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Curie’s hazard: From electromagnetism to symmetry violation

Bryan W. Roberts

August 21, 2014

Abstract. We explore the facts and fiction regarding Curie’s own example of

Curie’s principle. Curie’s claim is vindicated in his suggested example of the elec-

trostatics of central fields, but fails in many others. Nevertheless, the failure of

Curie’s claim is still of special empirical interest, in that it can be seen to under-

pin the experimental discovery of parity violation and of CP violation in the 20th

century.

1. Introduction

Curie (1894) wrote that, “when certain causes produce certain effects, the elements

of symmetry of the causes must be found in the produced effects” (Curie 1894, pg.

394)1. This claim has received mixed reviews. Brading and Castellani (2013) have

suggested that a common interpretation of the principle is faulty, and Norton (2014)

has argued that it is an exercise in dubious causal metaphysics. Many have suggested

that the principle fails for the phenomenon of spontaneous symmetry breaking in

quantum field systems, although Castellani (2003) and Earman (2004) have each

argued that this is not the case.

In this paper I’d like to do two things. First, I would like to discuss Curie’s own

example of his principle in electromagnetism. It is a deceptively simple example. My

aim will be to draw out the particular physical facts that allow Curie’s statement to

succeed in this example, by formulating and proving a sense in which it succeeds,

while isolating a sense in which it can also fail. This is the core of what I would like

to say: the truth of Curie’s statement is contingent on special physical facts, which

obtain in some cases but not others.

Second, I would like to point out that one of the more useful applications of Curie’s

principle is the detection of its failure, which can provide evidence that the laws of

nature are symmetry-violating. Many commentators have focused on the connection

between Curie’s principle and a different concept, that of spontaneous symmetry

breaking2. Here I will instead point out how Curie’s principle played crucial role in

1“lorsque certaines causes produisent certains effets, les éléments de symétrie des causes doivent

se retrouver dans les effets produits”
2C.f. Castellani (2003) and Earman (2004).
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the famous experimental detections of parity violation and CP -violation in the 20th

century.

2. Curie’s example

Curie’s original statement is slightly different from the statement that philosophers

and physicists have come to refer to as Curie’s principle. I will discuss the latter in

more detail in the next section. For now, to keep track of the difference, I will refer

to Curie’s original statement as:

Curie’s Hazard. A symmetry of the causes must be a symmetry of the

effects.

Curie gave the following example of this hazardous conjecture. Consider two op-

positely charged plates, placed close together and centered on an axis as in Figure 1.

Think of the charges as a “cause” whose “effect” is to give rise to an electric field.

That effect, Curie says, must exhibit all the symmetries of the cause. So, since the

charges are rotationally symmetric, the electric field must be too.

+
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- --

-
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Figure 1. Curie’s example: A symmetry of the charges is a symmetry

of the electric field.

In Curie’s own words:

To establish the symmetry of the electric field, suppose that this field

is produced by two circular plates of zinc and of copper placed one

facing the other, like the plates of an air condenser. Considering a

point on the common axis between the two plates, we see that this

axis is an axis of isotropy and that every plane containing this axis is

a plane of symmetry. The elements of symmetry of the causes must be

found in the produced effects; therefore the electric field is compatible

with the symmetry (Curie 1894, pg. 404, emphasis added)3.

3My translation. The original reads: “Pour établir la symétrie du champ électrique, supposons

que ce champ soit produit par deux plateaux circulaires de zinc et de cuivre placés en face l’un de
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Curie’s example is deceptively simple. In the case of two electric plates, it is true

that a symmetry of the charge distribution is also a symmetry of the electric field.

However, it is not true of Maxwell’s equations more generally: a number of implicit

assumptions are required in order for it to get off the ground. For example, if the

particles in the plates were in motion it would of course cause the field lines to

propagate asymmetrically, breaking the symmetry in the charge distribution.

Thus, an obvious implicit premise of Curie’s argument must be an absence of

motion. But even that is not enough. Suppose that there are no charges at all —

that is, consider the vacuum. Maxwell’s equations by themselves do not guarantee

that an electric field will share the symmetries of the vacuum. On the contrary, there

are plane wave solutions to the vacuum Maxwell equations in which the electric field

propagates in any direction that one likes (Figure 2).

Figure 2. The vacuum has no charge or current, but is compatible

with an electromagnetic plane wave propagating in any direction.

Getting Curie’s example to work thus takes a little bit of care. In the next section,

I’ll explain how this can be done. If taken truly literally, Curie’s hazard is simply

wrong: the symmetries of a charge distribution are not necessarily symmetries of the

electric field. However, if one presumes a certain amount of special physical facts

about particular electromagnetic fields, then there are versions of Curie’s hazard that

are actually true.

l’autre, comme les armatures d’un condensateur à air. Considérons entre les deux plateaux un point

de l’axe commun, nous voyons que cet axe est un axe d’isotropie et que tout plan passant par cet

axe est un plan de symétrie. Les éléments de symétrie des cause doivent se retrouver dans les effets

produits; donc le champ électrique est compatible avec la symétrie” (Curie 1894, pg. 404).
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3. A symmetry theorem

Curie’s hazard on electromagnetism can be made true given appropriate back-

ground assumptions. Let me begin with an informal discussion of the physics under-

lying Curie’s argument, before turning to the more precise formulation of a symmetry

principle for electromagnetism along these lines.

3.1. Physics of Curie’s example. Curie’s two-plate example can be characterized

by the following facts.

(1) Gauss’ Law. Electric fields are related to charge distributions by ∇ · E = ρ.

(2) Electrostatics. When there is no change in magnetic field, the electric field is

roughly curl-free: ∇× E = 0.

(3) Central field. The electric field “goes to zero” sufficiently quickly outside of

some region, in a sense to be made precise in the next subsection.

These three statements express a divergence and a curl for a vector field that is

subject to some appropriate boundary conditions. Given all this, it turns out that

Curie’s hazard about electric fields holds too. This result stems from two facts; I

discuss their proof in the next subsection.

First, it turns out that all of the above relations are preserved by rotations. In

particular we have (using E′ and ρ′ to represent the rotated field and charges),

(a) Rotations preserve Gauss’ law. ∇ · E′ = ρ′

(b) Rotations preserve electrostatics. ∇× E′ = 0

(c) Rotations preserve centrality. E′ = 0 on the boundary of and everywhere

outside some region.

This kind of reservation does not hold of arbitrary smooth transformation, but does of

rotations. We will see shortly that this stems from the fact that a rotation preserves

the metric.

Second, an elementary result of vector analysis4 shows that every central field v

is uniquely determined by its divergence (∇ · v) and its curl (∇ × v). That is, if

two such vector fields v and v′ subject to these boundary conditions have the same

divergence and curl, then v = v′.

These two facts allow one to say why Curie’s hazard works in the example of the

two plates. Suppose we have a charge distribution that is invariant under rotations:

ρ′ = ρ.

4This result is a corollary of what is often called the Helmholtz-Hodge decomposition theorem.
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Then by our first observation, the electric field E and its rotated counterpart E ′ have

the same divergence and curl:

∇ · E = ρ = ρ′ = ∇ · E ′

∇× E = 0 = ∇× E ′.

But the divergence and curl uniquely determine a vector field under these conditions,

so E ′ = E. In other words, when the conditions (1)-(3) are satisfied, then a charge

distribution ρ is invariant under rotations only if the electric field E is too, and Curie’s

hazard is correct.

3.2. As a general theorem. The argument above can be stated in more general

and rigorous terms as follows. Let M be a smooth manifold, and let gab be a metric,

assumed here to be a smooth symmetric invertible tensor field with inverse gab; I

use Penrose abstract index notation for raising and lowering indices. Let ∇ be the

derivative operator compatible with gab in the sense that∇agbc = 0. A diffeomorphism

ϕ : M → is called an isometry if ϕ∗gab = gab, and is the natural notion of a symmetry

in this context.

We begin by collecting two facts about the derivative operator ∇; the proofs are

included in an appendix. The first is that isometries “preserve” the derivative oper-

ator:

Proposition 1. If ϕ : M →M is an isometry and λbcd an arbitrary tensor field, then

ϕ∗(∇aλ
bc
d ) = ∇aϕ∗λ

bc
d .

The second fact expresses the sense in which the divergence and the curl uniquely

determine a vector field. I will state a geometric version of the standard result, which

applies in many more geometries beyond the standard Euclidean metric on R3. To

state this fact, we’ll first need a general formulation of the divergence and curl of a

vector ξa on a 3-dimensional manifold (a 3-manifold) M with volume element5 εabc:

div(ξ) = ∇aξ
a

curl(ξ) = (∇× ξ)c = εabc∇aξb.

A few more definitions are needed. A metric gab on M is called positive definite if

ξaξa ≥ 0, in which case (M, gab) is called a Riemannian manifold. Finally, we define

what we mean for a vector field to be a “Central Field”:

(Central Field) Ea = 0 on the boundary and outside of a region R.

5A volume element for an n-dimensional Riemannian manifold (M, gab) is a smooth n-form that

satisfies εa1...anεa1...an = n!. A manifold is oriented if it admits a volume element.
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This formulation is slightly stronger than is necessary. In particular, central fields

can be formulated for regions without boundary, such as R3, a version of our next

Proposition still holds so long as the fields go to zero quickly enough (see e.g. Arfken

1985, §1.15). But this minor generalisation is considerably more complicated to state

and prove, and the following result is sufficient for our purposes.

Proposition 2. Let (M, gab) be an oriented simply-connected 3-dimensional Rie-

mannian manifold, and let ξa and χb be two vector fields that each satisfy the Central

Field assumption with respect to some (possibly different) region. If div(ξ) = div(χ)

and curl(ξ) = curl(χ), then ξa = χa.

With these two facts in place, we can now finally state a theorem that captures some

general conditions under which Curie’s hazardous conjecture is true. The slightly

stronger-than-necessary “Central Field” assumption will be adopted here too, as it is

simpler and sufficient for our needs.

Theorem. Let ρ be a scalar field, Ea a vector field, and let ϕ : M →M be an isometry

on an oriented simply-connected 3-dimensional Riemannian manifold (M, gab). If,

(1) (Gauss’ law) ρ = ∇aE
a

(2) (Electrostatics) (∇× E)a = 0

(3) (Central Field) Ea = 0 on the boundary and outside of a region R

then ϕ∗ρ = ρ (symmetric cause) only if ϕ∗E
a = Ea (symmetric effect).

Proof. Let ϕ∗ρ = ρ. By Gauss’ law,

∇aE
a = ρ = ϕ∗ρ = ϕ∗(∇aE

a) = ∇aϕ∗E
a,

where the last equalty is an application of Proposition 1. Thus, Ea and ϕ∗E
a have

the same divergence. Moreover, by the assumption of electrostatics,

(∇× E)a = 0 = ϕ∗0 = ϕ∗(∇× E)a.

Applying the definition of the curl to the right hand side now gives us,

(∇× E)a = ϕ∗ε
bca∇bEc = ±εbcaϕ∗∇bEc = ±εbca∇bϕ∗Ec

= ±(∇× ϕ∗E)a.

where the second equality applies the fact that isometries preserve volume elements

up to a sign6. But (∇×E)a = 0, so this implies that Ea and ϕ∗E
a have the same curl.

Moreover, since Ea is a Central Field with respect to the regions Ri, so is ϕ∗E
a with

6Since isometries preserves the metric, (ϕ∗ε
bca)(ϕ∗εbca) = εbcaεbca = ±n!. Thus, ϕ∗ε

bca is a

volume element too. But εbca and −εbca are the unique volume elements, so ϕ∗ε
bca = ±εbca.
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respect to the regions ϕ(Ri). Therefore, the premises of Proposition 2 are satisfied,

and it follows that Ea = ϕ∗E
a. �

What I would like to emphasize about this result is that even for Curie’s own

example, the truth of Curie’s hazard depends on a significant amount of background

structure. It is not an a priori fact about causes and effects. Indeed, the argument

does not go through in the more general context of pseudo-Riemannian manifolds, as

are adopted in general relativity, except when restricted to a spacelike hypersurface

where the metric gab becomes positive definite. In particular, the proof of Proposition

2 makes crucial use of the non-degenerate metric available in Riemannian manifolds.

I do not know if this theorem can be generalized to the pseudo-Riemannian case, but

if it can, then it would likely be established by a rather different argument.

3.3. General electromagnetic fields. Curie’s hazard fares worse when applied to

general electromagnetic fields in spacetime. The natural analogue of Curie’s statement

for electrostatics simply fails when translated into this language.

Electromagnetism is naturally formulated on a smooth manifold M with with a

metric gab that is symmetric and invertible, but not necessarily non-degenerate. Such

a pair (M, gab) is called a pseudo-Riemannian manifold. To do electromagnetism, we

assume the existence of a vector field Ja representing charge-current density, and an

anti-symmetric tensor field Fab representing the electromagnetic field, which satisfy

Maxwell’s equations7:

∇[aFbc] = 0

∇aF
ab = J b.

(1)

These general equations reduce in certain contexts to the usual Maxwell equations

(for an overview see Malament 2012, §2.6).

What is Curie’s hazard in this context? If we take the cause to be the charge-

current Ja (instead of just the charge ρ) and take the effect to be the electromagnetic

field Fab (instead of just the electric field Ea), then Curie’s statement would be that

a symmetry of the charge-current Ja is a symmetry of the electromagnetic field Fab.

That statement is false.

The problem is that the charge-current Ja does not uniquely determine an electro-

magnetic field Fab up to isometry without further specification. This makes it possible

to find explicit counter-examples to Curie’s hazard, such as the following.

7In fact, an even more general formulation is available in terms of the Hodge star operator (for

an overview see Baez and Muniain 1994, §1.5), although this will not concern us here.



8 Bryan W. Roberts

Counterexample. Let Fab, J
a be a solution to Maxwell’s equations, and let ϕ :

M →M be an isometry that does not preserve Fab,

ϕ∗Fab − Fab = Hab 6= 0,

but such that Hab is divergence-free, ∇aH
ab = 0. For example, this occurs when Fab

is the field for a plane wave (as in Figure 2) and ϕ is a rotation; then ∇aF
ab = 0 and

so ∇aH
ab = 0, but Hab 6= 0. Since diffeomorphisms preserve the zero vector, this

implies,

ϕ∗J
b = 0 = J b.

Thus, if J b is the “cause” and Fab the “effect,” then a symmetry of the cause fails to

be a symmetry of the effect. Without specifying some initial and boundary conditions

such as those considered in the previous subsection, a symmetry of J b need not be a

symmetry of Fab.

A persistent believer in Curie might still draw a more optimistic conclusion. It is

easy to see that the converse expression of Curie’s claim is true. Suppose we consider

Fab to be the “cause” and J b the “effect”, and let ϕ∗Fab = Fab. Then applying

Proposition 1 we have,

ϕ∗J
b = ϕ∗(∇aF

ab) = ∇aϕ∗F
ab = ∇aF

abs = J b.

So, every symmetry of the electromagnetic field Fab is a symmetry of the charge-

current field Ja. One could conclude from this that Curie simply mistook cause for

effect: the appropriate cause in this example is the electromagnetic field Fab, and the

appropriate effect the charge-density current Ja. I do not know what would justify

this kind of conclusion; on the contrary, the argument of Norton (2014) suggests it

would be little more than dubious causal metaphysics.

Another possible route is to adopt initial and boundary conditions that guarantee

Ja will determine a unique electromagnetic field Fab. This is not so easy to do. Wald

(1984, Chapter 10, Problem 2) points out some (fairly restrictive) circumstances under

which Fab is unique, by demanding that Ja = 0, and also that the values of the electric

and magnetic fields be on a Cauchy surface. Under these circumstances, one has for

any isometry ϕ : M →M that ϕ∗J
a = Ja = 0, and so,

∇aϕ∗F
ab = ϕ∗∇aF

ab = ϕ∗J
b = 0 = J b = ∇aF

ab.

Thus, since Fab is the unique field satisfying Maxwell’s equations under these circum-

stances, it follows that ϕ∗Fab = Fab for all isometries. In other words, Curie’s hazard

is made true, in that a symmetry of Ja is a symmetry of Fab, in the restrictive circum-

stances of Ja = 0 when there is a complete absence of charge-current in spacetime.
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But this is only possible in the presence of this or some similar initial and boundary

conditions that render Fab unique.

The point I would like to make about all this is not that Curie’s hazard is totally

misguided, but rather that very specific structures must be in place for it to be true.

Without a number of particular background facts, Curie’s hazard can fail, even in his

own example of electromagnetism.

4. From electromagnetism to symmetry violation

In this section, I will identify a sense in which the failure of Curie’s hazard can

provide evidence of symmetry violation. In fact, its failure provides an indicator

of symmetry violation in some of the most famous historical examples of symmetry

violation: the parity violation detected by Chien-Shung Wu in 1956, and the CP-

violation detected by Val Cronin and James Fitch in 1964. I will also now turn to

the statement that philosophers and physicists have more commonly come to call

“Curie’s principle.”

4.1. Curie’s principle in skeletal form. The statement known as “Curie’s prin-

ciple” can be cast in an incredibly general form. Here is how to get there from the

example of electromagnetism. Under very particular circumstances, a symmetry of

the charge-current distribution is also a symmetry of the electromagnetic field. For

Curie’s two-plate capacitor, we have seen that sufficient circumstances are the elec-

trostatics of central fields: (1) Gauss’ law, (2) Electrostatics, and (3) Central Field.

Let me now summarise these properties as the statement that the relation between

cause and effect is “symmetry preserving,” formulated as follows.

Proposition 3 (Curie Principle). Let C and E be two sets, and let σc : C → C and

σe : E → E be two bijections. If D : C → E is a mapping such that,

(symmetry preservation) Dσ−1c x = σ−1e Dx for all x ∈ C,

then σcx = x (symmetric cause) only if σeDx = Dx (symmetric effect). If D is a

bijection, then σcx = x if and only if σeDx = Dx.

Proof. If σcx = x, then σeDx = σeD(σ−1c x) = σe(σ
−1
e D)x = Dx. If D is a bijection

then it has an inverse, so σeDx = Dx only if x = (D−1σ−1e D)x = D−1(Dσ−1c )x = σ−1c x

and hence σcx = x. �

The ‘σ’s are to be interpreted as “the same” symmetry8, such as a fixed rotation

(or whatever), applied to each of the sets C and E. The ‘D’ mapping captures a sense

8One may wish to cash this out as Norton (2014) does in terms of an isomorphism that carries σc

to σe. Or (as is now fashionable) one may interpret this as meaning that C and E are two categories

related by a functor F with σc a morphism of C and σe a morphism of E satisfying F(σc) = σe. The
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in which “causes determine effects.” Note that this formulation explicitly excludes

“time reversing” symmetries like T and CPT , since they are typically expressed as

mappings between causes and effects9.

Proposition 3 is similar to some existing formulations of Curie’s principle10. One

sense in which it differs slightly is that it does not presume causes uniquely determine

effects. When they do not, then the converse statement need not be true, that a

symmetry of an effect is necessarily a symmetry of the cause. Elena Castellani11 has

emphasized out that Curie himself viewed his principle as asymmetric:

In practice, the converse... [of Curie’s hazards] are not true, i.e., the

effects can be more symmetric than their causes. Certain causes of

asymmetry might have no effect on certain phenomena (Curie 1894)12

Proposition 3 captures this asymmetry: if causes do not bijectively determine effects,

then the converse of Curie’s hazard is not guaranteed. However, if a cause does (bi-

jectively) determine a unique effect that satisfies symmetry preservation, then Curie’s

hazard is true in both directions.

The bare-bones construal of Curie’s principle of Proposition 3 can be applied in all

kinds of ways. Here are a few, limited only by the imagination.

Example 1 (Electromagnetism). We have already seen the example in which C

be is the set charge distributions, and E the set of electric fields on a Riemannian

manifold. Here is another way to look at it (which is essentially just the proof of the

theorem). Given conditions (1)-(3), Proposition 2 provides a mapping D : ρ 7→ Ea

that determines a unique Ea for each ρ. Proposition 1 then implies13 that Dϕ∗ = ϕ∗D

for any isometry ϕ. Therefore, given (1)-(3), a symmetry of the charge distribution

ϕ∗ρ = ρ is also a symmetry of the electric field ϕ∗E
a = Ea.

Example 2 (General Relativity). Let C and E both refer to the set of symmetric 2-

place tensor fields on a relativistic spacetime (M, gab), thinking of an element Tab ∈ C
as energy-momentum and an element Gab ∈ E is the Einstein tensor. Let D : Tab 7→

difficulty is that “spurious” identifications of symmetries may still occur, as identified by Norton

(2014, fn.4).
9This is required in order to get a true principle; for time-reversing symmetries, Curie’s principle

badly fails (Roberts 2013a).
10C.f. Ismael (1997), Belot (2003), Earman (2004, pg.175-176), Mittelstaedt and Weingartner

(2005, pg.231), Ashtekar (2014) and Norton (2014).
11Personal communication.
12Translation from Brading and Castellani (2003, pg.312).
13Namely, Proposition 1 implies that if ρ = ∇aE

a (and hence that Dρ = Ea), then ϕ∗ρ =

ϕ∗∇aE
a = ∇aϕ

∗Ea, and thus Dϕ∗ρ = ϕ∗Ea = ϕ∗Dρ.
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Gab = 8πG
c4
Tab be the map determined by Einstein’s equation. The symmetries of C

and E are determined by an underlying diffeomorphism ϕ : M →M , and identifying

σc = σe = ϕ∗ we trivially find that Dσc = σ−1e D.

Example 3 (Particle Physics). Let C = Hin and E = Hout be identical copies of a

Hilbert space H representing the in-states and out-states of a scattering experiment.

Let D = S : ψin 7→ ψout be the scattering matrix. Then the condition that a symmetry

σ (a unitary operator) satisfy Dσin = σ−1outD just amounts to the condition that it

commute with the scattering matrix. When this condition obtains, there is a sense

in which Curie’s hazard is true, that a symmetry of causes (viewed as an “in” state)

gives rise to a symmetry of an effect (viewed as an “out” state).

It is this last example that is significant for the history of symmetry violation, to

which we will now turn.

4.2. Curie’s failure implies symmetry violation. When S is a scattering matrix,

Proposition 3 says that Curie’s hazard holds for a symmetry σ if and only if the

S-matrix is “invariant” under that symmetry. For a long time it was presumed

that the laws of nature must be invariant under symmetries like parity (P ) and

the combination of charge conjugation and parity (CP ). However, in the mid-20th

century this presumption was dramatically disproven, when first parity invariance

and then CP invariance were both found to be violated in weak interactions.

The significance of Curie’s principle for those discoveries can be seen by casting

Proposition 3 in the equivalent “contrapositive” form: if Curie’s hazard fails, in that

either σc(x) = x and σe(Dx) 6= Dx or else σe(Dx) = Dx and σc(x) 6= x, then we

have a case of symmetry violation: Dσ−1c 6= σ−1e D. Applying this principle to particle

decays is a little subtle, but not much. That application is stated and proved in

Roberts (2013b, Fact 2) as follows.

Proposition 4 (Scattering Curie). Let S be a scattering matrix, and R : H → H
be a unitary bijection. If there exists a decay channel ψin → ψout, i.e. a non-zero

amplitude 〈ψout, Sψin〉, such that either,

(1) (in but not out) Rψin = ψin but Rψout = −ψout, or

(2) (out but not in) Rψout = ψout but Rψin = −ψin,

then,

(3) RS 6= SR.

This principle is precisely what was used in the very first revelations that the laws

of nature are symmetry violating. For example, parity — the “mirror” transformation

that reverses total orientation (or “handedness”) of a system — has been long known
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Figure 3. The P -violating interaction suggested by Lee and Yang.

to preserve the two-pion state π+π0, but reverse the phase of the three-pion state

π+π+π−:

Pπ+π0 = π+π0

Pπ+π+π− = −π+π+π−.

The originating particle state for the first was originally called τ and the second

θ. Both appeared in the interactions of charged strange mesons, and both were soon

found to have a very similar lifetime and rest mass. The famous question thus arose:

might these be the very same particle? This was known as the θ − τ puzzle. Here

is where Curie’s principle appears: if θ and τ are the same, then parity symmetry is

violated by Proposition 4. For whether or not parity preserves the originating particle

state, it would still sometimes decay into a state with different parity, as in Figure 3.

This led Lee and Yang to suggest:

One might even say that the present θ − τ puzzle may be taken as

indication that parity conservation is violated in weak interactions.

This argument is, however, not to be taken seriously because of the

paucity of our present knowledge concerning the nature of the strange

particles. (Lee and Yang 1956, pg.254).

Their hesitant suggestion was famously vindicated experimentally by Chien-Shiung

Wu and her collaborators that same year, in an elegant experiment that was quickly

repeated14.

Curie’s principle was even more directly applied in the discovery of CP -violation

a few years later. A number of simple theoretical models had arisen in which the

observed parity-violation was explained in a way that required CP -invariance. This

requirement thus was tested by James Cronin and Val Fitch at Brookhaven, by ob-

serving a beam of neutral K-mesons or kaons. They began with a “long-lived” neutral

kaon state KL, which was known to have its phase reversed by the CP transformation;

14Confirming results were reported by Wu et al. (1957) and by Garwin et al. (1957).



Curie’s hazard: From electromagnetism to symmetry violation 13

Figure 4. The CP -violating interaction discovered by Cronin and Fitch.

the two-pion state π+π−, on the other hand, was preserved by parity:

CPKL = −KL

CPπ+π− = π+π−.

In a small but unmistakable number of decays, Cronin and Fitch found15 the KL

state to decay into π+π−, as in Figure as in Figure 4. Again Curie’s principle appears

in the form of Proposition 4, which implies that, contrary to what the early models

suggested, CP symmetry is violated.

These were two of the most important experimental discoveries of 20th century

physics. Nobel prizes were awarded for each. And both were crucially underpinned

by Curie’s principle. In this sense, Curie was not mistaken when he suggested that

”there is interest in introducing into the study of physical phenomena the symmetry

arguments familiar to crystallographers” (Curie 1894)16.

4.3. Norton on Curie’s Truism. Norton (2014) has convincingly argued that the

only true formulation of Curie’s principle that does not invoke dubious causal meta-

physics is a near-tautology. Namely, suppose one presumes that,

Determination respects symmetries: Causes admitting symmetries are

mapped to effects that admit those same symmetries.

Then Curie’s claim that symmetries of the causes are symmetries of the effects is

obviously true. Norton refers to this as “Curie’s Lemma,” pointing out:

“there is little substance to it. It is a tautology implementing as an

easy modus ponens ‘A, if A then B; therefore B.’ That simplicity does

make precise the sense that the principle somehow has to be true.”

(Norton 2014, pg.6)

Let me add two comments about the little bit of substance that the truism retains,

in light of what we have discussed so far.

First, establishing the truth of the premise that “Determination respects symme-

tries” may by itself amount to a deep result. It is analogous to the “symmetry

15The discovery was reported in Christenson et al. (1964).
16Translation from Brading and Castellani (2003, pg.311).
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preservation” premise in my formulation of Curie’s principle in Proposition 3, which

says that given a mapping D : C → E between sets and a symmetry represented by,

(symmetry preservation) Dσ−1c x = σ−1e Dx for all x ∈ C.

This may be far from obvious for a given choice of causes C, effects E, and a determi-

nation relation D. The theorem formulated in section on electromagnetism establishes

it for central fields in electrostatics, which is established by premises (1)-(3). But al-

though the proof itself is straightforward, it does rely on some facts such as Stokes’

theorem and the uniqueness of a compatible derivative operator that are not exactly

trivial (details can be found in the Appendix).

Second, statements of the truism may have empirical significance that is non-trivial.

We have seen that the discoveries of parity violation and of CP violation both involved

the existence of decay modes in scattering experiments that have different symmetries

from the originating states. Curie’s principle establishes that such an observation is

enough to tell us something interest that the laws of nature, in that there exist

possible trajectories whose symmetry-transformed counterparts are not possible. In

particular, the unitary evolutions corresponding to the S matrix for a weak interaction

are symmetry-violating.

Curie’s principle is of course still a pretty insubstantial statement in this context,

in that it is still a simple fact about mappings between sets as in Proposition 3. How-

ever, this lack of substance is also a strength: the piddling amount of mathematical

structure in Curie’s principle assures that it is very robust. Thus, using Curie’s prin-

ciple to establish that the laws of nature are symmetry-violating provides evidence

that is extremely resilient to theory change, even as new mathematical structures

come and go17.

5. Conclusion

Curie managed to hazard a conjecture that is of interest both when it is true and

when it is false. The original hazard requires very special circumstances in order to be

true. We have verified mathematically that one such circumstance is that of Curie’s

example, when one restricts attention to the electrostatics of central fields. However,

its formulation as a general statement about electromagnetic currents and fields is

false.

When we draw out the special circumstances under which Curie’s hazard holds,

we find a skeletal but true proposition about sets. This proposition captures what

many philosophers of science have in mind when referring to “Curie’s principle.”

Although so bare as to be nearly a triviality, formulating Curie’s principle in this

17See Ashtekar (2014) for a more elaborate argument on this point.
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way allows one to identify it among the arguments for the great symmetry-violating

experiments of the mid-20th century. Viewed from this perspective, Curie’s principle

is indeed a simple and true statement, which managed to become one of the very

fruitful symmetry principles of modern physics.

Appendix

Definitions. Let M and M̃ be smooth manifolds, each with a metric gab and g̃ab, as-

sumed here to be smooth symmetric invertible tensor fields, which are non-degenerate

but not necessarily positive-definite. I adopt Penrose’s abstract index notation for

this discussion.

A derivative operator ∇ (or a ‘covariant derivative’ or a ‘connection’) maps an index

a and an arbitrary tensor like λbcd to another tensor, written ∇ : (a, λbcd ) 7→ ∇aλ
bc
d .

It is defined by the following properties, which we adopt following Malament (2012,

§1.7).

(1) ∇ commutes with addition, index substitution and contraction on tensor fields.

(2) ∇ satisfies the Leibniz rule with respect to tensor multiplication.

(3) If ξa is a vector field and α a scalar field, then ξa∇aα = ξ(α). That is, ξa∇aα

is the “directional derivative” that ξ assigns to α.

(4) ∇ is torsion-free, in that if α is a scalar field, then ∇a∇bα = ∇b∇aα.

Let ∇ be a derivative operator on M , and suppose that it is compatible with the

metric gab in that ∇agbc = 0. Let ∇̃ similarly be a derivative operator on M̃ satisfying

∇̃ag̃bc = 0. I will write ϕ : M → M̃ to indicate a diffeomorphism, with pushforward

ϕ∗ and pullback ϕ∗.

Preserving derivatives. As a simple example, consider first the case of the deriva-

tive of a scalar field, ∇aα. Every diffeomorphism ϕ “preserves” covariant derivatives

of a scalar field, in that,

(2) ϕ∗(∇aα) = ∇̃aϕ∗α.

This statement can be quickly verified: if α is any scalar field at p ∈M and ξ̃a is any

vector at ϕ(p) ∈ M̃ , then,

ξ̃aϕ∗(∇aα) = (ϕ∗ξ̃a)(∇aα) = (ϕ∗ξ̃)(α) = ξ̃(α ◦ ϕ−1) = ξ̃a∇̃aϕ∗α.

Equation 2 does not always hold when α is replaced with an arbitrary tensor. How-

ever, it does when we further restrict ϕ to be an isometry — and in fact for a slightly

weaker condition. It is established by the following.
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Lemma 1. Let ϕ : M → M̃ be a diffeomorphism. Then the equality,

ϕ∗(∇aλ
bc
d ) = ∇̃aϕ∗λ

bc
d

holds for an arbitrary tensor field like λbcd if and only if ∇̃aϕ∗gab = 0, where gab is the

metric compatible with ∇. In particular the equality holds if ϕ is an isometry.

Proof. The ‘only if’ direction is trivial, since if the above equality holds for all tensors,

then in particular,

∇̃aϕ∗gbc = ϕ∗(∇agbc) = ϕ∗0 = 0,

where the penultimate equality applies compatibility, and the final equality the fact

that ϕ∗0 = ϕ∗(0 + 0) = ϕ∗0 + ϕ∗0.

For the ‘if’ direction, consider the mapping ∇̂ defined by,

∇̂ : (a, λbcd ) 7→ ϕ∗(∇̃aϕ∗λ
bc
d ).

where a is an index. The first step is to show that this mapping is a derivative

operator. It obviously commutes with addition, index substitution and contraction

because all three maps do (ϕ∗, ϕ
∗ and ∇̃a). It is also easy to check that it satisfies

the Leibniz rule and the torsion-freeness condition. Moreover, for all vectors ξn and

all scalar fields α, ∇̂ satisfies the condition that,

ξa∇̂aα = ξaϕ∗(∇aϕ∗α) = ξa∇aϕ
∗ϕ∗α = ξa∇aα = ξ(α),

where the second equality is an application of Equation 2. Therefore ∇̂ is a derivative

operator. Note that this argument required only that ϕ be a diffeomorphism.

The second step is to observe that ∇̂ is compatible with the metric:

∇̂agbc = ϕ∗∇̃a(ϕ∗gbc) = ϕ∗0 = 0,

where the second equality applies our assumption. Compatibility holds in particular

when ϕ is an isometry, since then ∇̃a(ϕ∗gbc) = ∇̃a(g̃bc) = 0.

Finally, we use the fact that there is a unique derivative operator compatible with

a given metric (Malament 2012, Prop. 1.9.2). So, ∇̂ and ∇ are the same. Therefore,

∇aλ
bc
d = ∇̂aλ

bc
d = ϕ∗(∇̃aϕ∗λ

bc
d )

Pushing-forward the left and right sides with ϕ∗, we thus have that,

ϕ∗(∇aλ
bc
d ) = ∇̃aϕ∗λ

bc
d .

�

As a special case of this lemma we have Proposition 1 from page 5.

Proposition 1. If ϕ : M →M is an isometry and λbcd an arbitrary tensor field, then

ϕ∗(∇aλ
bc
d ) = ∇aϕ∗λ

bc
d .
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Non-isometries. An example of a non-isometry that preserves covariant derivatives

is any ‘constant’ conformal transformation, i.e. a conformal transformation ϕ∗gab =

Ω2g̃ab for which the conformal factor Ω is a constant scalar field, ∇aΩ = 0. Then,

∇̃aϕ∗gab = ∇̃a(Ω
2g̃ab) = Ω2∇̃agab = 0.

Since the premises of the proposition are satisfied, this transformation ϕ preserves

covariant derivatives.

However, these are the only conformal transformations that preserve covariant

derivatives. If Ω is any conformal factor with non-zero covariant derivative, then

applying the chain rule we have,

∇̃aϕ∗gab = ∇̃aΩ
2gab = gab∇̃a(Ω

2) + Ω2 ∇̃g̃ab︸︷︷︸
=0

= 2Ωg̃ab∇̃aΩ 6= 0.

So, conformal transformations do not in general preserve covariant derivatives.

Proposition 2. Let (M, gab) be an oriented simply-connected 3-dimensional Rie-

mannian manifold, and let ξa and χb be two vector fields that each satisfy the Central

Field assumption with respect to some (possibly different) region. If div(ξ) = div(χ)

and curl(ξ) = curl(χ), then ξa = χa.

Proof. Let λa = ξa−χa. We will show that λa = 0. By the linearity of the divergence

and curl we have,

div(λ) = div(ξ)− div(χ) = 0,

curl(λ) = curl(ξ)− curl(χ) = 0.

A vanishing curl curl(λ) = εabc∇aλb is only possible if ∇[aλb] = 0, i.e. if λb is closed18.

But a closed covector on a simply connected manifold is exact, meaning that it may

be expressed as a gradient,

λa = ∇aφ

for some scalar field φ (Malament 2012, Prop. 1.8.3).

Now, we have assumed that ξa vanishes on the boundary and outside of some region

R1, and χa similarly for some region R2. Both ξa and χa thus vanish on the boundary

and outside of the combined region R = R1 ∪R2, and therefore so does λa = ξa−χa.
That is, λa is a central field with respect to the region R. We thus have,

(3)

∫
R

λaλ
a =

∫
R

(∇aφ)(∇aφ) =

∫
R

∇a(φ∇aφ) =

∫
∂R

ηaφ∇aφ =

∫
∂R

ηaφλ
a = 0,

18An antisymmetric tensor ξ[a∇bλc] can always be written in terms of the volume element as

ξ[a∇bλc] = kεabcε
defξ[d∇eλf ] for some constant k (Malament 2012, §1.11). And a vanishing curl

implies kεabcε
defξd∇eλf = 0 for any arbitrary vector ξd. But then the total antisymmetry of εabc

implies that 0 = kεabcε
defξ[d∇eλf ] = ξ[d∇eλf ]. Since ξd was arbitrary, this requires ∇[eλf ] = 0.
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where second equality follows from the chain rule and the fact that ∇a∇aφ = ∇aλ
a =

0; the third equality applies Stokes’ theorem (Wald 1984, Appendix B, B.2.26); and

the last equality applies the assumption that ∇aφ = λa = 0 on the boundary ∂R.

Finally, gab is assumed to be positive definite. Thus, λaλa is strictly non-negative,

so Equation 3 is only possible if λa = 0. �

References

Arfken, G. (1985). Mathematical Methods for Physicists, 3rd edn, San Diego: Aca-

demic Press, Inc.

Ashtekar, A. (2014). Response to Bryan Roberts: A new perspective on T vio-

lation. Forthcoming in Studies in History and Philosophy of Modern Physics,

doi:10.1016/j.shpsb.2014.07.001.

Baez, J. and Muniain, J. P. (1994). Gauge fields, knots and gravity, Series on Knots

and Everything Vol. 4, London: World Scientific Publishing.

Belot, G. (2003). Notes on symmetries, in K. Brading and E. Castellani (eds), Sym-

metries in Physics: Philosophical Reflections, Cambridge: Cambridge University

Press, chapter 24, pp. 393–412.

Brading, K. and Castellani, E. (2003). Symmetries in physics: philosophical reflec-

tions, Cambridge: Cambridge University Press.

Brading, K. and Castellani, E. (2013). Symmetry and symmetry breaking, in E. N.

Zalta (ed.), The Stanford Encyclopedia of Philosophy, spring 2013 edn.

Castellani, E. (2003). On the meaning of symmetry breaking, in K. Brading and

E. Castellani (eds), Symmetries in Physics: Philosophical Reflections, Cambridge:

Cambridge University Press, chapter 19, pp. 321–334.

Christenson, J. H., Cronin, J. W., Fitch, V. L. and Turlay, R. (1964). Evidence for

the 2π decay of the k02 meson, Phys. Rev. Lett. 13(4): 138–140.

Curie, P. (1894). Sur la symétrie dans les phénomènes physique, symétrie d’un champ
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