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CORRELATION MISPERCEPTION IN CHOICE

ANDREW ELLIS AND MICHELE PICCIONE

Abstract. We present a decision-theoretic analysis of an agent’s understanding
of the interdependencies in her choices. We provide the foundations for a simple
and flexible model that allows the misperception of correlated risks. We introduce
a framework in which the decision maker chooses a portfolio of assets among which
she may misperceive the joint returns, and present simple axioms equivalent to a
representation in which she attaches a probability to each possible joint distribution
over returns and then maximizes subjective expected utility using her (possibly
misspecified) beliefs.

“The debt collectors at Deutschebank sensed the bond traders at Mor-
gan Stanley misunderstood their own trade. They weren’t lying; they
genuinely failed to understand the nature of the subprime CDO. The
correlation among triple-B-rated subprime bonds was not 30 percent;
it was 100 percent. When one collapsed, they all collapsed, because
they were all driven by the same broader economic forces.”

–Michael Lewis, The Big Short

1. Introduction

Many risky decisions, such as constructing a portfolio of securities, involve the
interaction of many distinct variables, the correlation among which may be missed or
misunderstood. The issue of misperception of correlated risks has recently acquired
a renewed prominence, as authors such as Brunnermeier (2009), Coval et al. (2009),
Hellwig (2009), and, more informally, Lewis (2010), have examined the significance
of the inadequate understanding of correlations and the resulting mispricing of assets
for the events surrounding the financial crisis in 2008. We present a decision-theoretic
analysis of a decision maker’s understanding of the interdependencies in her choices.
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2 ANDREW ELLIS AND MICHELE PICCIONE

Our aim is to provide the foundations of a simple and flexible model that represents
misperception of correlated outcomes in a intuitive manner.1

Our analysis departs from the standard device of modeling the decision maker (DM)
as choosing among individual, mutually exclusive alternatives. Instead, we propose a
framework that explicitly considers her preferences over portfolios of assets, or more
generally, profiles of actions. The DM’s comparisons of portfolios allow us to define
“misperception” of an uncertain environment in a very simple and straightforward
way: misperception occurs when she is not indifferent between two different portfolios
that “objectively” always result in the same outcomes. Unlike the standard model,
our framework allows the DM to express a strict preference between owning a portfolio
of the 500 underlying stocks of the S&P 500 (in the right proportions) and owning an
S&P 500 index-tracking fund even with no transaction costs. We identify the DM’s
misperception of the correlation among the stocks of the S&P 500 when indifference
between the portfolio and the tracking fund fails.2

We propose a model of decisions that maintains the classic assumptions of subjec-
tive expected utility but for those that conflict with the DM’s possibly incorrect per-
ception of correlation. Our main result describes the behavioral regularities necessary
and sufficient for representing a DM who assigns probabilistic beliefs to correlations
and maximizes expected utility. The next section provides a simple illustration of our
setting as well as the new assumptions, and then describes our main conclusions.

1.1. Illustration and overview. The basic primitives of our model, formally de-
scribed in Section 2, are a set of states, a set of assets, and a preference relation % over
portfolios of assets. Each asset a returns a real number a(ω) in state ω. A portfolio
is a finite collection of assets, denoted by 〈a1, a2, ..., an〉, that yields a payoff equal to
the sum of the returns of all the underlying assets. The total return of a portfolio
〈a1, a2, ..., an〉 in state ω is

n∑
i=1

ai (ω). The set of states thus describes the “objective”
or “correct” structure of joint returns, i.e. the objectively possible returns of every
profile. If a DM understands that returns have this structure, then her beliefs over
the set of states fully describe her beliefs over portfolio returns.

The DM’s preference over portfolios reveals when she does not understand the
structure of returns; for instance, if she strictly prefers the index fund to its underlying
stocks. More concretely, fix any two assets b and c and consider a third asset a
1Throughout, we use the more colloquial term correlation interchangeably with the more accurate
“joint distribution” of returns or outcomes.
2We thank a referee for suggesting this example and another referee for pointing out related inter-
pretive issues that we discuss in Section 4.
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satisfying a(ω) = b(ω) + c(ω) for every state ω. The profiles 〈b, c〉 and 〈a〉 give the
same return in every state, so one expects that a DM who understands the objective
structure of returns would be indifferent between 〈b, c〉 and 〈a〉. In the language of
decision theory, such indifference is implied by the standard Monotonicity axiom:
state-by-state dominance by one portfolio implies a preference for it. However, if she
misperceives the correlation between b and c, then she may have a strict preference
for one or the other, e.g. 〈b, c〉 � 〈a〉. To formalize our opening quote, if 〈a〉 is one
triple-B-rated subprime bond and 〈b, c〉 is a portfolio with two halves of similar bonds
in a synthetic CDO, then a DM may strictly prefer 〈b, c〉 to 〈a〉, believing it to be
significantly less risky despite the default of these bonds being “driven by the same
broader economic forces.”

As a DM may violate Monotonicity for a number of reasons, we propose a novel
“Weak Monotonicity” axiom that limits her violations to those directly attributable
to misperception of correlation. Deferring a formal statement to Section 3, it roughly
requires that whenever one portfolio always yields a better outcome than a second for
every conceivable correlation between their returns, she prefers the first to the second.
In the context of comparing 〈b, c〉 with 〈a〉, it requires that 〈b, c〉 % 〈a〉 whenever

min
ω
b(ω) + min

ω
c(ω) ≥ max

ω
a(ω).

Thus, we can attribute a given violation of Monotonicity to the DM believing that a
particular joint realization of returns, possibly inconsistent with the objective struc-
ture of returns, is sufficiently likely.

We show that a DM whose behavior satisfies Weak Monotonicity as well as the
other axioms of expected utility acts as if she forms beliefs about the correlation
between assets and then maximizes expected utility. We represent her choices by
specifying beliefs on an enlarged state space, rich enough to express any perceived
correlation between assets. For instance, our model explains the agent’s preference
for the synthetic CDO 〈b, c〉 over the bond 〈a〉 by assigning positive probability to b
and c being less than perfectly correlated.

Our DM can also be represented as if she ranks portfolios according to a seemingly
ad hoc yet intuitive procedure, which we call a probabilistic correlation representation
or PCR. First, the assets are divided into understanding classes. The DM chooses as
if she correctly understands the structure of returns for the assets within an under-
standing class. For instance, with assets a, b, and c as above, she is indifferent between
〈b, c〉 and 〈a〉 when all are in the same class, whereas a strict preference indicates that
at least one of the assets belongs to a different class than the others. Second, she
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forms beliefs about the correlation between classes of assets. Formally, beliefs are
defined on a multi-dimensional state space where each dimension corresponds to a
class – if two assets belong to the same understanding class, then they depend on the
same coordinate. Finally, the DM maximizes subjective expected utility with these
beliefs. In addition to providing a parsimonious and intuitive model of decisions, the
PCR permits a tight connection between parameters and behavior. With enough
diversity in each class, we show the existence of a unique collection of understanding
classes corresponding tightly to the DM’s accuracy of perception of joint occurrences
and, for generic risk preferences, uniqueness of beliefs.

A brief discussion of some simple yet significant implications of our model for asset
pricing and, in particular, for the evaluation of complex securities with tranching such
as CDO’s concludes are analysis.

1.2. Related Literature. Misperception of correlations is a broad concept that has
been studied in various guises, ranging from the limited understanding of patterns,
as in Piccione and Rubinstein (2003), Eyster and Piccione (2013), and Levy and
Razin (2015a), to the inability to derive some logical implications (Lipman, 1999).
Evidence of misperception of correlations has been found in several experimental
studies such as Eyster and Weizsäcker (2010), Enke and Zimmerman (2013), and
Rubinstein and Salant (2015). In particular contexts, misperception of correlation
has been shown to lead to a range of behaviors, including social influence (DeMarzo
et al., 2003), overconfidence (Ortoleva and Snowberg, 2015), and polarization (Levy
and Razin, 2015b). When applied to incomplete information games, our framework
nests the behavior in solution concepts such as Cursed Equilibrium (Eyster and Rabin,
2005) and Analogy Based Expectations Equilibrium (Jehiel, 2005; Jehiel and Koessler,
2008). A key feature of our approach is that, being based on preferences, it is neutral
with respect to the psychological biases and limitations that cause agents to perceive
correlations incorrectly.

Framing can also be viewed as a proximate reason for misperception: different
framings of the same action can make understanding correlations harder; see Exam-
ple 1. More fittingly, different portfolios that yield the same outcomes can be viewed
as different framings that affect the DM’s choices. Choice theoretic works that high-
light other aspects of framing include Salant and Rubinstein (2008) who study the
conditions under which choice data can be rationalized as resulting from choice from
a menu under different frames, and Ahn and Ergin (2010) who axiomatize a formal
model where the framing of an act affects the probabilities used by the DM.
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Our results also relate to a body of literature on boundedly rational choice theory.
Lipman (1999) introduces a decision-theoretic model for relating an agent’s logic to
preferences. Al-Najjar et al. (2003) explicitly model the effects of complex environ-
ments on decision making as a preference for flexibility. Kochov (2015) develops a
model of a DM with imperfect foresight, which can be interpreted as misperception of
the auto-correlation between actions, where failure of Monotonicity also plays a role.
Lastly, our representation can admit an interpretation in which different, endogenous
sources of uncertainty (the understanding classes) determine beliefs, as in Chew and
Sagi (2008) or Gul and Pesendorfer (2015).

Esponda (2008), Spiegler (2015), and Levy and Razin (2016) have developed ap-
proaches to misperception that are motivated by similar behavioral insights, but that
do not in general admit PCR representations. In the first two, the DM forms her
perception as a “fixed point”, permitting the marginal distribution of a fixed payoff-
relevant variable (such as the other player’s strategy) to be affected by her own choice.
In the last, the DM has ambiguity about the correlations and thus violates our Inde-
pendence axiom.

2. Primitives

There is a set A of actions, with typical elements a, ai, b, bi.3 Each action results
in an outcome or consequence in X = R, with typical elements x, y, z. This outcome
is determined by a state of the world drawn from the finite set Ω.4 We interpret the
state space Ω as a description of the “objectively possible” joint realizations of the
outcomes of any set of actions, against which the DM’s subjective perceptions of joint
realizations are evaluated.

A map ρ : A × Ω → X describes the relationship between actions, states, and
outcomes, with the action a yielding the outcome ρ(a, ω) in state ω. Slightly abusing
notation, we write a(ω) for ρ(a, ω). Note that we allow for distinct actions a and b
with a(ω) = b(ω) for any ω ∈ Ω. Thus, each action implicitly includes a description
that can affect how its relationship with other actions is understood; for instance,
a and b could yield outcomes that depend on temperature, where a is described in
Fahrenheit and b in Celsius, as in Example 1 below. We assume that A includes every
constant action, i.e. for any x ∈ X there is an action, also denoted by x, yielding the
3While we focus on the interpretation of actions as an active choice by the DM, actions can more
generally be interpreted as different dimensions of an alternative affecting its outcome.
4We assume that X = R and that Ω is finite for ease of exposition. With minor adjustments, our
results remain true for any Ω and many other outcome spaces on which we can define an appropriate
addition operation, including N, R+, and Rn; see Ellis and Piccione (2016).
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outcome x for every state in Ω. We write σ(a) (σ(a, b)) for the coarsest σ-algebra by
which a is (both a and b are) measurable.

From the set of actions, we derive a set F of action profiles (or profiles). Each
element of F is a finite vector of actions for which the order does not matter – i.e.,
a multiset of actions. This allows the agent to take the same action multiple times,
such as buying many shares of the same security while making irrelevant where an
asset is listed in the description of a portfolio. A profile that consists of taking the n
actions a1, ..., an is denoted 〈a1, ..., an〉 or 〈ai〉ni=1. To save notation, we do not write
out the index when the number of actions is unimportant, i.e. we write 〈ai〉 instead
of 〈ai〉ni=1. An agent who chooses the profile 〈ai〉ni=1 receives the outcomes of all n
actions a1, ..., an, that is, she receives ∑n

i=1 ai (ω) is state ω. We emphasize one key
difference in interpretation from the menu-choice literature (Kreps, 1979; Dekel et al.,
2001; Gul and Pesendorfer, 2001): the agent receives all of the actions in her chosen
profile and does not make a second choice from the profile at a later point in time.

Our goal is to provide a simple and intuitive model of decisions among action
profiles, starting from axioms on preferences. To this end, we adopt the widely
used approach popularized by Anscombe and Aumann (1963) of expanding the set
of alternatives to incorporate lotteries with objective probabilities. Specifically, the
DM chooses among probability distributions over F having finite support, the set of
which we denote by ∆F , rather than among profiles in F . A typical element of ∆F
is p = (p1, 〈a1

i 〉; ...; pn, 〈ani 〉), interpreted as the lottery where profile 〈ami 〉 occurs with
probability pm, and we write p(〈ai〉) > 0 for a profile 〈ai〉 in the support of p. We
discuss the reasons for including lotteries in our setup in Remark 1 and their role in
the proofs in Remark 3, which can be skipped without any loss of continuity.

The DM chooses by maximizing a preference relation % over ∆F , with the symbol
∼ denoting indifference and � strict preference. Naturally, the profile 〈ai〉ni=1 in F
corresponds to the lottery in ∆F in which 〈ai〉ni=1 has probability equal to one, and
lotteries over X to lotteries over profiles containing a single, constant action. In this
manner, ∆F “contains” both all profiles and all lotteries over X.

Remark 1. As first shown by Anscombe and Aumann (1963), lotteries with objective
probabilities facilitate the elicitation of subjective beliefs and utility by “convexifying”
the choice domain, that is, by turning it into a mixture space. The most widely used
procedure for generating a mixture space, introduced by Fishburn (1970), places
additional structure on the outcome space to which actions map, usually lotteries over
the original outcome spaceX; that is, horse race-roulette actions in which the roulette
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wheel is spun after the race ends. Thus, a mixture of actions becomes equivalent to
an action that mixes among outcomes. In our paper, we adopt instead the reverse
order while maintaining the original outcome space: the wheel is spun before running
the race. As pointed out by Kreps (1988) and shown by Battigalli et al. (2013)
in a setting with actions (but not profiles), the latter approach is equivalent to the
former one when it includes an appropriate, yet less elegant, monotonicity axiom that
explicitly rather than implicitly incorporates reduction of compound uncertainty.5 In
our setting, spinning the wheel first provides a natural way of mixing profiles that
avoids thorny issues of interpretation. In particular, as the identities of the actions in
a mixture are central to our model, establishing an exogenous equivalence between a
mixture and another action imposes ad hoc restrictions on how the joint realizations
of the actions involved are understood.

3. Foundations

We first introduce some standard assumptions. We then move to the key axioms
of our approach.

3.1. Standard Assumptions. Given two lotteries p, q ∈ ∆F , a mixture αp + (1−
α)q, α ∈ [0, 1], is the lottery in ∆F in which the probability of each profile in the
support of p and q is determined by compounding the probabilities in the obvious
way.

Axiom 1 (Weak order). The preference relation % is complete and transitive.

Axiom 2 (Continuity). The sets {α ∈ [0, 1] : αp + (1 − α)q % r} and {α ∈ [0, 1] :
r % αp+ (1− α)q} are closed for all p, q, r ∈ ∆F .

Axiom 3 (Independence). For any p, q, r ∈ ∆F and any α ∈ (0, 1], p % q if and only
if

αp+ (1− α)r % αq + (1− α)r.

These are classic axioms and their interpretation is standard. While one may
plausibly argue that the DM’s misperception does or should cause violations of some
of them, we show that a meaningful and rich model of decisions can be constructed
when they hold. In fact, most commonly used models featuring misperception do not
violate any of them.
5We note that recent work incorporating ex-ante (as well as ex-post) lotteries and studying a DM
who fails to reduce uncertainty has yielded interesting behavior in contexts such as uncertainty (e.g.
Seo (2009)) and social preference (e.g. Saito (2013)).
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3.2. Weak Monotonicity. In the standard approach, a profile 〈ai〉ni=1 corresponds
to an act f : Ω→ X yielding the consequence f(ω) = ∑n

i=1 ai (ω) in state ω. When-
ever the DM reduces action profiles to acts, the map f is a sufficient description
of the profile. In particular, if 〈ai〉ni=1 and 〈bi〉mi=1 correspond to the same act, then
〈ai〉ni=1 ∼ 〈bi〉mi=1. Within the expected utility framework, reduction to acts is implied
by Monotonicity: if for any ω ∈ Ω

n∑
i=1

ai (ω) %
m∑
i=1

bi (ω) ,

then 〈ai〉ni=1 % 〈bi〉mi=1. We return to Monotonicity in Section 5.1; the following exam-
ple illustrates the type of violations this paper is concerned with.

Example 1. A DM must choose between bets that depend on τ , tomorrow’s high
temperature. The DM can have either $100 or the sum of the outcomes of bets bC and
bF , where bC pays $100 if τ is less than 30 degrees Celsius ($0 otherwise) and bF pays
$100 if τ is at least 86 degrees Fahrenheit ($0 otherwise). As 30◦ Celsius equals 86◦

Fahrenheit, a DM who knows this and easily converts Fahrenheit to Celsius expresses
indifference between the sum of bC and bF and $100 for sure. However, a DM who does
not know how to convert from one unit to the other may not exhibit such indifference
and reasonably prefer $100 for sure to holding both bC and bF or vice versa.

A DM who expresses the preference 〈100〉 � 〈bC , bF 〉 contradicts Monotonicity:
both 〈bC , bF 〉 and 〈100〉 yield 100 in every state. Our novel axiom, Weak Monotonic-
ity, relaxes this property by considering objectively impossible joint realizations of
outcomes that would be possible with alternative joint distributions. To motivate
it, consider why a DM might prefer 〈100〉 to 〈bC , bF 〉. She can “plausibly” conceive
four possible joint realizations of 〈bC , bF 〉: (100, 0), (0, 100), (0, 0), (100, 100). If the
DM prefers 100 to 〈bC , bF 〉, then she must think it is sufficiently likely that both
bets return 0. Weak Monotonicity subsumes such considerations by strengthening
the conditions under which a lottery dominates another. In particular, it requires
that if the lottery over the outcomes generated by p is preferred to that generated by
q for every “plausibly” conceived joint realizations of the outcomes of the actions in
the supports, then p % q.

Formally, for any finite subset of actions {c1, ..., cn} = C ⊂ A, the set of all plausible
realizations of C equals

range(c1)× range(c2)× ...× range(cn).
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Thus, each plausible realization ~x = (xc1 , xc2 , ..., xcn) is a vector of outcomes indexed
by C such that each action ci could, in isolation, result in xci : for every ci ∈ C,
there exists ω ∈ Ω so that xci = ci(ω). In Example 1, the plausible realizations
of {bC , bF} are (100, 0), (0, 100), (100, 100), and (0, 0), which we interpret below
as 〈bC , bF 〉 yielding four possible aggregate outcomes, namely, 100, 100, 200, or 0.
Similarly, the profile 〈bC , bF , 100〉 could yield the aggregate outcomes 200, 200, 300,
or 100. Naturally, the outcomes of 〈bC , bF , 100〉 dominate the outcomes of 〈bC , bF 〉
regardless of any uncertainty about the conversion of temperature, and thus Weak
Monotonicity will require that 〈bC , bF , 100〉 % 〈bC , bF 〉.

A vector of outcomes ~x is a plausible realization of lotteries p and q if it is a
plausible realization of the set of all the actions included in profiles that are assigned
positive probability by either p or q. Fixing any such ~x, each action a is assigned
the outcome xa and a profile 〈ai〉ni=1 in the support of either p or q is assigned the
aggregate outcome ∑n

i=1 x
ai . Hence, for a plausible realization ~x of p and q, p induces

the lottery p~x defined as (
p
(
〈ai〉ni=1

)
, 〈

n∑
i=1

xai〉
)
p(〈ai〉)>0

in which the constant action yielding the outcome ∑n
i=1 x

ai has probability p (〈ai〉ni=1),
i.e. the probability of the profile to which the outcome is assigned. The lottery
induced by q, denoted q~x, is defined and interpreted similarly. Note that given a
plausible realization ~x of p and q, if an action a occurs in both p and q, then its
outcome is xa in both induced lotteries.

For example, suppose that p randomizes equally between 〈bC , bF 〉 and 〈bF 〉 and
q selects 〈bF 〉 with certainty. For the plausible realizations (100, 0) and (100, 100),
p induces a lottery that randomizes equally between two outcomes (100 and 0 in
the first plausible realization, 200 and 100 in the second) while q induces a lottery
that selects the worse of the two outcomes with certainty (0 and 100, respectively).
Similarly, for the plausible realizations (0, 100) and (0, 0) p and q induce identical
lotteries that yield with certainty 100 in the first plausible realization and 0 in the
second.

As each realization corresponds to an outcome of the lottery under some joint
distribution, these induced lotteries provide a natural way to compare p and q. When
the lottery induced by p is preferred to that induced by q for each plausible realization,
then p is better than q for any possible joint distribution. Weak Monotonicity relates
this comparison to preference in the natural way.
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Axiom 4 (Weak Monotonicity). For any p, q ∈ ∆F , if p~x % q~x for every plausible
realization ~x of p and q, then p % q.

In words, if the DM prefers the lottery induced by p better than to that induced by
q for any of their plausible realizations, then she prefers p to q. If she prefers larger
payoffs, then it reduces to the following two implications when comparing 〈a, b〉 with
〈c〉. First, min a+ min b ≥ max c implies 〈a, b〉 % 〈c〉. Second, min c ≥ max a+ max b
implies 〈c〉 % 〈a, b〉. Neither implication has bite when comparing 〈bC , bF 〉 with 〈100〉,
so Weak Monotonicity does not restrict the ranking of these two profiles.

Remark 2. Weak Monotonicity has some formal similarities with the Dominance ax-
iom of Seo (2009). Roughly, Seo’s axiom states that for two compound lotteries over
acts, if the compound lottery generated by the first is better than the second for
any subjective probability distribution over states, then the first is preferred to the
second. As in our axiom, it considers all possible beliefs, though over Ω rather than
over plausible realizations. Seo’s explicitly does not require reduction of compound
lotteries, while ours explicitly assumes reduction. The Mixed Consequentialism ax-
iom in Battigalli et al. (2013) is also related, but only considers the outcomes that
are possible according to Ω.

3.3. Understanding and Richness. The above axioms suffice for our representa-
tion theorems but not for the identification of basic parameters of the model such as
the DM’s beliefs. To this end, our final assumption relies on identifying the DM’s
understanding of correlations among actions and ensures that there exist sufficiently
diverse and understood sets of actions.

Our definition of understanding extends the logic of Weak Monotonicity. A DM
who perceives the correlations within a subset of the actions correctly rules out some
plausible realizations. Specifically, if she understands the correlations of the actions
in a set C, then she should consider irrelevant any plausible realization of p and q that
fails to “synchronize” the outcomes for the actions in C as for the joint occurrences
that are determined by Ω. That is, she should only consider a plausible realization
~x if there exists ω ∈ Ω such that xa = a(ω) for all a ∈ C; we call any such plausible
realization C-synchronous. For example, if C = {a, b}, p = 〈a, b〉 and q = 〈c〉, then a
plausible realization (xa, xb, xc) of p and q is C-synchronous if there exists ω ∈ Ω so
that xa = a(ω) and xb = b(ω). We say that the DM understands C if C-synchronous
plausible realizations suffice to determine her preference.
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Definition 1. The preference % understands C ⊆ A if for any p, q ∈ ∆F , p % q

whenever p~x % q~x for all C-synchronous plausible realizations ~x of p and q.

In order to identify the main parameters of our representations, we assume that
each action belongs to a suitably diverse, understood set of actions. A sufficient
condition is that this understood set is rich, defined as follows.

Definition 2. A set B ⊂ A is rich if, for any a, b ∈ B and any σ(a, b)-measurable
function f : Ω→ X, there exists c ∈ B with c(ω) = f(ω) for all ω.

Thus, a rich set containing bets on the events E and F contains all possible bets
on E, F , E ⋃F and E ⋂F . For two polar examples, a set containing an action for
every possible mapping between states and outcomes is rich, but a singleton set is
never rich. We can now state our assumption.

Assumption 1 (Non-Singularity). Each a ∈ A belongs to a rich, understood subset
of actions.

Non-Singularity is in the spirit of the Savage (1954) assumption that the domain of
preference contains all possible acts. It is a joint assumption on both the preference
% and the set A.

4. Representation

A DM who violates Monotonicity acts as if she perceives uncertainty that is not
entirely captured by the state space Ω. Under our axioms, we derive a state space
sufficiently rich to express any additional uncertainty resulting from the misperception
of the joint realizations of outcomes, and show that the DM acts as if maximizing
expected utility on this enriched state space. While one can plausibly increase the
dimensionality of uncertainty in many ways, we do so by considering multiple copies
of the state space.

4.1. Basic Correlation Representation. Our first result shows that, under Ax-
ioms 1-4, one can obtain a basic representation in which each action is assigned its
own copy. This representation is sufficiently flexible to encompass a wide variety of
subjective perceptions of correlation. In particular, it can explain choices such as
100 � 〈bC , bF 〉 in Example 1 by assigning positive probability to bC and bF simulta-
neously returning 0.

To state our first representation formally, we introduce some notation. Let ΩA =∏
a∈AΩ be the Cartesian product where one copy of Ω is assigned to each action in
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A, ΣA = ⊗a∈Aσ (a) be the product σ-algebra for ΩA, Ωa be the copy of Ω assigned
to a ∈ A, and for any ~ω ∈ ΩA, ωa be the component of ~ω in Ωa.

Definition 3. The preference relation % has a basic correlation representation if
there exist a utility index u : X → R and a probability measure π over ΣA such that
p % q if and only if U(p) ≥ U(q) where

U(p) =
∑

p(〈ai〉)>0
p(〈ai〉ni=1)V (〈ai〉ni=1)

and
V (〈ai〉ni=1) =

∫
ΩA
u

(
n∑
i=1

ai(ωai)
)
dπ(~ω).

By increasing the dimension of uncertainty, the DM acts as if she is an expected
utility maximizer on the larger state space ΩA. Every ~ω ∈ ΩA determines a joint
realization of the outcomes of the corresponding actions, so all additional uncertainty
corresponds to the perception of correlations. In Example 1, the objective state space
is the temperature τ , regardless of whether it is expressed in Celsius or Fahrenheit,
but in a basic correlation representation, the DM’s state space is instead a vector of
temperatures, one for each action. The action bC is assigned to one “copy” of the set
of temperatures, and bF to another. Then, the utility of the profile 〈bC , bF 〉 is, setting
u (0) = 0,

u (200)π
(
τ bC < 30, τ bF ≥ 86

)
+u (100)π

(
τ bC < 30, τ bF < 86 or τ bC ≥ 30, τ bF ≥ 86

)
,

which can, of course, be different from u (100). In particular, this representation
allows the DM to attach positive probability to events such as “bC yields 0 and bF

yields 0” that cannot occur if all uncertainty is captured by Ω.
The next theorem shows that, under our axioms, such representation always exists.

Theorem 1. The preference % satisfies Weak Order, Continuity, Independence, and
Weak Monotonicity if and only if % has a basic correlation representation. When
there exist p, q ∈ F with p � q, u is unique up to a positive affine transformation.

We now outline the proof. Observe that our axioms imply the standard expected
utility axioms when restricted to lotteries over outcomes, so, for standard lotteries,
the preference % has an expected utility representation with utility index u. Recall
that a state ~ω ∈ ΩA assigns to each action a its “own” state ωa ∈ Ω and outcome
a(ωa). In the key step, we map each lottery p over profiles to a vector fp where
for each ~ω ∈ ΩA, fp(~ω) equals the expected utility of lottery p according to u when
action a returns the outcome a(ωa). We use Weak Monotonicity to show that fp is
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sufficient for the ranking of p: fp ≥ fq implies p % q. Intuitively, if fp ≥ fq, then for
each plausible realization the expected utility of p is as large as the expected utility
of q, and thus p % q. This allows us to define a function F on these vectors such
that F (fp) ≥ F (fq) if and only if p % q by setting F (fp) to be the utility of a lottery
over X that exhibits indifference with p. Independence then yields that F is linear,
so standard results ensure that F can be written as an integral with respect to a
probability measure.

Remark 3. Adaptations of our axioms are necessary, but not sufficient, when we define
% over F instead of ∆F . However Independence, which establishes a linear and thus
separable representation, is not defined in the absence of lotteries. The formulation
of alternative axioms needed to restore the lost properties remains an open question.

4.2. Probabilistic Correlation Representation and Uniqueness. Theorem 1
captures the minimal behavioral assumptions needed to represent the DM’s percep-
tion of correlations. Our next step is to identify the DM’s beliefs about the correlation
as well as the coarsest space on which these beliefs can be expressed. The choice of
ΩA for the basic correlation representation is far from parsimonious. To illustrate
this point, consider Example 1 with an additional action boC that pays $100 if τ is
at least 30 degrees Celsius ($0 otherwise). Obviously, 〈bC , boC〉 is a constant act that
pays $100, and since both bets use Celsius temperatures, it is reasonable to presume
that the DM perceives it so. Nevertheless, in our basic representation, the action boC
is also assigned its own copy of the set of temperatures.

For the remainder of the paper, we consider a probabilistic correlation representation
(PCR) of the preference, that is equivalent to the basic representation but has a more
frugal state space. In addition to being easy to apply and interpret in many situations,
it allows us to provide a tighter characterization of the parameters of the model such as
the DM’s beliefs. A PCR envisages the DM as implementing following procedure. She
first groups together certain actions, the correlations among which she understands
as per Definition 1. We call such a set of actions an understanding class and the set
of all understanding classes a correlation cover. She then forms beliefs within and
across classes, which we model as a probability measure on a product state space
indexed by the understanding classes. All the actions in the same class are assigned
to the same copy of Ω, so the possible joint realizations within a class are identical to
the objective ones. Consequently, any profile of the actions in the same class reduces
to a single action. Of course, this procedure is only a representational device. The
resulting classes are endogenously revealed from her choices; indeed, the DM is not
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necessarily aware which of the joint realizations are understood by her are “objective”
and which are “perceived”.

Formally, the representation of a PCR is as follows. A correlation cover U is a
collection of subsets of A such that U covers A and no C ∈ U contains a distinct
C ′ ∈ U . Beliefs are defined on ΩU = ∏

C∈U Ω, with the C-coordinate denoted by ΩC ,
endowed with the product σ-algebra ΣU = ⊗C∈UΣC where for each C ∈ U , ΣC is the
coarsest σ-algebra by which every a ∈ C is measurable. Given a state ~ω ∈ ΩU , ωC

denotes the component of ~ω assigned to C.

Definition 4. The preference% has a probabilistic correlation representation (U , π, u)
for a correlation cover U , a probability measure π over ΣU , and a utility index u :
X → R if it is represented by

U(p) =
∑

p(〈ai〉)>0
p(〈ai〉ni=1)V (〈ai〉ni=1)

where

V (〈aj〉nj=1) =
∫

ΩU
u

 n∑
j=1

aj(ωCj )
 dπ(~ω)

for any 〈aj〉nj=1 and C1, ..., Cn ∈ U with aj ∈ Cj for j = 1, ..., n.

While the PCR may seem a rather ad hoc procedure for implementing choice, it
is easily seen to be equivalent to the basic correlation representation. Since the PCR
places no restrictions on the understanding classes, any basic representation can be
rewritten as a PCR, and vice versa.6 To illustrate the PCR using Example 1, suppose
that U = {BC , BF}, with BC and BF interpreted as the bets evaluated in terms of
Celsius and of Fahrenheit, respectively, so bC , b

o
C ∈ BC and bF ∈ BF . Thus each

~τ ∈ Ω{BC ,BF } can be thought of as a pair of temperatures, one in Celsius and the
other in Fahrenheit. As with the basic correlation representation, a DM for whom
100 � 〈bC , bF 〉 must attach positive probability to τBC > 30◦C and τBF ≤ 86◦F .

The notion of PCR is crucial for the unique identification of beliefs because many
actions can be allocated to the same dimension. When understanding classes contain
suitably diverse actions, one can tease out DM’s perception of correlation; this is
impossible in the basic representation because each action has its own dimension.
Hence, we restrict attention to rich PCRs: (U , π, u) is rich if every C ∈ U is a rich
set. Rich PCRs arise in many natural applications; see Section 4.3.

6The basic representation is a PCR where each understanding class is a singleton, and the converse
follows from extending the probability measure from ΩU to ΩA. See online appendix for details.
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Rich PCRs also permit the characterization of the correlation covers that are con-
sistent with the DM’s preference. Such a characterization is critical for the study
of comparative notions of understanding, such as an increase or a decrease in the
misperception for a DM or heterogeneity in misperception. The basic representation
provides one extreme in terms of dimensionality: every action has its own under-
standing class. A PCR allows us to determine the other extreme by asking if and
when a coarsest grouping of actions into understanding classes exists. Such a coars-
est correlation cover pins down rather unequivocally the DM’s misperceptions of joint
realizations.

Definition 5. A collection U of subsets of A is the coarsest correlation cover for the
preference % if there is a rich PCR (U , π, u) of %, and for any rich PCR (U ′, π′, u′) of
% and any B′ ∈ U ′, B′ ⊆ B for some B ∈ U .

For any understanding class in a correlation cover U ′, there is a larger class in the
coarsest cover. Therefore, any accurate perception captured by U ′ is also captured
by the coarsest cover. Obviously, the coarsest correlation cover, should it exist, is
unique.

We can now present our main identification result, which relies on the utility index
u being continuous, as implied by a standard axiom (Grandmont, 1972), and Non-
Singularity.

Theorem 2. The preference % has a basic correlation representation with continuous
u and Non-Singularity holds if and only if it has a rich PCR (U , π, u). Furthermore,
there exists a coarsest correlation cover, and π is unique if u is not a polynomial.

Proof. See Appendix A.2. �

Theorem 2 shows that when u is continuous, Non-Singularity and Axioms 1-4 hold
if and only if a rich PCR exists, and that a rich PCR exists if and only if a coarsest
correlation cover exists. Since the coarsest cover is unique, a minimal state space can
be meaningfully defined and, unless the utility is polynomial, beliefs on this space
are uniquely identified. When the utility is polynomial, uniqueness typically fails: for
instance, a risk-neutral DM’s beliefs about the expected return of each asset suffice
to determine her behavior, so only her marginal beliefs are unique. In general, the
curvature of u determines precisely which beliefs affect the agent’s behavior, and for
many standard utilities such as CARA or CRRA, beliefs are unique. In the online
appendix, we give a behavioral characterization of a polynomial utility index and
identify the set of all beliefs consistent with a given rich PCR.
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We note here that a coarsest correlation cover need not be a partition. In fact, a
coarsest correlation cover is a partition only if it has exactly one understand class and
the DM understands the relation among all actions. To see why, observe that each
understanding class can always be enlarged to include all constant actions; thus, if the
coarsest correlation cover is a partition, it can only have one cell. More interestingly,
consider once more Example 1. Suppose that the DM knows that 0◦C = 32◦F but is
unsure about the scaling factor; that is, she understands the connection between any
actions that only depend on whether or not the temperature is below freezing. Any
such action can belong to both understanding classes, regardless of being expressed
in Celsius or Fahrenheit.

We close this section by addressing some interpretive issues. Our framework im-
plicitly assumes that the description of an asset is included in its formalization. In
particular, a DM can perceive different framings of the same object as distinct assets
– say two differently worded insurance contracts that are otherwise identical. Never-
theless, the descriptions of the individual assets must be sufficient for her perception
of the returns of a profile. In a PCR, any additional information the DM acquires
about the returns of a profile must be consistently incorporated into her beliefs about
the joint returns of the underlying assets. For instance, let us return to a DM who
strictly prefers an S&P 500 index-tracking fund to a portfolio of the stocks of the S&P
500. If we inform the DM that the portfolio and the index fund are actually identi-
cal, we would expect her to become indifferent. Our model can accommodate such
indifference only by adjusting her beliefs about the correlations. Of course, this is a
demanding requirement in the presence of misperception of the correlations among
the underlying stocks.

The endogenous association of each action with a class and the unique determina-
tion of a coarsest set of classes are key advantages of our approach. One could, of
course, begin by specifying a set of classes U and considering all acts on ΩU . However,
this would require setting the relevant dimensions of uncertainty and their association
with alternatives exogenously. Furthermore, it would require that DM expresses pref-
erences over some possibly nonsensical acts that are inconsistent with the primitive
profiles.

4.3. Applications of the PCR. The following examples illustrates some natural
applications of our representation.

4.3.1. Framing. Each action consists of a (Savage) act a and a frame f ∈ F, such as
Celsius or Fahrenheit. The DM understands the connection between any acts framed
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in the same way. We can model this as a PCR where the correlation cover consists
of the sets Bf = {(a, f) : a ∈ H}, where H is the set of all acts.

4.3.2. Imperfect inference in incomplete information games. The PCR framework can
be easily adapted to strategic environments (see Ellis and Piccione (2016)). Here, each
action represents a behavioral strategy of a given player. This allows the formulation
of a broad solution concept for players who misperceive the opponent’s strategies in a
systematic way and generalizes existing approaches such as Eyster and Rabin (2005)
or Jehiel and Koessler (2008).

4.3.3. Asset pricing. An asset market consists of a set Ao of assets and the derivatives
thereof. We model a derivative as a pair (γ, ao), where γ is a function from X to itself
and ao is an asset in Ao, that yields γ(x) when ao yields x. If the DM understands
the set of all derivatives that depend on the same underlying asset, then she has a
PCR when A = G×Ao, for G equal to all functions from X to X, and the correlation
cover consists of the sets Bao = {(γ, ao) : γ ∈ G}.

4.3.4. Source preference. Each action is associated with a source Si from a set S.
Each Si is a sub-σ-algebra of Σ and corresponds to a set of actions Bi expressed in
terms of the source. The correlation cover consists of all sets Bi, so the DM reduces
any profile whose contents depend on the same source to one act but fails to do so
when it depends on more than one source.

5. Discussion

We conclude by considering some special cases and by discussing some of the im-
plications of our model in the context of portfolio choice.

5.1. Special Cases. In this subsection, we consider two special cases of particular
interest. For simplicity of exposition, we maintain throughout that σ-algebra of each
understanding class is the power set. It is easy to adapt Theorem 2 to show existence
of such a representation by strengthening appropriately our definition of a rich set in
the Non-Singularity assumption.

Weak Monotonicity may be too permissive in some circumstances. In particular,
it allows the DM to perceive differently the distribution of two actions with identical
mappings from Ω to X. This is undesirable if the DM evaluates the distribution of
individual actions consistently and misperceives only their correlation. For instance,
a ratings agency may accurately evaluate the chances of any given asset defaulting
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but misjudge the likelihood of joint defaults. The axiom below yields that beliefs over
the outcomes of individual actions are consistent with the objective state space.

Axiom 5 (Simple Monotonicity). If a(ω) = b(ω) for all ω ∈ Ω, then 〈a〉 ∼ 〈b〉.

Simple Monotonicity implies that the DM’s belief about the distribution of Ω does
not depend on the action being evaluated. Formally, the preference % has a represen-
tation in the following class. Define πC as the marginal over the copy of Ω assigned
to class C.

Definition 6. A rich PCR (U , π, u) has consistent marginal beliefs if πC1(ω) = πC2(ω)
for all C1, C2 ∈ U and all ω ∈ Ω.

This specification obtains in most cited models of imperfect inference.

Proposition 1. Let the preference % have a rich PCR (U , π, u) with non-constant u.
Then, % satisfies Simple Monotonicity if and only if its PCR has consistent marginal
beliefs.

Proof. For sufficiency, suppose % has a rich PCR (U , π, u) and satisfies Simple Mono-
tonicity. Pick x, y ∈ X with u(x) > u(y). By richness, for any ω ∈ Ω and C1, C2 ∈ U ,
there exists ai ∈ Ci that yields x at state ω and y otherwise for i = 1, 2. By Simple
Monotonicity, 〈a1〉 ∼ 〈a2〉, so [u(x)−u(y)]πC1(ω) +u(y) = [u(x)−u(y)]πC2(ω) +u(y)
and thus πC1(ω) = πC1(ω). Necessity is trivial. �

Unsurprisingly, our model collapses to the standard expected utility model if and
only if the preference % satisfies the typical Monotonicity condition. For complete-
ness, we state and prove this formally.

Axiom 6 (Monotonicity). For any profiles 〈ai〉ni=1 and 〈bi〉mi=1,
if ∑n

i=1 ai (ω) % ∑m
i=1 bi (ω) for all ω ∈ Ω, then 〈ai〉ni=1 % 〈bi〉mi=1.

Proposition 2. Suppose % has a rich PCR (U , π, u). The preference % satisfies
Monotonicity if and only if its coarsest correlation cover equals {A}.

Proof. Suppose % has a rich PCR (U , π, u). Pick any C ∈ U and for any profile
〈aj〉nj=1 choose a ∈ C satisfying a(ω) = ∑n

j=1 ai(ω) for all ω. Then, 〈a〉 ∼ 〈aj〉nj=1 by
Monotonicity, which implies that

V (〈aj〉nj=1) =
∫

Ω
u

 n∑
j=1

aj(ω)
 dπC(ω).

Thus, % has a rich PCR ({A}, πC , u), and {A} is the coarsest correlation cover. �
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5.2. Implications. A DM with a fixed risk attitude simultaneously undervalues cer-
tain profiles while overvaluing others. For a very simple example, consider a strictly
risk-averse trader who has a rich PCR with consistent marginal beliefs. Fix assets
a, b, c so that a(ω) = b(ω) = −c(ω) = 1 for all ω ∈ E, a(ω) = b(ω) = −c(ω) = −1 for
all ω /∈ E, and suppose that 〈b, c〉 ∼ 0. This indifference reveals that b and c are in
the same understanding class. It is easy to see that whenever this trader misperceives
the joint realizations of 〈a, b〉, she overvalues 〈a, b〉 and undervalues 〈a, c〉 relative to
a standard trader with the same beliefs: for 〈a, b〉 risk is smoothed out since a return
equal to one is perceived as possible, whereas 〈a, c〉 is not perceived as riskless.

Independence requires that the DM is unsophisticated about her misperception. To
illustrate this, consider the same trader and actions a, b, c as above, and suppose again
that b and c are in the same understanding class while a is not. Thus, she misperceives
the relationship between a and b as well as between a and c. A sophisticated trader
may recognize her own lack of understanding. As in the ambiguity aversion literature,
she may express the preference

1
2〈a, b〉+ 1

2〈a, c〉 � 〈a, b〉 ∼ 〈a, c〉

because 1
2〈a, b〉 + 1

2〈a, c〉 is “safer” than either alternative in that it offers a 50-50
lottery regardless of the correlation across classes; for instance, the DM studied by
Levy and Razin (2016) would express such a preference. Obviously, the Independence
axiom fails to hold. A full study of such behavior is left to future work.

A trader in our model typically perceives markets as incomplete, even when they are
objectively complete. This can lead the agent to exhibit a flight to safety. Consider a
simple asset market with one trader who divides fixed wealth w between three assets
{a1, a2, aS}, whose returns are governed by two states S = {s1, s2} according to the
return matrix

R =
 1 0 1

0 1 1


for columns a1, a2, aS and rows s1, s2. This maps naturally into our formal setting,
with a typical action corresponding to buying x shares of security ai for x ∈ R.

The above matrix has full rank, so markets are objectively complete. Indeed, a
standard trader finds aS to be redundant and perceives no arbitrage if and only if the
price of aS equals the sum of the prices of a1 and a2; she must express indifference
between buying exactly x shares of aS and buying x shares of a1 together with x

shares of a2. Now assume the trader’s preference has a PCR with consistent marginal
beliefs and two understanding classes, one for buying shares of a1 and the other for
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buying shares of a2. The PCR trader perceives the return matrix to be

R̃ =


1 0 1
1 1 1
0 0 1
0 1 1


in states (from top to bottom) (s1, s1), (s1, s2), (s2, s1), and (s2, s2). Our strictly-risk
trader never purchases strictly positive quantities of both a1 and a2 if her belief has
full support and the price of aS equals the sum of the prices of a1 and a2.

Finally, we illustrate how incentives interact with correlation misperception by
considering how tranching alters the perceived expected return of a CDO. If the
CDO is untranched, then its expected return equals the sum of that of the underlying
assets. Any two traders that agree on the expected value of each component asset also
agree on the expected value of the untranched CDO, even if they disagree about the
correlation between the assets. Their evaluations diverge, however, when a CDO is
divided into tranches. Suppose, for instance, that returns are allocated to two tranches
and that the senior tranche has a claim on the first y dollars of return while the junior
receives the return of the CDO in excess of y. The expected returns of the junior
and senior tranches are calculated using the utility indexes uJ(x) = max{x − y, 0}
and uS(x) = min{x, y}. Since neither is a polynomial, Theorem 2 implies that all
aspects of the joint distribution can in principle affect the valuation of the tranches:
misperception of correlation can lead to an inaccurate assessment, even when each of
the underlying assets is evaluated correctly.

To demonstrate interesting additional implications and perform relevant compara-
tive statics, consider a trader with a PCR ({Ci}Ni=1, u, π

χ) where πχ satisfies

πχ(ωC1 , ..., ωCN ) = χq(
N⋂
i=1
{ωCi}) + (1− χ)

N∏
i=1

q({ωCi})

for some probability measure q over Ω. Such a probability measure has numerous
interpretational advantages. For instance, the trader satisfies Monotonicity if and
only if χ = 1, the distance between π1 and πχ (as measured by Kullback-Leibler
divergence of π1 relative to πχ) decreases with χ, and when actions a and b are
perfectly correlated, the trader perceives their correlation coefficient to be χ. Also,
this PCR has consistent marginal beliefs and q can be interpreted as the objective
distribution on Ω.

Suppose the trader is risk-neutral and considers purchasing a CDO. To make the
example stark, assume that the CDO is a profile 〈an1 , ..., ann〉, where each ani is a 1

n
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share of an asset ai, ani ∈ Ci for each i and n, and ai is “objectively” identical to aj:
each ani (ω) = 1

n
a(ω) ≥ 0 for all ω and some fixed a ∈ A. As noted above, this trader

correctly evaluates an untranched 〈an1 , ..., ann〉 as exactly Eq[a]. However, suppose the
CDO is split into a senior and a junior tranche with a return of y claimed by the
senior tranche, with returns evaluated using uJ and uS. It is easy to show that this
trader undervalues the junior tranche and overvalues the senior tranche and that such
misvaluations are monotonic in n and χ. Thus, the senior tranche can be sold at a
profit, with the junior tranche kept on the books. Furthermore, an investment bank
could “repackage” the junior tranche to create a CDO-squared, or a CDO made up
of CDOs (Coval et al., 2009). This trader would again overvalue the senior tranche
of the synthetic CDO. However, a second trader who understands the correlation
correctly could make arbitrage profits by shorting the senior tranche and going long
on the junior (even without repackaging). Indeed, Lewis (2010) reports the story
of a Morgan Stanley trader adopting the opposite trade strategy and losing over $9
billion.

Appendix A. Proofs not in main text

The following notation is used throughout. We denote the complement of a set E
by E. We sometimes denote an element of F by F .

A.1. Proof of Theorem 1. Necessity is trivial.
Assume for the remainder that % satisfies Weak Order, Continuity, Independence,

and Weak Monotonicity. Herstein and Milnor (1953) implies that when restricted to
the set of finite lotteries over X, % has an expected utility representation with utility
index u normalized such that u(0) = 0. The key step is to show that we can map
each lottery over action profiles into a (utility valued) act on the state space ΩA. For
any p ∈ ∆F , define the mapping fp : ΩA → R by

fp(~ω) =
∑

p(〈ai〉ni=1)>0
p(〈ai〉ni=1)u(

n∑
i=1

ai(ωai))

for every ~ω ∈ ΩA, where ωai is the component of ~ω corresponding to action ai.

Lemma 1. If fp ≥ fq, then p % q.

Proof. Fix an arbitrary plausible realization (xa)a∈B of B = B (p)⋃B (q). By defini-
tion, there exists ωa ∈ Ωa such that xa = a(ωa). Then note that(

p(〈ai〉ni=1),
n∑
i=1

xai

)
%

(
q(〈bi〉mi=1),

m∑
i=1

xbi

)
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if and only if (
p(〈ai〉ni=1),

n∑
i=1

ai(ωai)
)
%

(
q(〈bi〉mi=1),

m∑
i=1

bi(ωbi)
)

if and only if ∑
p(〈ai〉)>0

p(〈ai〉)u(
n∑
i=1

ai(ωai)) ≥
∑

q(〈bi〉)>0
q(〈bi〉)u(

m∑
i=1

bi(ωbi))

by the above. By fp ≥ fq, the last inequality is true. Since (xa) was chosen arbitrarily,
p plausibly dominates q. By Weak Monotonicity, p % q. �

Define W = {fp : p ∈ ∆(F)}, noting that W is convex. For φ in W , define
I(φ) =

∫
u(x)dr for some p ∈ ∆(F) s.t. fp = φ and a lottery r over X satisfying

r ∼ p. Such an r exists for every p by Weak Monotonicity, Completeness, and
Continuity, so I is well-defined. Moreover, Independence and Weak Monotonicity
imply that I is a positive linear functional, i.e. x ≥ 0 =⇒ I(x) ≥ 0. Obviously,
I (fp) ≥ I (fq) if and only if p % q.

Lemma 2. I has a positive linear extension F to the smallest subspace W ∗ that
contains W .

Proof. DefineW ∗ = {λ1x1−λ2x2 : x1, x2 ∈ W,λ1, λ2 ∈ R+}. W ∗ is clearly a subspace
and contains W . Let W ′ be any other subspace containing W . Pick any y ∈ W ∗.
Then y = λ1x1−λ2x2, and since x1, x2 ∈ W ⊂ W ′, y ∈ W ′; henceW ∗ ⊆ W ′. Suppose
that λ1x1 − λ2x2 = y and y ∈ W . Then

λ1

1 + λ1 + λ2
x1 = λ2

1 + λ1 + λ2
x2 + 1

1 + λ1 + λ2
y.

Since x1, x2, y, 0 ∈ W , so are the LHS and RHS above. Linearity of I on W gives
that I(y) = λ1I(x1)−λ2I(x2). So the function F = y 7→ λ1I(x1)−λ2I(x2) whenever
y = λ1x1 − λ2x2 is well-defined and extends I. Linearity of F follows from linearity
of I. To see that F is a positive linear functional, fix φ ∈ W ∗ with φ ≥ 0. Then
φ = λ1x1 − λ2x2; if λ1 = λ2 = 0, φ = 0 so F (φ) = F (0) = 0. Otherwise,

λ1

λ1 + λ2
x1 ≥

λ2

λ1 + λ2
x2

and since both the LHS and RHS are in U , F ( λ1
λ1+λ2

x1) ≥ F ( λ2
λ1+λ2

x2). The remainder
follows from linearity of F . �

For any J ⊆ A, define ΣJ = ⊗a∈Jσ(a), the product σ−algebra on ΩJ and B0(ΣA)
the set of simple ΣA-measurable functions. Note that the set W ∗ is a vector subspace
of B0(ΣA).
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Lemma 3. There is a positive linear extension F̂ of F to all of B0(ΣA) such that

F̂ (φ) =
∫
φdπo,

for a finitely additive probability measure πo on ΣA.

Proof. The function F is linear on W ∗ and x ≥ 0 implies F (x) ≥ 0. Pick any
y ∈ B0(ΣA). Since y is bounded, let z be an upper bound for y. z is a constant so
z ∈ W ∗. Hence W ∗ majorizes B0(ΣA). By Theorem 8.32 of Aliprantis and Border
(2006), F extends to a positive linear function on B0(ΣA). By Theorem 14.4 of
Aliprantis and Border (2006), there is a finitely additive signed measure of bounded
variation, πo : ΣA → R, such that

F̂ (φ) =
∫
φdπo.

To see πo(ΩA) = 1, let φ be such that φ(~ω) = 1, F̂ (φ) = 1 = πo(ΩA)1. To see
πo(E) ≥ 0 positive for any E ∈ ΣA, consider χE with χE(ω) = 1 for ω ∈ E and 0
otherwise, and since χE ≥ 0, 0 = F̂ (0) ≤ F̂ (χE) = πo(E). Consequently, πo is a
finitely additive probability measure. �

To construct a countably additive probability, for every finite J ⊆ A define a set
function πJ on (ΩJ ,ΣJ) using the formula

πJ(E) = πo(E × ΩA\J)

for every E ∈ ΣJ . Each πJ inherits finite additivity from πo; in fact, since ΣJ has a
finite number of members, πJ is countably additive and so a probability measure. By
construction the family {πJ} is Kolmogorov consistent. As a finite set, each ΣJ is a
compact class, and trivially

πJ(E) = sup{πJ(E ′) : E ⊇ E ′ ∈ ΣJ}.

By Kolmogorov’s extension theorem (Theorem 15.26, Aliprantis and Border (2006)),
there is a unique, countably additive π : ΣA → [0, 1] that extends each πJ . For any
p, there is a finite Jp ⊂ A such that fp is ΣJp measurable. Letting f̂p be the natural
projection of fp onto ΩJp ,∫

ΩA
fpdπ

o =
∫

ΩJp

f̂pdπJp =
∫

ΩA
fpdπ.

Therefore the function U : ∆F → R defined by

U(p) =
∫
fpdπ
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represents the DM’s preference. To conclude, rewrite U(p) as∫
ΩA
fpdπ =

∫
ΩA

∑
p(〈ai〉)>0

p(〈ai〉ni=1)u(
n∑
i=1

ai(ωai))dπ

=
∑

p(〈ai〉)>0
p(〈ai〉ni=1)

∫
ΩA
u(

n∑
i=1

ai(ωai))dπ,

the desired representation, which completes the proof.

A.2. Proof of Theorem 2. We split the proof of Theorem 2 into three propositions.
Supposing that % has a basic correlation representation with continuous u, we apply
Propositions 3 and 4 to yield that % has a rich PCR if and only if Non-Singularity
holds. The existence of a unique coarsest correlation cover follows from Proposition
3. Uniqueness of beliefs is follows from Proposition 5.

We say that the preference % has a rich and understood correlation cover if there
exists a correlation cover U such that every B in U is rich and understood.

Proposition 3. The preference % satisfies Non-Singularity if and only if there exists
a unique rich and understood correlation cover U such that any rich understood set
C is contained in a set B ∈ U .

Proof of Proposition 3. Necessity is obvious. For sufficiency, let U be the set of all ⊆-
maximal, rich and understood subsets. We show this is non-empty via Zorn’s Lemma.
Fix any chain {Bt}t∈T of rich understood subsets of A. We claim that B∗ = ⋃

t∈T Bt

is rich and understood and thus an upper bound by set inclusion. The set B∗ is
understood because for any p, q ∈ ∆F , the set of actions included both in B∗ and in
some profile in their support is finite. Thus, it is also contained in some understood
Bt and therefore considering only B∗-synchronous plausible realizations suffice for
preference between arbitrary p and q. Richness follows since, if a, b in B∗, a, b ∈ Bt

for some t so for any f : Ω→ X that is σ(a, b)-measurable, there exists c ∈ Bt ⊆ B∗

with c(ω) = f(ω) for any ω ∈ Ω. By Zorn’s lemma, there exists at least one maximal
element. By Non-Singularity, each a belongs to at least one set B ∈ U . The claim
then follows from ⊆-maximality. �

Proposition 4. The preference % has a basic representation with continuous u and
a rich and understood correlation cover U if and only it has a rich PCR (U , π, u) with
continuous u.

Proof of Proposition 4. Necessity is straightforward. For sufficiency, let U be a rich
and understood correlation cover. Suppose that the preference relation % has a basic
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representation ({a}a∈A, π0, u) with continuous u. We normalize so u(0) = 0. We show
there exists π so that % has rich PCR (U , π, u); the claim is trivial if u is constant,
so that case is ignored.

Suppose first that u is linear. Then with no loss of generality,

V (〈ai〉ni=1) =
n∑
i=1

∫
ΩA
ai(ω)dπi =

n∑
i=1

V (ai)

where πi is the marginal probability on Ωa corresponding action ai under π0. Using
standard arguments, it is easy to verify that % restricted to any B ∈ U has an affine
representation VB where VB(ai) =

∫
aidπ

B for some probability measure πB. It also
clearly has an affine representation V (ai). By uniqueness of affine representations,
VB(ai) = V (ai). Picking any C1, ..., Cn ∈ U s.t. ai ∈ Ci,

V (〈ai〉ni=1) =
∑

B∈{C1,...,Cn}

∫  ∑
Ci=B

ai

 dπB.
Defining cross-class beliefs arbitrarily, for instance independently, delivers the result.

Suppose now that u is not linear, so there exist x, y ∈ X such that

u(x+ y) 6= u(x) + u(y).

The proof proceeds as follows. First, we prove Lemma 4 showing that π0 assigns zero
probability to any collection of “small-stakes bets” in the same understanding class
yielding “misaligned” outcomes. Second, for any profile, we construct a profile of
such bets indifferent to it. Finally, we use these bet profiles to apply the arguments
of Theorem 1 with ΩU replacing ΩA.

Throughout this case, we write Na for N copies of the action a, where N is a
positive integer. For each B ∈ U , let {Ek

B}
KB
k=1 be the finest partition of Ω for which

every action in B is measurable, and for x ∈ X choose an action βB,kx ∈ B so that
βB,kx (ω) equals x if ω ∈ Ek and 0 otherwise and define the corresponding event

EB,k,x = {~ω ∈ ΩA : ωβ
B,k
x ∈ Ek

B}.

Note such actions exist because B is rich. Let Θε be an open interval of size ε around
0 that excludes 0. We first prove two preliminary lemmas.
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Lemma 4. If there exist x, y ∈ X such that u(x+ y) 6= u(x) +u(y), then there exists
ε > 0 such that for every B ∈ U ,

π(EB,i,x′ ∩ EB,j,y′) = 0(1)

π0
(
EB,i,x′ ⋂ EB,i,y′) = π0

(
EB,i,y′) = π0(EB,i,x′)(2)

and
KB∑
k=1

π0
(
EB,k,xk

)
= 1(3)

for distinct i, j ∈ {1, ..., KB} and x′, y′, x1, ..., xKB
∈ Θε.

In words, Equation (1) implies that the DM believes it impossible that bets on
distinct Ei and Ej in the same class pay off jointly; Equation (2) implies that if one
bet on Ei pays off, then all bets on Ei in the same class pay off; and Equation (3)
implies that from a set of bets on all events in a partition and contained in the same
class, at least one bet pays off. In sum, within the same understanding class, all the
bets on one and only one of the elements of its finest partition pay off jointly.

Proof of Lemma 4. Pick x′, y′ ∈ X and fix B ∈ U . To save notation, we omit the
dependence on B, i.e we write βkx instead of βB,kx , throughout the proof of this lemma.
Since B is understood,

1
2〈Nβ

i
x′ , z0〉+ 1

2〈Mβjy′ , z0〉 ∼
1
2〈Nβ

i
x′ ,Mβjy′ , z0〉+ 1

2z0

for any positive integers N,M and z0 ∈ X. Then, setting E = E i,x′ ⋂ E j,y′ , we have

π0(E i,x′)[u(Nx′ + z0)− u(z0)] + π0(E j,y′)[u(My′ + z0)− u(z0)] + u(z0)

=[π0(E i,x′)− π0(E)][u(Nx′ + z0)− u(z0)] + [π0(E j,y′)− π0(E)][u(My′ + z0)− u(z0)]

+ π0(E)[u(Nx′ +My′ + z0)− u(z0)] + u(z0)

and thus

(4) π0(E)
[
u(Nx′ +My′ + z0) + u(z0)− u(Nx′ + z0)− u(My′ + z0)

]
= 0.

If we can find non negative integers N,M ∈ N and z0 ∈ X such that the term in
brackets is not-zero, then (1) must hold.

Without loss of generality, either x, y > 0, x, y < 0, or x > 0 > y and either
x′, y′ > 0, x′, y′ < 0, or x′ > 0 > y′. We have four cases:

(1) If x′, y′ > 0 and x, y > 0; or x′, y′ < 0 and x, y < 0; or x > 0 > y and
x′ > 0 > y′, then choose z0 = 0.

(2) If x′, y′ > 0 and x, y < 0; or x′, y′ > 0 and x, y < 0, then choose z0 = x+ y.



CORRELATION MISPERCEPTION IN CHOICE 27

(3) If x′, y′ > 0 and x > 0 > y; or x, y > 0 and x′ > 0 > y′, then choose z0 = y.
(4) If x′, y′ < 0 and x > 0 > y; or x, y < 0 and x′ > 0 > y′, then choose z0 = x.

Since u is continuous, it is easy to verify by applying the appropriate case for z0

that there exist ε > 0 such that x′, y′ ∈ Θε implies that the absolute value of the term
in brackets in (4) is sufficiently close to |u(x+ y)−u(x)−u(y)| > 0 for some positive
integers N and M . Conclude (1) holds.

To see (2), fix non-zero x′, y′ ∈ Θε. Let b ∈ B be a bet yielding x′ on Ei and 0
otherwise and define

Eb = {~ω ∈ ΩA : ωb ∈ Ei}.

By arguments analogous to the above,

π0
(
E i,x′ ⋂ Eb) = π0

(
E i,y′ ⋂ Eb) = 0.

Since
(1
2 , 〈Nβ

i
x′ , z〉;

1
2 , 〈Nb, z〉) ∼ (1

2 , 〈Nx
′, z〉; 1

2 , 〈z〉)

by picking N such that u(z +Nx′) 6= u(z) for some z ∈ R, we have[
π0(E i,x′) + π0(Eb)

]
(u (Nx′ + z)− u (z)) = u (Nx′ + z)− u (z)

and thus
π0(E i,x′) + π0(Eb) = 1.

Such N and z must exist by continuity as long as u is not constant by choosing a
possibly smaller value for ε in Θε. Plugging these into the inclusion-exclusion formula
gives that

1 ≥ π0
(
E i,x′ ⋃ E i,y′ ⋃ Eb) = 1 + π0(E i,y′)− π0

(
E i,x′ ⋂ E i,y′)

and thus π0(E i,y′) = π0
(
E i,x′ ⋂ E i,y′

)
. A symmetric argument with b′ defined using y′

instead of x′ yields (2).
Consider any x1, ..., xK ∈ Θε, and choose y ∈ Θε and positive integer N so that

u(Ny) 6= 0. Since B is understood we have that( 1
K
, 〈Nβky 〉

)K
k=1
∼
( 1
K
, 〈Ny〉; K − 1

K
, 0
)
.

By (2) and the representation,

u (Ny) =
K∑
k=1

π0
(
Ek,y

)
u (Ny) =

K∑
k=1

π0
(
Ek,xk

)
u (Ny)

which gives (3). �



28 ANDREW ELLIS AND MICHELE PICCIONE

Consider a lottery r. For each profile F = 〈aj〉nj=1 in the support select a vector
CF =

(
CF

1 , ..., C
F
n

)
, which we call a profile allocation, such that CF

j ∈ U and aj ∈ CF
j ,

j = 1, ...., n. Construct a map f̂r : ΩU → R such that for every ~ω ∈ ΩU ,

f̂r(~ω) =
∑

r(F )>0
r(F )u

 n∑
j=1

aj(ωC
F
j )
 .

The vector of profile allocations
(
CF

)
r(F )>0

assigns each action in each profile that
has a positive probability to an understanding class to which it belongs. Several
allocations may be associated with the same r and thus several f̂r’s are generated
for it; since the DM is indifferent between r and itself, to save notation, we omit the
dependence on the profile allocations of the f̂r’s generated for the same lottery. The
remainder of the proof follows from the arguments in Theorem 1 if we show that, for
any such maps, if for some choice of profile allocations f̂p ≥ f̂q then p % q.

Lemma 5. Given any ε > 0 and profile F = 〈ai〉ni=1 with allocation
(
CF

1 , ..., C
F
n

)
,

there exist β1, ..., βT ∈ A, B1, ..., BT ∈ U and N1, ..., NT ∈ N+ such that:
(i) 〈ai〉ni=1 ∼ 〈Njβj〉Tj=1;
(ii) for any Bj, j = 1, ...., T , there exists CF

i = Bj for some i = 1, ..., n;
(iii) for any j = 1, ...., T , βj = β

Bj ,k
x ∈ Bj for some k ∈ {1, ..., KBj

} and x ∈ Θε;
(iv) For any CF

t , t = 1, ..., n, and all ω ∈ Ω,∑
{j:Bj=CF

t }
Njβj(ω) =

∑
{i:CF

i =CF
t }
ai(ω).

Proof. Statements (ii)-(iv) follow from the richness of each CF
i . To see (i), note that

because the preference % understands CF
1 and of statement (ii), DM is indifferent

between F and the profile obtained by replacing the actions in the set {ai : CF
i = CF

1 }
with {Njβj}βj∈CF

1
. Statement (i) then follows from successive replacements as above

and applying Weak Order, since each CF
i is understood. �

Thus, the actions assigned to the understanding class Bi by the profile allocation
can be replaced with Nj copies of each bet βj in Bi while maintaining indifference.

Now, fix ε as per Lemma 4. Pick arbitrary p, q satisfying f̂p ≥ f̂q for the vectors
of profile allocations

(
CF

)
p(F )>0

and (C ′F )q(F )>0. Choose actions β1, ...βT , under-
standing classes B1, ..., BT , and positive integers N1, ..., NT such that for a partition
{JF}p(F )>0 of {1, ..., T}, {βi : i ∈ JF}, {Bi : i ∈ JF}, and {Ni : i ∈ JF} are as
in Lemma 5 for ε, F , and CF . Similarly, choose actions βT+1, ...βT ′ , understand-
ing classes BT+1, ..., BT ′ , and positive integers NT+1, ..., NT ′ such that for a partition
{J ′F}q(F )>0 of {T + 1, ..., T ′}, {βi : i ∈ J ′F}, {Bi : i ∈ J ′F}, and {Ni : i ∈ J ′F} are as
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in Lemma 5 for ε, F , and C ′F . Replacing each profile in the support of p or q with
corresponding profile of Njcopies of the bets βj, yields lotteries p′ and q′. Note p′ ∼ p

and q′ ∼ q by Independence and Weak Order, so p % q if and only if p′ % q′.
Suppose without loss of generality that all the bets {βj}T

′
j=1 are distinct and let

Ej be the event EB,k,x that corresponds to βj. The maps fp′ and fq′ constructed in
Theorem 1 are measurable by cylinders of the form

D =
T ′⋂
j=1

Lj

where each Lj is either Ej or Ej. Fix any such D where π0(D) > 0 and ~ω ∈ D. The
difference in expected utility of lottery p′ and q′ at the state ~ω ∈ D is

Γ (D) =
∑

p(F )>0
p(F )u

∑
j∈JF

Njβj
(
ωβj

)− ∑
q(F )>0

q(F )u
∑
j∈J ′

F

Njβj
(
ωβj

) .
Since D has positive probability, by Lemma 4 there exists ωB ∈ Ω such that βj(ωB) =
βj(ωβj ) for all j with Bj = B . Picking any ~τ ∈ ΩU such that τB = ωB whenever
B = Bj for some j ∈ {1, ..., T ′},

Γ(D) = f̂p(~τ)− f̂q(~τ) ≥ 0.

Since D was arbitrary, U(p′)−U(q′) = ∑
D Γ(D)π0(D) ≥ 0 and p′ % q′, which in turn

implies p % q. Repeating the remaining steps of Theorem 1 completes the sufficiency
proof. �

Proposition 5. If % has rich PCRs (U , π, u) and (U , µ, u) where u is continuous but
not a polynomial, then π = µ.

Proof. Suppose that (U , π, u) and (U , µ, u) both represent the preference %, and that
u is continuous but not a polynomial. Let Vπ and Vµ be the respective utility indexes.
Say that an event E ∈ ΣU is a rectangle for {C1, ..., Cn} if there are ai ∈ Ci and
Ei ∈ σ (ai) such that

E ≡
n⋂
i=1
{~ω : ωCi ∈ Ei}.

The set of all rectangles is a π-system that generates the domain of π and µ, so if
π(E) = µ(E) whenever E is a rectangle, then π = µ by Caratheodory. We show this
by induction, relying on the following lemma.
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Lemma 6. If E is a rectangle for {C1, ..., Cn}, then

π(
⋂
j≤n
Ej

⋂
j≥n+1

Ej) =
N−n−1∑
i=0

(−1)iπ(
⋂

j≤n+i
Ej

⋂
j≥n+2+i

Ej) + (−1)N−nπ(
⋂
j

Ej).

where Ei = {~ω : ωCi ∈ Ei} are such that E = ⋂n
i=1 Ei.

Proof. The claim follows by recursive substitutions, noting that

π(
⋂

j≤n+i
Ej

⋂
j≥n+1+i

Ej)

equals
π(

⋂
j≤n+i

Ej
⋂

j≥n+2+i
Ej)− π(

⋂
j≤n+1+i

Ej
⋂

j≥n+2+i
Ej)

and π(⋂i≤N−1 Ei
⋂ EN) = π(⋂i≤N−1 Ei)− π(⋂i Ei). �

We claim that if E is a rectangle for B, then π(E) = µ(E). Proceed by induction
on #B. The case of #B = 1 is standard since both PCRs are rich. Suppose that
π(E ′) = µ(E ′) whenever E ′ is a rectangle for B with #B ≤ N − 1. Let E be an
arbitrary rectangle for {C1, ..., CN} ⊆ U , generated by E1, ..., EN where Ei ∈ σ(a′i)
for some a′i ∈ Ci.

Define the function

(5) SN(x1, x2, ..., xN) =
∑

Q⊆{1,...,N}
(−1)[N−#Q]u(

∑
i∈Q

xi).

If u is continuous, then Fréchet (1909) shows that SN(~x) = 0 for all ~x if and only if
u is a polynomial with degree less than N ; see Almira and Lopez-Moreno (2007) for
a proof. Thus, there exists x1, ..., xN such that SN(x1, x2, ..., xN) 6= 0.

Consider the profile 〈ai〉Ni=1 where ai ∈ Ci and ai(ω) equals xi if ω ∈ Ei and equals
0 otherwise. Define

Ei = {~ω : ωCi ∈ Ei}.

Note that

Vπ(〈ai〉Ni=1) =
∑

Q⊆{1,...,N}
π(
⋂
i∈Q
Ei
⋂
j /∈Q
Ej)u(

∑
i∈Q

xi)

=
∑

Q⊆{1,...,N}
[K(Q,N) + (−1)[N−#Q]π(E)]u(

∑
i∈Q

xi)

= K + SN (x1, ..., xn) π(E)

where K(Q,N) and K are weighted sums of rectangles for B′’s with less than N

members. Such a decomposition exists by Lemma 6. Since µ agrees with π on these



CORRELATION MISPERCEPTION IN CHOICE 31

rectangles,
Vµ(〈ai〉Ni=1) = K + SN(x1, ..., xn)µ(E).

There exists a lottery q such q ∼ F . Hence

Vµ(〈ai〉Ni=1) =
∑

q(y)>0
q(y)u(y) = Vπ(〈ai〉Ni=1),

and since SN(x1, ..., xn) 6= 0, µ(E) = π(E). �

Appendix B. Online Only Appendix

Proposition 6. The preference % has basic correlation representation if and only if
it has a PCR.

Proof. It is easy to see that if % has a basic representation, it has a PCR with
U = {{a} : a ∈ A}. Suppose % has a PCR (U , π, u). For every a ∈ A, choose Ca ∈ U
with a ∈ Ca. Pick any B = {a1, ..., an} ⊂ A. Define

πB({~τ ∈ ΩB : τi ∈ Ei ∀i}) = π({~ω ∈ ΩU : ωCai ∈ Ei∀ i})

where Ei ∈ σ(ai) for i = 1, ..., n. This πB is clearly a measure defined on the π-
system that generates ⊗ni=1σ(ai) and so can be uniquely extended to it. Moreover, the
collection {πB} is Kolmogorov consistent and so by Kolmogorov’s extension theorem,
we can define π0 on ΣA to agree with every πB. Thus % has a basic correlation
representation with probability π0 and utility u. �

For a PCR (U , π, u) and finite B ⊆ U , let πB denote the marginal distribution over
the copies of Ω assigned to understanding classes in B. Note that the utility of any
profile consisting of n actions is determined by some πB with #B ≤ n.

Theorem 3. If % has a rich PCR (U , π, u) and u is a polynomial of degree N , then
it also has a PCR (U , µ, u) if and only if µB = πB for any B ⊆ U with #B ≤ N .

Recall that SN(x1, x2, ..., xN) = ∑
Q⊆{1,...,N}(−1)[N−#Q]u(∑i∈Q xi). From our obser-

vation in the proof of Theorem 2, if u is continuous, then SN(x1, x2, ..., xN) = 0 for
all x1, ..., xN if and only if u is a polynomial of degree N − 1. Therefore, the result
follows from the below Proposition.

Proposition 7. If the preference % has a rich PCR (U , π, u), and

N∗ = inf{N : SN(~x) = 0 for all ~x},

then the PCR (U , µ, u) also represents % if and only if µ(E) = π(E) for every rec-
tangle for B with #B < N∗.
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From primitives, SN(x1, ..., xN) = 0 for all x1, ..., xn if and only if pEN ∼ pON where

pON =
(
2−(N−1),

∑
x∈Q

x
)

#Q odd
and pEN =

(
2−(N−1),

∑
x∈Q

x
)

#Q even

and Q ranges over all subsets (including ∅) of {x1, ..., xN}. When xi > 0 for each i, a
result in Eeckhoudt et al. (2009) implies pON N -order stochastically dominates pEN .

Proof. Sufficiency follows from exactly the same arguments used in Thoerem 2. To
see necessity, suppose that SN(~x) = 0 for all ~x and that π agrees with µ on any
rectangle for B when #B < N − 1. Consider any profile 〈ai〉mi=1, and assume WLOG
that each ai belongs to a distinct understanding class Ci; we show that

Vπ(〈ai〉mi=1) = Vµ(〈ai〉mi=1).

This is trivially true if m < N . The claim is proved if we show that, when m ≥
N , we can replace each Vπ(〈ai〉mi=1) and Vµ(〈ai〉mi=1) with the (possibly negatively)
weighted sum of the utilities of “sub-profiles” of 〈ai〉mi=1 with at most N − 1 elements.
Rearranging the equation SN(x1, ..., xN) = 0,

(6) u(
N∑
i=1

xi) = −
∑

Q⊆{1,...,N},#Q<N
(−1)[N−#Q]u(

∑
i∈Q

xi).

for any x1, ..., xN . Now,

Vπ(〈ai〉mi=1) =
∫
u

(
m∑
i=1

ai(ωCi)
)
dπ,

so by (6) where xi = ai(ωCi), i = 1, ..., N − 1, and xN = ∑m
i=N ai(ωCi), each term

u

(
m∑
i=1

ai(ωCi)
)

= u

(
N−1∑
i=1

ai(ωCi) + [
m∑
i=N

aCi
(ωCi)]

)

can be written as the sum of utilities where each argument contains the sum of at
most m − 1 terms. We can repeat this procedure until the arguments of each u (·)
contain the sum of at most N − 1 terms. Naturally, the exact same procedure can be
applied to Vµ. This establishes the result. �
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