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Nash Codes for Noisy Channels∗

Penélope Hernández† Bernhard von Stengel‡

February 16, 2014

Abstract

This paper studies the stability of communication protocols that deal with transmis-
sion errors. We consider a coordination game between an informed sender and an
uninformed decision maker, the receiver, who communicate over a noisy channel.
The sender’s strategy, called a code, maps states of nature to signals. The receiver’s
best response is to decode the received channel output as the state with highest ex-
pected receiver payoff. Given this decoding, an equilibrium or “Nash code” results
if the sender encodes every state as prescribed. We show two theorems that give suf-
ficient conditions for Nash codes. First, a receiver-optimal code defines a Nash code.
A second, more surprising observation holds for communication over a binary chan-
nel which is used independently a number of times, a basic model of information
transmission: Under a minimal “monotonicity” requirement for breaking ties when
decoding, which holds generically, every code is a Nash code.

Keywords: sender-receiver game, communication, noisy channel.

1 Introduction

Information transmission is central to the interaction of economic agents and to the oper-
ation of organizations. This paper presents a game-theoretic analysis of communication
with errors over a “noisy channel”. The noisy channel is a basic model of information
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theory, pioneered by Shannon (1948), and fundamental for the design of reliable data
transmission. In this model, an informed sender sends a message, which is distorted by
the channel, to an uninformed receiver. Sender and receiver have the common interest
that the receiver understands the sender as reliably as possible.

A communication protocol defines a code, that is, a set of channel inputs that represent
the possible messages for the sender, and a way for the receiver to decode the channel
output. One can view the designer of the protocol as a “social planner” who tries to
solve an optimization problem, for example to achieve high reliability and a good rate of
information transmission. This assumes that sender and receiver adhere to the protocol.
In this paper, we study this model as a game between sender and receiver as two players.
A strategy of the sender is a code, and a strategy of the receiver is a way to decode the
channel output. Rather than requiring that sender and receiver adhere to their respective
strategies, we assume that they can choose their strategies freely. A Nash equilibrium is a
pair of strategies for sender and receiver that are mutual best responses. This is the central
stability concept of game theory.

The best response of the receiver is known in the communications literature as MAP
(maximum a posteriori) decoding. In contrast, allowing the sender to deviate from the
code (while the receiver strategy is fixed) is specific to the game-theoretic approach. If the
sender is not in equilibrium, she has an incentive to change her strategy to encode some
message with a different codeword. If this happens, the protocol will lose its function
as a de-facto standard of communication. The appeal of a Nash equilibrium is that it is
self-enforcing.

Sender-receiver games have attracted significant interest in economics (Spence, 1973;
Crawford and Sobel, 1982). The game-theoretic view is also applied in models of lan-
guage evolution (Nowak and Krakauer, 1999; Argiento et al., 2009). These assume, as
in our case, that the interests of sender and receiver are fully aligned, and use Nash equi-
librium as the natural stability criterion. We survey this related literature in more detail
below. In the analysis and design of communication networks, a growing body of research
deals with game-theoretic approaches that assume selfish agents (Srivastava et al., 2005;
MacKenzie and DaSilva, 2006; Anshelevich et al., 2008), again with Nash equilibrium as
the central solution concept.

The model

We consider the classic model of the discrete noisy channel. The channel has a finite set
of input and output symbols and known transition probabilities that represent the possible
communication successes and errors. The channel may also be used repeatedly, with
independent errors. In the important case of the binary channel that has only two symbols,
the codewords are then fixed-length sequences of bits.

In our sender-receiver game, nature chooses one of finitely many states at random accord-
ing to a prior probability. The sender is informed of the state and transmits a signal via
the discrete noisy channel to the uninformed receiver who makes a decision. The sender’s
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strategy or code assigns to each state of nature a specific signal or “codeword” that is
the input to the channel. The receiver’s strategy decodes the distorted signal that is the
channel output as one of the possible states. Both players receive a (possibly different)
positive payoff only if the state is decoded correctly, otherwise payoff zero.

In equilibrium, the receiver decodes the channel output as the state with highest expected
payoff. When all states get equal receiver payoff, the receiver condition is the well-known
MAP decoding rule (MacKay, 2003, p. 305). The equilibrium condition for the sender
means that she chooses for each state the prescribed codeword as her best response, that
is, no other channel input has a higher probability of being decoded correctly with the
given receiver strategy.

A Nash code is a code together with a best-response decoding function that defines a Nash
equilibrium. So we assume the straightforward equilibrium condition for the receiver
and require that the code fulfills the more involved sender condition. (Of course, both
conditions are necessary for equilibrium.)

Our results

We present two main results about Nash codes, along with other observations that we
describe in the outline of our paper at the end of this introduction. Our first main result
concerns discrete channels with arbitrary finite sets of input and output symbols. We show
that already for three symbols, not every code defines a Nash equilibrium. However, a
Nash code results if the expected payoff to the receiver cannot be increased by replacing
a single codeword with another one (Theorem 4.4). So these receiver-optimal codes are
Nash codes. This is closely related to potential games (Proposition 4.5), which may
provide the starting point for studying dynamics of codes until they become Nash codes,
as a topic for further research.

In short, without any constraints on the channel, and for any best-response decoding,
receiver-optimal codes are Nash codes. For equal receiver utilities for each state, these are
the codes with maximum expected reliability, which therefore implies Nash equilibrium.
The method to show this result is not deep; its purpose is to analyze our model. The
key assumption is that an improvement in decoding probability benefits both sender and
receiver. However, a sender-optimal code is not necessarily a Nash code if sender and
receiver give different utilities to a correct decoding of the state of nature. This happens
if the sender can use an unused message to transmit the information about the state more
reliably. If all channel symbols are used, then under reasonable assumptions the code is
Nash (see Proposition 3.1).1

Our second main result is more surprising and technically challenging. It applies to the
binary channel where codewords are strings of bits with independent positive error prob-
abilities for each bit. Then every code is a Nash code (Theorem 6.5), irrespective of its
quality. The only requirement for the decoding is that the receiver breaks ties between
states monotonically, that is, in a consistent manner; this holds for natural tie-breaking

1 We thank an anonymous referee for suggesting this result.
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rules, and ties do not even occur if states of nature have different generic prior probabili-
ties or utilities. That is, for the binary channel, as long as the receiver decodes optimally
and breaks ties consistently, the equilibrium condition holds automatically on the sender’s
side.

Binary codes are fundamental to the practice and theory of information theory. Our result
that they are Nash codes shows that they are incentive compatible. Hence, this condi-
tion is orthogonal to engineering issues such as high reliability and rate of information
transmission.

Related literature

Information transmission is often modeled in the economic literature as a sender-receiver
game between an informed expert and an uninformed decision maker. Standard signaling
models (pioneered by Spence, 1973) often assume that signals have costs associated with
the information of the sender. In their seminal work on strategic information transmis-
sion, Crawford and Sobel (1982) consider costless signals and communication without
transmission errors, but where the incentives of sender and receiver differ. They assume
that a fixed interval represents the set of possible states, messages, and receiver’s actions.
Payoffs depend continuously on the difference between state and action, and differ for
sender and receiver. In equilibrium, the interval is partitioned into finitely many intervals,
and the sender sends as her message only the partition class that contains the state. Thus,
the sender only reveals partial information about the state. Along with many other models
(see the surveys by Kreps and Sobel, 1994, and Sobel, 2013), this shows that information
is not transmitted faithfully for strategic reasons because of some conflict of interest.

Even in rather simple sender-receiver games, players can get higher equilibrium payoffs
when communicating over a channel with noise than with perfect communication (Myer-
son, 1994, Section 4). Blume, Board, and Kawamura (2007) extend the model by Craw-
ford and Sobel (1982) by assuming communication errors. The noise allows for equilibria
that improve welfare compared to the Crawford–Sobel model. The construction partly de-
pends on the specific form of the errors so that erroneous transmissions can be identified;
this does not apply in our discrete model. In addition, in our model players only get posi-
tive payoff when the receiver decodes the state correctly, unlike in the continuous models
by Crawford and Sobel (1982) and Blume et al. (2007). On the other hand, compared to
perfect communication, noise may prevent players from achieving common knowledge
about the state of nature (Koessler, 2001).

Game-theoretic models of communication have been used in the study of language (see
De Jaegher and van Rooij, 2013, for a recent survey). Lewis (1969) describes language as
a “convention” with mappings between states and signals, and argues that these should be
bijections. Nowak and Krakauer (1999) use evolutionary game theory to show how lan-
guages may evolve from “noisy” mappings; Wärneryd (1993) shows that only bijections
are evolutionary stable. However, even ambiguous sender mappings (where one signal
is used for more than one state) together with a mixed receiver population may be “neu-
trally stable” (Pawlowitsch, 2008); the randomized receiver strategy can be seen as noise.
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Argiento et al. (2009) consider the learning process of a language in a sender-receiver
game. This is extended to the noisy channel by Touri and Lambort (2013).

Blume and Board (2013) use the noisy channel to model vagueness in communication.
Lipman (2009) discusses how vagueness can arise even for coinciding interests of sender
and receiver. Ambiguous signals arise when the set of messages is smaller than the set of
states, which may reflect communication costs for the sender (see Jäger, Koch-Metzger,
and Riedel, 2011, and the discussion in Sobel 2012). For the sender-receiver game with
a noisy binary channel, Hernández, Urbano, and Vila (2012) describe the equilibria for a
specific code that can serve as a “universal grammar”; the explicit receiver strategy allows
to characterize the equilibrium payoff.

Noise in communication is relevant to models of persuasion, where the sender wants to
induce the receiver to take an action. Glazer and Rubinstein (2004; 2006) study binary
receiver actions; the sender may reveal limited information about the state of nature as
“evidence”. The optimal way to do so is a receiver-optimal mechanism. In a more general
setting, Kamenica and Gentzkow (2011) allow the sender to commit to a strategy that
selects a message for each state, assuming the receiver’s best response using Bayesian
updating; the sender may generate noise by selecting the message at random. Subject to
a certain Bayesian consistency requirement, the sender can commit to her best possible
strategy.

Equilibrium models of information transmission give several insights. First, commu-
nication may fail: Every sender-receiver game has a “babbling equilibrium” where the
sender’s action is independent of the state and the receiver’s action is independent of
the channel output, with no information transmitted. Second, equilibria are typically
not unique (for example, mapping states to signals is often arbitrary). Third, conflict of
interest, or cost and complexity of communication (Sobel, 2012), prevent perfect commu-
nication.

Our approach takes a basic view that communication can be impeded by noise when
interests of sender and receiver are aligned, and analyzes this issue game-theoretically.
Our results show that the Nash equilibrium condition is weaker than or, for the binary
channel, orthogonal to the quality of information transmission.

Outline of the paper

Section 2 describes our model and characterizes the Nash equilibrium condition. For
channels with any number of symbols, Section 3 gives examples that some codes may
not be Nash codes. Section 4 shows that receiver-optimal codes are Nash, and discusses
the relation to potential functions. In Section 5, we consider binary codes, where we
first demonstrate that tie-breaking needs to be “monotonic” when ties occur in order for
Nash equilibrium to hold for every code. In Section 6 we show the main Theorem 6.5
that every monotonically decoded binary code is Nash. This holds in fact not just for
binary codes but for any “input symmetric” channels with any number of symbols where
the probability of receiving a symbol incorrectly does not depend on the channel input.
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The proof also shows that the property of a channel that every code is Nash, which we
call “Nash-stability”, extends to any product of channels (see Section 7) with independent
errors. The product channel assumes independent error probabilities, but the codewords
are still arbitrary combinations of inputs for such products. (If the error probabilities are
not independent, then the channel has to be considered with n-tuples as input and output
symbols where in general only Theorem 4.4 about receiver-optimal codes applies.) A
natural monotonic decoding rule is to break ties according to a fixed order among the
states, as when they have generic priors. In Section 8 it is shown that this is in fact the
only general deterministic monotonic tie-breaking rule.

2 Nash codes

We consider a game of two players, a sender (she) and a receiver (he). First, nature
chooses a state i from a set Ω = {0,1, . . . ,M−1} with positive prior probability qi. Then
the sender is fully informed about i, and sends a message to the receiver via a noisy
channel. After receiving the message as output by the channel, the receiver takes an
action that affects the payoff of both players.

The channel has finite sets (or “alphabets”) X and Y of input and output symbols, with
noise given by transition probabilities p(y|x) for each x in X and y in Y . The channel is
used n times independently without feedback. When an input x = (x1, . . . ,xn) is trans-
mitted through the channel, it is altered to an output y = (y1, . . . ,yn) according to the
probability p(y|x) given by

p(y|x) =
n

∏
j=1

p(y j|x j). (1)

This is the standard model of a memoryless noisy channel as considered in information
theory (see Cover and Thomas, 1991; Gallager, 1968; MacKay, 2003).

The sender’s strategy is to encode state i by means of a coding function or code c : Ω→Xn,
which we write as c(i) = xi. We call xi the codeword or message for state i in Ω, which
the sender transmits as input to the channel. The code c is completely specified by the list
of M codewords x0,x1, . . . ,xM−1, which is called the codebook.

The receiver’s strategy is to decode the channel output y, given by a probabilistic decoding
function

d : Y n×Ω→ R, (2)

where d(y, i) is the probability that y is decoded as i.

If the receiver decodes the channel output as the state i chosen by nature, then sender and
receiver get positive payoff Ui and Vi, respectively, otherwise both get payoff zero. The
incentives of sender and receiver are fully aligned in the sense that they always prefer
that the state is communicated successfully. However, the importance of that success
may be different for sender and receiver depending on the state. The channel transition
probabilities, the transmission length n, and the prior probabilities qi and utilities Ui and
Vi for i in Ω are commonly known to the players.
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Definition 2.1. Consider an encoding function c : Ω→ Xn and a probabilistic decoding
function d in (2). If the pair (c,d) defines a Nash equilibrium, then c is called a Nash
code. The expected payoffs to sender and receiver are denoted by U(c,d) and V (c,d),
respectively.

In order to obtain a Nash equilibrium (c,d), receiver and sender have to play mutually
best responses. The equilibrium property, and whether c is called a Nash code as part of
such an equilibrium, may depend on the particular best response d of the receiver.

A code c defines the sender’s strategy. A best response of the receiver is the following.
Given that he receives channel output y in Y n, the probability that codeword xi has been
sent is, by Bayes’s law, qi p(y|xi)/prob(y), where prob(y) is the overall probability that
y has been received. The factor 1/prob(y) can be disregarded in the maximization of
the receiver’s expected payoff. Hence, a best response of the receiver is to choose with
positive probability d(y, i) only states i so that qiVi p(y|xi) is maximal, that is, so that y
belongs to the set Yi defined by

Yi = {y ∈ Y n | qiVi p(y|xi)≥ qkVk p(y|xk) ∀k ∈Ω}. (3)

Hence, the best response condition for the receiver states that for any y ∈ Y n and i ∈Ω

d(y, i)> 0 ⇒ y ∈ Yi . (4)

If Vi = 1 for all i ∈Ω, then this decoding rule is known as MAP or maximum a posteriori
decoding (MacKay, 2003, p. 305). If the receiver has different positive utilities Vi for
different states i, then the receiver’s best response maximizes qiVi p(y|xi). We call the
product qiVi the weight for state i. One could assume Vi = 1 for all i and only vary qi in
place of the weight, but then it seems artificial to allow separate utilities Ui for the sender,
because we want to study the Nash property with respect to the optimality of codes for
receiver and sender. For that reason we keep three parameters qi, Ui and Vi for each state i.

We say that for a given channel output y, there is a tie between two states i and k (or
the states are tied ) if y ∈ Yi ∩Yk. If there are never any ties, then the sets Yi for i ∈ Ω

are pairwise disjoint, and the best-response decoding function is deterministic and unique
according to (4). If there are ties, then a natural way to break them is to choose any of
the tied states with equal probability. For that reason we consider probabilistic decoding
functions. On the sender’s side, we only consider deterministic encoding strategies.

We sometimes refer to the sets Yi for i ∈ Ω as a “partition” of Y n, which constrains the
receiver’s best-response decoding as in (4), even though some of these sets may be empty,
and they may not always be disjoint if there are ties. In any case, Y n =

⋃
i∈ΩYi.

Suppose that the receiver decodes the channel output with d according to (3) and (4) for
the given code c with c(i) = xi. Then (c,d) is a Nash equilibrium if and only if, for any
state i, it is optimal for the sender to transmit xi and not any other x̂ in Xn as a message.
When sending x̂, the expected payoff to the sender in state i is

Ui ∑
y∈Y n

p(y|x̂)d(y, i). (5)
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When maximizing (5) as a function of x̂, the utility Ui to the sender does not matter as
long as it is positive; given that the state is i, the sender only cares about the expected
probability that the channel output y is decoded as i. We summarize these observations as
follows.

Proposition 2.2. The code c with decoding function d is a Nash code if and only if the
receiver decodes channel outputs according to (3) and (4), and if and only if in every
state i the sender transmits codeword c(i)= xi which fulfills for any other possible channel
input x̂ in Xn

∑
y∈Y n

p(y|xi)d(y, i)≥ ∑
y∈Y n

p(y|x̂)d(y, i) . (6)

3 Examples of codes that are not Nash

This section presents introductory examples of channels that are used once (n = 1) and
that illustrate that the Nash equilibrium condition does not hold automatically. At the
end of this section, we show in Proposition 3.1 that, under certain assumptions, the Nash
property holds when all channel symbols are used for transmission.

For our first example, consider a channel with three symbols, X = Y = {0,1,2}, which is
used only once (n = 1), with the following transition probabilities:

y
p(y|x)

0 1 2

0 0.7 0.15 0.15

x 1 0.25 0.5 0.25

2 0.2 0.2 0.6

(7)

Suppose that there are two states (m = 2) and that nature chooses the two states from
Ω = {0,1} with uniform priors q0 = q1 = 1/2. The sender’s utilities are U0 = 2 when the
state is 0 and U1 = 8 when the state is 1, and the receiver’s utilities are V0 = 6, V1 = 4.

Consider the codebook c with c(0) = x0 = 0 and c(1) = x1 = 1, so the sender codifies the
two states of nature as the two symbols 0 and 1, respectively. Given the parameters of this
game and the sender’s strategy c, the receiver’s strategy assigns to each output symbol in
{0,1,2} one state. The following table (8) gives the expected payoff qiVi p(y|xi) for the
receiver when the state is i and the output symbol is y.

y
qiVi p(y|xi)

0 1 2

0 2.1 0.45 0.45
i

1 0.5 1 0.5

(8)
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This shows how to find the receiver’s best response and the sets Yi in (3). For each channel
output y, the receiver chooses the state i with highest expected payoff. Hence, he decodes
the channel output 0 as state 0 because q0V0 p(0|x0) = 2.1 > 0.5 = q1V1 p(0|x1). In the
same way, he decodes both channel outputs 1 and 2 as state 1. Here there are no ties, so the
two sets Y0 and Y1 are disjoint, and the receiver’s best response is unique and deterministic.
That is, the receiver’s best response d is given by d(y, i) = 1 if y ∈Yi, where Y0 = {0} and
Y1 = {1,2}, and by d(y, i) = 0 otherwise.

A shorter form of obtaining (8) from the channel transition probabilities in (7) is shown in
(9), which is (7) with each row prefixed by the weight qiVi when the channel input for that
row is used as codeword xi. Multiplying the channel probabilities with these weights gives
(8), and a box surrounds p(y|xi) if output y is decoded as state i. These boxes therefore
also show the sets Yi if there are no ties, as in the present case; in the case of ties, and
deterministic decoding, they show the state that is actually decoded by the receiver.

y
qiVi p(y|x)

0 1 2

3 0 0.7 0.15 0.15

2 x 1 0.25 0.5 0.25

2 0.2 0.2 0.6

(9)

With the help of Proposition 2.2, it is easy to see from (9) that this code c is not a Nash
code. For i = 0 and x0 = 0, we have ∑y∈Y p(y|0)d(y,0) = 0.7, which is the maximum of
the column entries p(y|x) for y = 0 in (9), so here the sender cannot improve her payoff
by transmitting any x̂ instead of xi. However, for i = 1 we have ∑y∈Y p(y|1)d(y,1) =
0.5 + 0.25 = 0.75 < 0.8 = 0.2 + 0.6 = ∑y∈Y p(y|2)d(y,2), so (6) does not hold when
xi = 1 and x̂ = 2 and the sender can improve her payoff by sending x̂ instead of xi.

Is there a Nash code for the channel in (7) when Ω = {0,1} and for the described pri-
ors and utilities? First, a simple and trivial Nash code is to map both states to the same,
arbitrary channel input, x0 = x1. Then every channel output results from the same row
(for that input) in (7) and, because q0V0 > q1V1, will be decoded as state 0. The sender
cannot improve her payoff because the receiver in effect ignores the uninformative chan-
nel output. This is also called a “babbling” or “pooling” equilibrium, which is a Nash
equilibrium for any channel.

When the codewords are distinct (x0 6= x1), there are six possible ways to choose them
from the three channel inputs. Table 1 lists these codebooks x0,x1, shown in the first
column. For each code, the receiver’s best response is unique. The best-response parti-
tion Y0,Y1 is shown in the second column. Using this partition, the third column gives
the probabilities p(y ∈ Yi | xi) = ∑y∈Yi p(y|xi) that the codeword xi is decoded correctly.
The overall expected payoffs to sender and receiver are shown as U and V , with a box
indicating the respective maximum.

Similar to using (9) for the codebook 0,1, it can be verified that the codebook 2,1 is not a
Nash code. In addition, Table 1 shows directly that the codebook 1,0 is not a Nash code:
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Table 1: Possible codebooks x0,x1 with x0 6= x1 for the channel (7) and expected payoffs
U and V to sender and receiver.

x0,x1 Y0 Y1 p(y ∈ Y0 | x0) p(y ∈ Y1 | x1) U V

0,1 {0} {1,2} 0.70 0.75 3.70 3.60

0,2 {0,1} {2} 0.85 0.60 3.25 3.75

1,0 {1,2} {0} 0.75 0.70 3.55 3.65

1,2 {0,1} {2} 0.75 0.60 3.15 3.45

2,0 {1,2} {0} 0.80 0.70 3.60 3.80

2,1 {0,2} {1} 0.80 0.50 2.80 3.40

It has the same best response of the receiver (given by Y0 = {1,2} and Y1 = {0}) as the
codebook 2,0, but a lower payoff to the sender (3.55 instead of 3.6), who can therefore
improve her payoff by changing x0 = 1 to x̂ = 2 (note that the receiver’s reaction stays
fixed). Similarly, codebook 1,2 has the same best response as 0,2, but a lower payoff to
the sender (3.15 instead of 3.25).

Only the codebooks 2,0 and 0,2 in Table 1 are Nash codes. Apart from a direct verifica-
tion, this follows from Theorems 4.2 and 4.4, respectively, which we will discuss in the
next section.

The fact that a code is not Nash seems to be due to the fact that not all symbols of the
channels are used for transmission. With some qualifications, this is indeed the case, as
we discuss in the remainder of this section.

Consider the channel in (7) and suppose that there are three states, Ω = {0,1,2}. How-
ever, even when each state is assigned to a different input symbol, one can replicate the
counterexample in (9) when the additional state 2 has a weight q2V2 that is too low. For
example, if priors are uniform as before (qi = 1/3) and V0 = 6, V1 = 4, and V2 = 1, then
the channel outputs would be decoded as before when state 2 is absent, with the same lack
of the Nash property.

Hence, one should require that all output symbols are decoded differently. However, the
following example shows that this may still fail to give a Nash code:

y
qiVi p(y|x)

0 1 2

0.35 0 0.4 0.3 0.3

0.35 x 1 0.3 0.4 0.3

0.3 2 0.05 0.45 0.5

(10)
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Suppose states 0, 1, 2 are encoded as 0, 1, 2 and have the indicated weights 0.35, 0.35, 0.3,
respectively. Here, the row for channel input 1 has slightly higher weight than for input 2,
so because 0.35× 0.4 > 0.3× 0.45 the decoding function is just the identity. However,
for state 1 the sender can improve the probability of correct decoding by deviating from
x1 = 1 to x̂ = 2 because 0.4 < 0.45.

In (10), for any input x the corresponding output y = x has the highest probability of arriv-
ing, but this is not relevant for decoding. With uniform priors and utilities, a reasonable
condition for the channel is “identity decoding”, that is, for any received output y, the
maximum likelihood input is x = y. That is, suppose that

X = Y, p(y|y)> p(y|x) for all y ∈ Y, x ∈ X , x 6= y (11)

which says that each output symbol y is more likely to have been received correctly than
in error. This property is violated in (10), but if it holds then the following proposition
applies.

Proposition 3.1. Consider a channel with input and output alphabets X and Y so that
(11) holds. Let c be a code so that each channel output is decoded as coming from a
different channel input xi with a deterministic best-response decoding function d. Then
(c,d) is a Nash equilibrium and c is a Nash code. Every output y is decoded as a state i
so that xi = y and so that qiVi is maximal.

Proof. By assumption, X = Y and the map φ : Y → X defined by φ(y) = xi if d(y, i) = 1
is injective and hence a bijection. Suppose φ is not the identity map, so it has a cy-
cle of length l > 1, which by permuting Ω we assume as coming form the first l states
x0,x1, . . . ,xl−1, that is, φ(x j) = x j+1modl for 0 ≤ j < l. So channel output x0 is decoded
as state 1 because φ(x0) = x1, output x1 is decoded as state 2, and so on. Because d is a
best-response decoding function, q0V0 p(x0|x0)≤ q1V1 p(x0|x1) and therefore

q0V0 ≤ q1V1
p(x0|x1)

p(x0|x0)
< q1V1

by (11). In the same manner, q1V1 < q2V2 < · · ·< ql−1Vl−1 < q0V0, a contradiction.

So φ is identity map. Consider any state i. If d(y, i) = 0 for all outputs y, then (6) holds
trivially. Otherwise, channel output xi is decoded as state i and (6) holds because

∑
y∈Y

p(y|xi)d(y, i) = p(xi|xi)≥ p(xi|x̂) = ∑
y∈Y

p(y|x̂)d(y, i)

by (11). So c is a Nash code. The encoding function c is surjective because every input xi

occurs as a possible decoding as a state i. However, if |Ω| > |X |, then c is not injective.
If xi = xk, then d(y, i) = 1 requires that xi = y and that qiVi ≥ qkVk by the best-response
condition (in fact for any state k), as claimed.

In many contexts, in particular when a channel is used repeatedly, a code does not use all
possible channel inputs in order to allow for redundancy and error correction. Sufficient
conditions for Nash codes beyond Proposition 3.1 are therefore of interest.
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4 Receiver-optimal codes

In this section, we show that every code that maximizes the receiver’s payoff is a Nash
code. The proof implies that this holds also if the receiver’s payoff is locally maximal,
that is, when changing only a single codeword, and the corresponding best response of
the receiver, at a time. Finally, we discuss the connection with potential functions.

In the example (9), changing the codebook c to c′ where c′(1) = x̂ = 2 improves the
sender payoff from U(c,d) to U(c′,d), where d is the receiver’s best-response decoding
for code c. In addition, it is easily seen that the receiver payoff also improves from V (c,d)
to V (c′,d), and his payoff V (c′,d′) for the best response d′ to c′ is possibly even higher.
This observation leads us to a sufficient condition for Nash codes.

Definition 4.1. A receiver-optimal code is a code c with highest expected payoff to the
receiver, that is, so that

V (c,d)≥V (ĉ, d̂)

for any other code ĉ, where d is a best response to c and d̂ is a best response to ĉ.

Note that in this definition, the expected payoff V (c,d) (and similarly V (ĉ, d̂)) does not
depend on the particular best-reponse decoding function d in case d is not unique when
there are ties, because the receiver’s payoff is the same for all best responses d.

The following is the central theorem of this section. It is proved in three simple steps,2

which give rise to a generalization that we discuss afterwards, along with examples and
further observations.

Theorem 4.2. Every receiver-optimal code is a Nash code.

Proof. Let c be a receiver-optimal code with codebook x0,x1, . . . ,xM−1, and let d be an
arbitrary decoding function. Suppose there exists a code ĉ with codebook x̂0, x̂1, . . . , x̂M−1

so that U(ĉ,d)>U(c,d), that is,

∑
i∈Ω

qiUi ∑
y∈Y n

p(y|x̂i)d(y, i)> ∑
i∈Ω

qiUi ∑
y∈Y n

p(y|xi)d(y, i). (12)

If d is a best response to c according to (3) and (4), then (12) holds for some ĉ if and only
if c is not a Nash code, so suppose that c is not a Nash code; however, the following steps
one and two apply for any d.

Step one: Clearly, (12) implies3 that there exists at least one i ∈Ω so that

∑
y∈Y n

p(y|x̂i)d(y, i)> ∑
y∈Y n

p(y|xi)d(y, i). (13)

Consider the new code c′ which coincides with c except for the codeword for state i,
where we set c′(i) = x̂i. So the codebook for c′ is x0, . . . ,xi−1, x̂i,xi+1, . . . ,xM−1. By (13),

2 We are indebted to Drew Fudenberg who suggested steps two and three.
3 This claim follows also directly from Proposition 2.2, but we want to refer later to (12) as well.
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we also have

U(c′,d) = ∑
j∈Ω, j 6=i

q jU j ∑
y∈Y n

p(y|x j)d(y, j)+qiUi ∑
y∈Y n

p(y|x̂i)d(y, i)

> ∑
j∈Ω

q jU j ∑
y∈Y n

p(y|x j)d(y, j) =U(c,d).
(14)

Step two: In the same manner, (13) implies an improvement of the receiver function, that
is,

V (c′,d)>V (c,d). (15)

Step three: Let d be the best response to c and let d′ be the best response to c′. With (15),
this implies

V (c′,d′)≥V (c′,d)>V (c,d).

Hence, code c′ has higher expected receiver payoff than c. This contradicts the assumption
that c is a receiver-optimal code.

In Table 1, the codebook 2,0 is receiver-optimal, and a Nash code in agreement with
Theorem 4.2.

We have shown that the codebook 0,1 in Table 1 is not a Nash code. Note, however, that
this is the code with highest sender payoff. Hence, a “sender-optimal” code is not neces-
sarily a Nash code. The reason is that, because sender and receiver have different payoffs
for the two states, the sender prefers the code with large partition class Y1 for state 1, but
then can deviate to a better, unused message within Y1. (Note that the sender’s payoff only
improves when the receiver’s response stays fixed; with best-response decoding, the code
0,2 has a worse payoff U to the sender than 0,1.)

In Table 1, the code c with codebook 0,2 is also seen to be a Nash code with the help
of Table 1 according to the proof of Theorem 4.2. Namely, it suffices to look for prof-
itable sender deviations c′ where only one codeword is altered, which would also imply
an improvement to the receiver’s payoff from V (c,d) to V (c′,d), and hence certainly an
improvement to his payoff V (c′,d′) where d′ is the best response to c′. For the two pos-
sible codes c′ given by 1,2 and 0,1, the receiver payoff V does not improve according
to Table 1, so c is a Nash code. By this reasoning, any “locally” receiver-optimal code,
according the following definition, is also a Nash code, as stated afterwards in Theo-
rem 4.4.

Definition 4.3. A locally receiver-optimal code is a code c so that no code c′ that differs
from c in only a single codeword gives higher expected payoff to the receiver. That is, for
all c′ with c′(i) 6= c(i) for some state i, and c′(k) = c(k) for all k 6= i,

V (c,d)≥V (c′,d′)

where d is a best response to c and d′ is a best response to c′.

Theorem 4.4. Every locally receiver-optimal code is a Nash code.

Proof. Apply the proof of Theorem 4.2 from Step two onwards.
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Clearly, every receiver-optimal code is also locally receiver-optimal, so Theorem 4.2 can
be considered as a corollary to the stronger Theorem 4.4.

Local receiver-optimality is more easily verified than global receiver-optimality, because
much fewer codes c′ have to be considered as possible improvements for the receiver
payoff according to Definition 4.3. A locally receiver-optimal code can be reached by
iterating profitable changes of single codewords at a time. This simplifies the search for a
(nontrivial) Nash code.

To conclude this section, we consider the connection to potential games which also allow
for iterative improvements in order to find a Nash equilibrium. As in Monderer and
Shapley (1996, p. 127), consider a game in strategic form with finite player set N, and
pure strategy set Si and utility function ui for each player i. Then the game has an (ordinal)
potential function P : ∏ j∈N S j→ R if for all i ∈ N and s−i ∈∏ j 6=i S j and si, ŝ i ∈ Si,

ui(s−i, ŝ i)> ui(s−i,si) ⇔ P(s−i, ŝ i)> P(s−i,si). (16)

The question is if in our game, the receiver’s payoff is a potential function.4 The following
proposition gives an answer.

Proposition 4.5. Consider the game with M + 1 players where for each state i in Ω,
a separate agent i transmits a codeword c(i) over the channel, which defines a function
c : Ω→ Xn, and where the receiver decodes each channel output with a decoding function
d as before. Each agent receives the same payoff U(c,d) as the original sender. Then

(a) Any Nash equilibrium (c,d) of the (M + 1)-player game is a Nash equilibrium of
the original two-player game, and vice versa.

(b) The receiver’s expected payoff is a potential function for the (M+1)-player game.

(c) The receiver’s expected payoff is not necessarily a potential function for the original
two-player game.

Proof. Every profile c of M strategies for the agents in the (M +1)-player game can be
seen as a sender strategy in the original game, and vice versa. To see (a), let (c,d) be a
Nash equilibrium of the (M +1)-player game. If there was a profitable deviation ĉ from
c for the sender in the two-player game as in (12), then there would also be a profitable
deviation c′ that changes only one codeword c(i) as in (14), which is a profitable deviation
for agent i, a contradiction. The “vice versa” part of (a) holds because any profitable
deviation of a single agent is also a deviation for the sender in the original game.

Assertion (b) holds because for any i in Ω, (14) is, via (13), equivalent to (15).

To see (c), consider the example (7) with c and ĉ given by the codebooks 1,0 and 2,1,
respectively, and d decoding channel outputs y= 0,1,2 as states 0,0,1, respectively. Then

4 We thank Rann Smorodinsky for raising this question.
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the payoffs to sender and receiver are

U(c,d) = q0U0(p(0|1)+ p(1|1))+q1U1 p(2|0) = 1× (0.25+0.5)+4×0.15 = 1.35
V (c,d) = q0V0 (p(0|1)+ p(1|1))+q1V1 p(2|0) = 3× (0.25+0.5)+2×0.15 = 2.55
U(ĉ,d) = q0U0(p(0|2)+ p(1|2))+q1U1 p(2|1) = 1× (0.2+0.2)+4×0.25 = 1.4
V (ĉ,d) = q0V0 (p(0|2)+ p(1|2))+q1V1 p(2|1) = 3× (0.2+0.2)+2×0.25 = 1.7

which shows that (16) does not hold with ui as sender payoff and P as receiver payoff,
because these payoffs move in opposite directions when changing the sender’s strategy
from c to ĉ, for this d.

A global maximum of the potential function gives a Nash equilibrium of the potential
game (Monderer and Shapley, 1996, Lemma 2.1). Hence, (a) and (b) of Proposition 4.5
imply that a maximum of the receiver payoff defines a Nash equilibrium, as stated in
Theorem 4.2. It is also known that a “local” maximum of the potential function defines
a Nash equilibrium (Monderer and Shapley, 1996, footnote 4). However, this does not
imply Theorem 4.4. The reason is that in a local maximum of the potential function,
the function cannot be improved by unilaterally changing a single player’s strategy. In
contrast, in a locally receiver-optimal code, the receiver’s payoff cannot be improved
by changing a single codeword together with the receiver’s best response. As a trivial
example, any “babbling” Nash code for (7) where x0 = x1 is not locally receiver-optimal,
but is a “local maximum” of the receiver payoff.

In a potential game, improvements of the potential function can be used for dynamics that
lead to Nash equilibria. For our games, the study of such dynamics may be an interesting
topic for future research.

5 Binary channels and monotonic decoding

Our next main result (stated in the next section) concerns the important binary channel
with X =Y = {0,1}. The two possible symbols 0 and 1 for a single use of the channel are
called bits. The binary channel is the basic model for the transmission of digital data and
of central theoretical and practical importance in information theory (see, for example,
Cover and Thomas, 1991, or MacKay, 2003).

We assume that the channel errors ε0 = p(1|0) and ε1 = p(0|1) fulfill

ε0 > 0, ε1 > 0, ε0 + ε1 < 1, (17)

where ε0 + ε1 < 1 is equivalent to either of the inequalities, equivalent to (11),

1− ε0 > ε1, 1− ε1 > ε0. (18)

These assert that a received bit 0 is more likely to have been sent as 0 (with probability
1− ε0) than sent as bit 1 and received with error (with probability ε1), and similarly that
a received bit 1 is more likely to have been sent as 1 than received erroneously. It may
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still happen that bit 0, for example, is transmitted with higher probability incorrectly than
correctly, for example if ε0 = 3/4 and ε1 = 1/8.

Condition (17) can be assumed with very little loss of generality. If ε0 = ε1 = 0 then the
channel is error-free and every message can be decoded perfectly. If ε0 + ε1 = 1 then the
channel output is independent of the input and no information can be transmitted. For
ε0 + ε1 > 1 the signal is more likely to be inverted than not, so that one obtains (17) by
exchanging 0 and 1 in Y .

Condition (17) does exclude the case of a “Z-channel” that has only one-sided errors, that
is, ε0 = 0 or ε1 = 0. We assume instead that this is modelled by vanishingly small error
probabilities, in order to avoid channel outputs y in Y n that cannot occur for some inputs x
when ε0 = 0 or ε1 = 0. With (17), every channel output y has positive, although possibly
very small, probability.

The binary channel is symmetric when ε0 = ε1 = ε > 0, where ε < 1/2 by (17).

The binary channel is used n times independently. A code c : Ω→ Xn for X = {0,1}
is also called a binary code. Our main result about binary codes (Theorem 6.5 below)
implies that any binary code is a Nash code,5 provided the decoding is monotone. This
monotonicity condition concerns how the receiver resolves ties when a received channel
output y can be decoded in more than one way.

We first consider an example of a binary code that shows that the equilibrium property
may depend on how the receiver deals with ties. Assume that the channel is symmetric
with error probability ε . Let M = 4, n = 3, and consider the codebook x0,x1,x2,x3 given
by 000,100,010,001. All four states i have equal prior probabilities qi = 1/4 and equal
sender and receiver utilities Ui =Vi = 1. The sets Yi in (3) are given by

Y0 = {000}, Y2 = {010,011,110,111},
Y1 = {100,101,110,111}, Y3 = {001,011,101,111}. (19)

This shows that for any channel output y other than an original codeword xi, there are
ties between at least two states. For example, 110 ∈ Y1∩Y2 because 110 is received with
probability ε(1− ε)2 for x1 and x2 as channel input. For y = 111, all three states 1,2,3
are tied.

Consider first the case that the receiver decodes the channel outputs 110,011,101 as states
1,2,3, respectively, that is, according to

d(110,1) = 1, d(011,2) = 1, d(101,3) = 1. (20)

We claim that this cannot be a Nash code, irrespective of the decoding probabilities
d(111, i) which can be positive for any i = 1,2,3 by (19). The situation is symmetric
for i = 1,2,3, so assume that d(111, i) is positive when i = 1; the case of a determin-
istic decoding where d(111,1) = 1 is shown on the left in Figure 1. Then the receiver

5 Hernández, Urbano, and Vila (2010) show that for a binary noisy channel, the decoding rule of “joint
typicality” used in a standard proof of Shannon’s channel coding theorem (Cover and Thomas, 1991, Sec-
tion 8.7) may not define a Nash equilibrium.
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001 101

011 111
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001 101

Figure 1: Binary code with four codewords 000, 100, 010, 001, with non-monotonic
decoding (left) and monotonic decoding (right, discussed in Section 8). The light-grey
sets indicate how a channel output is decoded.

decodes y as state 1 with positive probability when y equals 100, 110, or 111. When
x1 = 100 is sent, these channel outputs are received with probabilities (1−ε)3, ε(1−ε)2,
and ε2(1− ε), respectively, so the sender payoff is

(1− ε)3 + ε(1− ε)2 + ε
2(1− ε)d(111,1)

in (5). Given this decoding, the sender can improve her payoff in state 1 by sending
x̂ = 110 rather than x1 = 100 because then the probabilities of the channel outputs 100
and 110 are just exchanged, whereas the probability that output 111 is decoded as state 1
increases to ε(1− ε)2 d(111,1); that is, given this decoding, sending x̂ = 110 is more
likely to be decoded correctly as state 1 than sending x1 = 100. This violates (6).

The problem with the decoding in (20) is that when the receiver is tied between states 1, 2,
and 3 when the channel output is ŷ = 111, he decodes ŷ as state 1 with positive probability
d(111,1), but when he is tied between even fewer states 1 and 3 when receiving y =
101, that decoding probability d(101,1) decreases to zero. This violates the following
monotonicity condition.

Definition 5.1. Consider a codebook with codewords xi for i ∈ Ω. For a channel output
y, let T (y) be the set of tied states according to

T (y) = {l ∈Ω | y ∈ Yl}. (21)

Then a decoding function d in (2) is called monotonic if it is a best response decoding
function with (3) and (4) and if for all y, ŷ ∈ Y n and states i,

i ∈ T (y)⊆ T (ŷ) ⇒ d(y, i)≥ d(ŷ, i). (22)

Furthermore, d is called consistent if

i ∈ T (y) = T (ŷ) ⇒ d(y, i) = d(ŷ, i). (23)
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Condition (22) states that the probability of decoding the channel output as state i can only
decrease when the set of tied states increases. Condition (23) states that the decoding
probability d(y, i) of state i may only depend on the set T of states that are tied with i,
but not on the received channel output y. Clearly, monotonicity implies consistency. We
will show that for certain channels, in particular the binary channel, monotonic decoding
gives a Nash code. However, for consistent decoding this is not the case. For example,
the decoding shown in the left picture of Figure 1 is consistent because no two channel
outputs have the same set of tied states, but the Nash property is violated.

Monotonic decoding functions exist, for example by breaking ties uniformly at random
according to d(y, i) = 1/|T (y)| for i ∈ T (y). We study the monotonicity condition in
Definition 5.1 in more detail in later sections.

6 Nash codes for input symmetric channels

In this section, we state and prove our main result, Theorem 6.5 below, about binary
codes. It turns out that it also applies to the following generalization of discrete channels
where the error probability εy of receiving an incorrect output symbol y only depends on y
but not on the input.

Definition 6.1. A discrete channel is input symmetric if X =Y and there are errors εy > 0
for y ∈ Y so that ∑y∈Y εy < 1 and for all x ∈ X , y ∈ Y :

p(y|x) = εy > 0 if x 6= y,
p(y|x) = νy > εy if x = y, (24)

where νy = 1−∑z 6=y εz and thus for all y

νy− εy = 1−∑
z∈Y

εz > 0 . (25)

Clearly, every binary channel is input symmetric. The matrix in (26) shows an example
of an input symmetric channel with three symbols.

y
p(y|x)

0 1 2

0 0.3 0.2 0.5

x 1 0.1 0.4 0.5

2 0.1 0.2 0.7

(26)

By (25), the transition matrix of an input symmetric channel is the sum of a matrix where
each row is identical (given by the errors) plus

(
1−∑z∈Y εz

)
times the identity matrix.

Definition 6.1 is chosen for our needs and, to our knowledge, not common in information
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theory; the definition of a symmetric channel by Cover and Thomas (1991, p. 190) is
different, but covers the case where εy = ε for all y.

A channel that is “output symmetric” is shown in (7), where for any given input x the
outputs y other than x have the same error probabilities p(y|x). As we have shown with
that example, such a channel may have codes that are not Nash codes.

The argument for Theorem 6.5 below rests on two lemmas. It is useful to partially order
channel outputs and inputs by “closeness” to a given codeword as follows.

Definition 6.2. Let x,y,z ∈ Sn for some set S. Then y is closer to x than z if and only if 6

y j 6= z j ⇒ y j = x j ∀ j = 1, . . . ,n.

The following key lemma states in (29) that the decoding probability of a channel output
y for a state i does not decrease when y gets closer to the codeword xi.

Lemma 6.3. Consider a code for an input symmetric channel, a state i, channel outputs
y and ŷ, and assume y is closer to codeword xi than ŷ. Then

i ∈ T (ŷ) ⇒ i ∈ T (y) , (27)

i ∈ T (ŷ) ⇒ T (y)⊆ T (ŷ) , (28)

and if the code is monotonically decoded then

d(y, i)≥ d(ŷ, i). (29)

Proof. To prove (27), we can assume that y and ŷ differ in only one symbol, because then
(27) holds in general via a sequence of changes of only one symbol at a time. Assume
that y and ŷ differ in the jth symbol, that is, y j 6= ŷ j and y− j = ŷ− j with the notation

y− j = (ys)s 6= j, y = (y j,y− j). (30)

With (1), we use the notation

p(y|x) = p(y j|x j) p(y− j|x− j) := p(y j|x j)∏
s 6= j

p(ys|xs), (31)

and, for any k in Ω,
Qk := qkVk p(y− j|xk

− j). (32)

Then by (3), y ∈ Yi means qiVi p(y|xi)≥ qkVk p(y|xk) for all k in Ω, or equivalently

qiVi p(y j|xi
j) p(y− j|xi

− j)≥ qkVk p(y j|xk
j) p(y− j|xk

− j), (33)

that is, by (32), y ∈ Yi if and only if

p(y j|xi
j)

p(y j|xk
j)
≥ Qk

Qi
∀k ∈Ω . (34)

6 We thank a referee for correcting this definition.
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Because y is closer to xi than ŷ, we have y j = xi
j 6= ŷ j. Suppose, to show (27), that ŷ ∈ Yi,

that is, because y− j = ŷ− j,

p(ŷ j|xi
j)

p(ŷ j|xk
j)
≥ Qk

Qi
∀k ∈Ω , (35)

and we want to show (34). For those k where xi
j = xk

j, the left-hand side of (35) does not
depend on ŷ j (and thus holds with y j instead of ŷ j), so consider any state k where xi

j 6= xk
j.

Then by (24),
p(y j|xi

j)

p(y j|xk
j)
=

νy j

εy j

> 1 =
εŷ j

εŷ j

≥
p(ŷ j|xi

j)

p(ŷ j|xk
j)
≥ Qk

Qi
(36)

which shows (34). So ŷ ∈ Yi implies y ∈ Yi, which proves (27).

To show (28), assume again that y and ŷ differ only in their jth symbol, and let i ∈ T (ŷ)
and l ∈ T (y) for a state l. That is, ŷ ∈ Yi and y ∈ Yl , where y ∈ Yi by (27). Then states i
and l are tied for y, and clearly

p(y j|xi
j)

p(y j|xl
j)
=

Ql

Qi
. (37)

If xi
j = xl

j then (37) implies Ql = Qi and (35) holds with l instead of i, so ŷ ∈ Yl , that is,
l ∈ T (ŷ). If xi

j 6= xl
j, then the strict inequality (36) for k = l contradicts (37), so this cannot

be the case. This shows (28).

To show (29), assume monotonic decoding as in (22). If ŷ 6∈ Yi, then trivially d(y, i) ≥
d(ŷ, i) = 0. Otherwise, i ∈ T (ŷ) and thus i ∈ T (y)⊆ T (ŷ) by (27) and (28), which shows
(29) by (22).

The next lemma7 compares two channel inputs x and x̂ that differ in a single position j,
and the corresponding channel output when that jth symbol arrives as y j, for arbitrary
other output symbols y− j, using the notation (30).

Lemma 6.4. Consider a monotonically decoded code for an input symmetric channel, and
channel inputs x and x̂ which differ only in the jth symbol, where x is closer to codeword
xi than x̂. Then for all y− j

∑
y j∈Y

p((y j,y− j) |x) d((y j,y− j), i)≥ ∑
y j∈Y

p((y j,y− j) | x̂) d((y j,y− j), i). (38)

Proof. Because x− j = x̂− j and by (31), all terms in (38) have p(y− j|x− j) as a common
factor. By taking that factor out and subtracting the right-hand side, (38) is equivalent to

∑
y j∈Y

(
p(y j |x j)− p(y j | x̂ j)

)
d((y j,y− j), i)≥ 0 . (39)

If y j 6= x j and y j 6= x̂ j, then p(y j |x j)− p(y j | x̂ j) = εy j − εy j = 0, so (39) is equivalent to(
p(x j |x j)− p(x j | x̂ j)

)
d((x j,y− j), i)+

(
p(x̂ j |x j)− p(x̂ j | x̂ j)

)
d((x̂ j,y− j), i)≥ 0 . (40)

7 We are grateful to a referee who suggested this step for the binary channel.
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By (25), p(x j |x j)− p(x j | x̂ j) = νx j− εx j = 1−∑z∈Y εz = νx̂ j− εx̂ j , so that (40) is equiva-
lent to (

1−∑
z∈Y

εz

)(
d((x j,y− j), i)−d((x̂ j,y− j), i)

)
≥ 0 , (41)

which is true because d((x j,y− j), i) = d((xi
j,y− j), i)≥ d((x̂ j,y− j), i) by (29). This shows

(38).

The following main theorem is essentially a corollary to Lemma 6.4.

Theorem 6.5. Every monotonically decoded code for an input symmetric channel is a
Nash code.

Proof. For any position j, a channel output y is of the form (y j,y− j) as considered in (38).
If x and x̂ differ only in the jth position and x is closer to xi than x̂, with x j = xi

j 6= x̂ j, then
summing (38) over all y− j shows

∑
y∈Y n

p(y|x)d(y, i)≥ ∑
y∈Y n

p(y|x̂)d(y, i) .

For an arbitrary channel input x̂, considering one symbol at a time where x̂ differs from
xi, this eventually gives (6), which proves the claim.

In (34), it is used that all transition probabilities of the channel are positive. In fact,
Theorem 6.5 does not hold without this assumption.

Remark 6.6. If some error probabilities are zero, it is no longer true that every monoton-
ically decoded binary code is a Nash code.

Proof. Consider a binary “Z-channel” where p(1|0) = ε0 = 0 and p(0|1) = ε1 = ε > 0,
which is used twice (n = 2), with transmission probabilities shown in (42).

y
qiVi p(y|x)

00 01 10 11

1 00 1 0 0 0

1 01 ε 1− ε 0 0
x

10 ε 0 1− ε 0

11 ε2 ε(1− ε) (1− ε)ε (1− ε)2

(42)

Assume uniform weights qiVi = 1 and let the two codewords be x0 = 00 and x1 = 01, so
that Y0 = {00,10,11} and Y1 = {01,10,11}. Note that outputs 10 and 11 are both tied be-
cause they have probability zero with these inputs. Assume that these two “unobtainable”
outputs are decoded as state 1, which defines a monotonic decoding rule (for a smaller
set of tied states, the probability of decoding a state in the smaller set does not go down).
This decoding is indicated by boxes in (42). However, this is not a Nash code because the
sender can improve the probability of decoding state 1 from 1− ε to 1− ε2 by choosing
x̂ = 11 instead of x0 = 01 as channel input.
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7 Nash-stable channels

In this section we carry the analysis of Section 6 one step further. This is motivated by
Lemma 6.4 which asserts, in effect, that the Nash property applies when varying only the
jth symbol in the transmitted n-tuple. That is, if a single use of the channel always gives
a Nash equilibrium under monotonic decoding, then this also holds when the channel is
used n times independently, with codewords of length n. In fact, each of the n times one
can use a different channel. We first give a formal statement and proof of this observation.
Afterwards, we discuss its relationship to the results of the previous section.

Definition 7.1. A discrete noisy channel is called Nash-stable if, for a single use of the
channel (n = 1), every monotonically decoded code is a Nash code, for any number of
states i with nonnegative weights qiVi.

The following theorem considers a product of n noisy channels with input and output
alphabets X( j) and Y ( j) and transition probabilities p j(y j|x j) for 1 ≤ j ≤ n. These
channels are used independently with channel inputs x = (x1, . . . ,xn) and channel outputs
y = (y1, . . . ,yn), where y is obtained, analogous to (1), according to

p(y|x) =
n

∏
j=1

p j(y j|x j). (43)

Note that the possible inputs x to the product channel have their n symbols distorted with
independent errors, but the considered codes need not have any product structure. That
is, the codewords can be chosen in any way just as in the previously considered case of
using the same channel n times.

Theorem 7.2. The product of Nash-stable channels is Nash-stable.

Proof. Let X = ∏
n
j=1 X( j) and Y = ∏

n
j=1Y ( j). Consider a finite set Ω of states and a

code c : Ω→ X , where we denote the codewords by xi = c(i) as usual for i in Ω. Assume
that the decoding function d : Y ×Ω→R is monotonic. If c is not a Nash code, then there
is some state i and x = xi and x̂ in X so that

∑
y∈Y

p(y|x)d(y, i)< ∑
y∈Y

p(y|x̂)d(y, i) . (44)

As in Theorem 6.5, this implies that (44) holds for some x and x̂ in X that differ only in
their jth symbol with x closer to xi than x̂, that is, x j = xi

j 6= x̂ j, and otherwise xs = x̂s for
s 6= j, so we consider this case. Analogously to (31), we write p(y|x)= p j(y j|x j) p(y− j|x− j),
and in addition let Y− j = ∏s 6= j Y (s). Because x− j = x̂− j, (44) is equivalent to

∑
y− j∈Y− j

p(y− j|x− j) ∑
y j∈Y ( j)

(p j(y j|xi
j)− p j(y j|x̂ j))d((y j,y− j), i)< 0.

Hence, for at least one y− j we have p(y− j|x− j)> 0 and

∑
y j∈Y ( j)

p j(y j|xi
j)d((y j,y− j), i)< ∑

y j∈Y ( j)
p j(y j|x̂ j))d((y j,y− j), i). (45)
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(Apart from the notation Y ( j) for the output set of the jth channel, this just states that (39)
does not hold.) We claim that (45) violates the assumption that the jth channel is Nash-
stable. Namely, consider the same set of states Ω and the code C : Ω→ X( j) that encodes
state i as C(i) = xi

j. The original full codeword xi = (xi
j,x

i
− j) is sent across the product

channel X , and the jth output symbol y j is decoded according to D : Y ( j)×Ω→R defined
by

D(y j, i) = d((y j,y− j), i) (46)

for the fixed other outputs y− j. We want that this reflects the original best-response de-
coding, which requires that the weights qiVi are replaced by qiVi p(y− j|xi

− j) (which are
exactly the weights Qi in (32)). Then we obtain the following division of Y ( j) into best-
response sets Yi( j), analogous to (3):

Yi( j) = {y j ∈ Y ( j) | qiVi p(y− j|xi
− j) p(y j|xi

j)≥ qkVk p(y− j|xk
− j) p(y j|xk

j) ∀k ∈Ω}. (47)

Hence, y j ∈Yi( j) if and only if (y j,y− j) ∈Yi, which shows that D in (46) is indeed a best-
response decoding of the single-channel outputs y j. Because d is monotonic, so is D,
because the tied states l for y j (where y j ∈ Yl( j))) are those that are tied for y = (y j,y− j)
(where y ∈ Yl). Because of (45), (C,D) is not a Nash equilibrium and the jth channel is
not Nash-stable as claimed. So c is a Nash code for the product channel.

Theorem 6.5 states that for an input symmetric channel that is used n times independently,
every code is a Nash code. In particular, it is a Nash code for n = 1, so an input symmetric
channel is Nash-stable. In addition, Theorem 7.2 is more general by allowing a different
channel for each of the transmitted n symbols, but it is straightforward to extend the proof
of Theorem 6.5 to this case if each channel is input symmetric.

The condition of Nash-stability raises a number of questions. First, as the proof of Theo-
rem 7.2 shows, a large number of states i might be encoded with input symbols xi

j for the
jth channel, with different weights Qi, in order to use the assumption that the jth chan-
nel is Nash-stable. Does it matter if some of these weights Qi are zero? They are given
by Qi = qiVi p(y− j|xi

− j), so this happens when some channel error probabilities are zero.
This case is not excluded in the definition of Nash-stability or in Theorem 7.2. However,
such channels, for example the binary Z-channel, are not Nash-stable (which explains Re-
mark 6.6), according to the following proposition. We do not consider the trivial case that
p(y|x) = 0 for all input symbols x, when the output symbol y can be omitted altogether.

Proposition 7.3. Consider a discrete noisy channel where for some input symbols x and
x̂ and output symbol y we have p(y|x) = 0 and p(y|x̂) > 0. Then this channel is not
Nash-stable.

Proof. Consider Ω = {0,1}, q0 = q1 = 1/2, V0 = 2, V1 = 1, and the code x0 = x1 = x, so
both states are mapped to the same channel input x which cannot be received as channel
output y. (This example can in fact be obtained from the proofs of Theorem 7.2 and
Remark 6.6.) All outputs y′ with p(y′|x) > 0 are decoded as the state 0 with higher
weight. For the channel output y, both states are tied because this event has probability
zero, so y ∈ Y0. The receiver can therefore choose d(y,1) = 1, that is, decode output y as
state 1, and decode all other outputs ŷ so that p(ŷ|x) = 0 as state 1 as well. This decoding
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is monotonic (the only sets of tied states are {0,1} and {0}). Then in state 1, the sender
can change from x1 = x to x̂ and increase the decoding probability from zero to at least
p(y|x̂). This improves her payoff, so the code is not a Nash code.

The preceding remark shows that Nash-stability requires looking at “ambiguous” codes
that map more than one state to the same codeword. However, it also shows that if all
channel transmission probabilites are positive, then among any states mapped to the same
channel input, only those with maximum weight can be decoded with positive probability.
Clearly (as argued before in the proof of Proposition 3.1), “undecoded” states i so that
d(y, i) = 0 for all y can be ignored when checking Nash-stability. However, according to
Definition 7.1, this still requires checking many conditions for the possible codes, weights,
and monotonic decoding functions.

It can be shown, but is beyond the scope of this paper, that it is possible to restrict this
check to deterministic monotonic decoding functions. Then no more than |Y | states i have
the property that d(y, i)> 0 for some y in Y . For all other states, the Nash property holds
trivially. For the weights for these states, there are only finitely many combinations of
producing ties for any output y. The following remark illustrates this for a channel that is
not input symmetric.

Remark 7.4. There are Nash-stable channels that are not products of input symmetric
channels.

Proof. Consider the following channel with three symbols.

y
p(y|x)

0 1 2

0 4/7 1/7 2/7

x 1 2/7 4/7 1/7

2 1/7 2/7 4/7

(48)

Consider deterministic monotonic decoding functions, where at most three states have
positive probability of being decoded. If there is only one state decoded with positive
probability, then the Nash condition holds trivially, and for three states it holds by Propo-
sition 3.1. The symbols 0,1,2 can be cyclically permuted without changing the channel,
so suppose the code for two states 0 and 1 uses codewords x0 = 0 and x1 = 1. The decod-
ing depends on the relative weights qiVi, so suppose priors are uniform and V0 = 1. Then
for 1/4 <V1 < 2 we have Y0 = {0,2} and Y1 = {1}, which gives a Nash code. If V1 < 1/4
then Y1 is empty and Y0 = {0,1,2}, which gives trivially a Nash code, and similarly if
V1 > 2. If V1 = 1/4, then Y0 = {0,1,2} and Y1 = {1}, and the two states are tied for y = 1.
If output y = 1 is decoded as state 0, then the Nash property holds trivially, if as state 1,
then sending x1 gives the maximum decoding probability 4/7, so this is also a Nash code.

If V1 = 2, then Y0 = {0,2} and Y1 = {0,1,2}, so that the two states are tied both for y = 0
and y = 2. By consistency, both outputs y = 0 and y = 2 are decoded either as state 0 or
as state 1, which correspond to the cases already considered and give Nash codes.
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Finally, it is not hard to see that any mixed decoding strategy that is monotonic is a
convex combination of the considered deterministic monotonic decoding functions, which
implies the Nash property as well. This applies also to many states where more than one
state is mapped to the same input symbol.

The computational difficulty of deciding if a given channel is Nash-stable is open. The
problem belongs to the complexity class co-NP because it is is easy to verify that the
channel is not Nash-stable, by providing suitable weights, a code, a monotonic decoding
function, and a profitable deviation. We envisage two possible answers: Either one can
show that Nash-stable channels require that multiple ties occur simultaneously, like for
input symmetric channels or in the example (48), and check only codes with few states. In
that case, there may be a polynomial-time algorithm. Alternatively, the problem whether
a channel is Nash-stable may be co-NP-complete. We leave this as a topic for future
research.

8 General deterministic monotonic decoding functions

When is a deterministic decoding function monotonic? Suppose there is some fixed order
on the set of states so that always the first tied state is chosen according to that order.
In this final section, we show that this is essentially the only way to break ties with a
deterministic monotonic decoding function if it is defined for all sets of tied states T with
up to three states.

Because any monotonic decoding function is consistent according to (23), it is useful to
consider it as a function d : T ×Ω→ R where

T ∈T ⇔ T = T (y) = {l ∈Ω | y ∈ Yl} for some y ∈ Y (49)

and
d(T, i) := d(y, i) if T = T (y) (50)

which is well defined by (23). Whether we write d(T, i) or d(y, i) will be clear from the
context.

Consider again the example (20) with d(111,1) = 1 as shown on the left in Figure 1.
The following decoding function, changed from (20) so that 101 is decoded as state 1, is
monotonic,

d(110,1) = 1, d(011,2) = 1, d(101,1) = 1, d(111,1) = 1, (51)

shown in the right picture in Figure 1. This is a Nash code because all y in the set Y1, see
(19), are decoded as state 1; whichever x̂ in Y1 the sender decides to transmit instead of
x1, there is one y in Y1 for which p(y|x̂) = ε2(1−ε), so that the payoff to the sender in (5)
does not increase by changing from x1 to x̂.

As the right picture in Figure 1 shows, the decoding function in (51) can be defined by the
following condition: Consider a fixed linear order ≺ on Ω (in this case 0≺ 1≺ 2≺ 3) so
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that
d(T, i) = 1 ⇔ i ∈ T and ∀k ∈ T, k 6= i : i≺ k . (52)

That is, the decoding rule chooses the ≺-smallest state i from the set T . A fixed-order
decoding function d fulfills (52) for some ≺. Such a decoding function is deterministic
and clearly monotonic.

We want to show that any deterministic monotonic decoding function is a fixed-order
decoding function. We have to make the additional assumption that the decoding function
d(T, i) is general in the sense that it is defined for any nonempty set T (where it suffices
to require this at least for all |T | ≤ 3), not only the sets T in T that occur as sets of tied
states for some channel output y as in (49).

Without this assumption, we could add to the above example another state with codeword
x4 = 111 so that the “circular” decoding function in (20) is monotonic and gives a Nash
code, but is clearly not a fixed-order decoding function. It is reasonable to require that
a decoding function is defined generally and does not just coincidentally lead to a Nash
code because certain ties do not occur (as argued above, with the decoding (20) we do not
have a Nash code when ties have to be resolved for y = 111).

For general decoding functions, the monotonicity condition (22) translates to the require-
ment that for any T, T̂ ⊆Ω,

i ∈ T ⊆ T̂ ⇒ d(T, i)≥ d(T̂ , i). (53)

Proposition 8.1. Suppose that d(T, i) is deterministic and defined for all nonempty sets
T with |T | ≤ 3 (for example, if T in (49) contains all these sets) and fulfills (53). Then d
is a fixed-order decoding function.

Proof. Define the following binary relation ≺ on Ω:

i ≺ k ⇔ d({i,k}, i) = 1.

Clearly, either i ≺ k or k ≺ i for any two states i,k. We claim that≺ is transitive, that is, if
i ≺ k and k ≺ l, then i ≺ l. Otherwise, there would be a “cycle” of distinct i,k, l with i ≺ k
and k ≺ l and l ≺ i. This is symmetric in i,k, l, so assume d({i,k, l}, i) = 1 and therefore
d({i,k, l},k) = 0 and d({i,k, l}, l) = 0. However, with T = {i, l} and T̂ = {i,k, l} we have
d(T, i) = 0 < 1 = d(T̂ , i), which contradicts (53).

So ≺ defines a linear order on Ω. We show that (52) holds, that is, for any T̂ in T the
decoded state i (so that d(T̂ , i) = 1) is the ≺-smallest element of T̂ . This holds trivially
and by definition if T̂ has at most two elements, otherwise, if l ≺ i for some l ∈ T̂ , then
we obtain with T = {i, l} the same contradiction d(T, i) = 0 < 1 = d(T̂ , i) as before. So
the decoded state is chosen according to the fixed order ≺ on Ω as claimed.

When the weights qiVi for the states i are generic, then Yi in (3) is always a singleton, so no
ties occur and decoding is deterministic. One can make any weights generic by perturbing
them minimally so that ties are broken uniquely but decoding is otherwise unaffected.
That is, if i and k are tied for some y because qiVi p(y|xi) = qkVk p(y|xk), this tie is broken
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in favor of i by slightly increasing qiVi, which will then always happen whenever i and k
are tied originally. This induces a fixed-order decoding, where any linear order among the
states can be chosen. Thus, Proposition 8.1 asserts that general deterministic monotonic
decoding functions are those obtained by generic perturbation of the weights.

Finally, we observe that the above codebook 000,100,010,001 with decoding as in (51)
defines a Nash code (and if priors are minimally perturbed so that q1 > q2 > q3 there are
no ties and decoding is unique), but this code is not locally optimal as in Theorem 4.4.
Namely, by changing the codeword 100 to 110, all possible channel outputs y differ in at
most one bit from one of the four codewords, which clearly improves the payoff to the
receiver. So not all binary Nash codes are locally receiver-optimal.
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Jäger, G., L. Koch-Metzger, and F. Riedel (2011), Voronoi languages: Equilibria in cheap talk
games with high-dimensional types and few signals. Games and Economic Behavior 73,
517–537.

Kamenica, E., and M. Gentzkow (2011), Bayesian persuasion. American Economic Review 101,
2590–2615.

Koessler, F. (2001), Common knowledge and consensus with noisy communication. Mathematical
Social Sciences 42, 139–159.

27



Kreps, D. M., and J. Sobel (1994), Signalling. In: R. J. Aumann and S. Hart, eds., Handbook of
Game Theory with Economic Applications, Vol. 2, Elsevier, Amsterdam, 849–867.

Lewis, D. (1969), Convention: A Philosophical Study. Harvard University Press, Cambridge, MA.

Lipman, B. (2009), Why is language vague? Mimeo, Boston University.

MacKay, D. J. C. (2003), Information Theory, Inference, and Learning Algorithms. Cambridge
University Press, Cambridge, UK.

MacKenzie, A. B., and L. A. DaSilva (2006), Game Theory for Wireless Engineers. Morgan and
Claypool.

Monderer, D., and L. S. Shapley (1996), Potential games. Games and Economic Behavior 14,
124–143.

Myerson, R. B. (1994), Communication, correlated equilibria and incentive compatibility. In: R. J.
Aumann and S. Hart, eds., Handbook of Game Theory with Economic Applications, Vol. 2,
Elsevier, Amsterdam, 827–847.

Nowak, M., and D. Krakauer (1999), The evolution of language. Proc. Nat. Acad. Sci. USA 96,
8028–8033.

Pawlowitsch, C. (2008), Why evolution does not always lead to an optimal signaling system.
Games and Economic Behavior 63, 203–226.

Shannon, C. E. (1948), A mathematical theory of communication. Bell System Technical Journal
27, 379–423; 623–656.

Sobel, J. (2012), Complexity versus conflict in communication. Proc. 46th Annual Conference on
Information Sciences and Systems (CISS). DOI 10.1109/CISS.2012.6310777, 6 pages.

Sobel, J. (2013), Giving and receiving advice. In: Advances in Economics and Econometrics,
Tenth World Congress of the Econometric Society, D. Acemoglu, M. Arellano and E. Dekel
(eds.), Cambridge University Press.

Spence, M. (1973), Job market signaling. The Quarterly Journal of Economics 87, 355–374.

Srivastava, V., et al. (2005), Using game theory to analyze wireless ad hoc networks. IEEE Com-
munications Surveys and Tutorials 7, Issue 4, 46–56.

Touri, B., and C. Lambort (2013), Language evolution in a noisy environment. Proc. American
Control Conference (ACC), 1938–1943.

Wärneryd, K. (1993), Cheap talk, coordination and evolutionary stability. Games and Economic
Behavior 5, 532–546.

28


	Von Stengel_Nash codes_2016_cover
	Von Stengel_Nash codes_2016_author
	1 Introduction
	2 Nash codes
	3 Examples of codes that are not Nash
	4 Receiver-optimal codes
	5 Binary channels and monotonic decoding
	6 Nash codes for input symmetric channels
	7 Nash-stable channels
	8 General deterministic monotonic decoding functions
	References


