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INFERENCE AND TESTING BREAKS IN LARGE DYNAMIC PANELS
WITH STRONG CROSS SECTIONAL DEPENDENCE

JAVIER HIDALGO AND MARCIA SCHAFGANS

Abstract. In this paper we provide a new Central Limit Theorem for estimators of the slope

papers in large dynamic panel data models (where both n and T increase without bound) in the

presence of, possibly, strong cross-sectional dependence. We proceed by providing two related

tests for breaks/homogeneity in the time dimension. The first test is based on the CUSUM prin-

ciple; the second test is based on a Hausman-Durbin-Wu approach. Some of the key features

of the tests are that they have nontrivial power when the number of individuals, for which the

slope parameters may differ, is a “negligible” fraction or when the break happens to be towards

the end of the sample, and do not suffer from the incidental parameter problem. We provide

a simple bootstrap algorithm to obtain (asymptotic) valid critical values for our statistics. An

important feature of the bootstrap is that there is no need to know the underlying model of the

cross-sectional dependence. A Monte-Carlo simulation analysis sheds some light on the small

sample behaviour of the tests and their bootstrap analogues. We implement our test to some real

economic data.
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1. INTRODUCTION

Nowadays it is widely recognized that economic agents are interrelated due to common factors,

contagion, spillovers and so on. This dependence has been systematically neglected until quite

recently in econometrics, possibly, due to a lack of a clear framework to characterize such a depen-

dence which is exacerbated by the fact that, contrary to time series data, there is an absence of a

clear or natural ordering of the data. In response to this, in the last decade or so, a huge amount

of work has been directed to the study of cross-sectional dependence and several approaches or

models have been put forward.

One way to model the cross-sectional dependence among individuals is by using a common (un-

observed) factor models as in Andrews (2005), Pesaran (2006) or Bai (2009). A second approach

is based on the “distance”of individuals located on a regular pattern in the plane, or lattice. It

recognizes that data may be collected on a regular lattice as a consequence of planned experi-

ments or a result of a systematic sampling scheme. Applications which use this type of data cover

various areas like environmental, urban, agricultural economics as well as economic geography

among others. Early examples of this are the celebrated papers by Mercer and Hall (1911) on

wheat crop yield data and Batchelor and Reed (1924) on fruit trees, that were further analyzed

by Whittle (1954). Other examples are given in Cressie and Huang (1999) and Fernández-Casal

et al. (2003). Examples of lattice models in environment economics include Mitchell et al. (2005),

who study the effect of CO2 on crops, and Genton and Koul (2008), who analyze the effect of

pollutants transported by winds on the yield of barley in UK.

A third approach to explain or model cross-sectional dependence is through the introduction

of measures related to economic and/or geographical distance. This approach was advocated by

Conley (1999) and followed by Chen and Conley (2001). The benefit of this approach, similar

to lattice models, is that the statistical behaviour is reminiscent of that in standard time series

analysis. Another approach that has received a lot of attention is the so-called SAR model,

where the dependence is modelled as a linear transformation of “n” (sample size) independent

and identically distributed (iid) random variables. This approach, considered as a variant of the

model considered in Whittle (1954), was advocated in the geographic-economic literature by Cliff

and Ord (1973) and it has been extensively employed in the econometric literature, see for instance

Lee (2004) and Kelejian and Prucha (2007) among many others. One of the main difference with

lattice data is that, contrary to the latter approach, we cannot consider the data/individuals as

being collected in a systematic fashion. It is precisely this difference which makes the estimation

and study of its properties more diffi cult and challenging.

In this paper, we characterize the cross-sectional dependence of, say the sequence {ui}i∈N,
through a model of the form ui =

∑∞
j=0 aj (i) εj , where {εj}j∈N are iid random variables. This

approach was also considered by Robinson (2011) and Lee and Robinson (2013) and it has a strong

resemblance with the well known Wold decomposition for time series sequences. Our motivation

for using this approach is that it enables us to generate more general dependence structures

than the SAR models can generate, in particular it permits dependence structures with “strong-

dependence”or “long-memory”, see our Definition 1 below. With this view, the SAR model can
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be considered as a particular scenario to the approach followed in this paper as we explain further

in Section 2.

Let us introduce what we understand by “strong-dependence”.

Definition 1. The generic sequences {νit}t∈Z, i ∈ N+ are “ strong-dependence” if the sequence

1

n

n∑
i,j=1

|ϕν (i, j)|

is not bounded in n, where we denote

ϕν (i, j) = Cov (νit, νjt) . (1.1)

Our Definition 1 draws a lot of similarities with one of the characterizations often employed to

describe “long-memory”dependence for a time series sequence {qt}t∈Z. That is, where {qt}t∈Z
exhibits the property of “long-memory”if 1

T

∑T
t,s=1 |Cov (qt, qs)| is not bounded in T , the sample

size. A similar definition for cross-sectional “weak-dependence”was used in Sarafidis and Wans-

beek (2010). While Chudik, Pesaran and Tosetti (2011) also consider the presence of strong- and

weak-dependence in large panels, they describe the dependence using a factor model, whereas ours

is closer related to that given for time series sequences or SAR models. Finally observe that our

definition of “strong-dependence”does not involve or require any ordering of the observations or

the definition of some economic/geographical metric across observations.

This paper is therefore concerned with inference in (linear) dynamic panel data models exhibit-

ing, possibly, strong cross-sectional dependence when both the number of cross-section units and

time increase to infinity. Our dynamic panel data model is

yit = αt + ηi +

k1∑
`=1

ρt`yi(t−`) + θ′tzit + uit, i = 1, ..., n, t = 1, ..., T , (1.2)

where θt is a k2 × 1 vector of unknown parameters, {zit}t∈Z is a vector of exogenous covariates
and {uit}t∈Z is the sequence of error terms, i ∈ N+. As usual αt and ηi represent respectively

the time and individual fixed effects. We shall assume that the sequences {zit}t∈Z, i ∈ N+, are

mutually independent of the error term {uit}t∈Z, i ∈ N+, although not necessarily independent

from the fixed effects αt or ηi. More specific conditions on the sequences {uit}t∈Z and exogenous
variables {zit}t∈Z, i ∈ N+, will be given in Conditions C1 and C2 respectively in Section 2 below.

One of our main interest in the paper is to incorporate this cross-sectional dependence structure

to further enhance the already extensive literature on (dynamic) panel data models. With this

view, the main objectives in this paper are twofold. The first goal is to discuss and examine

the asymptotic properties, and provide a new Central Limit Theorem, of estimators of the slope

parameters of (1.2) when the cross-sectional dependence of the error sequences {uit}t∈Z and
covariates {zit}t∈Z, i ∈ N+, are (possibly) “strong-dependent”. In particular, we provide very

mild and general conditions to guarantee that the estimators of the parameters of the model

are asymptotically normal. Our Central Limit Theorem results extend substantially the work

by Kapoora, Kelejian and Prucha (2007), Yu, DeJong and Lee (2008) or Lee and Yu (2010)

among others, as we allow for more general cross-sectional dependence structures that permits
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“strong-dependence”. However to do so, we need to extend a Central Limit Theorem provided in

Phillips and Moon (1999) to allow both for time and cross-sectional dependence. In their work,

the sequences of random variables, say {ψit}t∈Z, i ∈ N, are assumed to be such that {ψit}t∈Z and{
ψjt
}
t∈Z are independent, which is a condition ruled out in our scenario. Unlike Phillips and Moon

(1999), see also Hahn and Kürsteiner (2002), we cannot view the sequences as being independent

in one of its dimensions. In addition, as we allow for “strong-dependence”, we cannot use results

and arguments based on any type of “strong-mixing”arguments, so that results in Jenish and

Prucha (2009, 2012) cannot be used in our framework either. On the other hand, similar to what

happens with time series regression models, see Robinson and Hidalgo (1997), we do need to

restrict the strength of the cross-sectional dependence to guarantee that our estimator of the

slope parameters converge in distribution with the standard root-nT rate and, more importantly,

that they are asymptotically normal, see also Hidalgo (2003). As the work by Robinson and

Hidalgo (1997) suggests, we might, of course, relax the strength of dependence at the expense of

further complication in the mathematical apparatus by using some type of “weighted”fixed effect

estimator. See our discussion of the conditions in the next section for further details and insights.

Our second main goal in this paper is to examine tests for breaks or homogeneity of the slope

parameters in the model (1.2). Although similar models as the one in (1.2) have been considered,

their interest has focussed on detecting the presence of heterogeneity across the cross-section

units, that is the interest is on whether the slope parameters are the same for all i ≥ 1. See for

instance Pesaran and Smith (1995) or Pesaran and Yamagata (2008) whose framework and ours

mainly differ in that our conditions are somehow milder than theirs and we allow for very general

type of cross-sectional dependence that may exhibit some type of “strong-dependence”behaviour.

Specifically, denoting in what follows βt =
(
{ρt`}k1`=1 ; θ′t

)′
, we are interested in the null hypothesis

H0 : βt = β for all [Tε] ≤ t ≤ T − [Tε] , (1.3)

where 0 ≤ ε ≤ 1
2 , with the alternative hypothesis being the negation of the null.

Alternatively, drawing notation and arguments from the time series literature, since our panel

model (1.2) can be written as

yit = ηi + αt + β′xit + δ′xitI (t > t0) + uit, i = 1, ..., n, t = 1, ..., T ,

where in what follows we shall abbreviate
(
{yi,t−`}k1`=1 ; z′it

)′
by xit, we might write our hypothesis

as

H0 : δ = 0 for all [Tε] ≤ t0 ≤ T − [Tε] ,

where 0 ≤ ε ≤ 1/2 against the alternative hypothesis

H1 : ∃ [Tε] ≤ t0 ≤ T − [Tε] , δ 6= 0.

In this respect, we can view our work as an extension of the relatively scarce work of breaks in the

context of multivariate equations. See nevertheless the work by Bai, Lumsdaine and Stock (1998)

for multivariate models and Bai (2000) on VAR models; see also Qu and Perron (2007). While

their framework is for a fixed, and thus finite, n, in this paper we are concerned with a setup

which allows “n”to increase with no limit as well. So, we can regard our hypothesis testing as
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one for structural breaks when the number of sequences, say i = 1, ..., n, increases with no limit.

Hence we are in a framework of testing for many, possibly thousands, hypotheses simultaneously,

see for instance Fan, Hall and Yao (2007). The testing for breaks has also some resemblance to

the problem of testing whether a function or curve is constant, with the function of interest being

βt = β (t/T ) and we want to test H0 : β (τ) = β for all τ ∈ [0, 1] . See also the work by Juhl and

Xiao (2013) for the latter interpretation of the test.

We now make some general comments about our hypothesis testing. Although we explicitly

consider the scenario of abrupt “breaks” when testing our hypothesis in (1.3), our tests also

have nontrivial power when the change is gradual, that is when under the (local) alternative the

slope parameters βt move to their new regime as a continuous function in t; see our discussion in

Section 3.3 below. A second point to mention is that implicitly we are assuming that the break,

if there were any, would be an interior point of a compact subset of [0, 1] ; the introduction of

weight functions (or normalizations as in Andrews, 1993) discussed in Section 2 below, effectively

guarantees the latter (see also our more explicit comments after Theorem 2 and Corollary 1

below). It might then be of interest to see what would happen with the behaviour of the test

when we allow the break to happen towards the end of the sample, namely T −m0 ≤ t0, where

m0 can be a finite positive constant. Recall that in typical situations, we take ε = .05 or .10,

so that we leave 10% or 20% of the data out. However this choice is no more than arbitrary

and the power of the test may depend on its choice. The technical aspects of such a case are

completely different as one can observe from recent work by Hidalgo and Seo (2013). In fact,

for the latter scenario, it is apparent that one would need strong approximation results for an

increasing dimensional vector of partial sums of random variables in our setting. Although some

preliminary ideas and results might be drawn from the recent work in Chernozhukov et al. (2013),

they are unfortunately not immediately useful for the purpose of testing for breaks towards the

end of the sample and more importantly their work need to be extended when the assumption

of independence is dropped. This situation is beyond the scope of this manuscript. Nevertheless,

we do pay particular attention to the type of alternative models that our tests are able to detect

and more specifically their behaviour under local alternatives. Scenarios that raise very naturally

in our context: (i) the consequences when the time of the break is towards the end of the sample,

that is the break time k0 satisfies k0 > T − [hT ], where [hT ] may satisfy [hT ] = o (T ) ; (ii) the

consequences when the number of sequences/individuals for which a break exists is negligible

when compared to the number of individuals in the sample; and (iii) the consequences when the

breaks are at different times for different individuals or a combination of all of them. Of course

one can imagine a combination of all three scenarios. We shall discuss some issues regarding the

consistency of our tests in scenarios (i) and (ii).

Finally the paper describes a bootstrap approach for our estimators and tests. The motivation

for this comes from the fact that the Monte-Carlo simulation experiment suggests that critical

values drawn from the asymptotic distribution do not provide a good approximation to the finite

sample behaviour of the test. One main reason for this originates from our general/mild conditions

on the cross-sectional dependence which may result in a poor “nonparametric”estimator of the
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covariance structure of our statistics. In such a situation bootstrap techniques may be employed

in the hope to improve the finite sample behaviour. To that end, we shall describe and examine

two very simple bootstrap algorithms which have the appealing feature that there is no need to

provide any estimate of the covariance structure of the error term. As a consequence, the bootstrap

algorithms avoid the rather unpleasant need of time series inspired bootstrap methods which

depend on (or make use of) some type of some “ad hoc”distance among the errors (observations),

and hence there is no need to choose any bandwidth parameter, as is the case with time series,

to implement a valid bootstrap approach. One of our findings is that the size of our tests is not

affected by the choice of ε (trimming).

The remainder of the paper is organized as follows. In the next section, we discuss the regularity

conditions of our model and provide a Central Limit Theorem for the slope parameters of the

model (1.2) given either heterogeneity or homogeneity of the slope parameters. Section 3 discusses

our test procedures for the null hypothesis of homogeneity. A whole broad family of tests are

provided that make use of a weighting function w (τ), where typical choices are w (τ) = 1 and

w (τ) = τ1/2 (1− τ)1/2. We discuss local alternatives and consistency of our tests, showing that our

tests have nontrivial power for sequences converging to zero faster than elsewhere, see Pesaran and

Yamagata (2008). Their tests therefore have zero asymptotic relative effi ciency when compared to

ours. Section 4 discusses a bootstrap approach to our tests in view of the fact that the asymptotic

distribution sometimes might provide a poor approximation to the finite sample critical values. A

second motivation for the use of the bootstrap is that in model (1.2), say, the covariance structure

can be quite complicated, so that bootstrap algorithms may be the only suitable solution to

even compute valid critical values for the test. Section 5 presents a Monte Carlo simulation

experiment to shed some light on the finite sample performance of our tests and the behaviour

of the bootstrap counterpart and Section 6 presents an empirical application where we test for

structural breaks in a growth model. Section 7 gives a summary and describe possible extension

of our results in several directions of interest. The proofs of our main results are provided in

an Appendix, which for space considerations has been relegated to the authors’accompanying

website http://personal.lse.ac.uk/schafgans/tba.

2. REGULARITY CONDITIONS AND ASYMPTOTIC PROPERTIES OF THE
SLOPE PARAMETER ESTIMATORS

Before we discuss and describe the statistical properties for estimators of the parameters βt
in (1.2), we first introduce a set of regularity conditions on the model and discuss the statistical

properties of the covariates and error term. We assume that, for all t ≥ 1, all the roots of the

polynomials
∣∣∣1−∑k1

`=1 ρt`L
`
∣∣∣ = 0 are outside the unit interval, so we are not considering panel

data models with possible unit roots under either the null or the alternative hypothesis as in

Phillips and Moon (1999) or Im, Pesaran and Shin (2003).
Our regularity conditions are given next.

C1: {uit = σivit}t∈Z, i ∈ N+, are zero mean sequences of random variables, where 0 <

σ−1 < σi < σ <∞ and the sequences {vit}t∈Z, i ∈ N+, satisfy
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(i) E (vit | Vi,t−1) = 0; E
(
v2
it | Vi,t−1

)
= 1 and finite fourth moments, with Vi,t denoting

the σ−algebra generated by {vis, s ≤ t}.
(ii) For all t ∈ Z,

vit =
∞∑
`=1

a` (i) ε`t,
∞∑
`=1

|a` (i)|2 <∞,

where {ε`t}t∈Z, ` ∈ N+, are zero mean independent identically distributed (iid) random

variables with finite fourth moments. The weights {a` (i)}ni=1 satisfy

sup
`≥1

n∑
i=1

|a` (i)|2 <∞. (2.1)

C2: {zit}t∈Z, i ∈ N+, are sequences of random variables such that:

(i) zit = µt +
∞∑
k=0

ck (i)χi,t−k,
∞∑
k=0

ckk
1/2 <∞,

where, denoting by ‖B‖ the norm of the matrix B, ck = maxi≥1 ‖ck (i)‖ and E (χit | Υi,t−1) =

0; Cov (χit | Υi,t−1) = Σχ and E ‖χit‖4 <∞, with Υi,t denoting the σ−algebra generated
by {χis, s ≤ t}.
(ii) The sequences of random variables {χit}t∈Z, i ∈ N+, are such that

χit =
∞∑
`=1

b` (i) η`t,
∞∑
`=1

‖b` (i)‖2 <∞,

where {η`t}t∈Z, ` ∈ N+, are zero mean iid random variables with finite fourth moments.

(iii) Denoting Σx,i = Cov (xit;xit), we have that

0 < Σx = lim
n→∞

1

n

n∑
i=1

Σx,i. (2.2)

C3: For all i ∈ N+, the sequences {uit}t∈Z and {zit}t∈Z are mutually independent and

0 < max
1≤i≤n

n∑
j=1

‖ϕu (i, j)ϕz (i, j)‖ <∞, (2.3)

where for any i, j ≥ 1, as defined in (1.1),

ϕu (i, j) = Cov (uit;ujt) , ϕz (i, j) = Cov (zit; zjt) .

C4: T, n→∞ such that n/T 2 → 0.

We now comment on our conditions. Conditions C1 and C2 indicate that we do not allow for

temporal dependence on the errors {uit}t∈Z, i ∈ N+. Of course, it is possible to relax the latter

condition, allowing uit to follow a model similar to that for zit as given in C2, in which case

we might name (1.2) a “stochastic difference equation panel model”. The only major difference

that we might encounter is that in the latter scenario the estimation procedure would involve

instrumental variables with {zi,t−`}k1`=1 as natural instruments for {yi,t−`}
k1
`=1. However, this is

beyond the scope of the present manuscript as it will only add some extra lengthy technicalities

and/or considerations which are well known when n = 1.
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While both cross-sectional and temporal dependence are allowed to be present at the same

time on {zit}t∈Z, as it would then be the case for {yit}t∈Z, we have assumed otherwise a separable
covariance dependence structure as it is known in the argot of the spatio-temporal literature. See

for instance Cressie and Huang (1999) or Gneiting (2002). Indeed a simple algebra yields that

Cov (zit; zjs) = γz,i (|t− s|)ϕz (i, j) , (2.4)

where γz,i (`) =:
∑∞

k=0 ck (i) ck+|`| (i) and ϕz (i, j) =: ϕχ (i, j). This type of dependence is often

assumed in empirical work due to its practicality and also in view of the diffi culty to write

down explicit models when the covariance structure of the data is not separable. Nevertheless,

it should be noted that the separability condition can be tested, see for instance Matsuda and

Yajima (2004). Of course, we can modify this condition allowing the sequences {zit}t∈Z, i ∈ N+,

to satisfy some type of mixing condition such as L4−Near Epoch dependence with size greater
than or equal to 2, see Davidson (1994). The latter type of dependence might be useful from a

theoretical/technical point of view if we allow, say that the errors exhibits some form of nonlinear

type of dependence and/or we allow them to suffer from heteroscedasticity of the type σ2 (zit).

Another model where the latter type of dependence proves to be very convenient from a technical

point of view is when we have a nonlinear dynamic panel models, say

yit = ηi + αt + g (yi,t−1; ρt) + θ′tzit + uit, i = 1, ..., n, t = 1, ..., T ,

similar to the nonparametric model examined in Hjellvik, Chen and Tjøstheim (2004). Since the

conclusions of our results should follow with L4−Near Epoch dependence as it has been shown in
an ample number of situations, we have decided to keep C1 and C2 are they stand to facilitate the

proof of the CLT of our estimators which is non standard and requires modifications of existing

results due to our mild conditions. On the other hand, our condition that
∑∞

k=0 ckk
1/2 <∞ rules

out temporal “strong-dependence”for the regressors zit, and hence on yit. There is no doubt that

we can relax this assumption to allow for “strong-dependence”among the regressors zit as well as

the errors uit, at the expense of complicating our technical appendix quite considerably. However,

as there are multiple examples where the results follow whether the data is “weak-dependence”

or “strong-dependence”we have decided to keep our condition C2 for simplicity. Regardless on

whether we allow the latter relaxation on the Conditions C1 and C2, the conditions are quite

mild and, as stated, our proofs already are quite technical. Also, notice that C2 (ii) implies that

sup
`≥1

n∑
i=1

‖b` (i)‖2 <∞.

It is worth noticing that we are not assuming that the temporal dynamic behaviour of the

sequences {zit}t∈Z, i ∈ N+, is common among the cross sectional units, so that we allow for some

form of heterogeneity in the second moments of the data. That is,

Cov (zit; zit) =

( ∞∑
k=0

ck (i)

)
Σχ

( ∞∑
k=0

ck (i)

)′
= Σz,i,
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which is constant in “i”if ck (i) = ck for all k ≥ 0. This is in line with the assumption in Pesaran

and Smith (1995). In addition, we allow for some trending behaviour which is in tune with Kim

and Sun (2013). However, when T (r) or T ∆ (r) given below in (3.1) and (3.3) respectively are

evaluated at r = T , then there is no difference whether Ezit = µt or Ezit = µ, say. Our conditions

relax the moment conditions needed elsewhere, for instance those in Pesaran and Yamagata (2008),

who assume finite moments of order greater than 4.

We next turn our focus on the discussion of the cross-sectional dependence induced by our

Conditions C1 and C2. As elsewhere, see Lee and Robinson (2013), we allow for cross-sectional

dependence to be driven by the models outline in parts (ii) of Conditions C1 and C2. In this

sense our conditions relax considerably models employed elsewhere, for instance, our conditions

allow the usual SAR (or more generally SARMA) models. Indeed, by definition of the SAR

model, we have

u = (I − ωW )−1 ε

= (I + Ξ) ε, Ξ =
(
ψj (i)

)n
i,j=1

,

so that ui =
∑n

j=0 ψj (i) εj , which implies that the SAR model can be regarded as a partic-

ular model of that allowed in C1 or C2. In addition, it is worth noting that in C1 the se-

quence
∑n

i=1 |a` (i)| is permitted to grow with n, which is not the case with the SAR model.

So, in this case our conditions are weaker than those typically assumed when cross-sectional de-

pendence is allowed. Of course we can allow the weights a` (i) to depend also on the sample

size “n” as it is often done in SAR models with weight matrices W rowed normalized, how-

ever, the latter does not add anything different. With σi < σ < ∞, moreover, we observe
that

(∑∞
`=1

∑n
i=1 |a` (i)|2

)−1
→n↗∞ 0. While an alternative approach to model, possibly “long-

memory”, cross-sectional dependence is through the presence of common (unobserved) factors, as

in Pesaran (2006) and Bai (2009), we have decided to follow the model assumed in C1 due to its

similarities with time series models and the fact that it can be considered as a natural generaliza-

tion of the empirically popular SAR models. Finally, we can mention that C2 (iii) implies that

we can allow for some form of multicollinearity among the regressors zit, but only for a fraction of

individuals, as (2.2) indicates that all we need is that on “average”there is no multicollinearity.

We next discuss our Condition C3. The first important point to remark is that expression (2.3)

does not imply that

gu (n) =
1

n

n∑
i,j=1

|ϕu (i, j)| nor gz (n) =
1

n

n∑
i,j=1

‖ϕz (i, j)‖

are bounded with n, i.e. that gu (n) + gz (n) < C, although it does imply that

0 < lim
n→∞

∥∥∥∥∥∥ 1

n

n∑
i,j=1

ϕu (i, j)ϕz (i, j)

∥∥∥∥∥∥ <∞. (2.5)

In fact, gu (n) and/or gz (n) can be such that they diverge to infinity with n, in which case {zit}t∈Z
and {uit}t∈Z, i ∈ N+ are “strong-dependent”sequences. On the other hand, their combined cross-

sectional dependence, that is the dependence of the sequence {wit = (zit − E (zit))uit}t∈Z, i ∈ N+,
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satisfies

gw (n) =
1

n

n∑
i,j=1

‖ϕw (i, j)‖ < C,

so that {wit}t∈Z, i ∈ N+ is “weakly-dependent”. We do point out that due to the dynamic aspect

of our panel data model (2.3), (2.5) does impose some restriction on the rate of divergence of

gu (n) and gz (n). To see this, suppose for the sake of argument that ϕu (i, j) = ϕu (|i− j|).
In the introduction various examples were given where ϕu (i, j) = ϕu (|i− j|) , i.e., when lattice
type of data is available, so that we can “locate”our individuals in some form of equally space

distance or when the dependence is related to some “economic/geographical”distance as in Conley

(1999). Given ϕu (|i− j|) ' |i− j|2du−1 and ϕz (|i− j|) ' |i− j|2dz−1 with 0 < du < 1/4 and

0 < dz < 1/4 (so that both uit and zit are “strong-dependent”), du + dz < 1/2 in (2.3) which

ensures wit is “weakly dependent”. However, it could also fit the framework of Jenish and Prucha

(2012) , who regard observations as lying on an irregularly spaced pattern. It is worth emphasizing

that our assumptions do not imply any type of strong-mixing condition as in Jenish and Prucha

(2012) as that would require that at least gu (n) + gz (n) < C and typically involves the notion

of falling off of dependence as |i− j| increases, which is not very relevant to all spatial situations
of interest, see Lee and Robinson (2013). In fact, drawing similarities with time series literature,

using Ibragimov and Rozanov (1978, Ch. 4), it suggests that our condition rules out any form of

weak-dependence, such as strong-mixing, in {wit}t∈Z, i ∈ N+. In addition, and keeping in mind

our previous comments on the behaviour of ϕu (i, j), (2.3) yields that

0 < lim
n→∞

1

n

n∑
i,j=1

ϕ2
u (i, j) <∞,

so that u2
it−E

(
u2
it

)
behaves as if it were a “weakly-dependent”sequence. Finally (2.3) also implies

that

max
1≤i≤n

∣∣∣∣∣∣
n∑
j=1

ϕu (i, j)

∣∣∣∣∣∣
∥∥∥∥∥∥

n∑
j=1

ϕz (i, j)

∥∥∥∥∥∥ = O
(
n1−ζ

)
(2.6)

for some ζ > 0.

Condition (2.5) bears similarities to a condition found in classical time series regression models

with possible “strong-dependence”. There the condition is that∫ π

−π
fui (λ) fzi (ϑ− λ) dλ = fi (ϑ) ϑ ∈ (−π, π]

is a continuous function at ϑ = 0, where fui (λ) and fzi (λ) denote respectively the spectral density

functions of {uit}t∈Z and the regressors {zit}t∈Z, see for instance Robinson and Hidalgo (1997) and

Hidalgo (2003). We then view (2.3), or (2.5), as the counterpart of the last displayed expression

in regression models with cross-sectional dependence.

Finally, Condition C4 is identical to that of Pesaran and Yamagata (2008) .We could relax this

assumption allowing n to grow to infinity at least as fast as T−1 = O
(
log−1 n

)
, but that would

be at the expense of effi ciency requiring the use of instrumental variables; see above comments

for Condition C1.
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Before presenting our first main result, let us introduce some notation. In what follows, we

denote the “average”long-run variance as

V 1 = lim
n→∞

1

n

n∑
i,j=1

{ϕu (i, j)ϕx (i, j)} . (2.7)

For generic sequences {ς it}Tt=1, i = 1, ..., n, we write

ς̃ it = ς it − ς ·t − ς i· + ς ·· (2.8)

with ς ·t =
1

n

n∑
i=1

ς it; ς i· =
1

T

T∑
i=1

ς it; ς ·· =
1

T

T∑
t=1

ς ·t.

The transformation in (2.8) allows us to remove the individual and time effects ηi and αt from

the model (1.2). While under the alternative, this transformation yields

ỹit = β′tx̃it +
1

T

T∑
s=1

(βt − βs)′ (xis − x·s) + ũit, i = 1, ..., n and t = 1, ..., T ,

under the null we have

ỹit = β′x̃it + ũit, i = 1, ..., n and t = 1, ..., T .

In the absence of individual fixed effects, the “standard” transformed regressors x†it = xit − x·t
would appear under both the null and the alternative hypothesis. Also, in view of C1 and C2, it

is obvious that we can take Exit = 0 as x̃it is invariant to additive constants to xit.

Let β̂FE be the fixed effect estimator of the slope parameters, i.e.

β̂FE =

(
n∑
i=1

T∑
t=1

x̃itx̃
′
it

)−1( n∑
i=1

T∑
t=1

x̃itỹit

)
, (2.9)

and, for all t ≥ 1, consider

β̂t =

(
n∑
i=1

x̃itx̃
′
it

)−1( n∑
i=1

x̃itỹit

)
. (2.10)

Finally with Σx > 0 as in C2, define

V 2 = Σ−1
x V 1Σ−1

x .

We now give our main result of this section.

Theorem 1. Under Conditions C1− C4 and βt = β, we have that

(a) (Tn)1/2

(
β̂FE −

(
β − b

T

))
d→ N (0,V2)

(b) n1/2
(
β̂t1 − β, ..., β̂t` − β

)′ d→ N (0, I` ⊗V2) , for any finite ` ≥ 1.

Proof. The proof of this result or any other will be given in the Appendix . �
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Remark 1. (i) If limn/T > 0 we have the well-known asymptotic bias due to the inciden-

tal parameter problem in the linear dynamic panel model (Hahn and Kürsteiner, 2002). In

the absence of additional z regressors, the asymptotic bias, b/T, equals (1 + β)( 1
n

∑n
i=1 ϕ (i, i) −

1
n2
∑n

i,j=1 ϕu (i, j))/T when n/T 3 → 0. This asymptotic bias reduces to that of Hahn and Kürsteiner,

in the absence of cross-sectional dependence. As n/T 2 → 0 we can ignore asymptotic bias in (b).

(ii) The estimators β̂t and β̂s are asymptotically independent if s 6= t. This is the case because

Cov(uit, ujs) = 0 for all s 6= t by C1.

(iii) Under the alternative hypothesis, i.e. βt 6= β, we have that Theorem 1 still holds true but

with some minor changes. Indeed, when βt 6= β, we can easily extend our arguments to show that

(a) (Tn)1/2

(
β̂FE −

(
1

T

T∑
t=1

βt −
b

T

))
d→ N (0,V2 +W)

(b) n1/2
(
β̂t1 − βt1 , ..., β̂t` − βt`

)′ d→ N (0, I` ⊗V2) , for any finite ` ≥ 1,

where

W = Σ−1
x lim

n,T→∞

1

nT
V ar

(
n∑
i=1

T∑
t=1

xitx
′
it

[
βt −

1

T

T∑
s=1

βs

])
Σ−1
x .

So, only the fixed-effect estimator results of Theorem 1 are affected. The asymptotic bias, when

the coeffi cient on yi.t−1 changes, remains O(T−1).

Recalling our definition of V 2, Theorem 1 indicates that to provide inferences about the slope

parameters, we need a consistent estimator of the “average”long-run variance V 1 in (2.7). In our

particular setup, we propose the following very simple estimator

V̂ 1 =
1

T

T∑
t=1

{(
1

n1/2

n∑
i=1

x̃itûit

)(
1

n1/2

n∑
i=1

x̃itûit

)′}
, (2.11)

where ûit = ỹit−β̂
′
FE x̃it, i = 1, ..., n and t = 1, ..., T . V̂ 1 is a time-cluster estimator of the variance,

see Driscoll and Kraay (1989) or Bester, Conley and Hansen (2011). It is worth remarking that in

(2.11) we cannot employ ûit = ỹit− β̂
′
tx̃it, as

∑n
i=1 x̃itûit = 0 by definition. One important feature

of the above estimator is that, contrary to the HAC estimators of Kelejian and Prucha (2007), or

Kim and Sun (2013) there is no need to introduce any artificial “metric”among the cross-sectional

observations.1 It is not clear that this would be convenient, as changing the “metric”may yield a

different estimate of V 1 and thereby induce potentially different outcomes in our inferences.

Proposition 1. Under the same conditions of Theorem 1, we have

V̂1 −V1 = op (1) .

Remark 2. For our cluster estimator, relaxation of Condition C4 necessitates a modification to

ensure its consistency. The first modification would be the use of instrumental variables for com-

putation of the residuals, where lags of zit are used as instruments for yit−1 (see also our comment

1Vogelsang (2012) considers various cluster estimators of the variance for the static linear panel model in the

presence of time-dependence. He does not explicitly discuss HAC corrections to account for the cross-sectional

dependence either, only for the time dependence.
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on Condition C1). Alternatively, we could correct our residuals directly for the asymptotic bias

by estimating it. This would not necessarily enhance our estimator for the “average” long-run

variance as estimation of it can be very inaccurate in view of the amount of cross-sectional depen-

dence. We have decided not to pursue these routes as in many settings, as in ours, this condition

appears sensible.

We now make some comments on Proposition 1. When βt 6= β, the results in Proposition 1

does not hold true. The reason being that in this case β̂FE would only be a consistent estimator

of limT→∞ T
−1
∑T

t=1 βt as the remark that follows Theorem 1 indicates. There is a second way

to obtain a consistent estimator of V 1 via bootstrap methods. Recall that this approach was one

of the main motivations for the bootstrap in the original paper by Efron (1979) as a method to

estimate the asymptotic covariance of estimators when they are not easy to compute or to provide

an explicit formula. We will delay discussing this approach to Section 4 below.

3. TESTS FOR BREAKS

We now introduce two related tests for breaks of the slope parameters in our model (1.2). Our

first approach to test H0 in (1.3), a CUSUM type test, is based on the behaviour of

T (r) =
1

(nT )1/2

r∑
t=1

n∑
i=1

x̃it

(
ỹit − β̂

′
FE x̃it

)
, r = 1, ..., T − 1. (3.1)

The intuition for T (r) is that under the null hypothesis, we expect that x̃it
(
ỹit − β̂

′
FE x̃it

)
'

x̃ituit which has a mean equal to zero, while under the alternative hypothesis we have that

x̃it

(
ỹit − β̂

′
FE x̃it

)
will develop a term of the type

x̃itx̃
′
it

(
βt − β̂FE

)
' x̃itx̃′it

(
βt −

1

T

T∑
s=1

βs

)
,

see Remark 1. Under the alternative therefore, T (r) would be governed by the non-zero function

h (r) =

{
1

n

n∑
i=1

E
(
x̊itx̊

′
it

)} n1/2

T 1/2

r∑
t=1

(
βt −

1

T

T∑
s=1

βs

)
,

where for generic sequences {ς it}t∈Z, i ∈ N+, we denote

{̊ς it}t∈Z = {ς it − E (ς it)}t∈Z , i ∈ N+.

The preceding arguments suggest that one possible method to test the null hypothesis in (1.3)

might be based on continuous functionals of T (r).

Our second approach is based on the observation that we can regard H0 as testing whether the

slope parameters βt are the same across time, where for a given time period t, we estimate βt as

in (2.10). This test recognizes that under H0, we can use the mean group (MG) estimator

β̂MG =
1

T

T∑
s=1

β̂s, (3.2)
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see Pesaran, Shin and Smith (1999) , as an estimator for the common slope parameters β. While

under the null, for every t, β̂t − β̂MG converges to zero in probability, under the alternative

hypothesis β̂t − β̂MG will develop a mean different than zero. Our Hausman-Durbin-Wu’s type

of statistic is then based on continuous functionals of

T ∆ (r) =
n1/2

T 1/2

r∑
t=1

(
β̂t − β̂MG

)
. (3.3)

It is worth noticing that tests based on T (r) and T ∆ (r) are related. Indeed, using the definition

of β̂FE , given in (2.9), we easily obtain

T (r) ≡ 1

(nT )1/2

r∑
t=1

n∑
i=1

x̃it

(
ỹit − β̂

′
FE x̃it

)

' n1/2

T 1/2

(
r∑
t=1

(
1

n

n∑
i=1

x̃itỹit

)
− r

T

T∑
s=1

(
1

n

n∑
i=1

x̃isỹis

))
(3.4)

= ΣxT ∆ (r) (1 + op (1)) ,

so that T ∆ (r) is a “weighted” version of T (r) for any r. We point out that our tests have

similarities with the ∆ test in Pesaran and Yamagata (2008), see also Swamy (1970). However,

as we will notice in Section 3.3 below, tests based on (3.1) or (3.3) can detect local alternatives

which the ∆ test cannot.

Let B (τ) denote the standard Brownian motion in [0, 1] and BB (τ) = B (τ) − τB (1) the

standard Brownian bridge. As the next theorem shows, our tests do not suffer from the incidental

parameter problem.

Theorem 2. Assuming C1− C4, under H0, we have that as n, T →∞,

(a)
1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̃it

(
ỹit − β̂

′
FE x̃it

)
d

=⇒ V1/2
1 BB (τ)

(b)
n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̂MG

)
d

=⇒ V1/2
2 BB (τ) .

Remark 3. Due to the differencing (see also (3.4)), the asymptotic bias cancels out as (asymp-
totically) it is independent of t and/or i.

For any continuous mapping function ϕ (·), our tests are given by

T = ϕ

(
T ′ (r) V̂−1

1 T (r)

w2 (r/T )

)
and T ∆ = ϕ

(
T ∆′ (r) V̂

−1

2 T ∆ (r)

w2 (r/T )

)
, (3.5)

where w (τ), τ ∈ [0, 1], is a weighting function that (i) is non-decreasing in a neighbourhood of 0,

(ii) is non-increasing in a neighbourhood of 1, (iii) is positive on (η, 1− η) and (iv) satisfies∫ 1

0

1

τ (1− τ)
exp

(
−c w2 (τ)

τ (1− τ)

)
dτ <∞. (3.6)

A standard weighting w (τ) function which satisfies these conditions is w (τ) = 1. The common

choice w (τ) = τ1/2 (1− τ)1/2, implicitly used in Andrews (1993) and many subsequent authors,
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on the other hand, fails to satisfy this condition (3.6). While the latter weight function provides a

natural standardization of our test, as it represents the standard deviation of a standard Brownian

Bridge, it does have the drawback of requiring trimming for values of τ close to 0 and 1. In fact,

any weighting function that does not satisfy (3.6) is subject to the use of some trimming for

values to close to 0 or to 1, which is a well known result, see for instance Shorack and Wellner

(2009, p.462).

We then have the following result.

Corollary 1. Assuming C1 − C4, under H0 and w (τ) satisfying (3.6) as n, T → ∞, we have
that

(a) T d
=⇒ ϕ

(
(BB (τ))′ (BB (τ))

w2 (τ)

)
(b) T ∆ d

=⇒ ϕ

(
(BB (τ))′ (BB (τ))

w2 (τ)

)
.

Proof. The proof of this corollary follows easily by Proposition 1 and Theorem 2. Indeed Propo-

sition 1 indicates that

V̂
−1/2

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̃it

(
ỹit − β̂

′
FE x̃it

)
=
V−1/2

1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̊it

(
ẙit − β̂

′
FE x̊it

)
(1 + op (1))

V̂
−1/2

1

n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̂MG

)
= V−1/2

1

n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̂MG

)
(1 + op (1)) .

From here, Theorem 2 and the continuous mapping theorem yield the conclusion of the corollary.

�

Corollary 1 indicates that when w (τ) = 1, we have

max
0<r<T

∣∣∣T (r)′ V̂
−1

1 T (r)
∣∣∣ d

=⇒ max
0<τ<1

∣∣(BB (τ))′ (BB (τ))
∣∣

max
0<r<T

∣∣∣T ∆ (r)′ V̂
−1

2 T ∆ (r)
∣∣∣ d

=⇒ max
0<τ<1

∣∣(BB (τ))′ (BB (τ))
∣∣ ,

which correspond to a Kolmogorov-Smirnov’s type of statistic. However when w2 (τ) = τ (1− τ),

which corresponds to the weight function implicit in Andrews (1993), (3.6) is not satisfied so that

as in Andrews (1993) we trim for values close to the boundary, that is we consider

max
[Tε]<r<T−[Tε]

∣∣∣∣∣T (r)′ V̂
−1

1 T (r)

w2 (r/T )

∣∣∣∣∣ d
=⇒ max

ε<τ<1−ε

∣∣∣∣(BB (τ))′ (BB (τ))

w2 (τ)

∣∣∣∣
max

[Tε]<r<T−[Tε]

∣∣∣∣∣T ∆ (r)′ V̂
−1

2 T ∆ (r)

w2 (r/T )

∣∣∣∣∣ d
=⇒ max

ε<τ<1−ε

∣∣∣∣(BB (τ))′ (BB (τ))

w2 (τ)

∣∣∣∣ ,
for some 0 < ε < 1

2 .

Of course, we can use other weighting functions w (τ) to target particular alternatives in a

similar way as directional tests do in goodness-of-fit tests, see also Andrews and Ploberger (1994).

We have not pursued this somewhat standard extension.
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Neither have we pursued the scenario put forward in the introduction of ε → 0, as in Hidalgo

and Seo (2013) . They, basically, examine the consequences when no trimming is used when w (τ)

fails the condition given in (3.6). Bear in mind, the purpose of trimming and the introduction of

a weight function satisfying (3.6) is somehow to make maxr<[Tε] or maxT−[Tε]<r asymptotically

negligible, as the asymptotic distribution becomes a Gumbel distribution when the latter is not

true, see also Horváth (1993).

3.1. LOCAL ALTERNATIVES AND CONSISTENCY OF THE TESTS.
We now discuss the local alternatives for which the tests described in the previous two sections

have nontrivial power and from there easily conclude their consistency. To that end, we begin by

considering the local alternatives

Ha : βt = β + δnTI (t > t0) , (3.7)

where t0 = [Tτ0] for some τ0 ∈ (ε, 1− ε) with ε > 0, and δnT is a deterministic sequence depending

on n and/or T . To shorten the discussion we will only explicitly handle the behaviour under Ha

in (3.7) and discuss the consistency of tests based on T (r) and T ∆ (r) given in (3.1) and (3.3),

respectively.

For this purpose, introduce the “shift”function

Ξ (τ) = (τ − τ0) I (τ > τ0)− τ (1− τ0) . (3.8)

We then establish the following result.

Proposition 2. Assuming C1 − C4, under Ha with δnT = δ/ (nT )1/2, |δ| > 0, we have that as

n, T →∞,

(a)
1

(nT )1/2

[Tτ ]∑
t=1

n∑
i=1

x̃it

(
ỹit − β̂

′
FE x̃it

)
d

=⇒ V1/2
1 BB (τ) + δΣxΞ (τ)

(b)
n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̂MG

)
d

=⇒ V1/2
2 BB (τ) + δΞ (τ) .

Proposition 2 indicates that the tests have no trivial power if the alternative hypothesis con-

verges to the null at the rate (nT )1/2. On the other hand, when δ−1
nT = o

(
(nT )1/2

)
, the statistic

diverges to infinity, that is the test will reject with probability 1 as the sample size increases.

Finally, when δnT = o
(

(nT )−1/2
)
, the asymptotic distribution is identical to that obtained un-

der the null hypothesis. This clearly improves on the local alternatives given in Pesaran and

Yamagata (2008), who only were able to detect local alternatives δnT = O
(
n−1/4T−1/2

)
. In this

way, their test has zero asymptotic relative effi ciency compared to ours.

While the “shift” function is asymptotically equivalent whether we include individual fixed

effects or not, we do point out that for small samples the terms 1
T

∑T
s=1 (βt − βs)′ (xis − x·s) ,

which vanish asymptotically but not with T small, may affect the finite sample power properties

of our tests in a nonlinear way.

The consistency of the test is given in the following corollary.
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Corollary 2. Assuming C1− C4, under Ha with δnT = δ for all n and T , we have that

(a) Pr

{
ϕ

(
T (r)′ V̂

−1

1 T (r)

w2 (r/T )

)
> a

}
→ 1

(b) Pr

{
ϕ

(
T ∆ (r)′ V̂

−1

2 T ∆ (r)

w2 (r/T )

)
> a

}
→ 1

for any a > 0 and continuous w (τ).

Proof. The proof is standard from Proposition 2, so it is omitted. �

Remark 4. (i) It is important to mention that we have not assumed that w (τ) satisfies (3.6) on

purpose. The reason is that under the alternative hypothesis we have assumed τ0 ∈ (ε, 1− ε) for
some ε > 0. Of course, if w (τ) would satisfy (3.6), we then could take ε = 0. However, we do not

want to lengthen the paper with this unnecessary and rather trivial discussion.

(ii) Our main conclusion in this section does not depend on the fact that the break or hetero-

geneity of the slope parameters is abrupt in nature. Indeed, suppose that we replace Ha in (3.7)

by the following alternative hypothesis

Ha : βt = β +
1

(nT )1/2

{
L∑
`=1

δ`I (t > t`) + δ

(
t

T

)}
,

where δ (τ) is a continuous (smooth) function in τ ∈ (0, 1) while |δ`| > 0, ` = 1, .., L permits

discrete jumps. The only difference lies in the form of the shift function Ξ (τ) appearing in (3.8).

Indeed, with the (local) alternatives given in the last displayed expression, the shift function Ξ (τ)

becomes

Ξ (τ) =

L∑
`=0

δ`I (τ > τ `)− τ
L∑
`=1

δ` (1− τ `) +

∫ τ

0
δ (υ) dυ − τ

∫ 1

0
δ (υ) dυ.

It is clear that Ξ (τ) is different from zero in a set Λ ⊂ [0, 1] with positive Lebesgue measure.

Indeed, suppose for simplicity that δ` = 0 for all ` ≥ 0, then

Ξ (τ) =

∫ τ

0
δ (υ) dυ − τ

∫ 1

0
δ (υ) dυ.

In that case Ξ (τ) = 0 for all τ ∈ (0, 1) if and only if δ (τ) is a constant function which is ruled

out as it would imply that Ha ⊂ H0. To see this, we notice that Ξ (τ) =
∫ τ

0

{
δ (υ)− δ

}
dυ, where

δ =
∫ 1

0 δ (υ) dυ. But Ξ (τ) = 0 for all τ ∈ (0, 1) if and only if δ (υ) = δ for all υ ∈ (0, 1).

We finish the section commenting on the power of the tests in the situations mentioned in the

introduction, namely (i) when the time of the break is towards the end of the sample and (ii)

when the number of individuals for which a break exists is negligible compared to n. We ignore

the presence of individual fixed effect here for simplicity.
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We first consider (i). Assume that βt = β if t ≤ T − T0 (T0 =: hT with [hT ] = o(T )) and

βt = β + δ otherwise. Consider the decomposition

1

T

T̃∑
t=1

(
β̂t − β̂MG

)
(3.9)

=
1

T

T̃∑
t=1

(
βt −

1

T

T∑
s=1

βs

)
+

1

T

T̃∑
t=1

{(
β̂t − βt

)
−
(
β̂MG −

1

T

T∑
s=1

βs

)}
.

The second term on the right of (3.9) is O
(

(nT )−1/2
)
, whereas the first term equals{

−δ T̃T
T0
T if T̃ < T − T0

−δ
(
T−T0
T

) (
T−T̃
T

)
if T̃ ≥ T − T0.

So, we have that

n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̂MG

)
= Op (1)−

{
n1/2T0
T 1/2

δτ if [Tτ ] < T − T0

n1/2(T−T0)

T 1/2
δ (1− τ) if [Tτ ] ≥ T − T0,

implying that tests based on T ∆ (r) will diverge and hence be consistent if C−1 < n1/2T0
T 1/2

for

some positive finite constant C. The same conclusions are drawn regarding tests based on T (r).

Regarding the relative growth of n and T , you can see that if T0 > C−1T 1/2 the condition of

consistency is automatically satisfied. When T0 is a constant then we need that T does not

grow faster than n to infinity. On the other hand, when T0 ∈
([
CT 1/4

]
,
[
CT 1/2

])
, we have that

n1/2T0
T 1/2

> C−1 n1/2

T 1/4
which diverges to infinity because T/n2 = o (1). We also point out here

that when n = 1, the condition for consistency, i.e., that T0 does not grow slower than T 1/2,

corresponds to the result obtained for the LMτ test in Hidalgo and Seo (2013).

Next we consider the situation (ii). Suppose for sake of argument that the break occurs at

τ0 = 1/2, and that it only occurs for the first ι (n) individuals with the condition that ι (n) = o (n).

Again we examine the behaviour of T ∆ (r). After standard algebra, we have that

β̂t = Op (1) +

{
β if t < T/2

β + δ ι(n)
n if t ≥ T/2.

So, we obtain that

n1/2

T 1/2

[Tτ ]∑
t=1

(
β̂t − β̂MG

)
= Op (1)− 1

2

{
δ ι(n)[Tτ ]

n1/2T 1/2
if [Tτ ] < 1

2T

δ ι(n)(T−[Tτ ])

n1/2T 1/2
if [Tτ ] ≥ 1

2T ,

which implies that test based on T ∆ (r) will diverge and hence be consistent if C−1 < T 1/2ι (n) /n1/2.

4. BOOTSTRAP ALGORITHM

One of our motivations for introducing a bootstrap algorithm for our tests (and estimators) is

that our tests suffer small sample biases which in some cases, as supported by our Monte Carlo

experiments, can be quite substantial. Among other reasons, these biases may be due to the fact

that the asymptotic distribution yields a poor approximation in finite samples given our estimator

of the long run variance V 1. In such situations the bootstrap approach can, as is well known,
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provide a tool to improve its finite sample behaviour. A quick glance at our conditions in Section 2,

may suggest that a bootstrap mechanism may not be easy to implement (let alone to establish its

validity) since one of the basic requirements for its validity is that the bootstrap algorithm should

preserve the covariance structure. Drawing analogies with the time series literature, one may be

tempted to use the block bootstrap principle. However, since there is no obvious ordering of the

data in the cross-sectional dimension, it is not clear that a block bootstrap would work in our

context or what its sensitivity would be to a particular chosen ordering of the data (over and above

the problem of how to choose the block size). Instead, we propose here a valid bootstrap algorithm

with the interesting feature that it is computationally simple, mainly due to the observation that

there is no need to estimate, either by parametric or nonparametric methods, the cross-sectional

dependence of the error term. Moreover the bootstrap has the additional attractive feature that

we do not need to choose any tuning parameter for its implementation, as would be the case with

a moving block bootstrap type of bootstrap.

More specifically, we provide two bootstrap algorithms. The first bootstrap procedure is de-

scribed in the following 4 STEPS.

STEP 1 : We compute the residuals {ûit}Tt=1, i = 1, ...n, as

ûit = ỹit −
k1∑
`=1

ρ̂t`ỹi(t−`) − θ̂
′
tz̃it, i = 1, ..., n; t = 1, ..., T

and obtain the centered residuals as

ǔit = ûit −
1

T

T∑
t=1

ûit. (4.1)

Remark 5. The motivation to employ (4.1) to center the residuals will become apparent when

looking at the next STEP 2.

STEP 2 : Denoting Ǔt = {ǔit}ni=1, we do standard random resampling from the empirical

distribution of
{
Ǔt
}T
t=1
. The bootstrap sample is denoted by {U∗t }

T
t=1.

STEP 3 : Generate the bootstrap dynamic panel data model as

ỹ∗it =

k1∑
`=1

ρ̂MG,`ỹi(t−`) + θ̂
′
MGz̃it + u∗it, i = 1, ..., n, t = 1, ..., T , (4.2)

where ρ̂MG,`, ` = 1, ..., k1, and θ̂MG are the MG estimators in (3.2).

STEP 4 : Compute the test statistics using model (4.2) as if it were the true panel regression

model. That is, for r = 1, ..., T − 1,

T ∗ (r) =
1

(nT )1/2

r∑
t=1

n∑
i=1

x̃it

(
ỹ∗it − β̂

′∗
FE x̃it

)

T ∆∗ (r) =
(n
T

)1/2
r∑
t=1

(
β̂
∗
t − β̂

∗
MG

)
.
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In the latter step, β̂
∗
FE denotes the fixed effect estimator of the slope parameters β, i.e.

β̂
∗
FE =

(
n∑
i=1

T∑
t=1

x̃itx̃
′
it

)−1( n∑
i=1

T∑
t=1

x̃itỹ
∗
it

)
,

and β̂
∗
t = (

∑n
i=1 x̃itx̃

′
it)
−1 (

∑n
i=1 x̃itỹ

∗
it) with β̂

∗
MG denoting the MG bootstrap estimator

β̂
∗
MG =

1

T

T∑
s=1

β̂
∗
s.

Before establishing the validity of the bootstrap tests T ∗ and T ∆∗ (defined below), we establish

the following results:

Theorem 3. Assuming Conditions C1− C4, we have that (in probability)

(a) (Tn)1/2

(
β̂
∗
FE −

(
β̂MG −

b̂

T

))
d∗→ N (0,V2)

(b) n1/2
(
β̂
∗
t1 − β̂MG, ..., β̂

∗
t`
− β̂MG

)′ d∗→ N (0, I` ⊗V2) for any finite ` ≥ 1.

Remark 6. As in Theorem 1, if limn/T > 0 we get an asymptotic bias term in (a) due to the

incidental parameter problem in the linear dynamic panel model. In the absence of additional z

regressors, b̂/T equals (1 + β̂MG)( 1
Tn

∑n
i=1

∑T
t=1 û

2
it− 1

Tn2
∑n

i,j=1

∑T
t=1 ûitûjt)/T when n/T

3 → 0.

Recalling that V 2 = Σ−1
x V 1Σ−1

x , a consistent bootstrap estimator of the “average” long-run

variance V 1, is given by

V̂
∗
1 =

1

T

T∑
t=1

(
1

n1/2

n∑
i=1

x̃itû
∗
it

)(
1

n1/2

n∑
i=1

x̃itû
∗
it

)′
,

and û∗it = ỹ∗it − β̂
∗′
FE x̃it, i = 1, ..., n and t = 1, ..., T , as the next proposition establishes.

Proposition 3. Assuming C1− C4, we have that

V̂
∗
1 −V1 = op∗ (1) .

Remark 7. The same remark as given after Proposition 1 applies here.

We now give the validity of our bootstrap test.

Theorem 4. Assuming C1 − C4 and w (τ) satisfying (3.6), we have that as n, T → ∞, in
probability

(a) T ∗ = ϕ

T ∗ (r)′
(
V̂
∗
1

)−1
T ∗ (r)

w2 (r/T )

 d∗
=⇒ ϕ

(
(BB (τ))′ (BB (τ))

w2 (τ)

)

(b) T ∆∗ = ϕ

T ∆∗ (r)′
(
V̂
∗
2

)−1
T ∆∗ (r)

w2 (r/T )

 d∗
=⇒ ϕ

(
(BB (τ))′ (BB (τ))

w2 (τ)

)
,
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where ϕ (·) : R+ → R+ is a continuous functional.

While the first bootstrap algorithm is given under C1 with E
[
v2
it | Vi,t−1

]
= σ2, the second

allows E
[
v2
it | Vi,t−1

]
= σ2

t , i ∈ N+. While a rigorous proof of the validity of the next bootstrap

algorithm in the presence of conditional heteroscedasticity is beyond the scope of this paper, its

validity under C1 can be proven quite similarly and has therefore been left out. The second

bootstrap algorithm is described in the next 4 STEPS.

STEP 1′: We compute the residuals as

ûit = ỹit −
k1∑
`=1

ρ̂`,FE ỹi,t−` − θ̂
′
FE z̃it, i = 1, ..., n, t = 1, ..., T .

Let the centered residuals be ǔit = ûit − 1
T

∑T
t=1 ûit.

STEP 2′: Generate a random sample {ξt}Tt=1 with zero mean and unit variance and obtain

the bootstrap error terms as

{u∗it} = {ǔitξt} , i = 1, ..., n, t = 1, ..., T .

Remark 8. It is important to emphasize that while one might be tempted to obtain the residuals
under the alternative hypothesis (as we did in the previous bootstrap), this would not be possible

here. The reason for this is that it would translate into a bootstrap statistic that would be identically

zero. Indeed, it is not diffi cult to see that its behaviour is governed by that of

n∑
i=1

u∗itx̃it = ξt

n∑
i=1

ǔitx̃it = 0

by orthogonality between residuals and regressors.

STEP 3′: Generate the bootstrap panel data model as

ỹ∗it =

k1∑
`=1

ρ̂`,FE ỹi,t−` + θ̂
′
FE z̃it + u∗it, i = 1, ..., n, t = 1, ..., T . (4.3)

STEP 4′: Compute the bootstrap analogues of our statistics T (r) and T ∆ (r) with (4.3)

as our dynamic panel regression model.

Remark 9. (i) The second bootstrap approach is similar to that in Chan and Ogden (2009) and

can be regarded as a wild-type bootstrap with increasing dimensional vectors. In this sense, we can

view the bootstrap as a generalization or extension of bootstrapping V AR (P ) models, say, when

the dimension of the (time series) sequence n grows with no limit. Notice that in the case of finite

n, a standard approach to bootstrap V AR models is to obtain the bootstrap errors as {etξt}Tt=1,

where ξt is a scalar sequence and et denote residuals.

(ii) We have assumed that the sequence {ξt}Tt=1 has mean zero and unit variance. In the standard

wild bootstrap algorithm, it is often suggested that the random variables ξt should also have unit

skewness. As our purpose is to illustrate and describe a valid bootstrap in our scenario, we have

ignored this.
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One major and important difference between the two bootstrap algorithms is that in the lat-

ter algorithm we cannot use the residuals obtained under the alternative hypothesis, that is

ûit = ỹit − β̂
′
tx̃it, which is why we use β̂FE given in (2.9) there instead. It is well known that

the use of residuals obtained under the null in the bootstrap, although needed to establish its

validity, may suffer from inferior power properties than similar bootstraps where the residuals

are computed under the alternative hypothesis. Indeed this is corroborated in our simulation

results and reinforces the observation that for bootstrapped tests to have good power properties

the residuals should be computed under the alternative hypothesis when possible. The heuristic

explanation for this comes from the observation that residuals that are computed under the null

hypothesis will not “estimate”the true error term when the alternative hypothesis is true.

In both bootstrap algorithms, specifically as it relates to STEP 3 and STEP 3′, we have kept

yi,t−` as an explanatory covariate instead of y∗i,t−` as is typically done in time series data, see e.g.

Neumann and Kreiss (1998).

We conclude this section by providing a bootstrap estimator for V 2, and hence V 1 = ΣxV2Σx,

for use in our tests given in (3.5). To that end, suppose that we compute β̂
∗
FE , as in STEP 4, for

B bootstrap samples STEPS 2 and 3, that is

β̂
∗
FE (b) =

(
n∑
i=1

T∑
t=1

x̃itx̃
′
it

)−1( n∑
i=1

T∑
t=1

x̃itỹ
∗
it (b)

)
, b = 1, ..., B,

where

ỹ∗it (b) =

k1∑
`=1

ρ̂MG,`ỹi(t−`) + θ̂
′
MGz̃it + u∗it (b) , i = 1, ..., n, t = 1, ..., T ,

and {U∗t (b)}Tt=1 with U
∗
t (b) = {u∗it (b)}ni=1. The estimate for V 2 we may use in our tests (3.5)

then is given by

V̂
∗
2 =

1

B

B∑
b=1

(
β̂
∗
FE (b)− 1

B

B∑
v=1

β̂
∗
FE (v)

)2

which would replace V̂ 2 when making inferences.

5. FINITE SAMPLE BEHAVIOUR.

In this section we present a Monte-Carlo experiment that illustrates the performance of our

tests in finite samples. We consider the typical weighting functions w (τ) = 1 and w (τ) =

τ−1/2 (1− τ)−1/2 and we compare the bootstrap algorithms used to obtain valid critical values,

revealing that both typically outperform the use of asymptotic critical values.

The data generating processes we consider are

DGP1 : yit = αt + ηi + ρyi,t−1 + θzit + δθzit1(t > t0) + uit

DGP2 : yit = αt + ηi + ρyi,t−1 + δρyi,t−11(t > t0) + θzit + uit

for i = 1, ..., n and t = 1, ..., T . We allow for breaks in the slope of the strictly exogenous variable

zit (δθ) and the lagged dependent variable yit−1 (δρ) and consider different scenarios for the time

of the break (t0). The time fixed effects αt and individual fixed effects ηi are drawn independently
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(αt ∼ IIDN(1, 1) and ηi ∼ IIDN(1, 1)) and are held fixed across replications. The regressor, zit,

is a strictly exogenous regressor generated as

zit = αt + vit with vit = ρzivi,t−1 +
√

1− ρ2
ziϑit

and either (i) ρzi = 0 (no temporal dependence), (ii) ρzi = 0.5 or 0.9 (individual-homogenous

autoregressive time dependence), or (iii) ρzi ∼ IIDU [0.05, 0.95] (individual-heterogeneous au-

toregressive time dependence). Several cross-sectional dependence scenarios are considered for zit
(ϑit) : no spatial dependence, weak spatial dependence and strong spatial dependence. In the

absence of cross-sectional dependence, ϑit (and therefore zit) is IIDN(0, σ2
zi) for i = 1, .., n with

σ2
zi = 1. We consider two weak spatial dependence formulations. First we follow Lee and Robinson

(2013). Here random locations for individual units are drawn along a line, denoted s = (s1, ...sn)′

with si ∼ IIDU [0, n]. Keeping these locations fixed across replications, ϑit are generated indepen-

dently as scalar normal variables with mean zero and covariances cov(ϑit, ϑjt) = σziσzj (0.5)|si−sj |,

ensuring zit exhibits an exponential decay in dependence with distance across individuals. Second,

we consider a polynomial decay of dependence in zit with distance across individuals. Using the

linear time dependence representation, ϑit = σi (
∑∞

`=1 c` (i) e`t), we chose c`(i) = |s`−si|−10 where

si and s` are random locations (drawn independently from IIDU [0, n]) and e`t ∼ IIDN(0, 1); σi

is such that V ar(ϑit) = σ2
zi . For the strong spatial dependence setting, we use c`(i) = |s`− si|−0.9

instead.2

While not allowing for any temporal dependence in uit, we consider the same scenarios for the

cross-sectional dependence for the error term where, in the absence of cross-sectional dependence,

we assume uit ∼ IIDN(0, σ2
ui) for i = 1, ..., n with σ2

ui = 1. The earlier discussion of the cross-

sectional dependence scenarios for ϑit then, suitably modified, holds for uit.

In the tables below, we report empirical size and power of our tests at the nominal 5% level for

various pairs of n and T using 10,000 simulations. The columns labelled Tε relate to the CUSUM
based test, while T ∆

ε relate to the associated Hausman-Durbin-Wu type, or slope based, test.

When ε = 0, they present the untrimmed version of the tests with w(τ) = 1; for the trimmed

versions of the test (ε > 0) we apply w (τ) = τ−1/2 (1− τ)−1/2. Under the null H0 : δ = 0 with

δ = (δρ|δθ)′ both DGPs are identical. We let ρ = 0.5 and θ = 1.

In this paper, we only report the simulation results for the base case in which our strictly

exogenous regressor zit does not exhibit any temporal dependence. This allows us to focus on the

impact the cross-sectional dependence of zit and uit have on our tests.3 The empirical size of our

tests for the joint null H0 : δ = 0 against H0 : δ 6= 0 in either DGP is provided in Table 1.

Insert Table 1 around here

2In the polynomial case, we use max(1, |s`−si|) as our measure of distance; not imposing such a censoring would
remove all dependence in settings where for some (`, i) s` and si lie very close together.

3Simulations that allow for heterogeneity across individuals ( i.e., non-constant σ2zi and σ
2
ui) or temporal de-

pendence of zit are available on our supporting website http://personal.lse.ac.uk/schafgans/tba. We also include

simulations that suggest our tests are robust to the presence of fixed individual heterogeneity in zit.
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The exact asymptotic critical values from Estrella (2003) with p = 2 are used to obtain the

empirical size of the trimmed version of the test. They suggest that in finite samples, the CUSUM

based test is undersized for all cross-sectional dependence scenarios; the slope based test on the

other hand appears oversized when n is quite small (n = 25) , especially in the presence of stronger

cross-sectional dependence. The empirical sizes based on the two bootstrap algorithms are given

for both the trimmed and untrimmed versions of the test. In general, the empirical size of our tests

based on the bootstrap algorithm are much closer to the nominal size, with the Efron bootstrap

yielding in most scenarios an empirical size closest to the nominal size. For example, with small

sample sizes (n = T = 25) the empirical size of the untrimmed CUSUM test T0 based on the Efron

bootstrap equals 0.047 in the absence of spatial dependence, 0.048 and 0.051 in the presence of

respectively exponential and polynomial weak spatial dependence, versus 0.043 in the presence

of strong spatial dependence. The performance of the T ∆
ε test vis-a-vis the Tε test suggests a

worsening of the coeffi cient based test with the level of spatial dependence. For small sample

sizes (n = T = 25) the empirical size of the untrimmed coeffi cient test, T ∆
0 , based on the Efron

bootstrap equals 0.044 in the absence of spatial dependence, 0.041 and 0.038 in the presence of

respectively exponential and polynomial weak spatial dependence, versus 0.013 in the presence of

strong spatial dependence. For the T ∆
ε test to remain properly sized, the cross sectional sample

needs to be larger when the level of spatial dependence increases. The simulations do reveal

fluctuation in the empirical sizes associated with the level of trimming of our test. Increasing the

trimming generally improves the size of the tests with w (τ) = τ−1/2 (1− τ)−1/2 but this obviously

limits the possibility of detecting a break closer to the end of the sample due to this trimming. In

view of this, the good performance of the untrimmed tests with w(τ) = 1 is useful. The results

for the empirical size are comparable to those obtained in the absence of individual fixed effects

(see Hidalgo and Schafgans, 2015).

We present the empirical size of the slope-based test for the associated individual hypotheses

H0 : δθ = 0 (DGP1) and H0 : δρ = 0 (DGP2) on our accompanying website. Exact asymptotic

critical values for the untrimmed individual tests are based on asymptotic critical values from

supτ |BB(τ)| (with supτ

√
(HT ∆ (r))′

(
HV̂ 2H ′

)−1
HT ∆ (r)

d
=⇒ supτ |BB(τ)| with H = (1 : 0)

and (0 : 1), respectively); for ε > 0 we use Estrella (2003) with p = 1. The empirical sizes of

the individual coeffi cient tests are comparable for δθ and δρ and both are of the same order

of magnitude as the joint test size. The rejection rates for the untrimmed tests based on the

asymptotic values of the supremum of the Browning bridge are generally larger than the rejection

rates for the trimmed tests relying on Estrella’s exact asymptotic critical values. This is also the

case for the rejection rates associated with the Wild bootstrap algorithm.

Table 2 presents the power of our tests, when the break is either in the middle, t0 = [0.5T ], or

in the second half of the sample, τ0 = [0.8T ], for DGP1 (where we only have a break in the slope

of the strictly exogenous variable zit) with δθ = 0.5 and δρ = 0. The table provides the power of

the joint hypothesis for the CUSUM test, Tε, and the slope-based test, T ∆
ε . The power (size) of

the associated individual slope-based tests are available from our accompanying website. In Table

2, we observe that even with small sample sizes our tests have high power in detecting a break in



INFERENCE AND HOMOGENEITY IN LARGE DYNAMIC PANELS 25

θ.

Insert Table 2 around here

As expected, the power is lower when the break lies closer to the end of the sample. Using the

Efron bootstrap algorithm the power is 0.984 for T0.10 and 0.854 for T ∆
0.10 in the absence of spatial

dependence when the break lies in the middle of the sample, against 0.864 for T0.10 and 0.679

for T ∆
0.10 when the break lies towards the end of the sample. Moreover, the power decreases with

the cross-sectional dependence. In general, the power of the Tε test is higher than the T ∆
ε test

using the bootstrap based critical values. Nevertheless, when focussing on the power associated

with the individual coeffi cient test (H0 : δθ = 0), the T ∆
ε test performs comparable to the Tε test

in detecting the break in θ. Clearly the power of an individual coeffi cient based test for a single

break is higher than the power of a joint coeffi cient based test. When both n and T equal 100,

the power of the tests (joint Tε and T ∆
ε and individual for T ∆

ε ) equals 1 for all but the strong

spatial dependence setting in which case it is close to one. Finally, the empirical power of our

tests based on the Efron bootstrap typically exceeds the Wild bootstrap based ones as expected.

The power of observing a break in the slope of zit is similar whether we include the individual

fixed effect or not (see Hidalgo and Schafgans, 2015).

Table 3, by symmetry, presents the power of our tests, when the break is either in the middle,

t0 = [0.5T ], or in the second half of the sample, τ0 = [0.8T ], for DGP2 with δρ = 0.1 and

δθ = 0. The table again provides the power of the joint hypothesis for the CUSUM test, Tε, and
the slope-based test, T ∆

ε , while the power (size) of the associated individual slope-based test are

available from our accompanying website. In Table 3, we observe that for both tests, the power

of detecting our break in the autoregressive coeffi cient is smaller than the power of the break we

considered in the slope of the strictly exogenous regressor.

Insert Table 3 around here

For example, in the presence of exponential weak dependence and small samples (n = T = 25), T0

reveals a 0.129 power of detecting our break in ρ based on Efron bootstrap against a 0.770 power

of detecting our break in θ. Obviously a larger break in ρ would be easier to detect. The power

of the Tε test is again generally higher than T ∆
ε test using the bootstrap based critical values, a

difference which is reduced when focussing on the power associated with the single coeffi cient test

(H0 : δρ = 0). For n = T = 100, we observe that the loss in power of detecting a break in the

autocorrelation coeffi cient increases with the amount of spatial dependence. For instance, using

T ∆
0 the power of detection based on the Efron bootstrap drops from 1.00 in absence of spatial

dependence, to 0.945 and 0.925 in the weak spatial dependence setting to 0.401 in the strong

spatial dependence setting. For the T∆
ε test, the power of detecting a break in the autocorrelation

coeffi cient is, as expected, smaller when the break is later in the sample. While this holds for

the untrimmed CUSUM base test T0 as well, there appear some nonlinearities for the trimmed

CUSUM based test that are absent when there are no individual fixed effects (see Hidalgo and

Schafgans, 2015).
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As our simulations on our accompanying website reveal our tests seem robust to the presence

of fixed individual heterogeneity in zit, and the introduction of heterogeneity has little impact

on the size of our tests while typically enhancing the power of our test in the presence of spatial

dependence. The introduction of (individual-heterogeneous) autoregressive time dependence of

the regressor zit also has little impact on the size of our tests. The introduction of time dependence

in zit is typically accompanied by a reduction in the power of our tests to detect a break in θ in

small samples, which is slightly more pronounced for the coeffi cient based test, T ∆
ε , and is strongest

in the absence of spatial dependence. The deterioration of the power of detecting a break in θ

associated with the presence of (individual-heterogeneous) autoregressive time dependence is less

strong in the absence of individual fixed effects (see also Hidalgo and Schafgans, 2015). Increasing

the time dependence in zit generally reduces the power to detect such a break in the presence

of weak and strong dependence; only when both individual and time fixed effects are included

do we observe a nonmonotonic relationship when there is strong dependence. In absence of cross

sectional dependence, the power of our tests to detect a break in the autocorrelation coeffi cient

also deteriorates in the presence of time dependence in zit. In the presence of spatial dependence,

on the other hand, the power of our tests to detect such a break typically increases with the level

of time dependence in the regressor when n = T = 100, although this is not always the case when

the sample is small. These results are obtained in the absence of individual effects as well.

6. AN APPLICATION TO ECONOMIC GROWTH DATA

In this empirical illustration we apply our test for structural break to a growth regression

equation. Since spatial correlations are all-pervasive in international trade, it is important in

growth regression analysis to account for the presence of cross-sectional dependence. While, for

example, Yu and Lee (2012) and Parent and LeSage (2012) attempt to model regional spillovers

using a spatial autoregressive setup (both specify a row-normalized contiguity weighting matrix

associated with US states sharing common borders), we allow our error terms to exhibit a more

general, and potentially strong, cross-country correlation structure which does not require us to

specify the exact dependence structure.

Specifically, we consider the dynamic panel model

gY,it =

k1∑
`=1

ρ`,tgY,it−` + βL,tgL,it + βK,tgK,it + βH,tgH,it + αi + γt + εit,

i = 1, .., n, t = 1, ..., T

where gY denotes the growth in GDP, gL the growth in labour, and gK and gH the growth in

physical and human capital, respectively. To account for business cycle fluctuations, we allow for

temporal dependence by relating growth in GDP to past growth in GDP. The country fixed effects

account for differences in technology or taste across countries, alleviating the endogeneity issues

inherent in cross-sectional growth regressions, while the time fixed effect accounts for macroeco-

nomic shocks. Unlike Su and Chen (2013), who allow for interactive fixed effects, we consider the

usual additive fixed effects structure in accordance with our theoretical setup.
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We use annual data from the Penn World Table 8.1 (see also Feenstra et al., 2015) and consider

a country sample (NONOIL) similar to that used by Islam (1995) and Mankiw, Romer and Weil

(1992); the sample excludes countries for which oil production is the dominant industry. We

use the RGDPNA series to evaluate the growth in GDP of economies over time (measured in

constant national prices, obtained from national accounts data for each country). For the factors

of production, we use the series: EMP to measure growth in labour (employment), RKNA

(measured in constant national prices) to measure growth in physical capital and HC (a measure

based on average years of schooling from Barro and Lee, 2012) to measure growth in human

capital. The data spans the period 1961-2011. Data availability on employment, in particular,

reduced our country sample relative to that of Islam (1995).4 We use employment as it is the

more appropriate variable to use to measure the growth in labour. In this we follow, e.g., Zhang,

Su and Phillips (2012), who test for common trends in panel data with fixed effects using OECD

growth data.

In Table 4 our test results are presented, where we consider two values for the number of lagged

dependent variables, k1, namely k1 = 1, 2. The table presents the location of our break (date)

and the associated p-values of our tests as indicated by our asymptotic critical values or obtained

by our proposed bootstrap methods. We provide both trimmed (ε > 0) and untrimmed (ε = 0)

variants of our tests Tε and T ∆
ε and for the Hausman type test, T ∆

ε , we consider both the joint test

for homogeneity of (β, ρ) with β = (βL, βK , βH) and the ‘individual’tests on β and ρ separately.

For the Hausman based tests (joint or individual) there is strong evidence for a structural

break following the conclusion of the Uruguay Round in 1995/6. It is widely regarded as the most

profound institutional reform of the word trading system since the GATT’s establishment, which

tackled trade barriers covering trade in all goods, not just manufactured products but included

agricultural and textile products as well. It saw the phase-out of the multi-fibre arrangement

governing trade in textiles and imposed rules and disciplines on agricultural subsidies and the

GATT rules were extended to cover trade in services and intellectual property rights, see also

Bowen et al. (1998). While the untrimmed CUSUM based test with k1 = 2 supports this finding

(with p-values of 0.005) the trimmed CUSUM based test detects the break earlier in the mid to

late 60s around the less influential GATT Kennedy trade Round. When we restrict the sample to

the period 1970-2011, both the CUSUM based test (trimmed and untrimmed) and the Hausman

based test (untrimmed) find evidence of a break in 1995 (though not significant using the trimmed

version of the test). Evidence of a break around the dot com bubble, 2001, is found as well, e.g., in

the trimmed Hausman based test for ρ and the joint trimmed Hausman test when k1 = 1. When

4In recognition of the limited availability of the working age population (used by Mankiw, Romer and Weil, 1992)

and employment, Islam decided to use total population instead. Our NONOIL sample includes: Australia, Austria,

Argentina, Bangladesh, Belgium, Bolivia, Brazil, Cameroon, Canada,Chile, Colombia, Congo, Costa Rica, Côte

d’Ivoire, Denmark, Dominican Republic, Ecuador, Egypt, Finland, France, Germany, Ghana, Greece, Guatemala,

Hong Kong, India, Indonesia, Ireland, Israël, Italy, Jamaica, Japan, Jordan, Kenya, Malawi, Malaysia, Mali, Mexico,

Morocco, Mozambique, Netherlands, New Zealand, Niger, Norway, Pakistan, Peru, Phillippines, Portugal, Republic

of Korea, Senegal, Singapore, South Africa, Spain, Sri Lanka, Syrian Arab Republic, Sweden, Switzerland, Thailand,

Tanzania, Trinidad and Tobago, Tunisia, Turkey, UK, Uganda, Uruguay, USA, Venezuela, Zambia, Zimbabwe.
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comparing the p-values for our tests, we observe that we typically have a higher power to detect

a break in (βL, βK , βH) when using the Efron bootstrap algorithm instead of the Wild bootstrap

as expected. This also corresponds to our observations from the Monte Carlo simulations in the

presence of strong (weak) spatial dependence. For the T ∆
ε -test there appears a stronger evidence

of a structural break using the asymptotic critical values than indicated when using the bootstrap.

In our Monte Carlo simulation we also found the power for this test, in the presence of strong

spatial dependence, to be lower using the bootstrap than suggested by the asymptotic distribution.

Given the sample size for this empirical example, we therefore need to be somewhat careful with

the use of the asymptotic critical values.

Overall, the ability for our tests to detect meaningful structural breaks in the presence of

cross-sectional dependence seems to be confirmed by these results.

Insert Table 4 around here

7. CONCLUSIONS AND EXTENSIONS

The paper has examined several issues related to inference in large dynamic panel data models.

Specifically, we have developed a Central Limit Theorem for the estimators of the slope parameters

when the errors and the covariates might exhibit “strong” cross-sectional dependence. To that

end, we have modified existing results given in Phillips and Moon (1999) to allow for dependence in

both time and cross-section dimensions. From here, we have described and examined two different,

but similar, tests for the null hypothesis of homogeneity of the slope parameters of the model.

Unlike the asymptotic for our the slope parameters, our tests do not suffer from the incidental

parameter problem associated with the linear dynamic panel model. Because the small sample

properties of the test were not very satisfactory, we have described two bootstrap algorithms with

the attractive feature that their implementation does not require any previous knowledge of the

cross-sectional dependence or selection of any tuning/bandwidth parameters (as is normally the

case when using moving block bootstraps with time series data).

A possible limitation of the conditions we imposed is that it rules out temporal dependence for

the errors. That is, we might want to change C1 to

C1′: {uit}t∈Z, i ∈ N+, are linear sequences of zero mean random variables given by

uit =

∞∑
`=0

a` (i) εi,t−`;
∞∑
`=0

|a`| `1/2 <∞,

where a` = supi∈N |a` (i)|, and {εit}t∈Z, i ≥ 1, are sequences of independent distributed

random variables satisfying supi∈NE
(
ε4
it

)
= supi∈N µi <∞ and

lim
T↗∞

sup
i∈N+

T∑
t1,t2,t3=1

|Cum (uit1;uit2;uit3;ui0)| <∞.

When we change C1 to C1′, inspections of our proofs suggests the main qualitative results of the

paper would follow, all we need to do would be to employ instrumental variable methods or some

type of Hatanaka’s “effi cient” estimator to estimate the parameters of the model. We have not
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followed this route for notational simplicity as our basic conclusions should not be affected, except

that the proofs would become lengthier. The change, though, would necessitate a modification of

our bootstrap algorithm to accommodate the temporal dependence of the errors {uit}t∈Z, i ∈ N+,

and the estimator of the long run variance V 1. Details of this are beyond the scope of this paper

and we hope to address these issues in a different paper.
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Table 1. Size of the slope homogeneity test

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 .055 .034 .047 .044 .057 .029 .048 .041
ε = 0.05 .010 .032 .039 .019 .067 .045 .009 .044 .039 .013 .054 .035
ε = 0.10 .008 .036 .050 .025 .058 .044 .007 .050 .049 .017 .049 .036

(100, 25)
ε = 0.00 .040 .030 .053 .047 .049 .036 .054 .044
ε = 0.05 .011 .006 .042 .019 .068 .038 .008 .011 .040 .021 .056 .038
ε = 0.10 .009 .009 .046 .026 .060 .040 .009 .014 .047 .028 .056 .040

(25, 100)
ε = 0.00 .058 .050 .051 .051 .062 .044 .049 .040
ε = 0.05 .032 .058 .043 .033 .055 .048 .033 .057 .039 .020 .058 .039
ε = 0.10 .028 .057 .050 .040 .051 .048 .031 .060 .051 .029 .052 .037

(100, 100)
ε = 0.00 .057 .055 .048 .051 .051 .053 .045 .048
ε = 0.05 .029 .030 .036 .032 .051 .046 .025 .027 .030 .028 .047 .044
ε = 0.10 .029 .032 .047 .046 .049 .052 .026 .032 .045 .040 .047 .044

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

(25, 25)
ε = 0.00 .060 .024 .051 .038 .056 .016 .043 .013
ε = 0.05 .008 .065 .040 .013 .061 .037 .015 .160 .046 .012 .057 .012
ε = 0.10 .009 .072 .049 .016 .057 .039 .010 .164 .051 .014 .051 .012

(100, 25)
ε = 0.00 .047 .035 .050 .043 .053 .028 .043 .036
ε = 0.05 .007 .011 .036 .021 .056 .040 .007 .034 .034 .016 .050 .033
ε = 0.10 .008 .015 .044 .026 .053 .041 .006 .039 .044 .021 .049 .034

(25, 100)
ε = 0.00 .060 .040 .047 .038 .062 .027 .051 .009
ε = 0.05 .031 .081 .041 .022 .053 .040 .040 .126 .040 .015 .057 .009
ε = 0.10 .028 .081 .055 .029 .054 .043 .032 .123 .053 .018 .057 .010

(100, 100)
ε = 0.00 .063 .056 .052 .055 .055 .043 .050 .034
ε = 0.05 .025 .034 .038 .033 .054 .047 .032 .034 .039 .023 .053 .031
ε = 0.10 .028 .037 .053 .043 .055 .050 .027 .040 .047 .035 .052 .036
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Table 2. Power of the slope homogeneity test, DGP1

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 .996 .942 .996 .942 .867 .547 .849 .556
ε = 0.05 .803 .789 .958 .759 .976 .834 .280 .407 .601 .260 .645 .360
ε = 0.10 .862 .837 .978 .817 .984 .854 .348 .465 .708 .319 .702 .382

(100, 100)
ε = 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ε = 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ε = 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

t0 = [0.8T ]
(25, 25)
ε = 0.00 .676 .343 .690 .400 .360 .128 .337 .158
ε = 0.05 .515 .536 .568 .332 .838 .658 .157 .251 .270 .102 .410 .242
ε = 0.10 .593 .600 .710 .430 .864 .679 .194 .289 .363 .136 .447 .252

(100, 100)
ε = 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ε = 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ε = 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 .807 .409 .795 .447 .417 .076 .368 .039
ε = 0.05 .220 .394 .502 .160 .601 .252 .043 .285 .155 .029 .195 .019
ε = 0.10 .285 .447 .621 .205 .647 .284 .056 .315 .234 .036 .242 .021

(100, 100)
ε = 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ε = 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ε = 0.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

t0 = [0.8T ]
(25, 25)
ε = 0.00 .305 .107 .294 .127 .155 .029 .128 .016
ε = 0.05 .128 .245 .231 .072 .379 .167 .048 .221 .096 .021 .147 .018
ε = 0.10 .158 .283 .337 .100 .414 .182 .050 .240 .146 .025 .168 .018

(100, 100)
ε = 0.00 1.00 1.00 1.00 1.00 .994 .987 .994 .978
ε = 0.05 1.00 1.00 1.00 1.00 1.00 1.00 0.995 .995 .982 .985 .996 .994
ε = 0.10 1.00 1.00 1.00 1.00 1.00 1.00 0.996 .996 .994 .993 .998 .996
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Table 3. Power of the slope homogeneity test, DGP2

No spatial dependence Weak Spatial dependence (exponential)

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 .079 .058 .095 .103 .067 .040 .071 .065
ε = 0.05 .020 .048 .065 .029 .109 .091 .018 .060 .063 .020 .084 .059
ε = 0.10 .021 .057 .087 .042 .113 .096 .016 .068 .072 .026 .083 .063

(100, 100)
ε = 0.00 .999 .999 .999 .999 .891 .895 .906 .913
ε = 0.05 .992 .995 .993 .995 .994 .997 .732 .764 .755 .777 .800 .830
ε = 0.10 .994 .996 .996 .996 .998 .998 .768 .795 .816 .815 .835 .854

t0 = [0.8T ]
(25, 25)
ε = 0.00 .094 .046 .081 .060 .074 .036 .068 .050
ε = 0.05 .045 .055 .120 .035 .174 .092 .030 .064 .089 .022 .117 .059
ε = 0.10 .048 .063 .159 .052 .180 .093 .030 .072 .107 .032 .114 .062

(100, 100)
ε = 0.00 1.00 1.00 1.00 1.00 .981 .961 .977 .945
ε = 0.05 1.00 1.00 1.00 1.00 1.00 1.00 .988 .977 .979 .979 .992 .987
ε = 0.10 1.00 1.00 1.00 1.00 1.00 1.00 .990 0.981 .991 .988 .994 .988

Weak Spatial dependence (polynomial) Strong Spatial dependence

Test Asymptotic
Wild

Bootstrap
Efron

Bootstrap
Asymptotic

Wild
Bootstrap

Efron
Bootstrap

(n, T ) Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε Tε T ∆
ε Tε T ∆

ε

t0 = [0.5T ]
(25, 25)
ε = 0.00 .071 .033 .076 .064 .060 .023 .062 .019
ε = 0.05 .016 .077 .062 .016 .088 .053 .016 .144 .049 .013 .057 .016
ε = 0.10 .016 .087 .076 .022 .088 .058 .013 .156 .060 .015 .061 .016

(100, 100)
ε = 0.00 .866 .852 .879 .869 .372 .329 .379 .327
ε = 0.05 .678 .716 .726 .720 .769 .784 .192 .210 .206 .195 .258 .221
ε = 0.10 .715 .751 .788 .773 .802 .808 .211 .237 .279 .235 .294 .240

t0 = [0.8T ]
(25, 25)
ε = 0.00 .079 .031 .071 .049 .070 .021 .056 .016
ε = 0.05 .025 .085 .084 .018 .117 .056 .028 .189 .076 .015 .090 .017
ε = 0.10 .026 .095 .106 .024 .119 .058 .024 .202 .088 .017 .095 .017

(100, 100)
ε = 0.00 .970 .937 .966 .918 .614 .444 .583 .373
ε = 0.05 .975 .959 .966 .960 .983 .973 .636 .549 .612 .521 .686 .564
ε = 0.10 .977 .966 .982 .972 .988 .976 .658 .595 .703 .597 .722 .588



INFERENCE AND HOMOGENEITY IN LARGE DYNAMIC PANELS 35

Table 4. Empirical application: growth model

NONOIL
N=69,T=52 (1960—2011)

k1 = 1 k1 = 2
p-values p-values

date Asy Wild Efron date Asy Wild Efron
Tε -test
ε = 0.00 1975 .000 .002 1995 .000 .005
ε = 0.05 1965 < .05 .034 .000 1965 < .05 .045 .001
ε = 0.10 1970 < .05 .004 .000 1970 < .05 .005 .000
T ∆
ε -test (β, ρ)
ε = 0.00 1995 .019 .008 1995 .012 .014
ε = 0.05 2001 < .01 .067 .047 1996 < .01 .103 .115
ε = 0.10 2001 < .01 .058 .032 1996 < .01 .068 .079
T ∆
ε -test (β)
ε = 0.00 1995 .011 .011 1995 .005 .002
ε = 0.05 1995 < .01 .054 .057 1995 < .01 .033 .027
ε = 0.10 1995 < .01 .045 .032 1995 < .01 .021 .011
T ∆
ε -test (ρ)
ε = 0.00 1996 < .01 .020 .008 1996 .006 .013
ε = 0.05 2001 < .01 .058 .023 2001 < .01 .058 .051
ε = 0.10 2001 < .01 .054 .021 2001 < .01 .037 .040


