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We propose a design of an adaptive digital audio effect for artificial reverberation, controlled
directly by desired reverberation characteristics, that allows it to learn from the user in a super-
vised way. The user provides monophonic examples of desired reverberation characteristics
for individual tracks taken from the Open Multitrack Testbed. We use this data to train a set of
models to automatically apply reverberation to similar tracks. We evaluate those models using
classifier f1-scores, mean squared errors, and multi-stimulus listening tests.

1 INTRODUCTION

Digital Audio Effects (DAFx) are transformations on an
audio signal, or a set of audio signals, where the transfor-
mation depends on a set of control parameters. In general,
users of DAFx control these parameters themselves and
they tend to change these parameters over time based on
how the audio sounds. They assign specific audio features
(or their changes) to specific parameters (or changes). Un-
knowingly, they are doing a form of classification where
the samples are features of the audio and the classes are
parameter sets. Our goal is to simulate this process using a
supervised learning approach to train classifiers so that they
automatically assign effect parameter sets to audio features.
This way, we can train our reverberation effect to decide
how to choose its parameters based just on the observed
audio.

In order to create a reverberation effect that applies reverb
automatically, we need to train it. Training can be done a-
priori by, e.g., an expert user of the reverberation effect or
on-line by the user of such an effect. Training is a process
that involves user-interaction with the effect and so the
parameters to be trained must make sense to the user. In [1]
the authors provide a mapping from the delays and gains
of a Moorer reverberator [2] to such parameters and thus
make such an architecture suitable for our work.

Audio sources can be characterized by a multitude of
features. Musical instrument tracks, for example, can be
characterized by timbre, tempo, etc. An automatic rever-
berator trained on a set of audio is expected to be able
to apply reverberation correctly on similar audio. For this
reason, in order to create a reverberation effect that is as
general as possible, we need to train it to a large and diverse
set of audio data.

In order to train our system we perform feature selection
to select the best features from a 31-dimensional feature
space from 8 features found in the literature. Smoothing
is then applied on the resulting features. We then com-
pare 4 different classifiers on the classification task where
our samples are vectors of audio features and classes are the
parameter-set clusters. The training data consists of the con-
trol parameters provided by the user with a simple interface
that allows her to control a simple reverberation effect. Test-
ing is performed using cross-validation and multi-stimulus
MUSHRA-style [3] tests.

An initial approach to intelligent artificial reverberation
appeared in [4]. This has been extended in this paper by in-
cluding mapping from characteristics of the desired impulse
response, as given in [1], and by evaluating the resulting
models using listening tests.

2 PREVIOUS WORK

There has been a lot of research in adaptive digital audio
effects for automatic multitrack mixing but in almost all
cases they focus on achieving a pre-specified goal. Param-
eter automation and intelligent control have been applied
to many of the most popular audio effects (e.g., gain and
faders [5], equalization [6], panning [7], and dynamic range
compression [8]), but to the best of the authors’ knowledge
it has not been attempted on artificial reverberation. Fur-
thermore, all of the above mentioned approaches except
[5], which uses linear dynamical systems to estimate mix-
ing weight coefficients, use fixed rules rather than arbitrary
rules that are learned from training data. On the other hand,
to the knowledge of the authors, there are no published
works on automatic application of reverberation.
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Fig. 1. Reverb application.

Key work for the current paper can be found in [1] where
they present the mapping from the reverberation parame-
ters to measurements of the reverberation. In that paper the
authors do not go as far as to provide a mapping from the
measurements to the parameters, but they allow the con-
trol of the reverberation effect using high level descriptive
terms. A similar work can also be found in [9] where the
authors present a real-time feedback delay network (FDN)
reverberator that allows control of perceptually relevant de-
scriptors. Work using semantic descriptors can be found in
[10] where they use a reverberation effect among others for
their Semantic Audio Feature Extraction (SAFE) project,
which allows users to assign high level descriptive terms
to low level audio feature changes that are caused by ef-
fect parameter changes. In a similar fashion, [11] created a
map of high level descriptive terms that correspond to low
level reverberation effect parameters. Relevant work in [12]
performs classification for drum sounds in order to control
effect parameters but still relies on fixed rules.

3 EFFECT ARCHITECTURE

Our proposed design uses the traditional adaptive DAFx
design [13] limited to one track and can be seen in detail
in Fig. 1. It consists of an algorithmic reverberation effect
where the values of the parameters are decided by a clas-
sifier model. The classifier model can be trained on-line or
off-line. The architecture of the model training process can
be seen in Fig. 2 where φi is the feature vector of the i-th
frame, �i is a matrix of features that consists of the vertical
concatenation of the feature vectors (as row vectors), from
frame 1 to frame i. In a similar fashion, pi is the vector
of desired characteristics of the impulse response provided
by the user, ci is the low level filters parameter vector to
which pi are mapped. θi is the classifier parameter vector
returned as result of the training after the i-th frame, and Di

a dictionary that maps class labels to reverberator parameter
sets.

Table 1. Algorithmic Reverberation Parameters.

Parameter (unit) Controls Min Max

d1(s) Comb filter array 0.010 0.900
da(s) All-pass filter array 0.006 0.012
g1 Comb filter array 0.136 0.999
gc Low-pass filter array 0.001 0.999
G Dry/Wet mix 0.001 0.999

Table 2. Perceptual Impulse Response Parameters. SR is the
sampling rate.

Parameter (Unit) Controls Min Max

T60 (s) 60 dB-Reverberation Time 0.02 4
D (echoes/s) Echo Density 1000 10000
C (dB) Clarity −20 10
Tc (s) Central Time 0.01 2
SC (Hz) Spectral Centroid 200 SR/4

Note that several features require the accumulation of
a number of samples in a buffer (i.e., spectral features)
to be computed. In such cases, latency equal to size of the
buffer × the size of the frame is introduced. Similarly, some
classifier models require the accumulation of several values
before being able to make a decision and therefore intro-
duce latency equal to a number of previous values × buffer
size × size of each frame. Consequently, our architecture,
although implementable in real time, can introduce latency
that depends on the features chosen, as well as the models
used. Therefore one should be careful in their choice of
features and classifier model.

For our reverberation effect we use the algorithmic design
given in [1] (Fig. 3) because of its simplicity and the fact
that it can be trained directly from measurements of the
reverberation. While this design has stereo input and output,
we use it with monophonic signals that are split into stereo.
We retain the stereo output in order to have a more natural
sounding reverberation effect.

Our architecture is not limited to just this particular rever-
beration model. Any algorithmic reverberation model may
be used as long as we can derive similar mappings between
characteristics of the reverberation impulse response and
low level filter parameters. The parameters of the reverber-
ation effect and their limits can be seen in Table 1.

Those parameters are directly mapped to characteristics
of the reverberation impulse response (Table 2). As we see
in Fig. 3, we have an array of comb filters in series with
two cascades comprised of an all-pass filter, a low-pass
filter, and a gain. The delay times are linearly distributed
with a ratio 1 : 1.5 with d1 being the largest delay, and
d6 the smallest. The gains are chosen in order to keep the
reverberation time the same for all comb filters (for more
details on these parameters, please see [14]):

dk = (1.5)1−kd1 (1)

gk = g1.51−k

1 (2)
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Fig. 2. Training of classifier models.

Distributing the comb filter delays with a constant ra-
tio will result in overlapping echoes. For this problem, we
use the solution given in [1], which is to make sure the
delays are rounded to a co-prime set of integers when con-
verted to samples. The delay times of both all-pass filters
are controlled by a single parameter da with a small delay
difference m (arbitrarily chosen, 2 ms in our case) between
left and right channel. All-pass gains are set to 0.707. Fi-
nally, gc and G control the low-pass filter and the gain,
respectively.

The mappings from the reverberation effect parameters
(Table 1) to reverberation characteristics (Table 2) can be
written as [1]:

T60 = d1

log g1
log

(
0.001

√
2

(1 − gc)G

)
(3)

D = 0.1

dad1

6∑
k=1

1.5k−1 (4)

C = −10 log10

(
1 − gc

1 + gc
G2

6∑
k=1

g2·1.51−k

1

1 − g2·1.51−k

1

)
(5)

Tc = d1

∑6
k=1

1.51−k g2·1.51−k
1

(1−g2·1.51−k
1 )2∑6

k=1
1.51−k g2·1.51−k

1

1−g2·1.51−k
1

+ da (6)

Sc =
∑Fs/2

n=0
n

1+g2
c −2gc cos(2πn/Fs )∑Fs/2

n=0
1

1+g2
c −2gc cos(2πn/Fs )

(7)

From the last equation we can numerically compute gc

(e.g., using Newton’s method). The rest give us a (non-
convex) 4 × 4 system. Given a set of target IR char-
acteristics (T +

60, D+, C+, T +
c , S+

c ) we approximate a set
(d ′

1, d ′
a, g′

1, g′
c, G ′) that brings the actual characteristics

close to these values (see Appendix A.2). The careful reader
will notice that there is no apparent relation between the
minimum and maximum values given in Table 1 and those
given in Table 2. For the solution of our system, these
values were considered independent. Providing a definite
relationship between reverberation parameters and IR char-
acteristics proved very difficult due to the non-linear nature
of the problem.

4 FEATURE EXTRACTION

Application of reverberation to a track can depend on
the instrumentation, the type of music, and the percussive-
ness of the track, among others. For our task we use eight
different features. Their names and their role can be seen
in Table 3 [15–17]. The reason for choosing these features
is because they have been used extensively in the litera-
ture for classification of instruments based on the above
characteristics.

Before extracting the features from our audio, we first
split the audio into 23 ms frames (1024 samples at 44.1
Hz) using the onset-based audio segmentation method de-
scribed in [18], which is based on the Spectral Contrast
feature. The reason for choosing this kind of segmenta-
tion, as shown in the original paper, is that it appears
to give higher classification accuracies for at least the
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da + m/2, g7 gc G
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Fig. 3. The Moorer Reverberator used [1, 2]. Filter boxes are represented by their control parameters. dν, gν for ν = 1 . . . 6 represent
Comb Filter delays and gains respectively, da all-pass filter delays, gc low-pass filter gain, and G is a dry/wet mixer gain. Characteristics
of the reverberation are mapped to the parameters shown in bold.
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Table 3. Used features and their usage in the literature.

Feature Used in

ZeroCrossingRate Instrument Identification
Source Identification

13 MFCCs Instrument Identification
Genre Classification

12 Spectral Contrast Instrument Identification
Coefficients Genre Classification
Root Mean Square Instrument Identification

Voice/Music Discrimination
Audio Activity Detection

Crest Factor Instrument Identification
Spectral Centroid Instrument Identification

Genre Classification
Spectral Roll-off Instrument Identification

Genre Classification
Spectral Flux Instrument Identification

music-genre classification task. We then concatenate our
features into a 31 dimensional vector1 for each frame. Next,
we use Principal Component Analysis to filter out nonsep-
arable or noisy features and reduce our feature vectors’
dimensionality [19].

5 CLASSIFICATION AND TRAINING

We use classification on the audio features in order to
control the values of the reverberation effect parameters.
Given short excerpts of audio tracks together with the de-
sired reverb characteristics, for training (Fig. 2):

(1) Convert the given reverberation characteristics pi of
values [T60, i, Di, Ci, Tc,i, SC,i]T to a set of filter
parameters ci = [

d1,i da,i g1,i gi Gi
]T

and add ci to
a set C. C is the set of parameter classes and its
cardinality |C| is the number of parameter classes.
Cm denotes the m-th element of C.

(2) Assign a label Ji to the i-th frame if the chosen
parameters for that frame belong to a class in C:

Ji =
|C|∑

k=1

(k · δ [‖Ck − ci‖]) (8)

‖ · ‖ denotes a vector norm and δ[ · ] is Kronecker’s
delta. Each number Ji is the class label for the i-th
frame. Keep a dictionary structure Di for the classes
introduced up to that point, comprised of the param-
eter sets and the labels to which they correspond:

Di = {(Jk, Ck) : k = 1, . . . , |C|} (9)

(3) Segment the audio excerpts into frames and calculate
a 31-dimensional feature vector φi for each frame:

φi = [
φ1,i φ2,i . . . φ31,i

]T
(10)

1 MFCCs and Spectral Contrast features have 13 and 12 di-
mensions respectively.

(4) The vectors φT
i are vertically concatenated to form

a matrix �̃i which is smoothed across columns with
a Gaussian window (as a column vector of 41 ele-
ments). We then perform principal feature analysis
[19] on the resulting matrix to derive �i . We save
the selected column numbers as the set Iφ,i .

(5) Use matrix �i together with the labels Ji to estimate
the parameters θi of the chosen classifier.

From the training stage above we store the dictionary
Di and the classifier parameters θi . For the application of
reverberation:

(1) Segment the audio track, to which we want to apply
reverb, into frames and calculate a feature vector φ j

for each frame. For each φ j , we keep the rows the
numbers of which are in Iφ,i .

(2) Use the classifier to select a label Jj for the j-th frame.
(3) Use the dictionary structureDi derived in the training

phase as a function in order to convert from class
labels Jj to reverberation effect parameters c j for
each frame:

c j = Di [ j] (11)

where Di [ j] = CJ j .

We compare four different classifiers: Gaussian Naive
Bayes Classifier [20], One-vs-All Linear Support Vector
Machine (SVM) Classifier [21], Hidden Markov Model
Maximum A-posteriori Classifier [20], and a hybrid HMM
classifier with observations taken from a set of SVMs [22].
Each classifier can be completely described by a vector of
parameters θ. Given a set of training data, each of these
classifiers are trained in a different way (usually using a
variation of the EXPECTATION-MAXIMIZATION algorithm)
to estimate their parameters.

In order to train our classifier models, we use excerpts
from 254 audio files taken from the Open Multitrack
Testbed [23]. First, the audio data is segmented into mean-
ingful parts (i.e., song phrases, guitar solo parts, etc.) using
a similarity matrix and a novelty function as found in [17].
A user is presented with a simple GUI where she can lis-
ten and apply reverb to the extracted parts by choosing the
characteristics of the reverberation seen in Table 2. For the
purpose of conducting listening tests, we asked 3 people fa-
miliar with the effect of reverberation to train our models.
The segmented parts are split into frames using the method
described in [18] and a tuple of features and parameters are
extracted for each frame as described in Sec. 4. Features are
filtered with a low-pass filter. The resulting data set is used
to train the models described in Sec. 5. All our models were
implemented in the PYTHON programming language using
the SCIPY [24] library for Machine Learning and the ESSEN-
TIA library [25] for onset segmentation, feature extraction,
and storage2.

2 Supplementary material for this research can be found at
https://code.soundsoftware.ac.uk/projects/chourdakisreiss2016
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Table 4. Average weighted f1-scores. Highest scores for each
set are in bold. |C| is the number of classes calculated for

each set.

Training Set |C| GNB SVM HMM HMMSVM

1 7 0.79 0.82 0.70 0.70
2 9 0.80 0.81 0.69 0.49
3 6 0.81 0.79 0.75 0.73
4 8 0.78 0.77 0.65 0.59
5 7 0.82 0.82 0.73 0.60
6 7 0.87 0.87 0.73 0.52

6 RESULTS

We tested our models both by measuring classifica-
tion performance as well as conducting a multi-stimulus
MUSHRA-style [3] listening test.

6.1 Classification Performance
In order to validate our models, we split our data into 6

sets in order to reduce training times. Every set included
45 audio files except the last which included 29. Every
file was a part of a Bass, Keyboards, Vocals, Percussion or
Saxophone track. The files were randomly split into sets.
In order to validate our classification scheme, we define the
weighted macro f1-score for K classes:

f1 =
K∑

k=1

nk

n
· 2tpk

tpk + f pk + f pk
(12)

In the definition above: nk is the number of samples belong-
ing to class k, n the total number of samples, tp the number
of samples classified correctly as belonging to class k, fp
the number of samples classified incorrectly as belonging
to class k, and fn the number of samples that belong to class
k but classified incorrectly to some other class. We validate
our models as such:

(1) Split every set into 10 parts.
(2) Use 9 parts for training and 1 for testing. Do this for

every combination of 10 parts. Store the predicted
labels as well as the metrics tp, fp, and fn for every
run.

(3) Measure the weighted macro f1-scores for the pre-
dicted values.

We also use cross-validation to estimate the most suitable
Markov chain number for our sequential models, as well
as the number of Gaussian components for the case of the
HMM with Gaussian emission distribution. Using the full
training set we can see the overall weighed f1-scores in
Table 4 and the average Mean Squared Errors in Table 5.

The high f1-scores are important because they represent
the rate of agreement, between the automatic reverberation
effect and the user that trained it, on the parameters of
the reverberation. Mean squared error effectively measures
how far the estimated parameters are from the parameters
chosen by the user. This means that while the classification
accuracy may be high, so the effect and the users agree most

Table 5. Mean Squared Errors for the normalized parameters.
Lowest MSEs for each sets are in bold. |C| is the number of

classes calculated for each set.

Training Set |C| GNB SVM HMM HMMSVM

1 7 0.0067 0.0065 0.0114 0.0117
2 9 0.0015 0.0010 0.0025 0.0045
3 6 0.0091 0.0097 0.0106 0.0096
4 8 0.0014 0.0014 0.0035 0.0062
5 7 0.0082 0.0047 0.0069 0.0135
6 7 0.0044 0.0041 0.0066 0.0204

Table 6. Weighted f1-scores for the user-trained models.
Highest scores for each user are in bold. |C| is the number of

classes calculated for each user.

User |C| GNB SVM HMM HMMSVM

A 30 0.79 0.73 0.06 0.11
B 22 0.74 0.66 0.17 0.16
C 32 0.81 0.84 0.12 0.18

Table 7. MSEs for the user-trained models. Lowest MSEs for
each user are in bold. |C| is the number of classes calculated for

each user.

User |C| GNB SVM HMM HMMSVM

A 30 0.0104 0.0138 0.0510 0.0568
B 22 0.0141 0.0226 0.0538 0.0386
C 32 0.0087 0.0091 0.0444 0.0480

of the time, the differences on the parts they do not agree
may be too high for the model to be useful. Therefore, the
most useful model is the model with the least mean squared
error. In our case, the multi-class SVM approach performs
best regarding MSE in all but one case, while it performs
similar to the GNB in regards to f1-scores.

6.2 Perceptual Evaluation
Perceptual evaluation of the data was performed using

multi-stimulus MUSHRA-style listening tests in the WEB

AUDIO EVALUATION TOOL (WAET) [26]. This was in or-
der to check how our models performed when trained by
different users of the reverberation effect.

For this test we used 33 audio files from our dataset. We
normalized them in regards to mean loudness and converted
them to mono. We used 3 expert users of the reverberation
effect from the Centre of Digital Music to train our system
by applying suitable reverberation to each of them. For each
of the “trainers,” we kept the parameters they used for 27
of those files and trained our models as described in Sec. 5
(Classification performance for each of those models can be
seen in Tables 6 and 7). Using the GNB and SVM models
for each trainer, we then applied automatic reverberation to
the 6 remaining files. These files consisted of excerpts from
2 singing tracks, a bass guitar, a saxophone, a drum, and a
piano track.

For each file, we created a multi-stimulus trial. Each of
the trials included a visible outer reference (the original file
with reverberation applied manually by one of the three

J. Audio Eng. Soc., Vol. 65, No. 1/2, 2017 January 5
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Fig. 4. Results of the MUSHRA-style tests. The bars represent the upper and lower limits for the 95% confidence intervals. Full circles
are mean values, x symbol points are outliers, and dotted lines represent the upper and lower standard error borders of the reference.
On the x-axis are the labels of the stimuli. Each of the letters A, B, or C represents a reverberated track generated from a model trained
by the corresponding expert. Suffixes -svmc and -gnbc represent whether it was based on a Support Vector Machine or a Gaussian
Naive Bayes classifier.

“trainers”), the same reference hidden in the stimuli, and
an anchor (the original file with no reverberation applied
to it). It also included six files with automatically applied
reverberation (one from a GNB model and one from an
SVM model, for each of the three “trainers” that trained
those models). Subjects were asked to rate each of the
stimuli in regards to how close it sounds to the reference.

Sixteen test subjects participated in the listening test.
Those did not include the “trainers.” They were mostly
Ph.D. students and Post-doctoral associates from the Centre
for Digital Music at Queen Mary University of London,
with the exception of one student not from the Centre and
a freelance employee. Three listeners were active users of
the reverberation effect (two of them professionally), while
the rest just knew what the effect sounded like. The average
time of the test taken was 30 minutes and the test was
considered difficult by most participants. The tests were all
done using WAET in local mode on the desktop computer
of the Media and Arts Technology studio control room at
the same university.

Fig. 4 shows the mean rating, averaged over all partic-
ipants, and the 95% intervals, for each stimulus in each
trial. If our reverberator was successful, we would expect
each model to be rated close to its respective reference,
e.g., A-gnbc or A-svmc should be close to the reference
for A-sax. For C-drums, A-sax, and A-voice-1 we
can see that C-smvc, A-gnbc, and A-svmc score higher
than the rest. For the case of B-bass we see that while the
B- models were not rated closer than the rest, B-svmc is
still very close to the reference. For B-piano, the models

seem to perform poorly, while for A-voice-2, the A-
models seem to have failed. In general for this small listen-
ing test, the tracks based on -svmc models appear more
similar to the respective tracks with reverberation applied
by the trainers. The listening test however fails to give very
clear results. We suspect this was due to the difficulty of
the question and the different concept of similarity for each
subject.

7 CONCLUSION

From Tables 4–7 we can see that for our datasets, the
non-sequential models performed better than the sequential
counterparts, which performed comparably or even worse
than the Naive Bayes classifier. This suggests that the Hid-
den Markov Models failed to capture correctly the temporal
progression of our data. One of the reasons for this could
be the onset segmentation method we use prior to feature
extraction, which leads to uncorrelated feature vectors, as
opposed to classical frame segmentation and thus damaging
the Markov assumption. The disparity between the sequen-
tial and non-sequential classification results in Sec. 6.2 can
also be attributed to the large number of classes that were
produced as a result of the training by the users (and as
a result, the smaller number of training samples for each
class). The above suggest further exploration with different
models and configurations. The best model so far seemed
to be the One-vs-All Support Vector Machine classifier
that performed best regarding weighted f1-score and Mean
Squared Error. Our choice of models becomes clearer when
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we take into account that our simple non-sequential models
do not require past samples in order to make a decision,
so we can use our models in real time with a minimum
latency of 23 ms (a simple frame). This paper, in general,
described an approach on a reverberation effect that could
control a reverberator given desired characteristics of the
impulse response and also remember those characteristics
in the future. A possible implementation for such a system
would be an audio effect that allows the user to select de-
sired reverberation characteristics to be applied to specific
tracks, and have the system suggest similar reverberation
for newly introduced, but similar tracks.

8 LIMITATIONS/FUTURE WORK

While this initial approach appears promising, there are
things to be desired regarding individual steps. Mathemat-
ically deriving characteristics of the reverberation does not
necessarily lead to perceptually correct parameters. For ex-
ample, impulses that are very closely placed together may
not be perceived as distinct echoes, but Eq. (4) will count
them as such. Figuring out more perceptually robust rever-
beration features will greatly improve this work. Another
issue is that we did not take into account features relating
to stereo signals such as Interaural Cross Correlation, Lat-
eral Energy Fraction, Apparent Source Width, etc. Future
research could take the direction of providing mappings
between such features and low level parameters of a stereo
reverberator. The architecture of the reverberator itself can
be of concern. Moorer reverberators, although serve as a
very good basis for our work given their simple design,
are limited (for example they do not allow for independent
control of early and late reverberation). One could try to
exchange the current architecture with a more recent re-
verberator design [27] or even try to implement a model
agnostic architecture so that it could be used with commer-
cially available reverberation effects. ADEPT [28] provides
a framework that could aid in the design of such a system.
Regarding perceptual evaluation, there is work to be done
on how to efficiently evaluate such systems. Our question on
how “similar” the tracks with automatically applied reverb
sounded to the reference, was deemed very difficult to an-
swer by our test subjects, which made drawing conclusions
difficult. One should use a more clearly defined objective
for testing (e.g., reducing masking in a multi-track context).

The original Adaptive Digital Audio Effect architecture
[13] supports multitrack DAFx, while our method has only
been tested for effects applied on a single track. A logi-
cal next step would then be to extend our architecture to
multitrack audio content. Also, our method is limited to pre-
trained sets of parameters, which can be limiting in the in-
troduction of new unexplored audio. [29] describes a way to
control continuous control parameters using discrete states
using only two parameter states, something which would fit
naturally with our approach. Another idea worth exploring
is the combination of the approach described here with con-
trol using descriptive terms [10], [11]. Finally, the ability
of our effect to be trained directly from measurements of
reverberation, could possibly allow it to be trained directly

from impulse responses or even reverberant sound samples.
There are numerous works in the literature that would al-
low us to estimate reverberation time [30–33], echo density
[34], clarity/definition [32], central time, and spectral cen-
troid. [35] also gives an easily measurable set of features
that correlate to subjective reverberation and which could
be included with small alterations to our model.
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APPENDIX

A.1 Hidden Markov Models with SVM Emissions
The Gaussian HMM classifiers described above work

sufficiently, but they rely on Gaussian probability density
functions (PDF) for their emissions which cannot discrim-
inate well. On the other hand, SVMs discriminate well
even with very few samples but do not provide emission
PDFs.We would like to combine the discriminating power
of the SVMs with the sequential nature of the HMMs. We
can use some tricks to derive a PDF.

Using Platt’s method [22] and following the work done
in [36] for our SVM Classifier we have for a class k and a
sample feature vector φi [36]:

p(Ck |φi ) = 1

/ ⎡
⎣ K∑

l=1,l �=k

1

μkl
− (K − 2)

⎤
⎦ (13)

where μkl is the probability that the class is either k or l,
that is:

μkl = p(Ck or Cl |φi ) (14)

If we regard the class of fi our HMM’s state, then we can
compute its emission probabilities by using the Bayes rule:

p(φi |Ck) = α
p(Ck |φi )

p(Ck)
(15)

where p(Ck) can be estimated by counting occurrences of
Ck in our data and α is the normalization factor. Since
our model’s states are the same as our classes, the process
of classification reduces to predicting the hidden sequence
state of our HMM using the Viterbi algorithm.

Training of the HMM in that case is achieved by first
training the SVMs that will provide the emission probabili-
ties, then normally training the HMM using the VITERBI or
the BAUM-WELCH (FORWARD-BACKWARD) [20] algorithm.
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A.2 Mapping from Desired IR Characteristics to
Filter Parameters

In Sec. 3 we present the mapping that allows us to ap-
proximate measurements of reverberation (T60, D, Tc, C,
Sc) given the filter parameters (g1..6, d1..6, da, G, gc). In
order to control our effect directly we need to calculate
filter parameters from such approximations. In the case of
Sc this is easy since it is just dependent on gc, but the rest
give us a non-convex 4 × 4 system. Given that the filter
parameters constitute our variables, and their values are
also constrained (between 0 and 1 for the gains) finding
the feasible space of that system is non-trivial. In some
cases it is impossible to have an exact solution (for exam-
ple it is impossible to have an arbitrarily low echo density
and a very low reverb time). Instead, we approximate a
solution that minimizes an objection function that brings
us to a non-exact, but hopefully good enough choice of
parameters.

Suppose we have a vector of desired reverberation char-
acteristics (remember we can directly estimate gc from Sc):

v = [
T60 D C Tc

]T (16)

and the desired reverberation characteristics:

v′ = [
T ′

60 D′ C ′ T ′
c

]T (17)

we need to find a set of parameters that minimizes the
Euclidean distance of the target characteristics from the ac-
tual measurements, given the constraints of our parameters.
Furthermore, we add the extra constraint of a uniform error
distribution.

We find the optimal solution for the problem below (all
variables are normalized to 0–1):

minimize:
x=[g1 d1 da G]T

f0(x) =
√

eT e + Var[e]2

subject to:
0 < g1 < 1,

0 < G < 1,

d1,min ≤ d1 ≤ d1,max ,

da,min ≤ da ≤ da,max

where:
e = v − v′

(18)

Analytically the 4 × 4 system of equations leads to: (Note
that gc and ga are treated as constants.)

(1) From C′ and g1 we can derive G:

G = f1(C ′, g1) = A(g1) · 10− C ′
20 (19)

(2) From C′, T ′
60 and g1 we can derive d1:

d1 = f2(C ′, T ′
60, g1)

= T ′
60 log (g1)

0.05 · C · log(10) − log (A(g1)) − 3 · log(10)
(20)

(3) from D′ and d1, we can derive da:

da = 2.078125

d1 · D′ (21)

where:

A(g1) =
√√√√ 2(1 + gc)

(1 − gc)
∑6

k=1
g2·1.5−k+1

1

1−g2·1.5−k+1
1

(22)

So if we could pick the correct value of g1 and we have
the target values T ′

60, C′, D′, and T ′
c we can derive the other

three parameters. Unfortunately, it is non-trivial to find a
closed form solution but we find a value for g1 numerically
given our constraints.

We can rewrite the optimization problem above as:

minimize:
g1

f0(g1) =
√

eT e + Var[e]2

subject to:
0 < g1 < 1,

where:
G = f1(C ′, g1)
d1 = f2(C ′, T ′

60, g1)
da = f3(C ′, T ′

60, D′, g1)

(23)

We managed to reduce the original 4 × 4 optimization
problem to a numerical analysis problem of just one variable
(which can be easily be solved by the line-search solver of
our choice), the solution to which gives us a sub-optimal so-
lution when there is no exact solution in our feasible space,
and the exact solution when there is one. If we derive those
measurements directly from an impulse response, we ex-
pect the problem to have an exact solution. We only expect
non-exact solutions when the reverberation measurements
are chosen arbitrarily.
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