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 23 

ABSTRACT. This study evaluated the ability of an experimental di-calcium-24 

phosphate desensitising agent (DCP) used alone or combined with 25 

phytosphingosine (PHS) to occlude dentine tubules and resist a citric acid (CA) 26 

or artificial saliva (AS) challenge. Three groups of human dentine specimens (DS) 27 

were treated with 1) PHS alone, 2) DCP or 3) a combination of PHS and DCP. 28 

Dentine hydraulic conductance was evaluated using a digital flow sensor at 6.9 29 

kPa. The fluid volume average of each treated-DS was used to calculate the total 30 

dentine permeability reduction (P%) prior to and following CA immersion for 1 31 

min or  4 weeks in AS. Treated-DS were submitted to SEM and FTIR 32 

spectroscopy analysis. Statistically significant differences (P%) were identified 33 

between the groups by ANOVA and Fisher’s multiple comparison test (P < 0.05). 34 

Interestingly, PHS and DCP appeared to work synergistically. DS treated with 35 
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DCP or PHS/DCP demonstrated a significant reduction (P%) prior to and 1 

following CA or AS challenge (P < 0.05). SEM and FTIR analysis showed 2 

consistent brushite crystals occluding the dentine tubules. Conversely, the 3 

application of PHS alone failed to demonstrate any significant reduction of 4 

dentine permeability (P > 0.05) or show any evidence of occlusion of the dentine 5 

tubules. DCP can however, be used alone or combined with PHS to decrease the 6 

dentine permeability as well as resisting an acid and artificial saliva challenge. 7 

This may therefore represent a suitable treatment for dentine hypersensitivity. 8 

INTRODUCTION 9 

Dentine hypersensitivity (DH) represents a common clinical condition within the 10 

young and adult population in western countries [West et al., 2013] mainly due to 11 

gastric and dietary acids revealing underlying dentine [Lussi et al., 2004]. DH 12 

develops in two phases [Dowell and Addy, 1983]: i) lesion localisation: 13 

subsequent loss of enamel caused by tooth wear or to gingival recession; ii) lesion 14 

initiation and DH symptomatology, which occurs after the protective smear layer 15 

is removed and the underlying dentine tubules are exposed. According to the 16 

hydrodynamic theory, the movement of fluid within the dentine tubules following 17 

either physical or osmotic stimulation may cause pain [Brannstrom et al., 1968]. 18 

The main treatment for DH is based on the reduction of the fluid flow through the 19 

physical occlusion of the dentine tubules [Pashley, 1986]. Although several 20 

products are currently available, there is still the need to develop innovative acid 21 

resistant desensitising agents. Acidic di-calcium phosphates (e.g., brushite) have 22 

been widely used as a hard tissue substitute due to their bioactivity and 23 

biocompatibility [Cama et al. 2009]. Moreover, it has been recently reported that 24 

pre-treatment of experimental hydroxyapatite discs (HAp) with sphingoid bases 25 

such as sphingosine, phytosphingosine (PHS), PHS phosphate and sphinganine 26 

significantly protected HAp against acid demineralisation in vitro [Valentijn-27 

Benz et al., 2015]. Cukkemane et al., (2015) revealed using atomic force 28 

measurement that PHS and other sphingoid bases can form diffusion barriers 29 

against H+ ions and bacteria. In principle, the reported anti-erosive properties 30 

would suggest that PHS could be included in oral care products for DH treatment. 31 

The aim of the present study was to evaluate the ability of experimental 32 

desensitising agents based on an acid di-calcium-phosphate (DCP) alone or in 33 

combination with PHS to occlude exposed dentine tubules. This aim was 34 

accomplished by quantitatively evaluating the reduction of the hydraulic 35 

conductance following the application of the tested materials and a subsequent 36 
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citric acid (CA) or artificial saliva (AS) challenge. SEM and FTIR spectroscopy 1 

analysis were also conducted. The null hypotheses tested were: 1) the application 2 

of DCP onto exposed dentine when used alone or in combination with PHS would 3 

not reduce the hydraulic conductance of EDTA-treated dentine; 2) the citric acid 4 

(CA) or artificial saliva (AS) challenge would reduce their ability to maintain the 5 

occlusion of the dentine tubules (longevity of treatment). 6 

 7 

MATERIALS AND METHODS.  8 

Preparation of specimens. Thirty sound human molars were extracted for surgical 9 

reasons under institutional ethical approval (granted by the research ethics 10 

committee) and used to create mid coronal dentine discs (DS) as described by 11 

Sauro et al., [2006]. In brief, occlusal enamel was removed using a slow-speed, 12 

water-cooled diamond saw (RS-70300; Struers, Copenhagen, Denmark). A 13 

second parallel cut was performed 1.5 mm beneath the cementum-enamel junction 14 

in order to remove the roots. A standard smear layer was created using a 180-grit 15 

silicon-carbide paper (30 s) and subsequently removed using 17% EDTA (pH 7.4) 16 

for 1 min followed by ultrasonic bath containing distilled water (5 min). DS were 17 

randomly divided into two main groups based on the challenge storage (n=15/ 18 

group): i) CA: citric acid; ii) AS: artificial saliva. Each main group was then 19 

divided in three sub groups (n=5/sub-group) based on the desensitising treatment: 20 

A) PHS: 4-hydroxysphinganine; B) DCP: Di-calcium-Phosphate (Brushite); C) 21 

PHS/DCP: phytosphingosine + Brushite. A Tris-Tween/ethanol solution (5 22 

mg/ml) of PHS was prepared as described by Valentijn-Benz et al., [2015].  23 

Desensitising dentine treatment. Specimens were rinsed with deionised water 24 

prior to the pre-treatment with PHS. PHS (0.1 ml) was gently brushed onto the 25 

dentine surface of all the specimens in Group A using a micro-brush (20 s), in 26 

triplicate (60 s; 0.3 ml) and then rinsed with deionised water (10s). The DCP was 27 

prepared as described by Cama et al., [2009] by mixing  equimolar quantities of 28 

β-tricalcium phosphate (β-TCP, Sigma-Aldrich, Gillingham, UK) and 29 

monocalcium phosphate monohydrate (MCPM, Sigma-Aldrich) in deionised 30 

water (R= 3 g/ml). The DCP specimens (Group B) were treated by an application 31 

of DCP (0.3 g) on the EDTA-treated dentine. Two consecutive layers of a semi-32 

fluid paste (30s each; ~0.15 g) were gently brushed onto the dentine surface using 33 

a micro-brush (60s) and left undisturbed for a further 30 s. Finally, the specimens 34 

were rinsed with deionised water (10s) and the excess of DCP was removed from 35 
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the dentine surface using the tip of a soft paint brush. The PHS/DCP specimens 1 

(Group C) also received the same PHS treatment, immediately followed by 2 

application of DCP as described above.  3 

Dentine permeability evaluation. All DS were cemented (ROCKET Heavy DVA, 4 

USA) to Plexiglass blocks penetrated with an 18 Gauge stainless steel tube. Each 5 

specimen was finally connected to a hydraulic pressure device (Fig. 1) under a 6 

constant hydraulic pressure of 6.9 kPa (Sauro et al., 2007; Pashley at al., 1986) 7 

for the measurement of the fluid volume (FV) through a digital sensor with a 8 

resolutions of ~100 nl/min and a response reading frequency of 1.56 Hz (ASL 9 

1600, Sensirion, Staefa, Switzerland). The highest hydraulic conductance of each 10 

specimen was recorded (Lp-max = 100% was arbitrarily assigned); specimens 11 

with a fluid flow rate less than 3µl/min were excluded and replaced with discs 12 

with a higher flow rate. Lp-max permits an evaluation of the changes in dentine 13 

permeability following the application of the test treatments. Each specimen was 14 

treated with the test materials as described above, and based on observations 15 

obtained during a pilot study, five FV readings were performed every 3 minutes 16 

for 15 minutes. These readings were then averaged and used to calculate the 17 

permeability reduction (P %) of each specimen using the following equation: 18 

   %𝑃 =
𝑓𝑙𝑢𝑖𝑑 𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑑𝑒𝑛𝑡𝑖𝑛𝑒

𝑓𝑙𝑢𝑖𝑑 𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑜𝑓 𝐸𝐷𝑇𝐴−𝑒𝑡𝑐ℎ𝑒𝑑 𝑑𝑒𝑛𝑡𝑖𝑛𝑒
 𝑥 100 19 

The specimens were subsequently tested according to two different ageing 20 

protocols (CA or AS). DS were immersed in CA (6 wt%; pH 1.5) and then left 21 

undisturbed for 60 s or in AS for 4 weeks (37°C). The composition of the AS was 22 

1.5 mmol/L CaCl2, 50 mmol/L KCl, 0.9 mmol/L KH2PO4, 20 mmol/L Tris, pH 23 

7.4. This solution (25 ml) was replaced every 72 h. The means (P %) and standard 24 

deviations of each group were calculated and any significant differences were 25 

observed between the groups by One-way ANOVA and Fisher’s least test (P < 26 

0.05).  27 

ATR/FTIR Spectroscopy and SEM evaluation. Two further DS were prepared 28 

for each sub-group and subsequently treated and challenged as previously 29 

described. These were analysed using a ATR/FTIR Spectrometer (Perkin-Elmer, 30 

Beaconsfield, UK) with a resolution of 4 cm-1 to characterise the chemical 31 

composition of the dentine prior to and following each product application and 32 

challenge protocol (i.e. CA or AS). The same specimens were then dried overnight 33 

in a silica-containing desiccator at 37ºC, gold sputter-coated (SCD004 Bal- Tec, 34 
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Vaduz, Liechtenstein) and examined using SEM (S-3500; Hitachi, Wokingham, 1 

UK). 2 

RESULTS.  3 

The results of dentine permeability reduction (P%) are illustrated in Figure 2. The 4 

application of DCP or PHS/DCP onto the EDTA-etched dentine significantly 5 

reduced dentine permeability (P < 0.05). However, the specimens treated with 6 

PHS/DCP demonstrated an ability to reduce dentine permeability by 92.2% after 7 

CA attack (Fig. 2A) and 83.1% after AS immersion (Fig. 2B). There was no 8 

significance reduction (P > 0.05) prior to and following CA or AS challenge in 9 

any group. PHS induced the lowest Lp reduction (10%) and no significant change 10 

(P > 0.05) was observed following CA or AS challenge. These results were 11 

confirmed by the SEM analysis, which showed a demineralised dentine surface 12 

with patent dentine tubules and exposure of collagen fibrils following EDTA 13 

etching (Fig. 3A), PHS application (Fig. 3B) and after CA attack (Fig. 3C). The 14 

FTIR analysis showed demineralised dentine (Amide I and II) both after PHS 15 

application (Fig. 3D) and after AS aging (Fig. 3E).  16 

Conversely, dentine treated with DCP or PHS/DCP showed dentine tubules that 17 

remained occluded following CA (Fig. 4A and 4B, respectively) or AS challenge 18 

(Fig. 4C). Conversely, the EDTA-etched specimens treated with PHS alone and 19 

subsequently immersed in AS presented only very few mineral deposits on the 20 

outer surface and patent dentine tubules (Fig. 4D). The FTIR analysis revealed 21 

that the mineral crystallites precipitated on the dentine surface following DCP or 22 

PHS/DCP application was brushite (Fig. 4E). The brushite’s crystals (size < 2µm) 23 

that precipitated within the tubules and on the dentine surface (Fig. 4A and 4B), 24 

converted into a more complex apatite-like calcium phosphate following AS 25 

immersion (Fig. 4F), although the size and the morphology of such latter crystals 26 

presented no clear change over time (Fig. 4C). Conversely, the EDTA-etched 27 

specimens treated with PHS and immersed in AS presented a very low PO peak 28 

at 1019 cm-1 and a clear demineralised dentine surface (Amide I and II), (Fig. 29 

4G). 30 

 31 

 32 

DISCUSSION  33 

An ideal dentine desensitiser should be easy to apply, act rapidly, cause no 34 

alteration to the tooth structure and/or irritation to pulp, and last as long as 35 

possible [Grossman, 1935].  36 
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However, in order to reduce the symptomatology of DH, it is of key importance 1 

to decrease dentine permeability (Lp), but also maintain the occlusion of the 2 

dentine tubules following subsequent acid and saliva challenges [Wang et al., 3 

2010]. The risk for DH may increase with the presence of dietary acids, as these 4 

remove the smear layer and open the underlying dentine tubules [Sauro et al., 5 

2007]. Citric acid is a common component of both fruit and soft drinks, and it is 6 

widely used in in vitro studies to simulate the oral environment and test the 7 

resistance of desensitisers to an acid challenge [Wiegand et al., 2007]. Saliva can 8 

also solubilise materials adhering to teeth and contains calcium and phosphate 9 

ions that can interact with surfaces [Arrais at al., 2003]. Therefore, it is essential 10 

to evaluate whether novel desensitising agents have the potential to effectively 11 

occlude the dentine tubules under circumstances similar to the oral environment. 12 

The results of the present study would therefore appear to reject both of the two 13 

null hypotheses since the DCP paste alone or in combination with PHS caused a 14 

significant (P < 0.05) permeability reduction before and after a CA challenge due 15 

to the precipitation of brushite both within the dentine tubules and on the dentine 16 

surface (Fig. 4A, 4B and 4E) or after AS storage, where this brushite converted 17 

to a different and probably more complex calcium-phosphate (Fig. 4 F) thereby 18 

maintaining the status of tubular occlusion over a period of 4 weeks (Fig. 4C). 19 

Indeed, Jiang et al., (2009) demonstrated that brushite may convert to stable 20 

hydroxyapatite when immersed in a calcium-rich solution at a slightly alkaline 21 

pH. 22 

Similarly, a novel calcium phosphate desensitising agent (TEETHMATE™, 23 

Kuraray corp., Japan), consisting of tetracalcium phosphate and di-calcium 24 

phosphate anhydrous (i.e. Monetite) has been demonstrated both in clinical [ 25 

Mehta et al., 2014] and in vitro [Thanatvarakorn et al., 2013] studies to be 26 

efficacious as dentine desensitising agent. This product contains di-calcium 27 

phosphate as one of the main constituent, whereas the DCP paste used in this 28 

study was made of equimolar quantities of β-TCP and mono-calcium phosphate-29 

monohydrate that precipitate as brushite (Cama et al., 2009) during application 30 

(Fig. 4). Conversely, TEETHMATE appears to precipitate as an apatite-like 31 

mineral [Brown and Chow, 1983]; its solubility in acid solutions [pH <5.0] may 32 

be much lower than that of brushite [Jiang et al., 2009]. The precipitation of 33 

brushite however, is not a new issue in dental research. For instance, dentine acid-34 

etching induces the release of calcium and phosphate which may precipitate as 35 

either brushite or octacalcium phosphate depending on the environmental pH. 36 

However, Shellis et al., (1997) demonstrated that at a pH below 4, as in the DCP 37 
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paste (Fig. 4E), brushite is mainly precipitated. Moreover, the acidic environment 1 

created by the CA challenge induced further precipitation of monetite [Şahin and 2 

Çiftçioğlu, 2014] and tubules occlusion (Fig. 4C). Indeed, crystals of di-calcium 3 

phosphates may increase and create a mechanical interlocking in acidic pH, 4 

thereby providing a more structural resistance to further hard tissue loss [Wang 5 

and Nancollas, 2008].  6 

Although PHS was not able to suitably occlude the dentine tubules (Fig. 3B) even 7 

after prolonged AS immersion (Fig. 4D), it appears to work synergistically in 8 

combination with DCP, forming an effective DH desensitiser. These specific 9 

results were probably due to the anti-erosive characteristic of PHS. Indeed, PHS 10 

may capture ionised phosphate and have a protection effect against 11 

demineralisation by binding any remaining HAp crystals [Kosoric et al., 2007]. 12 

However, due to its amphipathic character, in solution, PHS has the tendency to 13 

assemble into highly positively-charged aggregates or micelles, with the fatty 14 

acid tails buried inside and the positively charged head groups exposed to the 15 

bulk of the solution. Hence, the high density of positive charges on such 16 

aggregates will more likely produce a high avidity for negatively charged 17 

phosphate-rich surfaces such as HAp [Valentijn-Benz et al., 2015]. 18 

It is also acknowledged that erosion initiated by dietary acids may exacerbate DH 19 

and cause demineralisation of the collagen matrix. Demineralised dentine is 20 

characterised by unprotected collagen fibrils (Fig. 3A) that can be degraded by 21 

endogenous enzymes e.g., metalloproteases and cysteine cathepsins [Zarella et 22 

al., 2015]. Moreover, further collagen degradation can be also induced by 23 

salivary esterases and/or bacteria proteases [Park et al., 2008]. However, it has 24 

been demonstrated that mineral precipitation induced by bioactive substances 25 

e.g., calcium-phosphates and bioactive glasses may also reduce the enzymatic-26 

mediated collagen degradation [Tezvergil-Mutluay et al., 2014] and the risk for 27 

further wear of hard tissues (e.g. dentine) [Zarella et al., 2015].   28 

In conclusion, this experimental in vitro study demonstrated that the use of DCP 29 

paste alone or in combination with PHS may represent a suitable treatment for 30 

DH. The formation of acid resistant crystals within the dentine tubules produced 31 

by the experimental materials evaluated in the present study would suggest that 32 

they may be useful as potential long-term desensitisers for the treatment of DH. 33 

Further evaluation however, would be required in order to define and create more 34 

suitable clinical formulations for commercial products and their subsequent 35 

application in vivo. 36 

 37 
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 1 

 2 

 3 

 4 

 5 

Figure 1. Schematic illustration of how the dentine specimens were connected to a 6 
hydraulic pressure device under a constant hydraulic pressure (6.9 KPa) and the 7 
measurements of the fluid volume (FV) were attained via a digital sensor.  8 
 9 
 10 
 11 

                                                                                                                                                                                                            12 

 13 

 14 

 15 

 16 

 17 
Figure 2. Mean and standard deviations of %P (dentine permeability reduction) values 18 
before and after a citric acid A) and AS B) challenge. In rows, different superscript letters 19 
indicate significant differences between the three experimental desensitising agents 20 
following application or following a CA or AS challenge (P<0.05). In columns, different 21 
superscript numbers indicate significant differences in the same desensitising agent, 22 
between application and CA or AS challenge (P<0.05). 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
 36 
 37 
 38 
 39 
 40 
Figure 3. SEM micrograph of EDTA-etched dentine showing several patent tubules and 41 
collapsed collagen fibrils (pointer). B: EDTA-etched dentine following application of 42 
PHS showing no tubules occlusion, but only collapsed collagen fibrils (pointer). C: 43 
EDTA-etched dentine surface following application of PHS and subsequent CA attack. 44 
Note the presence of patent tubules and collapsed collagen fibrils (pointer). D: Spectra of 45 
EDTA-etched dentine treated with PHS. Note the bands at 3200–3400 cm-1 due to the O–46 
H stretching of water (H2O) and amide bands of collagen (1200–1725 cm-1) in dentine. 47 
The same spectra was also observed following PHS application and after CA attack (E).  48 
EDTA-etched dentine that received no desensitising treatment shows the same FTIR 49 
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features observed in figure-(E).  1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
Figure 4. A: SEM micrograph of the EDTA-etched dentine following application of DCP 21 
and subsequent CA attack. Note the presence of mineral crystals (size <2 µm) inside the 22 
dentine tubules (pointer). B: EDTA-etched dentine treated with PHS/DCP and exposed 23 
to CA; mineral crystals are still present inside dentine tubules (pointer). C: EDTA-etched 24 
dentine following application of PHS/DCP and AS immersion. Note the greater amount 25 
of crystals covering the dentine surface; similar features were also observed in the 26 
specimens treated with DCP and immersed in AS. D: SEM micrograph of EDTA-etched 27 
dentine treated with PHS and immersed in AS. Note the presence of very few mineral 28 
deposits on the dentine surface (pointer) E: FTIR spectra obtained from EDTA-etched 29 
dentine treated with DCP and submitted to CA attack. Note bands at 3200–3400 cm-1 (O–30 
H stretching of water in dentine). Water in brushite can be observed at 1653 cm-1 (bending 31 
mode), O–H in-plane bending at 1219 cm-1 and H2O oscillating motion at 791 cm-1. The 32 
PO stretching peaks of the brushite is observed at 1134, 1057, and 987 cm-1. The same 33 
spectra was attained after application of PHS/DCP on EDTA-treated dentine and 34 
subsequent CA attack. F: FTIR spectra specimens treated with PHS/DCP and immersed 35 
in AS. Note the PO peaks at 961 cm-1 (v1), 1019 cm-1 (v3 – asymmetric stretching mode 36 
of hydroxyapatite) and carbonate bands at 1400–1500 cm-1. These peaks were also present 37 
in mineralised dentine and in the specimens treated with DCP and submitted to AS ageing. 38 
G: FTIR spectra of EDTA-etched dentine treated with PHS and immersed in AS. In this 39 
case, only a low PO peak at 1019 cm-could be detected. Whereas, amide bands from 40 
organic components (1200–1725 cm-1) were clearly visible, indicating that dentine was 41 
still demineralised.  42 

 43 
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