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Minister’s Question Time before Parliament was dissolved (#PMQs), the first leadership 

interviews of the campaign (#BattleForNumber10), and the BBC Question Time 

broadcast of the same evening (#BBCQT). Based on previous work, our expectation was 

that our intervention would make a significant difference to the evolving network, but 

we found that the bots we used had very little effect on the conversation network at all. 

There are economic, social, and temporal factors that impact how a user of bots can 

influence political conversations. Future research needs to account for these forms of 

capital when assessing the impact of bots on political discussions. 

 

Keywords: bots, political communication, capital, moral panics, experimental methods 

 

In recent years, scholars have been fascinated with the role of algorithms and other automated 

processes in political life. Bot studies, and algorithm studies in general, have focused on the unknowable 

qualities of decision-making machines and the kinds of governance that these create (Barocas, Hood, & 

Ziewitz, 2013). In political communication, they may complicate the effectiveness of existing—and novel—

means of understanding public opinion. Specifically, a proliferation of bots could challenge the robustness 

of using social media to understand large-scale population dynamics. Optimists see social media analysis 

as a way to understand the public in new and distinctive ways, which are more organic and require less 

researcher intervention than traditional methods (Anstead & O’Loughlin, 2014). 

 

Other broader claims have been made about the possibility of social media enhancing democratic 

life more generally, providing new ways for citizens to engage and deliberate (Loader & Mercea, 2012). 

Additionally, social media monitoring is seen as having the potential to make government more interactive 

and better able to respond to the will of the public based on evidence. For example, the UK Cabinet Office 

(2015) argues, “More than 50% of people in the UK use social media every week, so it is an important 

source of information for policy makers. It can feed our policy understanding by building our knowledge 

and helping us to make informed decisions” (para. 3). Will public policy decisions be distorted by public 

opinion data corrupted by bots? 

 

Pessimistic researchers question the value of such big data methods. For some, the data being 

gathered are not representative of the public overall (Gayo-Avello, 2013; Murthy, 2015). Others have 

highlighted that social media analysis reflects the structural inequalities of wider society. For example, 

political conversation on social media may be dominated by those with higher incomes and higher levels of 

education (Duggan & Brenner, 2013). Also, automated content analysis through machine learning faces 

challenges in parsing the nuances of human communication. Specifically, using natural language 

processing algorithms to effectively and accurately code many of the data sets being produced online may 

require “costly manual annotation” (Friedman, Rindflesch, & Corn, 2013, p. 768). This line of thought, as 

Sells, Shieber, and Wasow (1991) explain, stretches back to Chomsky’s critique “that finite-state 

grammars were inadequate models of natural language syntax” (p. 1). Thus, bots are potentially 

problematic, as they render these grammars even more fixed. 

 

In this study, we evaluate the impact of bots as automated meaning makers that shift or twist 

political communications. The popular press regularly presents bots as distorting public conversation 
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(Finger, 2015). “Hackers also use bots for all sorts of nefarious reasons,” writes Pullen (2015), “from 

lifting credit card numbers from an online store to scraping the text off an article and posting it on some 

random blog” (para. 4). Similar stories place bots at the center of geopolitical conflict. For instance: 

“Today, waves of trolls and bots regularly promote pro-Putin hashtags” (Chen, 2015, para. 26). These 

representations of bots are part of a larger moral panic about bots as malicious forces (Finger, 2015). 

 

In this context, our project began with an assumption that an interdisciplinary team of political 

communication specialists, sociologists, science technology and society scholars, and computer scientists 

could experimentally model the impact of bots on a political conversation. A significant finding of our 

research is that the bots we built did not significantly influence the political conversation. Writing bot code 

in Python is relatively straightforward, and bots have become a significant population on diverse social 

media platforms (Fenton, 2016). Many social media companies promise to control bots, but we were 

under the impression that getting bots and deploying them would be relatively straightforward. However, 

we quickly realized that high amounts of capital—cultural, economic, temporal, and social—were needed 

to influence political discourse and that using bots in this way required some methodological sophistication 

that we had not anticipated. This finding is interesting in itself, as it indicates that those without significant 

financial resources and pre-existing bot knowledge are not able to readily influence political discourse. In 

other words, a combination of money, knowledge, time, and social networks is needed, raising questions 

about the uneven capacity of various actors to successfully leverage bot networks. 

 

This project is tremendously important because work on political bots has been theoretical, and 

interdisciplinary empirical investigations remain lacking. Meanwhile, computational work on bots has 

focused more on automated methods for identifying bots and stripping them from the conversation than 

on tracing their impacts (Chu, Gianvecchio, Wang, & Jajodia, 2012; Davis, Varol, Ferrara, Flammini, & 

Menczer, 2016). Additionally, some experimental bot studies have ended up emulating humans and 

ultimately tricking users (Messias, Schmidt, Oliveira, & Benevenuto, 2013), methods that raise significant 

ethical questions. In contrast, we have taken an interdisciplinary sociotechnical approach to explore the 

processes involved in deploying bots and analyzing their effects. 

 

Of course, lines of inquiry into bot detection, for example, are tremendously valuable. However, 

our experience offers insights into the challenges that researchers face when trying to organize bot-based 

experiments and raises some profound questions about how the power to mobilize bots to shape social 

networks is accumulated, if at all. First, we define bots and identify the assets required to create them. 

Then we describe how our research team set up the experiment and procured bots. Following this, we 

provide an analysis of the significance of our bots in the communication ecology. We draw on a 

Bourdieusian vocabulary to explain the performance of our bots in terms of capital. We conclude with 

some insights about automation within communication systems, bot studies, and social media 

methodology. 
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Building Political Bots 

 

Defining a Bot 

 

When we write about bots we refer specifically to social media bots—computer programs or 

algorithms controlling accounts on social media. Social bots are distinct from declared or spam bots, as 

they try to appear human (Boshmaf, Muslukhov, Beznosov, & Ripeanu, 2011). Some have claimed that 

social bots of this kind are created with the purpose of altering human behavior (Ferrara, 2015; Wald, 

Khoshgoftaar, Napolitano, & Sumner, 2013). These definitions are useful, and important empirical work on 

social bots has been conducted, but we still know little about bots’ behavior, their relationship with human 

actors, and their ability to influence wider networks (Davis et al., 2016). 

 

Bots, at their simplest, are social media accounts that are controlled either wholly or in part by 

software agents. When we talk about a bot, we often think of the account itself and the mechanisms 

controlling it as a single entity. However, to better understand the nature of bots, we must distinguish the 

account from the publishing algorithm. Social media systems operate in terms of accounts. These 

accounts can perform actions through interfaces such as application programming interfaces (APIs). 

Actions taken on APIs, whether instigated by people or algorithms, will often be largely opaque to the 

social media system itself. 

 

We can see bots as a subcategory of algorithmic media elements because they are programmed 

to intervene in the way knowledge and information is communicated. The expanding “critical algorithms” 

literature (Gillespie & Seaver, 2016) focuses on the black-box nature of these automated processes and 

the significance they have for access to information and openness of speech. According to Gillespie, 

Boczkowski, and Foot (2014), our growing dependence on proprietary and invisible algorithms is “as 

momentous as having relied on credentialed experts, the scientific method, common sense, or the word of 

God” (p. 164). This quotation speaks to the significant power attributed to algorithms and other 

automated elements within the communication system and to the way that they become black boxes even 

by their critics and researchers. 

 

On the Creation of Bots 

 

Bots are added to social media systems in a variety of ways. A new account may be created with 

the explicit intention of having a bot control it. Depending on the social media system, this may even be 

possible automatically, but most social networking platforms try to ensure that only people can create new 

accounts. Existing user accounts can have bots attached to them when a human account holder—

knowingly or not—passes over some of the control of the account to a software agent. An example of this 

might be a bot designed to repost tweets at timed intervals to increase the visibility of a person’s posts. 

Alternatively, bots may capture a dormant account. In this case, existing accounts that the original 

creators are no longer actively using can be captured by hacking passwords and sold as supplementary 

followers. Bots may also be added as followers to accounts that the purchaser does not control. 
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On the Functionality of Bots 

 

Once bots have partial or total control of a social media account, the design of the bot structures 

how it engages with the social network. If a user buys followers, the act of following another account 

might be the sole function of the bot. Once following an account, the bot might retweet or favorite tweets 

of the followed account. Alternatively, a bot might be designed to inject new content into the social media 

network, to circulate promotional material or spam, or to steer and disrupt discussion online (Woolley, 

2016). Experimental bot studies on Brazilian news and politics have highlighted that bots can quickly gain 

more measurable influence than established, prominent users in specific domain areas (Messias et al., 

2013). During the 2012 Mexican presidential elections, bots were used to disrupt and falsify political 

communication efforts (Bacallao-Pino, 2016). In the United States they have been used to spam via 

“astroturf” methods (Ratkiewicz et al., 2011). However, bots can also be used positively to assist in the 

mobilization of networks of supporters for a cause, emulating the techniques of well-known face-to-face 

call-to-action techniques (Savage, Monroy-Hernandez, & Hollerer, 2015). 

 

Bot accounts may be individual computational actors but may also be the individual voices of a 

coordinated network of bot entities—a “botnet.” A study of 35 weeks of activity of a specific botnet 

controlling 130 individual bots tweeting messages relating to the Syrian civil war shows that it only 

achieved significant influence in the final third of its lifespan (Abokhodair, Yoo, & McDonald, 2015). This 

happened when the number of both bot accounts and bot-driven tweets were at a zenith. At this time the 

messages were produced at a rate far exceeding anything done by humans. By that point, the network 

had managed to influence real human accounts into retweeting its messages, particularly of opinion topics 

in which humans are more active. 

 

On the Detection of Bots 

  

Significant research from the computer science community has been directed at the automatic 

detection of bots as algorithms become more complex and adept at simulating the behavior of a human 

controller. A DARPA challenge has even been mounted in this area (Emerging Technology from the arXiv, 

2016). A variety of techniques have been used to identify bots, with measurable success in detecting the 

strict timing of bot postings (Chu et al., 2010; Costa, Yamaguchi, Traina, Caetano Traina, & Faloutsos, 

2015). However, timing is under computational control and can be disguised if bot designers seek to avoid 

detection. The BotOrNot service uses machine learning techniques to judge whether an account is 

controlled by a bot based on six feature dimensions: network, user, friends, time, content, and sentiment. 

This method of combining multiple approaches can yield comparatively low false positive rates (Ferrara, 

Varol, Davis, Menczer, & Flammini, 2014). 

 

Method and Research Questions 

 

In our experimental study, student volunteer participants were asked to set up new Twitter 

accounts and comment on high-profile broadcast events using the hashtags linked to those events. Bots 

were linked to the accounts of the some of the participants while other accounts remain untouched. We 
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then monitored the activity of the participants, the bots, and the overall pattern of the conversational 

network. This method allowed us to address several research questions: 

 

RQ1:  Do accounts with bots attached behave differently from those that are untouched? 

 

RQ2: Do accounts with bots attached have greater social influence within conversations than those 

 without? 

 

RQ3: Do different types of bots exert different types of influence? Are particular types of bots more 

effective? 

 

RQ4:  How do bots interact differently with different types of participants? 

 

Experiment Setup: Research Design 

 

Our experiment attempts to better understand the role of bots within a series of related events 

on the microblogging platform Twitter. In this experiment, we defined bots as a set of automated 

processes—attached to half of the participants’ Twitter accounts. These automated processes simulated a 

number of system-level functions within the Twitter platform, including the features retweeting, following, 

and favoriting. There are several ways to deploy bots, all of which we evaluated in light of ethical 

considerations. The first method would be to fully create our own bots, the method used by Messias et al. 

(2013). The clear advantages to this are full design control of each bot. However, as with the controversial 

Tay—the renegade Microsoft chatbot—it can be very difficult to envision what a bot will do in the wild. 

Second, in our study, we wanted to experiment with the supposed ease of access to bots portrayed in the 

popular press, and we sought to create bots using straightforward and ethical methods. 

 

Another alternative for deploying bots is to approach advanced hacker communities. Though the 

bots deployed by these groups leverage some of the most influential botnets over hijacked accounts, this 

option contravenes both acceptable research ethics protocols and Twitter’s terms of service. The other 

method is to purchase bots legally from a digital marketing firm that has a clear framework for how they 

deploy their bots and can provide examples of past projects. This relative transparency ensures certain 

constraints on bots when releases in the wild. We opted for this last method as the means to deploy our 

bots both to emulate ease of use and to meet institutional ethics guidelines. We used the MonsterSocial 

software to achieve this. It provides a user interface to manage and configure a number of Twitter 

accounts, with options such as automatic retweeting, following, and favoriting. 

 

Our experiment was focused around three events occurring within the United Kingdom, defined 

by three hashtags. These events included the political discussions within the BBC television show BBC 

Question Time (#BBCQT), the television airing of Prime Minister’s Questions (#PMQ), and the television 

debate “Battle for Number 10” (#BattleForNumber10). 

 

The experiment recruited 12 volunteer participants to write tweets and participate in the 

discussions relevant to the selected set of hashtags. Participants were each asked to create a new Twitter 

account with a name of their choosing; we asked participants not to use their real names. Participants 
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contributed to all three events, and the bot configuration remained the same during all phases of the 

experiment. Using the MonsterSocial software, we attached bots to half of the participants’ Twitter 

accounts, which were then configured to automatically follow and retweet accounts within a given set of 

hashtags. The follow process ran every five minutes and tried to follow up to 100 random Twitter accounts 

that tweeted with a given hashtag. Similarly, the retweet process ran every five minutes and retweeted 

tweets that contained the chosen hashtag. 

 

To capture the Twitter data during the three events, we used the EPrints tweet harvesting service 

Tweepository.2 The service is designed to collect Twitter data based on a given keyword, including 

hashtags. It uses the Twitter search API in combination with its own harvesting strategy to collect 

publically posted Tweets and also captures a snapshot of the follower network of a set of specified 

accounts at similar intervals. This is important in revealing how the network changes during the course of 

the experiment. Using Tweepository, we created entries corresponding to each of the three event 

hashtags. Table 1 provides an overview of three data sets collected. Finally, we exported the data in a 

JSON structure and transformed the data into a series of temporal network graphs (Tinati, Carr, Hall, & 

Bentwood, 2012) constructed from the mention and retweets extracted from the collected tweets. 

 

Ethics 

 

To ensure that our study was ethically sound, we employed the London School of Economics’ 

(LSE, 2016) research ethics self-certification form. This process requires reflexivity on the part of 

researchers to identify and mitigate any risks in a proposed study. During this process, we identified three 

ethical issues. The first related to the types of bots we were going to use for the experiment. A variety of 

bots are commercially available. However, at least some of these bots use accounts that have been 

hacked and hijacked from human users. To use bots of this kind would certainly have been unethical, 

illegal, and against Twitter’s terms and conditions. Instead, we used bots from MonsterSocial that provide 

automatic following mechanisms but require humans to perform tweets, unlike the fully automated bots 

used in other studies (Messias et al., 2013). 

 

Second, because we used human volunteers as part of our experiment, we needed to ensure 

their safety and well-being. As other scholars have noted (Burnap & Williams, 2015; Murthy & Sharma, 

2015), online political conversations can sometimes create aggressive spaces, with conversations often 

degenerating into hate speech of various kinds. To protect our participants from such eventualities, we 

provided them with our contact details and made clear they could cease participating in the experiment at 

any time. In addition, we provided them with contact details of appropriate support services at the LSE. 

 

Our final concern related to the content that participants were posting, particularly the possibility 

that they might publish anything that had the potential to create risks for themselves or our institutions. 

To prevent this from occurring, the Twitter accounts of participants were monitored at all times during the 

                                                 
2 See Hitchcock (2013) for some applications of Tweepository and other harvesting services. 
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experiment by a member of the research team, who also—if it would have been necessary—had the ability 

to shut down any participant’s Twitter account. 

Results 

 

Data Set Overview 

 

Table 1. Crossover of Unique Twitter Users Between #BBCQT, #PMQ, and #BattleForNumber10.  
 

  BBCQT PMQ BattleFornumber10 

BBCQT … 6,371 (46,408) 8,248 (67,444) 

PMQ … … 8,734 (71,773) 

BattleFornumber10 … … … 

Note. A crossover user is identified by the subset of users that exists between two datasets. Parentheses 

indicate the total numbers of unique users between both data sets. 

 

 

Table 2. Descriptive Statistics for Twitter Data Sets #BBCQT, #PMQ, and #BattleForNumber10. 
 

Metric BBCQT PMQ BattleForNumber10 

Collection start 03/13/2015 02:54 03/11/2015 12:16 03/21/2015 15:03 

Collection end 03/30/2015 20:00 03/30/2015 19:58 03/2015 20:02 

Tweets 63,309 69,171 99,200 

Unique Users 23,980 28,798 51,710 

Retweets 42,004 45,553 70,749 

Mentions 4,860 6,186 5,852 

Cascades 1,615 1,612 1,131 

Longest cascade 231 185 290 
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Note. All values represent data prior to any preprocessing or data cleansing. 

 

As Table 2 illustrates, the networks show similar proportions of retweets and of unique users to 

total tweets and are similar in the numbers and sizes of the cascades that emerged (the number of times 

that a single tweet was retweeted). With regards to the three different datasets, interestingly, we do see 

crossover between the different users who participated, showing that there was some consistency in terms 

of users within the network. 

 

Bot Participation 

 

Table 3. Twitter Account Statistics for Bot Accounts Used During the Three Experiments. 

Twitter User Following Followers 
BBCQT  

(T/RT/M) 

PMQ 

(T/RT/M) 

BattleForNumber10 

(T/RT/M) 

SoniaPritchett 0 1 13/0/0 7/0/0 11/0/0 

n_hart45 0 2 6/0/0 9/0/0 16/0/0 

MissCat7327 0 1 17/0/0 0/0/0 6/0/0 

tomm_sanders 0 0 23/0/0 4/0/0 16/0/0 

JohnsonZhang520 71 12 10/0/0 0/0/0 10/0/0 

HamishMiller95 97 3 5/0/0 2/0/0 12/0/0 

Politizy 42 8 21/0/0 19/0/0 70/0/0 

Koalaparkpark 28 1 8/0/0 15/0/0 26/0/0 

Toriga 71 2 13/0/0 0/0/0 17/0/0 

 

Note. Purple rows are accounts without bots, and green rows are accounts with bots. T = tweet; RT = 

retweet; M = mention. Total tweet count may be higher, as all tweets were captured using search API in 

real time. This is the most accurate way to collect topic-specific tweets compared to the streaming API, 

but some tweets might not be captured. 
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Table 3 illustrates—independent of whether an account had a bot (bot accounts are those in 

purple) attached or tweeting in the conversations—that these accounts were not able to gain any retweets 

or mentions during the hashtag conversations. The users of these accounts were not told if they were 

going to have bots or not. As the results show, accounts that had bots attached gained slightly more 

followers than those without bots because the bots were following Twitter users during the tweeting 

sessions, making it more likely that the account was also followed. 

 

Network Analysis 

 

Next, we conducted a network analysis of mentions. Figure 1 reveals that only two of our 

accounts were in the edge list and not connected to anyone with 15 mentions or accounts mentioning. 

This indicates that our accounts were quite distant from anyone mentioned or doing mentioning: They 

were not proximate to any influencers. This suggests that bots are not necessarily generic and that the 

location of a bot in the network likely matters significantly. These findings are consistent with other 

studies examining the network position of bots (Ferrara et al., 2014). Additionally, bots with lots of 

followers using these hashtags would likely have a much higher impact on influencing the conversations 

we studied. In other words, bots could have domain expertise and impact based on their network 

positions. 
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Figure 1. Network visualization of our edge list. 

Source: Authors’ visualization using data analyzed. 
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These findings fit within existing literature studying bots that employs social network analysis. For 

example, Varvello and Voelker (2010) in their work on bot behavior and bot detection argue that network 

centrality measures are important to understanding the role of bots in online social networks. 

 

Information Diffusion 

 

We arranged our data to produce temporal visualizations to specifically study information 

diffusion. Figure 2 provides a temporal visualization of the speed (in minutes) at which a tweet was shared 

via the retweet functionality. The graph contains all tweets that were retweeted two or more times; each 

line represents a unique tweet. The steeper the line, the faster the information was spread, and the height 

of the line (y axis) indicates the number of times it was retweeted. As highlighted in Figures 2, 3, and 4, 

several repetitive diffusion characteristics can be found within the three information diffusion networks: 

(a) fast and abrupt diffusion of information shared by few actors; (b) slow diffusion occurring over a long 

period of time, shared by few actors; and (c) fast diffusion of information, shared by many actors. 

 

 

Figure 2. Information diffusion of #BattleForNumber10. 

 

We pay particular attention to the information cascade profiles where information diffuses quickly 

and is shared by a large number of actors. As Figure 2 illustrates, during the #battlefornumber10 Twitter 

conversation, the most prevalent tweets shared across the network contained information about the 

polling status between two political candidates. We see that the five most retweeted tweets share the 
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same cascade structure, with virtually identical content, bar the change in polling results. If we compare 

this to the #BBCQT and #PMQ hashtags, as seen in Figures 3 and 4, we find similar profiles of fast 

diffusing information across many actors, yet the content is far broader, ranging from personal views on 

political issues to the reporting of news and comments made during the television broadcast. 

 

This is in keeping with previous research in two strands of political science. First, work on public 

reactions to broadcast events on social media indicates that viewer-commenters’ reactions will be 

conditioned by and reflective of what they are viewing (Anstead & O’Loughlin, 2011; Elmer, 2012; Freelon 

& Karpf, 2015). As such, it is not surprising that different broadcast types will see different types of 

comments dominating. Second, #thebattlefornumber10 was not a regular broadcast, as it was at least 

something of an election debate. In contrast, #BBCQT and #PMQS are both regularly scheduled parts of 

the political week. This means not only that the latter two broadcast events had well-established networks 

of commentators using social media to talk about them but also that #battlefornumber10 was viewed as 

an election debate, with reactions inevitably being much about winners, losers, and electoral impact, 

especially in a multimedia environment (Chadwick, 2010). It also raises interesting issues related to the 

temporal nature of social media conversations: Because our volunteer tweeters only participated in 

conversations during the specific time periods covered by the programs, they potentially lacked the 

network influence that they might have accrued as regular tweeters during PMQs or BBC Question Time. 

 

 

Figure 3. Information diffusion of #BBCQT. 
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Figure 4. Information diffusion of #PMQ. 

 

 

Hashtag Analysis 

 

Unfortunately, the use of hashtags is not consistent on Twitter. The hashtags #bbcqt, ##bbcqt, 

and #bcqt are all used for BBC Question Time. Similarly, #PMQ, #pqs, and #pmqs are used for Prime 

Minister’s Question Time. This is problematic for hashtag analysis but is consistent with other hashtag-

based Twitter work that highlights potential data loss due to misspelled or varying hashtags (Weller, 

Dröge, & Puschmann, 2011). This raises questions about methods of collecting data. Specifically, if 

hashtags are used in complex ways, understanding the actors involved in a conversation is not as simple 

as using one hashtag to track the conversation. This is an important point given how much social media–

based research of politics uses hashtags as selection criteria (Jungherr, 2014). 

 

For instance, #battlefornumber10 was quite clearly a dominant hashtag, but #bbcqt had several 

variants in use, including ##bbcqt and #bcqt. If we had access to the full Twitter Firehose, the data 

stream with all tweet data, we hypothesize that we might have detected more variants. Several data 

collection issues can already affect the way we interpret conversations and interactions. 
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Discussion: Capital Required to Influence Social Networks with Bots 

 

Overall, our bots were far less successful than we expected. In retrospect, we interpret this in 

terms of the capital required to deploy bots effectively and suggest that social influence, even over 

technologies that allow bots, is a product of capital. 

 

First, it became apparent that the new accounts we set up lacked the social capital to be 

effective. An account may have social capital in its network of followers: The more followers someone has, 

the more social capital they have. Indeed, people buy bot followers to appear as though they have 

extended networks, more influence, or more social capital. However, it became clear in our experiment 

that whether bots impact the spread of information or the shape of social networks depends on the type of 

bot deployed and the type of account it is attached to. The bots that we used were attached to our 

participants’ new accounts and operated by retweeting our participants’ posts. They repeated the 

messages that our students posted, ensuring that they appeared more than once on their followers’ 

timelines, making it more likely that followers would notice a post. If a Twitter user is following 500 users, 

then the chances that he or she will see any one post from one of those followed accounts may be quite 

slim. Repetition of the post increases the likelihood that it will be seen. In this case, the effectiveness of 

the bot rests on the existing social capital of the account to which it is attached. It is possible that by 

repeating messages from that account it will attract more attention for the user, maybe even further 

retweets or new followers, but the original driver is the number of followers that the account had in the 

first place. 

 

To be more effective, we could have bought a different kind of bot. For example, other bots work 

by hacking into dormant accounts: genuine human user accounts that have been set up but abandoned. 

These accounts could then have been set to follow our students’ accounts and to retweet all the students’ 

posts to the existing network of the dormant account. In this case, then, the social capital of the original 

dormant account is transferred to the bot and mobilized on behalf of the bot purchaser. As novices, we 

had not realized how significant these differences were. The bots that hijack accounts are often illegal, 

certainly violate Twitter’s terms and conditions, and would never have been approved by our university 

ethics committee. These types of bots have been used in election contexts where the bots clearly had 

success in influencing the political landscape. They are similar to those used in the 2012 Mexican general 

election (Orcutt, 2012) and those that silenced anti-Kremlin dissent in Russia (BBC Technology News, 

2012). 

 

In these contexts, we might reflect on the capital already possessed by the entities effectively 

using bots. In our first experiment in this area, we lacked the cultural capital and the technical capital to 

invest in bots that would have been more effective (Halford & Savage, 2010). These more effective bots 

are also more expensive, raising the question of economic capital. Even if we had the technical knowledge 

to choose the right bots, we were not in a position to spend a lot of money on them. It is also possible 

that Twitter as a service would intervene in the process. We do not know a great deal about how Twitter 

organizes content, but it is feasible that the company moderates follower timelines, biasing these toward 

tweets that are already popular. Previous studies have highlighted that the Twitter API has various biases, 

some of which are challenging to discern (Joseph, Landwehr, & Carley, 2014). 
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Overall, we might say that our low cultural and technical capital—understanding which bots to 

buy—combined with the low social capital of the account holders caused our bots to fail to have influence. 

These were fresh Twitter accounts created for the experiment, so they had few friends, followers, and 

social interactions initially and therefore not could not convert the cash we paid for the bots into social 

capital (enhanced networks) on Twitter. Clearly, the effect of bots is shaped by a complex interplay of 

social and technical factors mobilized in interaction with each other. 

 

Conclusion 

 

This was a very small experiment, and it may be that with more participants or more 

sophisticated bots, we would have generated more influence. However, our findings also point to a 

different definition of political bots. Traditional definitions assume bots are social because they use 

interaction to convince people they are human. However, they could equally be seen as social because 

they are a product of the social, political, and economic context that created them. 

 

Clearly, bots do have influence in the political context. The cases of Mexico (Orcutt, 2012), 

Venezuela (Forelle, Howard, Monroy-Hernández, & Savage, 2015), Turkey (Saka, 2014), and Russia (BBC 

Technology News, 2012) highlight this capacity. In many of these cases, hijacked accounts and hacker 

botnets have been involved. If the bots most successful in shifting conversations are those that are 

constructed from hijacked accounts, how can researchers effectively study the influence of bots? We were 

very mindful of the fact that our group of interested social media scholars found it impossible to assemble 

the appropriate financial, (un)ethical, social, and platform-based resources that might make it possible to 

influence a political conversation. 

 

 Does this mean that moral panic about bots is unfounded? Or—more worryingly—does it mean 

that these concerns are well-founded, but that the kinds of entities shifting online conversations have 

resources and understanding at their disposal to make them even more difficult for critical researchers to 

investigate? 

 

Our experiment also demonstrates that our student volunteers lacked social capital within the 

conversational networks at hand. They also lacked the temporal capital they could have accumulated had 

they regularly tweeted using the same hashtags. These may be reasons why they—and the bots attached 

to their accounts—were unable to exert much influence. We can extend this logic to real-world examples. 

For instance, pro-Russian bot activity online can be seen as a distortion of online conversations and 

networks. At the same time, this is all also a manifestation of real geopolitical circumstances. How do bots 

really work in social media? Our experiment demonstrates that they may have negligible impact, and that 

the most effective bots may be the ones we cannot study. 
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