereafter to the separable Banach
context of Theorem 7. As corollaries we then deduce Theorems M and FS of
Sect. 1.

Below we write lim supΣ
y→x, limΣ

y→x S(y) for the upper limit or limit of S(y)
as y tends to x through Σ. We recall that if Σ has the local Steinhaus–Weil
property, then Σ and so cl(Σ) is dense in itself. For ease of exposition, we state
Theorem 5 below in the format ‘(i)–(iv), twice’. The second (ii) is actually part
of Theorem 6, and is proved there.

Theorem 5 (Canonical Extension Theorem). For Σ ⊆ R locally Steinhaus–
Weil and I := cl(Σ), if S : R → R is both continuous and weakly midpoint
convex on Σ, and

S̄(x) = S̄Σ(x) := lim supΣ
y→x S(y) (x ∈ I)
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– then

(i) the limit exists for x ∈ I: S̄(x) := limΣ
y→x S(y);

(ii) S̄ = S on Σ;
(iii) for each x ∈ I with x = sup{t ∈ Σ : t < x} = inf{t ∈ Σ : t > x}

S(x) � S̄(x);

(iv) the restriction map S̄|I is fully convex: for x, y ∈ I, t ∈ (0, 1) with
tx + (1 − t)y ∈ I,

S̄(tx + (1 − t)y) � tS̄(x) + (1 − t)S̄(y).

In particular, S̄ and so also S is locally bounded above on I.

Furthermore, the conclusions (i) (with finite limit),(ii), (iii) and (iv) above
hold with I = R for a quasi cover {Σm}m∈N of R with each Σm locally
Steinhaus–Weil and S : R → R quasi σ-continuous under the quasi cover
and weakly midpoint convex on Σ =

⋃
m∈N Σm.

For the proof we need three lemmas. Unlike in Theorem 5(iv) above, in
Lemma 1 below ‘fully convex on Σ’ does not require the convexity of Σ, but
rather that the convexity inequality holds for all relevant arguments. Under
the weaker assumption that the restriction map S|Σ is midpoint convex, the
conclusion of Lemma 1 would require further that (1 − t)a + tb ∈ Σ. Below
conv(Σ) denotes the convex hull of Σ.

Lemma 1 (Full convexity on Σ). For Σ ⊆ R locally Steinhaus–Weil, if S :
R → R is both continuous and weakly midpoint convex on Σ, then S is fully
convex on Σ :

S((1 − t)a + tb) � (1 − t)S(a) + tS(b) (a, b ∈ Σ, t ∈ (0, 1)).

In particular, as the convex combination on the right is bounded by
max(S(a), S(b)) :

S((1 − t)a + tb) � max(S(a), S(b)) (a, b ∈ Σ, t ∈ (0, 1)), (†)

so S is locally bounded above on int(conv(Σ)).

Proof. For any T, as above, write BT
ε (x) := Bε(x) ∩ T. Fix t ∈ (0, 1) and

a, b ∈ Σ with a < b. Put

u := (1 − t)a + tb : t = (u − a)/(b − a).

Now Σ − u has the Steinhaus–Weil property locally, and exponentiation is a
homeomorphism, so since (b−u)(u− a)−1 +1 > 1, for small enough ε the set

BΣ−u
ε (b − u)[BΣ−u

ε (u − a)]−1 + 1 = −BΣ−u
ε (b − u)BΣ−u

ε (a − u)−1 + 1

has (b−u)(u−a)−1 +1 > 1 in its interior, and so has a rational element r > 1.
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Taking successively ε = 1/n for n ∈ N, select as above rational rn > 1 and
an, bn in Σ such that

an → a, bn → b, rn = 1 +
bn − u

u − an
=

bn − an

u − an
→ b − a

u − a
= 1/t.

So with qn = 1/rn ∈ Q+,

u = an + qn(bn − an) = (1 − qn)an + qnbn, and 0 < qn < 1.

As a, b are relative-continuity points and qn is rational with qn → t,

S(u) = S((1 − qn)an + qnbn)
� (1 − qn)S(an) + qnS(bn) → (1 − t)S(a) + tS(b).

So for any a, b ∈ Σ and 0 < t < 1,

S((1 − t)a + tb) � (1 − t)S(a) + tS(b).

That is: S is fully convex on Σ, and, in particular, (†) follows.
As for the last assertion, for x ∈ int(conv(Σ)), choose a, b ∈ Σ, 0 < t < 1

with x = (1 − t)a + tb; then (a, b) is a neighbourhood of x on which, by (†), S
is bounded above by max(S(a), S(b)). �

Corollary 2 (Boundedness on Σ). For Σ ⊆ R locally Steinhaus–Weil, if S :
R → R is both continuous and weakly midpoint convex on Σ, then, for each
x ∈ int(conv(Σ))∩cl(Σ) and each sequence {un}n∈N in Σ converging to x,
the sequence {S(un)}n∈N is bounded .

Proof. If not, then, by Lemma 1, for some sequence {un}n∈N of points in Σ
with limit x ∈ int(conv(Σ), S(un) → −∞. W.l.o.g. the sequence {un} is strictly
monotonic, and moreover un ↓ x (otherwise, mutatis mutandis, replace un and
x by their negatives). Put v := u1, w := u2 and write w = tx + (1 − t)v; then
0 < t < 1 as x < w < v. For n � 3 write w = tnun + (1 − tn)v for some
0 < tn < 1, possible as un < u2 < u1. Then tn is convergent, to s ∈ [0, 1] say,
with w = sx + (1 − s)v = tx + (1 − t)v, and so s = t, as x < v, i.e. 0 < t < 1.
By Lemma 1, as un, v ∈ Σ (and w ∈ Σ),

S(w) = S(tnun + (1 − tn)v) � tnS(un) + (1 − tn)S(v),

giving in the limit S(w) � −∞, as tn → t > 0, a contradiction. �

The following result is stated as we need it—for the line; we raise, and
leave open here, the question of whether it holds in an infinite-dimensional
Banach space. It does, however, hold under a stronger Q-affine assumption on
the set Σ—see Lemma 2′ below. The latter assumption gives an easy way of
capturing the key idea in Lemma 2: one given ‘direction of access’ {vn}n∈N

(taken through a set Σ) to a fixed location (vn → x below) is made accessible
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from a second given direction {un}n∈N (again through Σ), if not exactly then
at least approximately—up to an error taken from Σ :

vm(n) = (1 − tn)um(n) + tnwn : vm(n) − um(n) = tn(wn − um(n))
(wn ∈ Σ, tn ↘ 0).

Framed this way, the condition demands that for u ∈ Σ the set Σ−u is capable
of replicating any small difference v−u with v ∈ Σ after arbitrary downscaling
(by t), i.e. Σ − u contains a dense set of ‘long’ vectors w − u.

Lemma 2 (Unique limits on R). For Σ ⊆ R locally Steinhaus–Weil and S :
R → R, if S|Σ is both continuous and weakly midpoint convex on Σ, then for
any x ∈ R and for any sequences in Σ with un ↑ x and vn ↓ x,

lim S(un) = lim S(vn),

when both limits exist.
Furthermore, this conclusion holds for a quasi cover {Σm}m∈N of R with

each Σm locally Steinhaus–Weil and S : R → R quasi σ-continuous under the
quasi cover and weakly midpoint convex on Σ =

⋃
m∈N Σm.

Proof. Write u := {un}n∈N, v := {vn}n∈N and L := L(u) = lim S(un), R :=
L(v) = lim S(vn); we show that L = R in two steps—by deriving two inequal-
ities. Let ε > 0; then there is N so that for n > N,

R − ε � S(vn) � R + ε and L − ε � S(un) � L + ε.

For any n > N choose tn ∈ (0, 1) with tn|R − L| < ε, and m = m(n) > N
in order to express the ‘right-sided’ sequence v in terms of the ‘left-sided’
sequence u:

vm(n) = (1 − tn)um(n) + tnvn.

This is possible as un ↑ x and vn ↓ x. Now fix any n > N. As um(n), vm(n), vn ∈
Σ, by Lemma 1,

R − ε � S(vm(n)) � (1 − tn)S(um(n)) + tnS(vn)
� (1 − tn)(L + ε) + tn(R + ε) = L + tn(R − L) + ε � L + 2ε.

So R − L � 3ε; letting ε ↓ 0 yields R � L.
For the reverse inequality, proceed similarly by exchanging the roles of

the sequences u and v: um(n) = (1 − tn)vm(n) + tnun with tn ∈ (0, 1) and
tn|R − L| < ε, to obtain

L − ε � S(um(n)) � (1 − tn)S(vm(n)) + tnS(un) � R + 2ε.

This time L − R � 3ε and so L � R.
For the final assertion, again proceed similarly in two steps. Define ε and N

as above, and refer to vm(n) = (1−tn)um(n)+tnvn and um(n) = (1−tn)vm(n)+
tnun, according to the desired inequality. Then fixing n > N, find Σ� with 	
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so large that vm(n), um(n), un, vn are all in Σ�. Then, using the continuity of S
on Σ�, and letting ε ↓ 0 conclude L � R, R � L, as before. �
Lemma 2′ (Banach-space variant of unique limits). For a Banach space X
and x ∈ X , and Q-affine (closed under rational affine combinations) Σ, if
S : X → R is both weakly midpoint convex on Σ and locally bounded on Σ at
w, then for any sequences in Σ with un → x and vn → x with {S(un)}n∈N

and {S(vn)}n∈N convergent

lim S(un) = lim S(vn).

Proof. Put A := lim S(un), B := limS(vn). By the symmetry of the assump-
tions we may suppose that A < B. Noting that the translate x + Σ is Q-affine
and the translate Sx(t) = S(x + t) is midpoint convex on x + Σ, w.l.o.g sup-
pose that x = 0. Choose δ > 0 and K such that |S(y)| � K for all y ∈ Σ with
|y| � δ. For ε := (B − A)/3 > 0, there is m(0) so that for n > m(0),

B − ε � S(vn).

Let tn ↓ 0 be dyadic rational, e.g. tn = 2−n. Then sn := 1/tn → ∞. For each n
choose m(n) > n such that ||um(n)|| < δ/3 and ||snum(n)|| < δ/3, ||snvm(n)|| <
δ/3. Put

wn := snvm(n) + (1 − sn)um(n) ∈ Σ

(as Σ is Q-affine). Then

||wn|| = ||snvm(n)|| + ||snum(n)|| + ||um(n)|| � δ,

so that |S(wn)| � K and

vm(n) = (1 − tn)um(n) + tnwn.

Here S is midpoint convex on Σ, so

B − ε � S(vm(n)) � (1 − tn)S(um(n)) + tnS(wn) → A.

But B − ε � A gives the contradiction B − A � ε � (B − A)/3. �
Lemma 3 (Regularization). For Σ ⊆ R locally Steinhaus–Weil and I ⊆
int(conv(Σ))∩cl(Σ), if S : R → R with S|Σ both weakly midpoint convex
and continuous, write

S̄(x) := lim supΣ
y→x S(y) (x ∈ I).

Then
(i) the limit exists for x ∈ I: S̄(x) := limΣ

y→x S(y);
(ii) the function S̄ : I → R̄ is continuous on I.

Both conclusions hold with I = R for a quasi cover {Σm}m∈N of R with
each Σm locally Steinhaus–Weil and S : R → R quasi σ-continuous under the
quasi cover and weakly midpoint convex on Σ =

⋃
m∈N Σm.
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Proof. (i) By Lemma 2, condition (i) holds.
(ii) Here we use only that I ⊆ cl(Σ). Suppose that S̄(xn) → L �= S̄(x) for some
sequence xn → x in I, with L possibly infinite. If S̄(xn) is finite for an infinite
set of n, then for such n we may choose yn ∈ B1/n(xn) ∩ Σ, as Σ is dense in
itself, with |S(yn) − S̄(xn)| < 2−n. Then, down a subsequence, yn → x and
S(yn) → L, contradicting S(yn) → S̄(x), by (i).

Otherwise, without loss of generality, each term of the sequence {S̄(xn)}n∈N

is infinite and so, being a convergent sequence, all the terms are equal to
L �= S̄(x). So we may choose yn ∈ B1/n(xn) ∩ Σ with S(yn) → L. Then again
yn → x, again contradicting S(yn) → S̄(x).

As for the final assertion, (i) holds by the last part of Lemma 2, and in (ii)
we noted that only I ⊆ cl(Σ) is required. �
Proof of Theorem 5. (i) and (ii) follow by Lemma 3(i) and by the finiteness
result in Corollary 2.

By the continuity of S on Σ, S|Σ = S̄|Σ.
(iii) As in Lemma 1, for any x ∈ I with x = sup{t ∈ Σ : t < x} = inf{t ∈ Σ :
t > x}, write x = txux + (1 − tx)vx with ux < x < vx, ux, vx ∈ Σ ∩ I, and
tx ∈ (0, 1); then

S(x) � txS(ux) + (1 − tx)S(vx).

Taking limits as ux ↑ x, vx ↓ x, and w.l.o.g. assuming tx → τx (by the bound-
edness of the points tx),

S(x) � τxS̄(x) + (1 − τx)S̄(x) = S̄(x).

(iv) For distinct x, y, z ∈ I ⊆ cl(Σ), with z = αx+(1−α)y and α ∈ (0, 1), put
β = 1 − α. In Σ choose xn → x, yn → y and zn → αx + βy ∈ I; then choose
αn so that with βn = 1 − αn

zn := αnxn+βnyn : αn := (yn−zn)/(yn−xn) → [y−αx+βy]/(y − x) = α.

Then, as xn, yn, zn ∈ Σ and αn ∈ (0, 1), by Lemma 1

S(zn) = S(αnxn + βnyn) � αnS(xn) + βnS(yn);

so, since zn → αx + βy through Σ, Lemma 3(i) yields

S̄(αx + βy) � αS̄(x) + βS̄(y).

For t ∈ cl(Σ) ∩ int(conv(cl(Σ))) choose a, b ∈ Σ with t ∈ (a, b) and un ∈
Σ ∩ (a, b) with un → t. Then as in (†)

S̄(t) = lim S(un) � max(S(a), S(b)) = max(S̄(a), S̄(b)).

The local boundedness of S on cl(Σ) follows from (iii).
As for the final assertion concerning quasi covers, we defer property (ii) to

Theorem 6 below, where we use only the other properties (i), (iii) and (iv), to
be proved next. As (i) here holds by Lemma 3, we turn to (iii). For any x ∈ R,
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since Σ is dense and the sequence {Σm}m∈N is increasing, there is m such that
x ∈ int(conv(Σm)); say x ∈ (a, b) with a, b ∈ Σm. Then for y ∈ (a, b)

S(y) � max{S(a), S(b)},

and so, now with Σ =
⋃∞

m=0 Σm,

S̄(x) := S̄Σ(x) = lim supΣ
y→x S(y) � max{S(a), S(b)} < ∞.

First we note that, for u ∈ Σm, by (iii) above and as Σm ⊆ Σ,

S(u) � S̄Σm(u) � S̄Σ(u).

More generally, for x ∈ R, choose un, vn ∈ Σm(n) with un ↑ x, vn ↓ x, and
tn ∈ [0, 1] with x = tnun+(1−tn)vn; then, by Lemma 1 applied to Σm = Σm(n)

use Th. BLH and apply Theorem 8. �
S(x) � tnS(un) + (1 − tn)S(vn) � tnS̄Σm(un) + (1 − tn)S̄Σm(vn)

� tnS̄(un) + (1 − tn)S̄(vn).

By Lemma 3, S̄Σ is continuous on cl(Σ) = R, so, assuming w.l.o.g. that tn → t,
pass to the limit:

S(x) � tS̄(x) + (1 − t)S̄(x) = S̄(x).

Finally, condition (iv) is proved similarly, but more simply, using Lemma
3(ii), i.e. the continuity of S̄. If x < z < y are in R, and α ∈ (0, 1) with
z = αx + (1 − α)y, choose un, vn, wn ∈ Σm(n) with un → x, vn → y, wn → z,
and tn ∈ [0, 1] with wn = tnun + (1 − tn)vn. Then, by Lemma 1 and the
continuity of S̄,

S(wn) � tnS(un) + (1 − tn)S(vn) � tnS̄(un) + (1 − tn)S̄(vn),
S̄(z) = lim S(wn) � αS̄(x) + (1 − α)S̄(y)

as tn → α. �
Recall that for S : R → R Baire/measurable, by Th. BL (Sect. 2) S is quasi

σ-continuous under a quasi cover {Σm}m∈N of R with Σm an increasing se-
quence of sets respectively in DB or DL, hence each having the Steinhaus–Weil
property locally. Before returning to a Banach space setting we prove (using
this ‘quasi’ apparatus) a result in R, which completes the tasks of Theorem
5 and which thereafter we shall apply (twice) in the context of a ‘typical’
line segment. Our variant of the Continuity Theorem BD with an alternative
condition to local boundedness is this.

Theorem 6. For a quasi cover {Σm}m∈N of R with each Σm locally Steinhaus–
Weil, if S : R → R is weakly midpoint convex on Σ =

⋃∞
m=0 Σm and quasi σ-

continuous under the quasi cover, then S is continuous on Σ. Furthermore, if
S is midpoint convex, then it is continuous (and so convex).

Note that, in the final assertion, we really need the stronger hypothesis
of midpoint convexity. Indeed, the example of the indicator function 1P of
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the irrationals, mentioned earlier, is weakly midpoint convex on P, but only
continuous on P.

Proof. Assume S is quasi σ-continuous under the quasi cover {Σm}m∈N and is
either midpoint convex, or weakly midpoint convex on Σ :=

⋃∞
m=0 Σm. We use

Theorem 5(i),(iii),(iv), as it applies to quasi covers. To prove the continuity of
S, by Lemma 3(ii) and Th. 5(iii) and (iv) with S̄ := S̄Σ, it suffices to consider
any x with S(x) < S̄(x) < ∞ and to deduce a contradiction. Fix such an x.
We consider only x ∈ Σ when S is weakly midpoint convex.

We may take x = 0, since translation preserves the quasi covering property
(replace S by Sx(t) := S(x + t), which on Σ − x is weakly midpoint convex
and σ-quasi continuous if S is).

Put ε := [S̄(0) − S(0)]/4. By the continuity of S̄ at 0, for some Δ > 0,

|S̄(0) − S̄(y)| � ε (y ∈ (−Δ,Δ)). (*)

For the purposes of the proof, call α > 2 commensurate with a set T if
there exists t ∈ T with αt ∈ T. Take any interval (a, b) ⊆ (Δ/2,Δ) with

(Δ/4) < (a/2) < (b/2) < (Δ/2).

Being a quasi cover, Σ is dense; so since 2 < 4a/Δ and Σ is dense in (Δ/4,Δ/2),
choose t ∈ Σ ∩ (Δ/4,Δ/2) and α ∈ (2, 4a/Δ), as close to 2 as desired, subject
to

αt ∈ (a, b) ∩ Σ;

this is possible as α(Σ ∩ (Δ/4,Δ/2)) is dense in α(Δ/4,Δ/2), and αΔ/4 < a,
whereas b < Δ < αΔ/2. Choose m = m(α) with t, αt ∈ Tm := Σm ∩ [0,Δ].
W.l.o.g. 0 ∈ Σm, if 0 ∈ Σ. This proves the claim: α is commensurate with Tm

and is as close to 2 as desired.
For any α > 2, put

q = q(α) := (α − 1)/α = 1 − (1/α) > 1/2;

then, for α commensurate with Tm(α) as above, t is the convex combination

t = q.0 +
1
α

.(αt), t, αt ∈ [0,Δ] ∩ Σm(α).

By (*) with y = t, Lemma 3(ii) and Th. 5(ii) applied at t ∈ Σm to S̄Σm ,

S̄(0) − ε � S̄(t) = S̄Σm(t) = S(t). (**)

First, suppose S is weakly midpoint convex, so 0 ∈ Σm. As tα := αt ∈ Σm,

S(t) � qS(0) + (1/α)S(tα),

since S on Σm is continuous so has full convexity as in Lemma 1. But

S(tα) � S̄(tα) � [S̄(0) + ε],
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by Th. 5(iii) and (*) with tα for y. In sum, for sufficiently small α > 2 com-
mensurate with Tm(α),

S̄(0) − ε � qS(0) + (1/α)[S̄(0) + ε],

independently of m(α). Let α ↓ 2 through values commensurate with Tm(α) ⊆
Σ, possible by the claim above. Then, as lim 1/α = 1/2 = lim q(α),

S̄(0) − ε � (1/2)S(0) + (1/2)[S̄(0) + ε].

This gives the contradiction

0 < S̄(0) − S(0) � 3ε = (3/4)[S̄(0) − S(0)].

Now suppose S is midpoint convex. The proof is similar but simpler: inter-
change q and (1/α) with α dyadic. Choose t ∈ Σ′ and a dyadic α > 2, as close
to 2 as desired, subject to the simpler condition

αt ∈ (a, b).

With q(α) as before, write t ∈ Σm as the dyadic convex combination

t = (1/α).0 + q.αt/(α − 1), t, tα/(α − 1) ∈ [0,Δ]

(as α/(α − 1) < 2 and t < Δ/2). This time put tα := αt/(α − 1). As before
(**) holds, by (*) with t and tα for y. As S is midpoint convex,

S(t) � (1/α)S(0) + qS(tα),

since α is dyadic. Continue as before to conclude that, for any sufficiently small
dyadic α > 2,

S̄(0) − ε � (1/α)S(0) + q[S̄(0) + ε].
Letting α ↓ 2, we again deduce the contradiction

S̄(0) − ε � (1/2)S(0) + (1/2)[S̄(0) + ε]. �

As a corollary we now have a result on separable Banach spaces, which by
Theorem B will enable us to prove in their more general setting Theorems M
and FS, stated in Sect. 1. Note the local character of the key assumption.

Theorem 7. For a separable Banach space X, a quasi cover {Σm}m∈N, with
each Σm Baire, locally non-meagre and so locally Steinhaus–Weil , if S : X →
R is midpoint convex, Baire, and quasi σ-continuous under {Σm}m∈N, then
S is continuous.

Proof. Since each Σm has the Steinhaus–Weil property locally, we may proceed
as in Theorem 6 above to consider x �= 0 with S(x) < S̄(x); define ε > 0 as
there and choose Δ > 0 similarly so that (*) holds for y ∈ BΔ(x). Take
δ < Δ/2 and Σ′ := Σ ∩ Bδ(x), which is non-meagre. By the Kuratowski-Ulam
Theorem (as in the second proof of Th. 4B, Sect. 4), choose σ ∈ Σ′ such that
the ray

Rx(σ) := {x + λ(σ − x) : λ � 0}
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meets Σ′ in a non-meagre set: otherwise Σ′ ∩ Rx(σ) is meagre for all σ ∈ Σ′,
and so Σ′ is meagre. As Σ′ ∩ Rx(σ) is Baire, there is an interval I := [s, s′]
along Rx(σ) for which Σ′ ∩ I is co-meagre in I. Continue as in Theorem 6,
working in Rx(σ) rather than R+, to obtain a contradiction to S(x) < S̄(x),
so deducing the continuity of S. �

As an immediate corollary we are now able to prove Theorem M due to
Mehdi (albeit for a general topological vector space) and Theorem FS in a
form that is slightly weaker than the result of Fischer and S�lodkowski [35]
(where universal measurability is modulo Haar null sets, i.e. H-measurability
and in Sect. 2, as that requires Theorem 8 below).

Proof of Theorem M. By Theorem B we may assume w.l.o.g. that X is sepa-
rable. By Theorem BL, S is continuous relative to a co-meagre (so dense) set
Σ. Since Σ has the Steinhaus–Weil property locally, we may apply Theorem 7
above with Σm ≡ Σ, as S is midpoint convex, so deducing the continuity of S.

�
Proof of Theorem FS (universally measurable case). As above, we may again
assume that X is separable. For any distinct points a, b, consider the line L
through a and b, and let λ be the Lebesgue measure on L. Then S|L : L → R

is universally measurable, so λ-measurable and so quasi σ-continuous (under a
quasi cover by ‘density open’ sets Σm), by Luzin’s Theorem. As S is midpoint
convex by Theorem 6, S|L is continuous on L and so fully convex on L. So
S is fully convex. By Theorem 2H′, S is locally bounded, so continuous by
Theorem BD*. �

We close with an analogue of Theorem 7. We will need to argue as in
Theorem 6 but twice over: once, in the ‘measure-case’ mode of Theorem 6
(using quasi σ-continuity), to establish that the continuity points form a big
set (as in Luzin’s Theorem), and then again, but now in the ‘category mode’
of Theorem 6 as in Theorem 7 (where Σ is dense and locally Steinhaus–Weil).
This reflects the hybrid nature of Christensen’s definition of Haar null sets.

Theorem 8. For a separable Banach space X, a quasi cover {Σm}m∈N, with
each Σm locally non-Haar null and so locally Steinhaus–Weil, under which
S : X → R is quasi σ-continuous : if S is midpoint convex and universally
measurable, then S is continuous.

Proof. Put Γ := {x ∈ X : S is continuous at x}; then Γ is universally measur-
able. Indeed, by Lemma 3, S̄ is well-defined and continuous (from the given
quasi cover {Σm}m∈N). Thus S is discontinuous at x iff S(x) �= S̄(x), and so,
since S̄ is continuous and S universally measurable, the complement of Γ is⋃

q∈Q
{x : S(x) < q < S̄(x)} ∪ {x : S̄(x) < q < S(x)}

=
⋃

q∈Q
S−1(−∞, q) ∩ S̄−1(q,∞) ∪ S̄−1(−∞, q) ∩ S−1(q,∞),
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so universally measurable.
We claim first that Γ∩U is non-Haar null for all non-empty open U. If not,

U ∩Γ is Haar null for some non-empty open U ; then, by the definition of Haar
nullity (see Sect. 3), there exist a Borel set H ⊇ U ∩Γ and a Borel probability
measure μ such that μ(g + H) = 0 for all g ∈ X. W.l.o.g. U = u + Bδ; as X
is separable, a countable number of translates ti + U of U, and so also of Bδ,
cover X. So μ(u + v + Bδ) > 0 for some v := ti. Put μv(E) := μ(v + E) for
Borel E ⊆ X; then μv is finite with μv(U) > 0, and S is quasi σ-continuous
under an appropriate quasi cover {Σ′

m}m∈N comprising sets of locally positive
μv-measure, by Luzin’s Theorem. Proceed as in Theorem 7, but this time
applying Christensen’s WFT in place of the Kuratowski-Ulam Theorem (using
{Σ′

m}m∈N), to deduce that S is continuous at x for each x ∈ U , so contradicting
the assumption that H is Haar null (and so not the whole of Bδ).

Being universally measurable and locally non-Haar null, Γ has the
Steinhaus–Weil property locally, by a theorem of Christensen [28, Th. 2] (cf.
Solecki [96, Th. 1(ii) via Prop. 3.3(i)]). With Σ = Γ, as X = Γ̄, proceed once
more as in Theorem 7, again applying Christensen’s WFT in place of the
Kuratowski-Ulam Theorem. This gives that S is continuous on X. �

Theorem FS in the H-measurable case is an immediate corollary of Theorem
8 and Theorem BLH, the following variant form of Theorem BL concerned with
H-measurablity.

Theorem BLH (cf. Th. BL). For a separable Banach space X and H-measurable
f : X → R, f is quasi σ-continuous.

Proof. Take a basis {Ui} in R and choose Bi universally measurable and Hi

Haar-null such that f−1(Ui) = Bi ∪ Hi, and put H =
⋃

i∈N Hi, which is Haar-
null. Choose a probability measure μ witnessing the Haar-nullity of H, that
is: choose N ⊇ H universally measurable and a probability measure μ with
μ(x + N) = 0, for all x ∈ X. Then for g := f |X\N , since the pre-image

g−1(Ui) = Bi\N

is universally measurable for each i, g is μ-measurable. Now apply Theorem BL
to obtain an increasing sequence of μ-measurable non-μ-null sets Σm ⊆ X\N
with g continuous on Σm (for each m) and with Σ =

⋃
m∈N Σm co-μ-null on

X\N, and so co-μ-null on X. As f = g on Σm, this sequence yields a quasi
cover relative to which f is quasi σ-continuous. �

This yields an immediate consequence:
Proof of Theorem FS (universally H-measurable case). By Th. BLH w.l.o.g. S
is universally measurable and σ-continuous. Now apply BLH and apply The-
orem 8. �
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6. Complements

1. Berz’s other theorems. A sublinear function S has Q+-convex epigraph C.
This observation allows Berz to deduce from the Q-version of the Hahn–Banach
theorem that S is the supremum of all the additive functions f which it ma-
jorizes; the proof refers to the Q-hyperplanes defined by f that support the
epigraph. Since a Baire/measurable S is locally bounded (Th. 2 above), all of
the additive minorants of S supporting C are bounded above and so linear by
Darboux’s Theorem (see e.g. [16] and the references cited there). This allows
Berz to deduce that their upper envelope comprises the two half-lines defining
S (equivalently, this is the upper envelope of the supremum and infimum of
the additive minorants of S). Hence Berz deduces a third result: when S is
symmetric about the origin it may be represented as a norm. Indeed, embed
x �→ {f(x)}f so that f(x) is the projection of x onto the f co-ordinate space;
then a norm is defined by identifying x with its imaging and setting

||x|| := sup
f

|f(x)| = S(x).

2. Automatic continuity. The proof of Theorem 1 is inspired by an idea due to
Goldie appearing in [6, I, Th. 5.7] (cf. [7, Th. 3.2.5]), and more fully exploited
in a recent series of papers including [17–20, Prop. 3]. The theme here is the in-
terplay between functional inequalities (as with subadditivity, convexity etc.)
and functional equations (as with additivity and the Cauchy functional equa-
tion). Here, minimal regularity implies continuity—whence the term automatic
continuity—and linearity; see e.g. [15] and the references cited there.
3. Automatic continuity and group action. An automatic continuity theorem
of Hoffmann-Jørgensen is particularly relevant here for the discussion of the
Baire-Berz Theorem. Hoffmann-Jørgensen proves in [86, Part 3: Th. 2.2.12]
the (sequential) continuity of a Baire function f : X → Y when a single non-
meagre group T acts on the two (Hausdorff) spaces X and Y with f(tx) =
tf(x), by appealing to a KBD argument (under T rather than under addition)
in X. In the Baire-Berz Theorem it is a meagre group, namely Q+, that acts
multiplicatively on the Banach spaces X and Y = R; but it is the additive
structure of a Banach space which permits the use of KBD to obtain global
continuity from continuity on a smaller set.
4. Convex and coherent risk measures. As remarked in Sect. 1, Berz’s sublinear-
ity theorem is connected with the theory of coherent risk measures [36, §4.1].
The key properties are convexity and positive homogeneity (ρ(λx) = λρ(x)
for λ � 0). Under positive homogeneity, convexity is equivalent to subaddi-
tivity. This paper thus extends to sublinearity studies of the related areas of
convexity, subadditivity and additivity, for which see e.g. [8,10].
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In the economic/financial context, positive homogeneity—a form of scale-
invariance—means that large and small firms (or agents) have similar prefer-
ences; see e.g. Lindley [63, Ch. 5]. This is far from the case in practice, which
is why convex risk measures (in which positive homogeneity is dropped) are
often preferred; again, see e.g. [36, §4.1]. Sensitivity to scale here is related to
the curvature of utility functions, and the ‘law of diminishing returns’. This
incidentally underpins the viability of the insurance industry; again see e.g.
Lindley [63, Ch. 5].

The two half-lines in Berz’s theorem correspond to taking long and short
positions in one dimension. One can extend to many dimensions, as in [36],
where the ‘broken line’ becomes a cone, and as we do in Sect. 4. Berz himself
worked in one dimension, as his motivation was normability (below).
5. Normability. As norms are necessarily sublinear, Berz’s third result (6.1)
addresses the question of which sublinear functions are realized as norms. In
this connection, the criterion for normability of a topological vector space was
established by Kolmogorov, see e.g. [89, Th. 1.39]; for recent metric charac-
terizations of normability—in terms of translation-invariant metrics—see the
Oikhberg-Rosenthal result [73] demanding continuity of scaling and isometry
of all one-dimensional subspaces R(x) with R, a theme present in Thms 4B/M.
Šemrl’s relaxation [90] drops this continuity when spaces are of dimension at
least 2. (As for relaxation of homogeneity see [65].) Invariant metrics are pro-
vided by the Birkhoff-Kakutani normability theorem—see e.g. [89, Th. 1.24],
[49, Th. 8.3], or for recent accounts [40, Ch. 1–4], [75, §2.1].
6. Beyond local compactness: Haar category-measure duality. In the absence
of the Haar measure, the definition (in Sect. 2) of left Haar null subsets of a
topological group G required U(G), the universally measurable sets—by dint
of the role of the totality of (probability) measures on G. The natural dual of
U(G) is the class UB(G) of universally Baire sets, defined, for G with a Baire
topology, as those sets B whose preimages f−1(B) are Baire (have the Baire
property) in any compact Hausdorff space K for any continuous f : K → G.
Initially considered in [33] for G = R, these have attracted continued attention
for their role in the investigation of axioms of determinacy and large cardinals
—see especially [101].

Analogously to the left Haar null sets, we have in G the family of left
Haar meagre sets, HM(G), to comprise the sets M coverable by a universally
Baire set B for which there are a compact Hausdorff space K and a continuous
f : K → G with f−1(gB) meagre in K for all g ∈ G. These were introduced,
in the abelian Polish group setting and with K metrizable, by Darji [31], cf.
[53], and shown there to form a σ-ideal of meagre sets (co-extensive with the
meagre sets for G locally compact). Analogously to H-measurablity, Jab�lońska
[53] defines Y ⊆ X to be D-measurable (‘D’ for Darji) if Y = B ∪ H for some
Borel B and Haar-meagre H, and f : X → R to be D -measurable if f−1(U) is
D-measurable for each open U ⊆ R. Since Haar-meagre sets are meagre, this
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implies that f is Baire. Thus Theorem BD for D-measurable S is subsumed in
Theorem M. For a survey of similarities between the dual concepts see [52].
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