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ABSTRACT

The menopause is associated with a deficiency of reproductive hormones, and accompanied by a
significant loss of bone mass. This bone loss is accelerated within the first five years post-menopause.
Muscle strength at this time would have important clinical implications for correcting imbalance and
preventing falls. The aim of the studies within this thesis were to 1) determine the rate and time course
of force loss of the quadriceps muscle group over 12 months in three groups of women with varying
hormonal status 2) establish the role of oestrogen in this weakness and 3) investigate the effectiveness of
hormone replacement therapy (HRT) in maintaining muscle function.

The reliability of an isokinetic dynamometer and a strain gauge assembly was examined initially to
determine the inherent variability of muscle function assessment. Strength of the knee extensors
measured on the isokinetic dynamometer was deemed reliable in middle-aged women, although at 1.05
rad/s more practice trials were needed to attain peak torque. Measurements of the knee flexors were
highly variable. Maximal voluntary isometric contractions were repeatable using the strain gauge
system, for both the knee extensors and first dorsal interosseus (FOI) muscle. There was greater
variability in force production generated from electrically stimulated contractions.

Maximal strength of the knee extensors declined by 9.3±4.6 and I0.3±3.1% (mean±SE) for dynamic
(1.05 radls) and isometric strength respectively over 9 months in hypoestrogenic post-menopausal
women. There were no changes at higher angular velocities, or for handgrip strength. These results
support the role of reproductive hormones in influencing force production, which is further endorsed by
the observation that females on HRT did not experience a reduction in strength over this time. The force
loss was significant only when the post-menopausal and HRT group were compared (p<0.05). The post-
menopausal group were within I to 3 years past the menopause, the time period in which bone loss is
rapid. This rapid loss of strength would therefore be expected to level out, similarly to bone.

The menopause is an oestrogen-deficient and progesterone-deficient endocrinopathy. It is not possible to
identify which hormone, if not both, is responsible for these observed changes in strength. To explore
the relationship between acute changes in oestrogen and progesterone and strength, maximal force
production of the quadriceps and first dorsal interosseus (FOI) was measured across the menstrual cycle.
Maximal strength of the quadriceps was lowest prior to the surge in luteinizing hormone (LH) and
reached its peak mid-luteal, a difference of 12.6±4.3% (mean±SE). These changes were significantly
different (p<O.OS). From these results, there does not appear to be a role of unopposed oestrogen
influencing force production but the pattern of strength changes implicates progesterone. There were no
corresponding fluctuations in strength of the FOI, which remained relatively stable across the menstrual
cycle. The contractility and fatigue resistance of the quadriceps did not differ significantly between any
phase (p>O.OS).The difficulty in isolating oestrogen during the menstrual cycle does not render this a
good model to assess its effects upon force production. Maximal strength and fatiguability of the FDI
were examined in young women undergoing in vitro fertilisation (IVF) treatment when acute, massive
changes in oestrogen are induced. There were no differences in muscle function of the FDI when
assessed under very low or high oestrogen changes (p>O.05). The independent effects of oestrogen upon
muscle function were not demonstrated here.

Hormone replacement therapy is the most efficacious treatment for preventing menopausally-related
bone loss. The results from the longitudinal study suggest that HRT confers protection against muscle
weakness as a consequence of ovarian failure. Whether HRT maintains or restores strength was
examined in the FDI of post-menopausal women (n=9). The oestrogen only and oestrogen-progestogen
phases were compared with baseline measurements. A positive change in strength was observed,
although this did not reach significance (p<O.1). The increase in strength (15.2±20.6%) between
baseline and the oestrogen-progestogen phase of HRT corroborates the involvement of progesterone in
determining muscle function.

The findings suggest that the menopause is associated with a loss of strength, prevented by the
administration of HRT. Oestrogen alone does not influence force production, although progesterone is
impli~!ed. This has important ramifications in hysterectomised women who are prescribed preparations
contammg oestrogen only.
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1.1. INTRODUCTION

Osteoporosis (brittle bone disease) is a contemporary disease which causes extreme

morbidity and mortality in post-menopausal women. Statistics from the National

Osteoporosis Society (1995) estimate that by 80 years of age, approximately 40-50%

of women will have developed osteoporosis, and one woman in eight will have

sustained a fracture. This places considerable strain on health care costs. Whilst

osteoporosis also affects men, it is far more prevalent in their females counterparts

since oestrogen deficiency is the single most significant factor in postmenopausal

osteoporosis (Riggs et al., 1982). Bone loss begins to accelerate immediatelyafter the

menopause at a rate of 1 to 7% per annum depending on skeletal site (Krolner and

Nielson, 1982; Lindsay et al., 1976). Hormone replacement therapy (HRT) is the most
.J

efficacious treatment for preventing osteoporosis (Aitken et al., 1973) and also

protects against the risk of cardiovascular disease (Paganini et al., 1988). This

treatment is most effective when taken before or shortly after menopause at a time

when bone loss is accelerated (Riggs and Melton, 1986).

A loss of bone mass after the menopause is accompanied by a loss of force per cross-

sectional area (force/CSA) of skeletal muscle. A significant reduction in specific force

of the adductor pollicis muscle (AP) has been reported in women around 50 years of

age, coinciding with the menopause (Phillips et al., 1993b), implicating an additional

role of reproductive hormones in regulating muscle function. This has previously been

indicated by Winner et al. (1989) who found a greater incidence of falling in

perimenopausalwomen.

Muscle strength is positively related with functional activities such as walking speed

and stair climbing ability and is negatively related to the incidence of hip fractures

(Aniansson et al., 1983). Muscle weakness and fatigue will therefore impair the ability

to undertake everyday activities. Muscle weakness is more pronounced in the

proximal, lower limb muscles, predisposing postmenopausal women to the risk of

falling and sustaining fractures (Wickham et al., 1989). Since muscle strength is

compromised in females suffering from osteoporosis (Rutherford and Jones, 1992) this
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poses a major health problem in vulnerable females. Impaired functioning of a muscle

group such as the quadriceps, which has an important role in performing activities of

daily living will have significant clinical implications in the ageing population. Given

that the specific force of the AP muscle is lower in hypoestrogenic post-menopausal

women, other muscles may be similarly affected. The sites at most risk from

osteoporotic fractures are the hip, wrist and spine, and therefore there is a need to

investigate the effect of hypoestrogenialhypoprogesteronia on the strength of muscles

associated with these areas.

Specific muscle force is greater in post-menopausal women taking hormone

replacement therapy compared to age-matched controls (phillips et aI., 1993b).

Understanding the onset and rate of a reduction in muscle strength associated with the

menopause is therefore a requisite for the administration of HRT. How reproductive

hormones mediate their effects on muscle is currently unknown, and it is still highly

speculative which hormone - oestrogen or progesterone - is responsible for

preserving strength. There are tenuous suggestions from studies of the endogenous

fluctuations during the menstrual cycle that oestrogen is responsible for increases in

strength of the AP muscle (Phillips et aI., 1996), although findings of a negative

correlation between oestrogen and hand grip strength (Bassey et al., 1995) conflict

with these reports. If progesterone is implicated, this would have significant clinical

consequences in hysterectomised post-menopausal women. A progestogen component

is added to HRT preparations to reduced endometrial hyperplasia in females with an

intact uterus and thus treatment for this group of women may need to be revised.

The purpose of this thesis will be to investigate the effects of reproductive hormones

on muscle strength in middle-aged women. The rate of strength loss of multiple muscle

groups, the quadriceps and handgrip, will be assessed longitudinally between three

groups of menopausal and post-menopausal females of varying hormonal status. Other

models will be employed to determine the possible mechanisms and hormone

responsible for strength changes. From these findings, it is hoped that the hormonal

milieu within which a loss of muscle function occurs will be elucidated, so that
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preventative measures can be enforced in the growing population of post-menopausal

females.

1.2. AIMS AND OBJECTIVES

The investigation of the effects of reproductive hormones on muscle function will be

undertaken through the following aims:-

1) Determine the rate offorce loss of the quadriceps and palmer flexors in

menopausal and post-menopausal women.

2) a) Compare the effects of acute changes in reproductive hormones on muscle

strength of a large muscle group, the quadriceps, and a small muscle, the first

dorsal interosseus (FDI).

b) Assess the effects of acute changes in reproductive hormones on contractile

properties of the quadriceps.

3) a) Investigate the role of oestrogen in influencing strength changes in young

women

b) Examine the role of oestrogen on the fatigue resistance of the FDI.

4) a) Examine the efficacy of hormone replacement therapy (HRT) as a

prophylaxis to muscle weakness

b) Establish the effects ofHRT on the contractile properties of the FDI.

These primary aims cannot be fulfilled until a series of methodological steps have been

taken. These are concerned with the assessment of reliability of the equipment and

protocols employed in the experimental studies:

i) Establish the day-to-day reliability of the LIDO Active'" isokinetic dynamometer

across a range of increasing angular velocities.
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ii) Determine the reliability of performance of leg and handgrip strength in middle-

aged women.

iii)Quantify inherent variability of measuring maximal voluntary contraction (MVC)

of the quadriceps and FDI using a strain gauge system.

iv)Assess the reliability and repeatability of electrically stimulated contractions of the

quadriceps.

v) Establish the reliability of the hand dynamometer used to measure maximal

strength and electrically stimulated contractions of the first dorsal interosseus

(FDI) muscle.

..

Fulfillment of these aims will elucidate the hormonal milieu in which muscle weakness

occurs and the role ofHRT in preventing the reduction in the force generating capacity

of skeletal muscle. The effects of hormonal status on volitional and electrically

stimulated contractions will also be determined.

The following means will be employed in fulfilling these aims:

1) Employment of the LIDO Active" dynamometer to measure isometric and

concentric strength isokinetically across a range of increasing angular velocities.

2) Application of the electrical stimulator to: a) confirm maximal activation of muscle

b) electrically stimulate muscle at increasing frequencies and c) induce fatigue.

3) Utilise a strain gauge system for measurements of volitional and electrically

stimulated isometric contractions.

4) Construction and use of the hand dynamometer to assess muscle function of the first

dorsal interosseus muscle with use of the electrical stimulator.
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2.0. REVIEW OF THE LITERATURE

Over the past decade, there has been an increase in the participation of wome~ in

sports and regular exercise programmes. As a consequence of this, much scientific

interest has focused on both the females' responses to exercise and the effects of

exercise on reproductivefunctioning.

The increase in longevity of women in contemporary society compared to theirfemale

counterparts earlier this century is probably due to an enhanced quality of life, aand

women now tend to live one third of their life in the infertile, post-menopausal period.

The health implications of the menopause and loss of reproductive hormones are a

growing concern since hormonally related insidious diseases are associated with

increased morbidity and mortality. These are offset with the availability of hormone

replacement therapy (HRT). Although there is much concern over its 'safety',

research is ongoing to reduce the side effects and enhance the therapeutic role of

HRT.

To understand these issuesfully, this chapter willprovide a theoretical background of

the regulation and functions of the female reproductive system, focusing on

endocrinological changes during the menstrual cycle and menopause.

2.1. THEORECTICAL BACKGROUND OF THE HUMAN REPRODUCTIVE

SYSTEM. FROM MENARCHE TO MENOPAUSE.

2.1.1. Endocrinology of the human female menstrual cycle

The onset of reproductive function, termed menarche, is reported to occur between

the 10th and 16th year in 95% of European girls (Abraham, 1978). Reproductive

cycles begin at pubery when the hypothalamic pulse generator is activated. Stimulation

of the hypothalamic-pituitary-ovarian axis initiates the first menstrual flow. From

menarche to the end of reproductive life, menopause, a series of coordinated events

occur within the ovaries and endometrium called the menstrual cycle. These events are
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controlled by a finely tuned interaction of hormones, regulated by the brain. An

interrelationship between the hypothalamus, anterior pituitary, and the ovaries lead to

the periodic maturation and extrusion of the ovum (egg) from the ovary, which is then

transported to the fallopian tubes to be fertilised. Meanwhile, the endometrium

undergoes histological changes in preparation for the fertilised egg.

The normal menstrual cycle established after puberty averages 28 days, although most

cycles range between 23-35 days. The cycle can be divided into four phases: day 1 of

the cycle is the onset of menstruation, which lasts 4-5 days; follicular phase of the

ovary corresponds to the proliferative of the endometrium; ovulation, which lasts

about 36 hours and the luteal phase which corresponds to the secretory phase of the

endometrium. The hypothalamus and pituitary gland control timing within a menstrual

cycle, but the ovary regulates its phases and duration as ovarian steroids exert

"negative" and ''positive'' feedback effects on the hypothalamus. Variability in cycle

length of women is determined by the duration of the follicular phase. The luteal phase

is usually constant, lasting 14 days (Vollman, 1977), but it may be shortened in highly

trained females athletes (prior et al., 1982).

2.1.1.1. Structure and function of the ovary

The function of the ovary is to nurture the growth and development of an ovum in

preparation for ovulation and subsequent fertilisation. The activities within the ovary

are cyclical and involve a complex process of steroid synthesis, negative and positive

feedback signals and interaction with exogenous hormones. A morphological account

of the ovary will be given to assist in the understanding of the events ofthe menstrual

cycle.

2.1.1.1.2. Morphology of the ovary and follicular development

The ovary consists of three regions, the outer cortex, inner medulla and hilum. The

cortex contains the functional units of the ovaries, i.e. the follicles, in different states of



development and occupy the main body of the ovary. The medulla forms the stromal

cells and the hilum yields the entry point of the nerves and blood vessels (Fig. 2.1.1).

Fig. 1.1.1. Microscopic view of the human ovary. From Ojeda, 1992, pp.135.

At birth. each ovary contains up to one million follicles, each one enclosing a primary

oocyte. The oocyte is surrounded by a flattened layer of epithelial cells separated by

the basal lamina. This is the primordial follicle. Several layers of cuboidal granulosa

cells evolve from these stromal cells to form the primary follicle. During the early part

of the menstrual cycle, 20 to 25 primary follicles begin to produce low levels of

oestrogen.

Around day 5 of the menstrual cycle, a cohort of these follicles develop into secondary

follicles, characterised by concentric layers of granulosa cells and the cultivation of

outer theca cells, separated by the basal lamina. A glycoprotein band is formed

between the oocyte and granulosa cells called the zona pellucida. Thecal cells

differentiate into theca intema and theca extema layers; theca intema become cuboidal

and fill with lipid droplets, indicative of steroidogenesis. The granulosa cells secrete

follicular fluid containing steroids, pituitary hormones -luteinzing hormone (LH) and

follicle stimulating hormone (FSH) - and local growth factors which fill the follicular

cavity or antrum, forcing the oocyte to the edge of the follicle. As the oocyte is

displaced, it becomes surrounded by granulosa cells called the cumulus oophorus (Fig.
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2.1.2}. These follicles become antral or graafian follicles and reach a diameter of 5

mm (Ojeda, 1992).

Fig. 2.1.2. Schematic representation of the development of an ovarian follicle. From Ojeda, 1992,
pp.145.

Growing antral follicles need gonadotropins to reach their ovulatory size. Of the

selection of follicles which have progressed beyond the antral stage, only one

"dominant" follicle reaches ovulation. The LH surge usually occurs after the leading

follicle exceeds 16 mm (Edwards and Brody, 1995). Under the influence of LH, the

oocyte matures and ovulation occurs 36 to 40 hours later. Following the expulsion of

the oocyte, the collapsed follicle is reorganised to form the corpus luteum. Granulosa

and thecal cells are 'luteinized', and fibroblasts and capillaries invade. If fertilisation

does not occur, the corpus luteum remains functional for 13 to 14 days and then

undergoes luteolysis. Endocrine function is lost rapidly and the corpus luteum is

replaced by scar tissue called the corpus albicans (Ojeda, 1992).

2.1.1.2. Hypothalamic 'neural' and pituitary control

Reproductive function is regulated by two peptide hormones, called the gonadotropins,

secreted from the anterior pituitary gland. Follicle stimulating hormone (FSH)

stimulates follicular maturation and production of oestrogen. Luteinizing hormone
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(LH) is responsible for ovulation, luteinization and ovarian steroidogenesis. Prior

primingwith FSH is essential for LH to exert its effects (Shearman, 1986). Prolactin is

also released, although its physiological role in ovarian control is unclear (Shearman,

1986).The gonadotropins, particularlyLH, are released into the bloodstream every 60-

90 minutes in a pulsatile manner. This is called a "circhoral" rhythm. If this pulse

frequency declines oestrogen output becomes low and inconsistent (Edwards and

Brody, 1995) and ovarian folliclesfail to develop.

The release of these hormones are, in turn, regulated by a pulsatile secretion of

gonadotropin releasing hormone (GnRH) from the arcuate nucleus of the

hypothalamus.The frequency of release of this decapeptide is suppressed by increasing

progesterone concentrations produced by the ovary, and stimulated by the mid-cycle

rise in oestrogen, preceding the increase in serumLH (Miyake et al., 1983).

2.1.1.3. Ovarian control

Oestrogen and progesterone are the two principal ovarian steroid hormones which

regulate events within the ovary. These sex hormones are under the control of the

gonadotropins. The formation of oestradiol is dependent upon both LH and FSH,

whereas the synthesis of progesterone is enhanced by LH alone. The secretion of

progesterone however, can be stimulated by both gonadotropins. Oestrogen and

progesterone exert "negative" and ''positive'' feedback mechanismson both the GnRH

pulse generator and on the secretion of FSH and LH from anterior pituitary. This is

shown in Fig. 2.1.3.
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Fig. 2.1.3. Interaction of hypothalamic-pituitary-ovarian axis and regulation of steroid hormones
oestrogen and progesterone.

2.1.1.4. Follicular (proliferative) phase

The onset of the menstrual flow is considered as the first day of the cycle. A reduction

in oestrogen and progesterone causes a sloughing off, or shedding of the structural

functionalis layer of the endometrial lining along with small amounts of blood ,..,40 ml

from supporting blood vessels, which lasts 4 to 5 days. The negative feedback of

oestrogen on gonadotropin release is relieved and FSH levels begin to rise. Under the

influence of FSH, the ovarian cycle is initiated with the development of the primary

follicles. It has been suggested that activin, the ovarian FSH-releasing protein, has a

physiological role in the maintenance ofFSH secretion (Ojeda, 1992).

The developing follicles produce increasing levels of oestrogen which is more

pronounced with the maturation of antral follicles late in the follicular phase. This is

facilitated by the increased sensitivity of the follicle to FSH by the oestrogen it
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synthesises (Richards and Midgley, 1976). The secretion ofFSH declines in response

to high oestrogen concentrations and inhibin. Inhibin is a peptide hormone secreted by

the ovary which exerts selective inhibitory control over the secretion of FSH. The

production of inhibin is stimulated by FSH itself (Ojeda, 1992). The inhibition of LH

by low oestrogen concentrations during the early follicular phase is relieved at high

oestrogen levels in the late follicular phase. In the presence of an oestogenic milieu, the

endometrium undergoes ''proliferative'' histological changes (Shangold, 1988).

Progesterone and 17 a-hydroxyprogesterone levels remain unchanged until the

ovulatory phase (Ojeda, 1992).

2.1.1.5. Mid-cycle dynamics

The mid-cycle hormonal events involve a complex relationship between gonadotropins

LH and FSH, and the sex hormones oestradiol (E2) and progesterone (Fig. 2.1.4). The

pre-ovulatory elevation of E2 characterising the ovulatory phase, triggers a surge in

gonadrotropins. A rapid rise in LH and a less pronounced increase in FSH are elicited

from the positive feedback of E2 on the pituitary. The gonadotropin surge lasts

approximately 24 hours and is induced only if the oestradiol threshold exceeds 250

pg/ml for longer than 36 hours (Edwards and Brody, 1995) (This surge is in concert

with the dominant follicle reaching> 16 mm). The peak in LH is denoted as day 0 in

the diagram (Fig. 2.1.4). As gonadotropins begin to rise, there is a concomitant

increase in 17a-hydroxyprogesterone (17-0H) and a smaller rise in testosterone and

androstendione.

Progesterone increases concomitantly with E2 prior to the LH surge. which is proposed

to act synergistically to induce the progressive increase in basal LH (Hoff et al., 1983).

This increase in progesterone has also been implicated in regulating the pre-ovulatory

gonadotropin surge in vitro. In the ovariectomized rat, oestradiol alone failed to

generate the full gonadotropin surge and progesterone was required to restore the

levels to the same magnitude and duration seen in the proestrus rat (Mann and

Barraclough, 1973). The rise in progesterone may also be responsible for the mid-cycle

elevation ofFSH.
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The rise in progesterone continues after the initiation of the LH surge, although this is

not accompanied by an increase in E2. Soon after the LH surge, E2 falls precipitously

(Fig. 2.1.4), despite increases in androstenedione and testosterone. This may be due to

the rapid rise in progesterone within the follicle inhibiting aromatase activity, resulting

in a decline in E2 formation (Hoff et al., 1983).

The most mature, dominant follicle, produces greater amounts of E2 than the growing

follicles and is most sensitive to gonadotropin stimulation. On selection of this follicle,

the other growing follicles undergo atresia. Oocyte maturation begins in response to

the LH surge and is mature at ovulation 10 to 12 hours later, 24 to 36 hours after the

E2 peak. Oestradiol and androgen levels have fallen at this time, although progesterone

increases further and 17a-hydroxyprogesterone remain elevated. At ovulation the

oocyte is expelled from the follicle and transported to the fallopian tubes in preparation

for fertilisation.

After ovulation, under the influence of LH the supporting cells of the follicle form the

corpus luteum (yellow body). The corpus luteum produces progesterone in significant

amounts (and E2 to a lesser extent) and influences secretory changes in the uterine

endometrium. If fertilisation does not occur, the corpus luteum degenerates within two

weeks, resulting in a sudden loss of progesterone. Withdrawal of progesterone and E2

initiates another menstrual flow. The events of the cycle are shown in Fig. 2.1.5.
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Fig. 2.1.4. Mean values (±SE) of LH, FSH, progesterone, oestradiol (£2) and 17-
hydroxyprogesterone (17aOH prog) in daily serum samples of 9 women during ovulatory menstrual
cycles. Days from mid-cycle LH surge (0). From Ojeda, 1992, pp. 150.
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Fig. 2.1.5. Menstrual and ovarian cycles with hypothalamic and anterior pituitary gland hormones.
From Tortora and Anagnostakos, 1989, pp. 902.

2.1.2. Biosynthesis of reproductive steroid hormones

Oestrogen and progesterone, like all steroid hormones, are derived from the precursor

cholesterol (chol = bile and steroes = solid), a 4-ring hydrocarbon molecule with a side

chain (Fig. 2.1.6). Cholesterol is transported to the ovary via the blood stream with

low-density lipoproteins (LDL), and is released from its LDL-receptor complex inside

the ovary through hydrolysis with lysosomes. Excess cholesterol is esterified and

stored in lipid droplets for later use.

14



Fig. 2.1.6. Structure of cholesterol, a precursor to steroid synthesis.

Cholesterol (C 27) is initially converted to pregnenolone (C 21) through the sidechain

cleavage of the 6-carbon isocaproic acid molecule. This reaction occurs in the

mitochondria mediated by the cytochrome P-450. This is the rate limiting step of the

steroid biosynthetic pathway (Al-Azzawi, 1992). Pregnenolone is then converted into

progesterone or into 17 a-hydroxypregnenolone. These, in turn, can be metabolized to

17 a-hydroxyprogesterone (See Fig. 2.1.7).

Fig. 2.1.7. Biosynthetic pathway for the oestrogens. From Ojeda, 1992. pp 136.
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Further metabolism to androgens and oestrogens results in an additional reduction in

the number of carbons to C 19 of androgens and C 18 to oestrogens. Androstenedione

and testosterone are immediate precursors for the aromatisation of oestrogen

production. Luteinizing hormone is responsible for stimulating the production of

androgens used to synthesise oestrogens, and receptors are found on steroidogenic

cells of the stroma and thecal cells of the follicles. A gradual increase in plasma LH

levels promote the differentiation of thecal cells and induces the synthesis of 17,20-

lyase enzyme, increasing the availability of androgens for oestrogen biosynthesis.

Oestradiol is metabolized from testosterone in granulosa cells of antral follicles through

an FSH-mediated aromatisation enzyme complex (Fig. 2.1.8). Oestrone and oestriol

are synthesised from androstenedione. Progesterone is secreted by all steroidogenic

cells of the ovary regardless of their localisation.

A "two cell-two gonadotropin" hypothesis has been devised to explain the

gonadoptropic control of ovarian steroidogenesis. Under the influence of LH, thecal

cells produce androgens that upon diffusion to the granulosa cell compartment of the

follicle are converted to oestrogens via an FSH-supported aromatization reaction (Fig.

2.1.8).
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Fig. 2.1.8. Control of ovarian oestrogen, progesterone and androgen production by LH and FSH
Luteinizing hormone acts on thecal and granulosa cells. Follicle stimulating hormone acts on
granulosa cells only. From Ojeda, 1992. pp 139.

Oestradiol is the predominant oestrogen in women of reproductive age and exists in

equilibrium with oestrone ina ratio of 1:2 to 1:4. The ovary secretes oestradiol directly

into the bloodstream. After the menopause the main oestrogen, oestrone, is derived

from the peripheral conversion of androstenedione or oestradiol. Oestrone is further

metabolised in the liver to oestriol. More than 70% of circulating oestrogens are bound

to proteins in the blood stream, preferably albumin for which they have a low affinity,

or testosterone-binding globulin (TeBG) for which they have a high affinity. Since

oestrogens have a lower affinity for TeBG than testosterone, there are more circulating

oestrogens available to tissues. Only free steroids can be transported to their target

cells. Steroids are dissociated from their binding molecule at the target cells, and

allowed to enter the cell membrane to bind to high affinity, low capacity receptors

located in the cytoplasm. The steroid receptor complex migrates to the nucleus and

bind to a specific segment of deoxyribonucleic acid (DNA). This reaction modifies its

transcription and the synthesis of specific types of messenger ribonucleic acid (mRNA)

(Fig. 2.1.9).
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Fig. 2.1.9. Oestrogen-receptor complex: RC=cytopiasmic oestradiol 17f3 complex.

2.1.3. Oral contraceptives

The prevalence in the use of exogenous steroid hormones in women of reproductive

age is increasing. The principal use of steroid hormones are for contraceptive purposes,

although they are also used medically e.g. relieve dysmenorrhoea. There are reports

that a growing number of elite athletes take steroid hormones for cycle control or as a

form of hormonal replacement to ameliorate the effects of amenorrhoea on the skeletal

system (Shangold, 1988). The widespread use of oral contraceptives (OC) is

accompanied by a growing concern of the side-effects of the constituent steroid

hormones in these agents. There are further implications for the athlete of ~C's upon

exercise performance given the effects ofOC's on metabolic function (Lebrun, 1994).

Oral contraceptive agents operate by inhibiting gonadotropin-releasing factors from the

hypothalamus through a negative feedback effect, similarly to the mechanism of

endogenous hormones. Gonadotropin secretion is subsequently suppressed preventing

ovulation (Bingel and Benoit, 1973). Oral contraceptives provide a constant dosage of

synthetic hormones, in contrast to the cyclical fluctuations in naturally occurring

hormones. The dosage of current combined preparations are lower «35~ oestrogens

and < 1 mg progestins) compared to original formulations introduced in 1960 (Kaunitz

et al., 1995) in an attempt to minimise the risk of cardiovacular disease and other side

effects associated with high doses of the synthetic hormones (Baird and Glasier, 1993).

In monophasic ~C's, a constant dose of oestrogen and progestin is provided in each of

the 21 active tablets of the cycle pack. This is followed by seven pill-free days. The

development of phasic OC's to reduce the metabolic side-effects have lower overall
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monthly steroid dose. The dose of the progestin and/or the oestrogen is varied over the

pill cycle, thereby mimicking the physiological variation in endogenous hormones.

For the exogenous steroid hormones to exert their desired pharmacological effects,

these components must be converted to more potent synthetic derivatives. Current OC

formulations contain the metabolically active syntheticoestrogen ethinyloestradiol

derived from the addition of a 17-a ethinyl radical to oestradiol. Mestranol, the less

biologically active syntheticoestrogen, must be converted to ethinyloestradiol in the

liver before exerting its oestrogenic effects (Whitehead and Godfree, 1992) and must

therefore be administered in higher doses. Ethinyloestradiol is administered in low

doses of 20 to 35 ug and are now contained in all OC preparations. Progestins are

characterised according to the structure of the steroid from which they were derived.

Most progestins are derivatives of 19-nortestosterone (Bembem, 1993), subclassified

as gonanes or estranes (Crook et al., 1988). The progestational potency of gonanes are

ten fold higher, with greater androgenic effects than estranes. Progestins of a

progesterone derivative (17-a hydroxyprogesterone) are no longer available as a result

of its association with breast cancer in dogs (Daniel, 1970). Table 2.1.1. lists the

progestin components of current OC preparations.

Table 2.1.1. Oral contraceptive oestrogens andprogestins.

Oestrogens Ethiny loestradiol

19-Nortestosterone-related progestins Estranes
Norethisterone'"
Norethisterone acetate"
Noretynodrel
Lynestrenol
Ethynodiol diacetate

Gonanes
Levonorgestrel'"
Norgestimate'"
Gestodene'"
Desogestrel'?

a denotes the metabolically active steroid
b denotes new generation of progestins

• = progestins used by subjects in study 4.2
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The effects of ~C's are dependent upon the type and dose of progestins administered

(Bembem, 1993). Progestins may have androgenic, oestrogenic, antiandrogenic or

antioestrogenic activity. The balance of oestrogen and progestin components in a

specific preparation will also be important for determining their physiological effects.

The effects ofOC's on muscle strength will be discussed in section 2.2.
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2.1.4. The menopause and climacteric

Circamensal reproductive cycling is not a perpetual rhythm, but diminishes during

middle-age as a consequence of the ageing process. The cessation of menses due to

ovarian follicular failure is termed the menopause - the transition from a reproductive

to non-reproductive stage of life. This biological phenonemon is not an abrupt event

but may take up to 10 years for amenorrhoea to occur. A 12 month interval of

amenorrhoea is characteristic of the menopause (Khaw, 1992). Different terms are

used interchangeably to categorise the stages of endocrinological changes surrounding

the menopause. For the purpose of the thesis, the conventional terms pre-menopause,

peri-menopause and post-menopause will be used in reference to the following

definitions:

Pre-menopause: The stage of reproductive function prior to the climacteric.

Peri-menopause: Also called the climacteric, it may begin 5-10 years before

the menopause and is associated with the endocrinological,

biological and clinical features of approaching menopause,

and at least the first year after the menopause.

Post-menopause: Following the menopause, although it cannot be

determined until after a period of 12 months of spontaneous

amenorrhoea has occurred.

2.1.4.1. Epidemiology of the menopause

The increase in the female population over the past century (Fig. 2.1.10) is considered

to be the result of an increase in the number of births and a reduction in the mortality

rate. At present, the highest number of females in the population are aged between 16-

39 years, with proportions decreasing thereafter. The Office of Population Census and

Surveys (OPCS) predict this pattern to change by 2031 where the greatest population
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of women will be aged 40-64 years. The increase in the older population is attributable

to the number of women surviving over 80 years. They have been predicted to

comprise 50% of the females population over the next 2-3 decades (Population trends

25, 1995).

Female Popu1ation in the UK
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Fig. 1.1.10. Thefemale population of the United Kingdom (UK) over 45 years, estimated into the next
century: From SOCIAL TRENDS 24, 1994. .

The current life expectancy of females in the UK is 79 years. This is estimated to

increase to 81 years by the year 2000. In contrast to the increase in longevity, age at

menopause has remained constant. The average age at menopause is 49.8 - 50.8 years

in developed countries (Khaw, 1992), and has not reported to have changed over the

past century (See Fig. 2.1.11). Women can therefore expect to live one third of their

lives in the postmenopausal state. Unlike menarche, age at menopause does not appear

to be affected by factors such as race, weight, skinfold thickness or socio-economic

status. Even oral contraceptive use, which acts by suppressing ovulation, and parity do

not delay menopause (Brambilla and McKinlay, 1989). However, smoking (McKinlay

et al., 1985) and possibly malnourishment (Scragg, 1973) accelerate the menopause by

1-2 years.
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Fig. 2.1.11. Average life expectancy and age at menopause in females from 1901-2001. From:
POPULATION TRENDS No 23, 1993. opes.

2.1.4.2. Aetiology of the menopause

The menopause is the result of a depletion of primordial follicles or oocytes in the

ovary and the consequent fall in oestrogen and progesterone secretion Since

pregnancy and oral contraceptive use do not influence menopausal age, it has been

suggested that these follicles are subject to a 'programmed cell death' (Al-Azzawi,

1992).

Throughout life, oocytes undergo growth, ovulation or atresia. Atresia is degenerative

process of the ootytes, characterised morphologically by the necrosis of the oocyte and

the granulosa cells. Prior to birth, at 24 weeks of gestation, there are about 7 million

oogonia contained within the primitive gonad. At birth, only about 2 million of these

mature into primary oocytes, the others degenerate and die. At puberty this is reduced

to around 400 000. The loss of follicles during reproductive life are not replaced, and

hence the continual ovulation and atresia exhausts the 'ovarian capital' .

Follicles decline exponentially throughout life at two different rates (Edwards, 1995).

As shown in Fig. 2.1.12, follicular loss up to 37 years of age is relatively slow until

follicular numbers reach 25 000. Follicles are subsequently lost at a rapid rate and at

23



the menopausal transition, at around 51 years, the typical follicle number is 1 000

(Edwards and Brody, 1995).

Fig. 2.1.12. Biexponential model of declining follicle numbers in women aged between 0 and 51
years, showing a sharp decline in older ages. From Edwards and Brody, 1995, pp 165.

2.1.5. Endocrinology of the menopause

The progressive failure in ovarian function begins 5-10 years prior to the menopause.

Oestrogen and progesterone production decline due to depleting oocytes and an

increase in gonadotropin stimulation compensates for this ovarian unresponsiveness.

Oestradiol levels fall below a critical threshold and endometrial stimulation no longer

occurs, resulting in amenorrhoea. Endocrine changes are not restricted to reproductive

hormones. Other ovarian, pituitary and hypothalamic hormones such as inhibin,

prolactin and catecholoestrogens are involved.

24



The following phases are characteristic of the endocrine changes at the climacteric:

• Hypothalamic pituitary hyperactivity - this starts 5-10 years before the menopause

and continues after the menopause

• Ovulatory and corpus luteum failure - starts 5-10 years before the menopause

• Ovarian follicular failure - begins at the menopause

These events will be clarified below.

2.1.5.1. Endocrine changes before the menopause

The change in ovarian function resulting in the menopause begins in utero where there

is a progressive decline in oocytes from 24 weeks of gestation. Whilst this continues

through reproductive life, ovulation only contributes to a small proportion of the loss.

As the number of follicles decrease, the oocytes that remain are those which are most

resistant to simulation by gonadotropins. Consequently, oestrogen levels begin to

decline in the older pre-menopausal women. Sherman et al. (1976) found that

oestradiol (the main oestrogen of reproductive age synthesized by the ovary)

concentrations are reduced in pre-menopausal women aged 46-56 years with regular

menstrual cycles compared with younger women at the same stage of the cycle. In

response to reduced oestradiol production, the negative feedback mechanism of the

hypothalamus and pituitary causes FSH levels to increase (Sherman et al., 1976). This

is the most characteristic feature of endocrine changes at the climacteric.

The hyperactivity of the hypothalamic-pituitary axis initially compensates for the

increasing resistance of follicles to gonadotropin stimulation. The rise in LH occurs

later and is less marked than that in FSH. This differential increase in FSH, compared

with LH, in older regularly menstruating women was first reported by Sherman and

Korenman (1975). They also postulated that a non-steroidal negative feedback factor

of FSH, called inhibin, is reduced leading up to the menopause, consequent to a

diminished number of follicles. Inhibin is found in ovarian follicular fluid and

considered a biological marker of ovarian function relating to the size of the ovarian
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follicular pool. Whilst oestradiol also regulates FSH, in isolation it is not sufficient to

account for gonadal feedback (Chetkowski et al., 1986).

As oestradiol levels continue to fall as a result of follicular deficiency, the menstrual

cycle shortens. Ovarian unresponsiveness becomes more marked and the cycle

lengthens, and becomes increasingly anovulatory. In conjuction with defective corpus

luteum formation, progesterone secretion is significantly reduced resulting in

unopposed oestrogen secretion. This may give rise to dysfunctional endometrial

bleeding, hyperplasia and carcinoma. Progesterone is the first hormone to become

deficient at the climacteric.

2.1.5.2. Endocrine changes at the menopause

The reduced follicular development results in inadequate oestrodiol secretion to

stimulate endometrial growth. Menstruation does not occur, and thus amenorrhoea

ensues. The cessation of menses marks a change from cyclical to continuous

hypothalamic, pituitary and ovarian function. The menopause is the last menstrual

period and is the only constant feature of the climacteric. The main steroid hormone

changes at the menopause are shown in Table 2.1.2.

Table 1.1.2. Circulating sex steroid hormones (plmo/) before and after natural menopause and
oophorectomy.

Oestrone Oestradiol Progesterone Testosterone Androstenedione
(E2) (E1) (P)

Premenopause
EF 25-50 25-75 200-400 1600-1750
LF 150-200 200-600 300-800 1850-2000
ML 70-100 100-300 100-500 300-600
oe+ 20-40 15-25 50 75-150 600-1500

Postmenopause
Natural 20-40 9-15 100-200 200-300 600-900
op: 20-40 9-15 100-200 100-150 500-800

EF=Early follicular
LF=Latefollicular
ML=Mid-luteal

OPt=Oophorectomy before menopause
oPt=Oophorectomy after menopause
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2.1.5.3. Endocrine changes after the menopause

An important hormonal marker of the menopause is serum FSH which increases 10-15

fold post-menopause, compared to levels found during the follicular phase in women of

reproductive age. Circulating LH levels only increase 3-5 fold in comparison. Both

gonadotropins reach a peak 2-3 years after the menopause (Chakravarti et al., 1976)

and then begin to decline until levels equivalent to those found prior to menopause are

reached 20-30 years later (Fig. 2.1.13.).

Fig. 2.1.13. Mean (±JSD) plasma FSH and LH values in pre-, peri- and post-menopausal women. FP
= follicular phase, PO = peak ovulatory value, LP = luteal phase. A and B are women still
menstruating with apparent symptoms. B are women complaining of vasomotor symptoms. (Yrs =
years). From Whitehead and Godfree, 1992, pp 9.

The main circulating oestrogen following the menopause is oestrone, synthesised from

the peripheral conversion of androstenedione. Aromatization of androstendione to

oestrone in adipose tissue accounts for 98% of the total oestrone production in post-

menopausal women. The plasma levels of both oestrone and oestradiol correlate with

body weight (Armstrong et al., 1996) and excess body fat post-menopausally (Judd et

al., 1976). Even though it appears that post-menopausal women are not totally

deficient in oestrogen, oestrone has only one tenth of the biological activity of
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oestradiol. Plasma oestradiol levels in the immediate post-menopausal period range lO-

15 u/ml, as compared with 25-27 u/ml and 20-600 ,.uml in the early follicular phase

and late follicular phase respectively in pre-menopausal women.

The ovary continues to secrete androgens - androstenedione, testosterone,

dehydroepiandrostenedione (DHA) and its sulphate (DHAS) - after the menopause.

Androstenedione is derived from the ovary (30%) and the adrenal cortex (70%). The

main proportion of testosterone is derived from the adrenal cortex (50%), then the

ovary (35%). Peripheral conversion of androstendione accounts for 15% of

testosterone produced (Fig. 2.1.14). Following bilateral oophorectomy, plasma

androstenedione and testosterone fall by 50% in both pre- and post-menopausal

women. Chakravarti et al. (1976) reported a 20% fall in concentrations of

androstenedione, oestrone and oestradiol within a year after the menopause. After 5

years, androstenedione increased and testosterone levels had fallen significantly.

Progesterone (P) and I7-hydroxyprogesterone (17 HOP) levels in post-menopausal

women are derived exclusively from the adrenal gland. They are suppressed by

dexamethasone and increased 50% by adrenocorticotropin releasing hormone (ACTH).

Bilateral oophorectomy does not affect progesterone concentrations.

Fig. 2.1.14. Diagrammatic representation of the source of oestrogens in post-menopausal
women. From Anderson, 1979.
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2.1.6. Physiological and pathological changes

Oestrogen exerts widespread effects on many tissues of the body, of both intra- and

extra ovarian origin. The decline in oestrogen prior to, and hypoestogenia at the

menopause are therefore associated with many physiological and pathological changes.

It is important to note that the climacteric is as much a progesterone deficiency as an

oestrogen deficiency syndrome. In addition to oestrogen, the effects of progesterone

and other endocrine changes will be addressed in this section.

The symptoms of the climacteric are classified from their time of onset and aetiology

and range from temporal, vasomotor disturbances to chronic and insiduous diseases

which result in physical and pathological changes that pose health hazards to middle-

aged women. These are listed in Table 2.1.3.

Table 2.1.3. Acute, intermediate and long-term symptoms associated with oestrogen deficiency.
From:Whithead and Godfree (1992).
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2.1.6.1. Acute responses (vasomotor symptoms)

Acute responses to the climacteric arise when menstruation is still ongoing. These

symptoms are characterised by vasomotor disturbances, manifest as sensations of heat

which travel from the face, neck and chest outwards. The 'hot flush' is associated with

sweats, palpitations, dizziness and fainting. Vasomotor symptoms affect approximately

75% of females during the climacteric (McKinlay and Jeffers, 1974; Studd et al.,

1990), 70% of of which are affected for 2 years, 25% for 5 years and 5% long-term

indefinitely.

The endocrine and physiological mechanisms responsible for flushes are not fully

understood. The occurrence and intensity of symptoms have not been correlated with

plasma E2 levels, although it has been postulated that the concentrations of 'free' E2

(those not bound to plasma protein) are involved. Some studies have shown that

episodic discharge of the gonadotropin LH is responsible for these symptoms (Casper,

1979; Tataryn et al., 1979). Meldrum et al. (1981) found that inhibiting LH secretion

does not mitigate the frequency or severity of symptoms, and thus some other

mechanism is involved which may originate from the hypothalamus.

Sweating often coincides with the onset of a hot flush. The sensation of a flush

precedes an initial increase in skin conductance and vasodilation ensues. A fall in core

temperature - up to 1°c - and a rise in peripheral skin temperature from 10 to 5°

have also been proposed (Tataryn et al., 1979). This suggests an initial change within

the central nervous system which includes an acute resetting of the thermoregulatory

centre. Cardiovascular changes have been detected, with a marked increase in heart

rate of up to 20 beats per minute (Silverman et aI., 1981), suggesting an increase in

sympathetic drive.
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2.1.6.2. Intermediate responses

Oestrogen has many regulatory functions on reproductive tissues and thus prolonged

oestrogen deficiency affects the reproductive tract. Indeed, within 3-4 years post-

menopause, atrophic vaginitis, vaginal dryness and dyspareunia will begin to cause

problems in 10-20% of the female population (Studd et al., 1990). At 5-8 years, 40-

50% will be inflicted with genital tract atrophy. Moreover, loss of collagen from the

skin and connective tissue may induce thinning and muscular aches and pains

respectively. Approximately 30% of collagen is lost during the first 5 years after

menopause.

2.1.6.3. Chronic responses

Long-term consequences of ovarian failure may have more serious implications on

health and quality of life in post-menopausal women. The incidence of cardiovascular

heart disease (CVD) and osteoporosis increase with age. These are two major causes

of morbidity, which have been suggested to be exacerbated by the menopause. Female

mortality due to diseases associated with hypoestrogenia across all ages show that

coronary disorders are the main cause of death (Mortality statistics, 1992, Fig.2.l.15.).

Female Mortality by Underlying Causes

Lung Breast Ovarian Fracture Fracture MI D-ID
CanCft Cencer CanCft (LL) (NF)

Nature of Death

Fig. 2.1.15. Female mortality (thousands) in England and Wales by underlying causes in 1992. LL =
lower limb; NF = neck of femur;MI = myocardialinfarction; IHD =ischaemic heart disease (MI and
IHD = cardiovascular disease). From Mortality Statistics: Cause. Series DH2 NoI9 OPCS.
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Mortality of different age categories for disorders associated with the menopause are

shown in Fig. 2.1.16. Despite an increase in the incidence of gynaecological and breast

cancer after the menopause (50 years plus), heart disease is accountable for

significantly more deaths. This is exacerbated with ageing.
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Fig. 1.1.16. Deaths in women from breast cancer, gynaecological cancer and heart disease in 1992.
From: Mortality Statistics: Cause. Series DH2 No19 OPCS.

2.1.6.3.1. Cardiovascular disease

Low oestrogen levels have been associated with the high incidence of cardiovascular

disease in post-menopausal women (Witteman et aI., 1989). The low mortality rate

associated with CVD in pre-menopausal females compared to males of the same age

support these suggestions, and figures from the British Heart Foundation show that

cardiovascular mortality is 2.7 times greater inmales than females below 55 years.

Oestrogen deficiency is believed to cause unfavourable changes in lipid metabolism,

including a decline in high density lipoproteins (HOL), an increase in low density

lipoproteins (LDL) and higher serum cholesterol levels from pre-menopausal controls

(Wahl et al., 1983). Hence, the protective role of oestrogens on the cardiovascular

system is reversed postmenopause. However, oestrogen status is not the only risk

factor of CVD. The confounding effects of hereditary predisposition, obesity,
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hypertension, diabetes mellitus, smoking, hyperlipidaemia, inactivity and stress causes

problems in isolating oestrogen status as a risk factor.

Whilst controlling for age and smoking, Colditz et a1. (1987) claimed that women aged

30-55 years who had undergone a natural menopause and had never taken oestrogen

replacement were not at an increased risk of CVD. Cross-cultural studies corroborate

these findings. Reduced absolute death rates ofCVD in Japanese women despite lower

oestrogen levels compared with caucasian women (Godsland et at, 1987) cannot be

explained by differences in oestrogen status. Colditz et al. (1987) did report that

women who had surgical removal of the ovaries (bilateral oophorectomy) with no

subsequent hormone replacement therapy, had an increased risk of CVD. Oestrogen

replacement in this group appeared to reduce the risk ofCVD (Colditz et al., 1987).

Many epidemiological studies have shown that the administration of oestrogen reduces

the incidence of CVD by 50-70% (Knopp, 1988). Furthermore, hormone replacement

therapy (HRT) also protects post-menopausal women against stroke (Paginini-Hill et

al., 1988), probably mediated through its changes in lipid metabolism Oestrogen

replacement causes a decrease in total cholesterol and LDL and an increase in HDL

(Wahl et al.,1983), reversing lipid profiles to pre-menopausal values. The effect of

oestrogen on triglycerides and LDL depends on the type and dose of oestrogen.

Oestradiol valerate used in many HRT preparations causes a fall in these lipids whereas

ethinyloestradiol, used in oral contraceptive preparations, increases the LDL and

triglycerides concentrations. In addition to the progestogen component, this explains

the increased risk of myocardial infarction and thromboembolic disease in

premenopausal women (Meade et al., 1980). Since many progestogens antagonise the

effect of oestrogen, to obtain optimal benefits from HRT women with an intact uterus

should be administered a progestagen of a pregnane derivative

A meta-analysis survey in post-menopausal oestrogen users and non-oestrogen users

suggests that this hormone is a significant (but not the only) protective factor against

CVD (Manson, 1992). However, the mechanism of the action of oestrogen is still

uncertain. In pubescent females, the large changes in oestrogen do not alter lipid ratios
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which has led researchers to focus on possible non-lipid mediated actions of oestrogens

(Bourne et al., 1990; Lieberman et al., 1994). Bourne et al. (1990) treated 10 post-

menopausal women with transdermal oestrogen (Estraderm") and sequential oral

norethisterone acetate. Using transvaginal ultrasound and pulse doppler, they found a

reduction in arterial impedance and vascular tone of the uterine artery. Lieberman et aI.

(1994) reported improvements in flow-mediated endothelium-dependent vasodilation

in post-menopausal women after 9 weeks of oestrogen replacement therapy.

Additonally, Padwick et al. (1989) may have elucidated a further mechanism. They

identified a protein related to the oestrogen receptor in smooth vessels and suggested

that oestrogen may affect arterial status through a conventional sex hormone-receptor

mechanism.

2.1.6.3.2. Skeletal changes

The loss of endogenous oestrogen at the menopause is known to disturb the

homeostatically maintained process of bone remodelling. The consequential changes in

skeletal intergrity can lead to a metabolic bone disease called osteoporosis. The

association between bone loss and the menopause was first recognised in 1941 by

Fuller Albright (Albright et al., 1941) and is now axiomatic (Lindsay et al., 1976;

Horsman et al., 1977; Lindsay et al., 1978b). Oestrogen deficiency has since become

established as the single most important factor in the aetiology of osteoporosis

(Stevenson et al., 1989).

Osteoporosis is the most common metabolic bone disorder in Western countries and is

becoming a serious, yet preventable public health problem. Osteoporosis is

characterised by a significant reduction in bone density per unit volume, leading to

increased susceptibility to fractures. Lifetime risk of fractures in women is greatest for

the vertabrae at 32%; risk of hip and Co lies' fracture is 16% and 15% respectively

(Compston, 1992).
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(i) Bone loss

The skeletal system is composed of cortical and trabecular bone. Compact plates of

cortical bone are located in the peripheral skeleton. Bones of the central or axial

skeleton consist of trabecular bone, a honeycomb of vertical and horizontal plates filled

with red marrow (Marcus, 1991). Age-related bone loss affects cortical and trabecular

bone in both sexes and may lead to "senile" osteoporosis (Riggs and Melton, 1986).

Women experience an accelerated loss of trabecular bone after the menopause at a rate

of 1-6% per annum (Morgan, 1973; Lindsay et al., 1976; Krolner and Nielson, 1982).

Trabecular bone is more metabolically active than cortical bone and is more responsive

to oestrogen deficiency. Common sites for fracture following the menopause are

therefore localised at the wrist, spine and hip. Studies reporting bone loss at different

skeletal sites are conflicting. In a longitudinal study of 139 healthy post-menopausal

women, bone loss of the lumbar spine occurred before the menopause which amounted

to half of overall bone loss, and was accelerated after the menopause at 1% per annum.

No significant change was found for the midradius (99% cortical bone) pre-

menopausally (Riggs et al., 1986). Krolner and Nielsen, (1982) did not report any

change in bone of the lumbar vertebrae before the menopause but documented a 6%

loss per annum after the menopause. Oestrogen deficiency has been shown to be a

major contributor to a reduction in bone density of the proximal femur (Stevenson et

al., 1989), although this hasn't been found in previous studies (Riggs and Melton,

1986). Rates of loss differ between cortical and trabecular bone, at different skeletal

sites (Riggs et al., 1981; Stevenson et al., 1987) although it is agreed that the spine is

the main site of disease in post-menopausal women (Riggs et al., 1982).

Fracture risk is dependent on two factors - peak bone mass and subsequent rate of

loss. Peak bone mass is attained by mid-thirties and is mainly under genetic control

(Lindsay et al., 1983). Lifestyle factors such as physical activity and diet, smoking,

excess caffeine and alcohol intake have also been implicated in the redution of bone

density (Stevenson et al., 1989). For instance, daily consumption of caffeine can reduce

BMD of the hip and spine if at least one glass of milk is not consumed each day

(Barrett-Connor et al., 1994). Maximising peak bone mass in adulthood is therefore
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important in preventing bone density falling below the critical threshold for fracture

risk in later life. Fig. 2.1.17 illustrates the effect of peak bone mass on fracture risk.

Fig. 2.1.17. Effect of bone mass on fracture risk. The upper broken line represents BMD in women
with a high peak bone mass who lose 20% of their bone density after the menopause. The lower line
represents bone density in women with low peak bone mass who only lose 10% of their bone density
post-menopausal/y, yet become osteoporotic. From Stevenson, 1990.

(ii) Bone mineral density and muscle strength

Bone mineral density is not only dependent on systemic (hormonal) factors.

Mechanical mechanisms are also in operation through external (gravity) and internal

(muscular contraction) forces. The adapatation of bone to the force placed upon it was

first recognised by Wolfe (1872 - Wolfe's law). It has since been recognised that

muscle is an important determinant of bone mass (Doyle et al., 1970; Carter and

Hayes, 1977; Zimmerman et al., 1990). Indeed, weight-bearing activities have been

shown to increase the load to bone although activities such as swimming, which do not

incorporate gravity stimulation, do not produce the same effect (Wolman, 1990). This

is further supported in changes following immobilisation, in which significant bone

losses of up to 1-2% per week in trabecular bone have been reported (Whedon, 1984).

Many assessments have been undertaken assessing muscle strength and bone density at

local sites. Exercise exerts a local effect on the skeleton, where greatest increases in

BMD occur at the site of maximum stress. A 30% difference in BMD of the playing

)
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arm compared to the non-playing arm has been reported in tennis players (Huddleston

et al., 1980) and is greater in the os ca1cis of runners (Williams et al., 1984).

Muscle strength has been implicated in predicting bone mineral density in post-

menopausal women (Snow-Harter et al., 1990; Kyllonen et al., 1991) at functionally-

related antomical sites (Pocock et al., 1989; Rutherford and Jones, 1992; Zimmerman

et al., 1990; Madsen et al., 1993). Correlations have been found between muscle

strength of the back and bone density of the vertebral bodies (Sinaki et al., 1986; Halle

et al., 1990) and quadriceps strength and BMD at the proximal tibial (Madsen et al.,

1993) and proximal femur (Pocock et al., 1989). According to Zimmerman et al.

(1990) muscle strength is not a predictor ofBMD, but may be a factor in determining

BMD. The association between muscle function and bone density is further

substantiated from findings of strength in osteoporotic patients. Muscle weakness is

more pronounced in senile osteoporotic sufferers compared to healthy age-matched

controls (Rutherford and Jones, 1992). Meena et al. (1973) revealed that osteoporotics

had lower bone mass of the proximal radius site, but they did not have smaller muscles.

However, the muscle weakness reported with osteoporosis may be independent of

muscle mass, similiarly to that reported by Rutherford and Jones (1992), and has the

same aetiology as the significant reduction in bone.

(iii) Pathogenesis of post-menopausal osteoporosis

Bone is a dynamic tissue and is constantly under repair through a process of

remodelling. Bone resorption is governed by osteoclasts and bone formation by

osleoblasts. This dynamic homeostatic process is regulated through the action of•
hormones and growth factors. A disruption in hormone balance may result in a

significant loss of bone (or an increase in bone mass). Oestrogen deficiency has been

implicated in increasing the rate of bone resorption through indirect influences on other

regulatory factors and/or direct effects on bone.

The mechanisms by which oestrogen alters bone turnover are still much debated,

although it has been suggested that oestrogen acts indirectly by affecting the secretion
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of parathyroid hormone (PTH). In hypo estrogenic post-menopausal women, reduced

calcitonin levels enhance bone resorption to stimulate increased serum calcium levels.

Parathyroid hormone is subsequently suppressed which reduces the synthesis of 1,25-

dihydroxyvitamin D3 (Compston,1992). Recent proposals have focused on the role of

the immune system. Oestrogens inhibit cytokines interleukin 1 (IL-l), IL-6 and tissue

necrosis factor (TNF), indicators of bone resorption. Cytokines also increase the

sensitivity of bone to resorptive effects of PTH (Arnaud, 1993). Evidence of a direct

effect of oestrogen on bone have been reported in in vitro studies. Eriksen (1988) and

Komm (1988) both found that oestrogens have specific receptors in osteoblasts and

therefore probably affect bone metabolism directly through a receptor-mediated

mechanism. Even though it is recognised that oestrogen deficiency is responsible for

increased bone resorption, the precise mechanisms need confirmation.

Whilst oestrogen has been reported the most important factor associated with bone

metabolism, the role of progesterone in bone remodelling has been questioned.

Considering the close relationship of both these hormones in the ovulatory cycle, it is

reasonable to assume that progesterone may be the 'other hormone' which balances

the activity of oestrogen in bone resorption. Indeed, in vitro studies have shown that

progesterone acts directly on bone by engaging osteoblast receptors (Eriksen et al.,

1988) and indirectly, by competing for glucocorticoid receptors on osteoblasts

(Feldman et al., 1975). Further evidence emanates from hormonal treatment and bone

markers. A reduction in calcium and hydroxyproline excretion, markers of bone

resorption, following oestrogen treatment (Gallagher and Nordin, 1975) has been

observed with progesterone treatment (Lobo et al., 1984). However, it has been

reported that progestagen combined with oestrogen has a different effect on bone

markers than oestrogen treatment alone. Christiansen et al. (1985) noted an increase in

osteocalcin and alkaline phosphatase after progestogen administration on days 13-22

of a 28-day oestrogen therapy, compared with oestrogen alone in which urinary

calcium and hydroxyproline excretion diminished. This would suggest that

progesterone and oestrogen combined are implicated in increased bone formation as

opposed to decreased bone resorption with oestogen therapy alone.
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(iv) Progesterone and bone mineral measurements

Preliminary findings have implicated progesterone in the changes of bone mineral

density. In a prospective study, Prior et al. (1989) measured BMD using single-energy

quantitative computed tomograpy (QCT) of 66 healthy pre-menopausal women during

one year. Changes in the menstrual cycle were monitored using basal body temperature

readings. The mean length of the luteal phase was positively correlated with percent

annual change in BMD of the vertebrae (thoracic 12 to lumbar 13). The authors have

suggested that anovulation, with subsequent low or absent progesterone, might explain

the low bone mass in peri-menopausal women.

Data assessing the effects of progesterone treatment on BMD are limited. Work from

animal studies has demonstrated an increase in femoral width and ashed mineral in

progestogen-treated rats (Lindsay et al., 1972; Aitken et al., 1978). In humans, Prior et

al. (1987) reported an increase in vertebral density with QCT in 11 post-menopausal

women treated with medroxyprogesterone for one year. Furthermore,

medroxyprogesterone administered cyclically to pre-menopausal women with

secondary amenorrhoea resulted in a significant increase in bone density in 3 women

taking 10 mg/month; for those who took less progestogen, there was evidence of a

dose-response relationship of bone changes. In clinical trials, Lee (1990) found that

bone density increased markedly with the administration of 'natural' progesterone

applied in a cream, which was greater than synthetic progestagens. In 67 post-

menopausal women, bone density increased by 10% in the first six to twelve months,

followed by an annual increase of 3 to 5%. Oestrogen slowed down bone loss, but no

increases were observed (Fig. 2.1.18.).
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Fig. 2.1.18. Bone mineral denisty changes with progesterone (P), oestrogen only (£1 ) or controls.
From Lee, 1990.

Osteoporosis can be prevented through different approaches, but needs to be

recognised from an early age so that attainment of peak bone mass can be optimised.

Exogenous oestrogens have proven to be the most efficacious treatment for preventing

osteoporosis (Albright et aI., 1941; Aitken et at, 1973; Stevenson et at, 1990) even if

given many years after the menopause (Quigley et aI., 1987) although treatment should

begin soon after ovarian failure. It has been recommended that duration of therapy

should last approximately 7 years after menopause (Felson et al., 1993).

2.1.7. Hormone replacement therapy

The use of oral contraceptives (OC) as a form of hormone replacement in

amenorrhoeic athletes has been mentioned previously in section 2.1.3. Hormone

replacement therapy (HRT) is the most efficacious treatment for menopausally-related

symptoms but differs to OC's in dose and composition. Another important difference is

the therapeutic application of HRT, formulated to produce a physiological, not a

pharmacological effect. Hormone replacement therapy replenishes the loss of

endogenous reproductive hormones as a consequence of the menopause or other

disorders associated with a hypoestrogenic and hypoprogesteronic state. There is

substantial evidence to suggest that hormone replacement therapy mitigates the acute

menopausal symptoms such as vasomotor disturbances (Hargrove et at, 1989) and

40



confers protection against bone loss (Lindsay et al., 1976; Weiss et al., 1980; Felson et

al., 1993) and cardiovascular disease (Colditz et al., 1987; Paganini-Hill et al., 1988).

2.1.7.1. Formulations

The majority of HRT preparations contain an oestrogen and progestogen component.

The oestrogen component of HRT is not synthetic (i.e. not structurally dissimilar to

naturally occurring oestrogen) like ethinyloestradiol of OC formulations. Conjugated

equine oestrogens for example, most widely prescribed in HRT preparations in the U.K

(Whitehead and Godfree, 1992), comprise 50-65% oestrone sulphate with the

remainder constituting equine oestrogens which are structurally similar to oestrogens.

The oestrogen component of HRT is believed to be responsible for mitigating acute

vasomotor symptoms and reducing the risk of osteoporosis and cardiovascular disease.

Progestogens are only added to prevent endometrial hyperplasia caused by unopposed

oestrogen, and are therefore not routinely prescribed to hysterectomised women

(without an intact uterus) (Whitehead et al., 1990). Progestogens ofHRT preparations

are the same as those of OC formulations, and are mostly derived from the 19-

nortestosterone group. Progesterone is the precursor of many other steroids and thus

the admininstration of 'natural' progesterone results in its rapid metabolism. Very high

doses (200 mg) are needed to elicit an endometrical effect which has to be

administered twice daily (padwick et al., 1986) with accompanying sedative effects.

Synthetic progestogens may cause adverse side effects which may detract from the

benefits ofHRT. These side effects range from physical symptoms of breast tenderness

and bloating to anxiety, irritability and depression of a psychological origin

(Whitehead et al., 1990). Side effects are dose related, and depends on the type of

progestogen administered. Probably the most significant of these adverse effects are

the unfavourable changes in lipid profile. The beneficial effects of oestrogen are offset

with the addition of a progestogen which causes HDL to fall and LDL cholesterol to

increase (Ottoson et al., 1985; Siddle et al., 1990).
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Progestogens taken sequentially in combined preparations also induce a withdrawal

bleed which may be unacceptable in post-menopausal women. A gonadomimetic,

tribolone, has been developed to prevent withdrawal bleeding associated with

conventional HRT. Tribolone is a derivative of a C-19 nortestosterone compound

which possesses oestrogenic, progestogenic and androgenic properties (Ellerington et

al., 1992). Tribolone has been demonstrated to relieve vasomotor symptoms as

effectively as conjugated equine oestrogens and oestradiol valerate (Crona et al., 1988;

Volpe et al., 1986). Tribolone has been shown to be more effective in preventing bone

loss than a placebo (Lindsay et al., 1980) although comparisons with HRT

preparations have not been made. Their effects on lipid metabolism remain

inconclusive.

2. J. 7.2. Route of administration

The oral and transdermal routes for oestrogens and progestogens are the most popular

methods of administration. Other parenteral applications such as creams are also

advocated. The main disadvantage with oral administration of hormones is their

metabolism in the gastrointestinal tract and 'first pass' effect ofthe liver (Ellerington et

al., 1992). Oestradiol administered orally undergoes rapid conversion to oestrone in

the gut mucosa. Hence, all oestrogens prescribed orally are absorbed into the portal

venous system as oestrone, which passes through to the liver and is further metabolised

and inactivated. Between 30 to 90% of the administered dose is inactivated by the liver

prior to reaching the systemic circulation. Transdermal patches were developed to

overcome the hepatic first-pass effect. The efficacy of this method appears to equal

oral administration, with relief of hot flushes and maintenance of bone density (Haas et

al., 1988). There is little intermediate metabolism through the epidermis (Stumpf,

1990) and thus the initial dose of oestogen in oral preparations is higher than that of

the non-oral route. Progestogens are usually added sequentially in oral preparations,

mimicking the endogenous hormonal fluctuations during the menstrual cycle.

However, the adverse side effects of higher doses of progestogens in oral preparations,

and the unfavourable changes in the lipid profile, have prompted the development of

non-oral administration of the progestogen norethisterone acetate.
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2.2. MUSCLE FUNCTION

The endocrinology of the female reproductive system has been reviewed in the

previous section, so that reference throughtout the thesis to the hormonal status of

young and middle-aged women and the effects that reproductive hormones exert will

befully understood.

Thepurpose of this section is to review aspects of muscle function and to establish a

link with reproductive hormones. It is necessary at first to brief the reader of the

structure and characteristics of the skeletal muscle to clarify the mechanisms of the

actions of hormones.

2.2.1. Introduction

The ability to undertake any activity, from subliminal actions of blinking to strenuous

exercise, is possible through the functioning of the muscular system. A highly

specialised contractile machinery, skeletal muscle is characterised by its physical

location, histology and nervous mode of control (Tortora and Anagnostakos, 1990).

Cardiac (heart) tissue and smooth muscle (e.g. blood vessels) are under involuntary

control, whereas movement of skeletal muscle is voluntary.

Muscle is a responsive tissue, adapting to external stimuli to enhance its mechanical

and physiological functioning. Like many living tissues, muscle is not resistant to

disease. Muscle strength, the capacity to generate force, is impaired in diseases such as

myasthenia gravis, mytonia congenita and muscular dystrophy. The accompanying

sensations of weakness and fatigue result in diminshed capacity to undertake 'simple'

activities without undue strain. Muscle function is also compromised in the elderly and

muscular atrophy, localised in the proximal muscles of the lower limb, results in a

significant reduction in strength. This has important implications for enhancing the

functional capacity in the elderly population.
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Measuring indices of muscle function can determine the individual changes in strength

and identify weaknesses inmuscular performance. Much of the equipment used in the

past has been subject to measurement error and limited to select muscle groups.

Contemporary dynamometers allow the measurement of different muscle groups

during different contractions and through a wide range of movements. Information

derived from these tests provide more 'accurate' and realistic information, a sound

basis from which to study functional changes in the population.

2.2.2. Structure of skeletal muscle

Skeletal muscle is responsible for movement and support of the skeleton. The human

body contains over 215 pairs of skeletal muscle. For muscle to produce movement, the

individual muscle fibres must contract. Contraction is initiated through a complex

interaction originating from the higher centres of the brain, which relays messages

along the central nervous system (CNS), peripheral nerves to the neuromuscular

junction. This culminates in the transmission of electrical activity to muscle fibres for

contraction to occur (Tortora and Anagnostakaos, 1990).

Muscle is comprised of individual muscle cells called muscle fibres, which run along

the longitudinal axis of the muscle. They are enclosed in a plasma membrane called the

sarcolemma. Muscle fibres are arranged in bundles, and contain smaller subunits of

myofibrils. These are the contractile elements of skeletal muscle. Each myofibril

contains numerous sacromeres, the basic functional unit of a myofibril. They are

arranged along the myofibril and gives the muscle fibre a striated appearance (Billeter

and Hoppeler, 1992). The magnified striations represent dark (A bands) and light (I

bands) regions, occupied by contractile proteins myosin and actin filaments (Fig.

2.2.1.).
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Fig. 2.2.1_ A sacromere, the functional unit of the myofibril

Two thirds of skeletal proteins in each myofibril consist of myosin filaments. Myosin is

characterised by two intertwined strands termininating in globular heads. The

adenosine triphosphate CATP) cleaving site is located in the myosin head, where the

hydrolysis of ATP to adenosine diphosphate (ADP) provides energy for contraction.

When the myosin head interact with actin molecules, ATPase is activated several

hundred-fold (Fig. 2.2.2.).

Fig. 2.2.2: A molecule of myosin

Actin, a double helical strand, is attached to two other proteins, tropomyosin and

troponin. Tropomyosin is a long, rod-shaped protein spanning the length of seven actin

residues. The troporrin complex is carried on the tropomyosin and consists of globular

shaped troporrin C, troponin I and an elongated troponin T. Troponin C is the binding

site for calcium (Fig. 2.2.3).
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Fig. 2.2.3. An actin filament, composed of molecules of actin, tropomyosin and troponin

A system of membranous channels called the sarcoplasmic reticulum (SR) run

longitudinally to the myofibril, providing a storage site for calcium in preparation for

muscle contraction. The transverse tubules, which extend from the sarcolemma,

transports extracellular fluid to individual muscle fibres. Muscle fibres are innervated

by a motor neuron, which along with its axon and the fibres it supplies is collectively

called the motor unit (Billeter and Hoppeler, 1992).

Characteristics of motor units differ, and early reports of Ranvier demonstrated that

speed of contraction differed between muscles of the same individual (Ranvier, 1873:

cited by McComas and Thomas, 1968). The nomenclature of muscle fibres depends on

the different isoforms of the myosin. Three distinct isoforms have been identified,

which differ on the basis of ATPase activity. Using the needle biopsy technique

(Bergstrom, 1962) and histochemical staining, Peter et al. (1972) classified the fibres

types as slow twitch fibres (type I) which rely heavily on aerobic metabolism; fast

twitch-oxidative glycolytic (type IIa) have a moderate to high glycolyic activity with a

higher capacity for aerobic metabolism and fast twitch glycolytic fibres (type lIb) are

characterised by a high glycolytic capacity. Faster myosin heads split ATP about 600

times per second, double the speed of slower myosins (Billeter and Hoppeler, 1992). In

most everyday contractions, slow motor units (type I) are the first to be recruited.

Greater power output recruits fast (type II) fibres and fast glycolytic fibres (type lIb)

are preferentially activated in fast movements.
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2.2.3. Excitation-contraction coupling

Excitation-contraction coupling refers to the process by which the nerve signal results

in muscular movement. Nerve impulses travel along the axon at a speed of several

metres per second and activate the motor unit and all the fibres in innervates. The site

of signal transduction from the motor nerve to the muscle fibre's membrane is the

synapse. This is separated from the muscle membrane by a cleft or the neuromuscular

junction (NMJ). The arrival of a nerve impulse at the nerve's endings (motor end

plates) stimulates the release of a neurotransmitter, acetylcholine (ACH) , into the

synaptic cleft and binds to receptors on the muscle cell membrane. The binding of

ACH increases the permeability of sodium (Na+) and initiates depolarisation of the

postsynaptic muscle membrane generating an action potential. The action potential

travels across the sarcolemma and through the T tubules and the sarcoplasmic

reticulum (SR) to the interior of the muscle fibre. The electrical charge elicits the

release of large quantities of stored calcium ions from the SR into the myoplasm,

where they bind to troponin C on actin filaments.

2.2.3.1. Cross-bridge cycling

Muscle force is generated by the interaction of myosin heads with actin, which detach,

and slide further along the molecule - a process of cross-bridge cycling. Prior to the

binding of calcium, myosin heads are detached from actin, and adenosine triphosphate

(ATP) is bound in the head of myosin. The ATP is split into adenosine diphosphate

(ADP) plus phosphate (Pi) but is not released from the ATPase (adenosine

triphosphotase) site. The binding of calcium to troponin C on actin filaments causes a

conformational change in troponin C and subsequently troponin I, T and tropomyosin.

The myosin heads attach to the active sites of actin, forming cross-bridges and the

phosphate is released. This causes the head to tilt and pulls the actin filament towards

the middle of the sacromere. This is referred to as the 'power stroke' and is the main

regulatory step in cross-bridge cycling. After the 'power stroke' the cross-bridge is

detached from the thin filament when ATP binds to the myosin head and a new cycle
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begins. The muscle relaxes when calcium is actively removed and transported back to

the SR, another energy dependent action.

The four states during cross-bridge cycling have been proposed to exist as two bound

and two unbound states (Eisenberg et al., 1980). According to this model, the initial

crossbridge attachment is in a weakly-bound state. Phosphate release results in the

transition to a strongly-bound actin-myosin-ADP state. Pate and Cooke (1989) have

developed a mathematical model similar to that of Eisenberg et al.(1980), including a

state in which myosin binds weakly to actin prior to release of Pi. Under conditions of

high concentrations of Pi, the model predicts that tension decreases. Force is lowered

by altering the equilibrium between the two attached cross-bridge states (Pate and

Cooke, 1989).

2.2.4. Force-velocity relations

The strength of a muscle is determined by the amount of force it can generate. Muscle

can produce force whilst shortening, when it is static and during lengthening. The

contractile behaviour of muscle can be characterised by the force-velocity relation,

which describes the relationship between muscular tension and shortening velocity. The

inverse relationship existing between force or load and shortening velocity was first

demonstrated in situ in the early work ofFenn and Marsh (1935) and Hill (1938). Hill

devised a formula in which the force (F) and shortening velocity (V) represent a

hyperbola:

(F + a) (V +b) = (Fo + a) b

where Fois the force exerted in an isometric contraction, and a, b are constants.

At zero velocities, the muscle is contracting whilst the joint angle remains constant.

The myosin cross-bridges are formed and recycled, although the external force is too

great for actin filaments to be moved (Wilmore and Costill, 1994). This action is

termed isometric. The force-velocity relationship obtained from one joint angle for a
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single muscle during an isometric contraction may not necessarily apply to other joint

angles, since isometric force differs over a range of joint angles, as reviewed by Kulig

(1984).

When the force developed by a muscle is greater than the external load, the muscle will

shorten. During shortening or concentric contractions the thick (myosin) and thin

(actin) filaments overlap, thereby exerting a positive force. This has been described

above (section 2.3.2.1.). At increasing velocities, there is a non-linear decrease in force

due to a reduced number of attached cross-bridges. This is due to the shorter time in

which the myosin bridges are exposed to a potential binding site (Edman, 1992).

Maximum shortening velocities are produced under zero load with lowest force

production.

When the external load exceeds the isometric force Fo the muscle is stretched against

its external forces (GUlch, 1994). This eccentric action exerts negative force due the

lengthening of the muscle. It has been well documented that force increases with

velocity during "lengthening contractions" (Katz, 1939; Edman, 1988; Lombardi and

Piazzesi, 1990). Increases in velocity above the optimum length, however, do not

result in higher forces (Lombardi and Piazzesi, 1990). When muscle fibres are

overstretched, the actin and myosin filaments are pulled further apart, hence fewer

cross-bridges interact (Wilmore and Costill, 1994). The number of attached cross-

bridges increases by approximately 10% from isometric contractions (Lombardi and

Piazzesi, 1990), and thus the increase in force is likely to arise from the higher force

developed per cross bridge.

The development of isokinetic dynamometry has enabled the characteristics of human

muscles to be determined in vivo. The curvature of the force-velocity relationship is

related to the fibre type composition of the muscle (Thortensson et al., 1976). Force

output is greater for fast twitch fibres which are selectively recruited during fast

contractions.
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2.2.5. Assessment of muscle function

Objective measurements of muscle function are important for the quantification of

skeletal disorders and symptoms of weakness and fatigue (Edwards and Hyde, 1977).

The developments of equipment such as the strain gauge and isokinetic dynamometers

have provided tools for measuring muscle force. The needle biopsy technique, used for

histochemical analysis of muscle samples (Edwards et al., 1980) and electromyography

employed to measured electrical properties of muscle (Stephens and Taylor, 1972;

Moxham et al., 1982; Cooper et al., 1988) have allowed the functioning of muscle to

be examined in greater detail. This has proven invaluable for the identification of the

properties of muscle and the aetiology of skeletal disorders.

2.2.5.1. Maximal voluntary muscle force

The function of muscle is to generate force. Strength is therefore an important

determinant of muscle function. The chain of commands which lead to a voluntary

contraction (Edwards, 1978) is shown in Fig. 2.2.4. Impairment in muscle function

may occur at anyone of these 'links' and result in a reduced capacity to produce

maximal strength.

Strain gauge systems have been employed to measure maximal voluntary isometric

force in the quadriceps (Edwards et al., 1977b), the first dorsal interosseus muscle

(Stephens and Taylor, 1972; Milner-Brown et al., 1973; Tanaka et al., 1984;

Rutherford and Jones, 1988) and the adductor pollicis muscle (Merton, 1954; Edwards

et al., 1977b; Phillips et al., 1993b,c). Measurement of maximal volitional force is

dependent upon the motivation of the subject. Studies which have examined motor unit

activation in human muscle have employed the twitch interpolation technique, the

superimposition of electrical impulses, to compare the force generated from a

voluntary contraction with that elicited from involuntary electrical stimulation. In the

absence of fatigue, disappearance of the superimposed impulses confirming maximal

activation has been reported for the quadriceps (Rutherford et aI., 1986), soleus
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(Bellemare et at, 1983) and the dorsiflexor (Belanger and McComas, 1981) muscles.

Certain muscle groups are easier to activate than others, and appear to be dependent

on their level of recruitment. Rutherford et al. (1986) reported that 30% of subjects,

male and females of different ages, who were able to activate their quadriceps fully

could not generate maximal activation of their biceps. This has also been found for the

plantar flexors (Belanger and McComas, 1981), indicating that differences in muscle

activation probably depends on the extent of their use and recruitment in maximal

movements.

Stimulation of the motor nerve is impractical for muscles such as the quadriceps.

Innervated by the femoral nerve, supramaximal stimulation of this muscle group is

painful and can be dangerous. Percutaneous stimulation using surface electrodes is

therefore used to assess the recruitment of the quadriceps during voluntary

contractions (Chapman et al., 1984; Rutherford et al., 1986).

'Psyche' !Brain

sPinJcord
~

periPherl nerve

Neuromuscular junction
~

Muscle cell membrane

~
Transverse tubular system

~
Calcium release

~
Actin-myosin cross-bridge

~
Cross-bridge tension + heat

~
FORCE

Fig. 2.2.4. Voluntary contraction of human skeletal muscle: From Edwards (1978).
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2.2.5.2. Electrical stimulation

Twitch interpolation is one of several applications used in the assessment of muscle

function by electrical stimulation. In addition to twitch interpolation, electrically

stimulated contractions provide information of contractility, relaxation rate and rate of

force fatigue of skeletal muscle. Duchenne in the last century was the first to use

electrical stimulation to examine the actions of normal and diseased muscle (Edwards

and Hyde, 1977), and also pioneered the development of the needle biopsy technique

(Edwards et al., 1980). Much of the earlier work employing electrical stimulation made

use of small peripheral muscles such as the first dorsal interosseus (Stephen and

Taylor, 1972), the adductor po1licis (Merton, 1954; Edwards et at, 1977b) and the

abductor digiti minimi (Burke et al., 1974) with accessible motor nerves. These

muscles have little functional significance compared to large muscle groups, such as

the quadriceps, which are mostly affected by skeletal disorders (Edwards et al.,

1977b). Maximum tetanic stimulation of the femoral nerve innervating the quadriceps

is painful and so only a portion of the muscle (20 to 40%) is routinely stimulated.

Percutaneous stimulation via superficial branches of the nerve is delivered through

large surface electrodes placed proximally and distally over the anterior side of the

thigh (Edwards et al., 1977b). The validity of this method has been questioned, with

claims that percutaneous stimulation is voltage dependent (Davies and White, 1982).

This has not been demonstrated in the quadriceps except at low voltages (Edwards and

Newham, 1984) or in either fresh or fatigued sternomastoid muscle (Edwards et al.,

1984).

Characteristics of contractile properties are assessed through delivering trains of

stimuli in a set pattern of frequencies e.g. 1, 10, 20,50, 100 and 1 Hz, to the muscle.

The is called a programmed stimulation myogram or 'PSM' (Cooper et at, 1988). The

force-frequency relationship is illustrated below (Fig. 2.2.5.).
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Fig. 2.2.5. Force-frequency curve infresh andfatigued muscle,

Contractile properties do not necessarily determine fibre composition of different

muscles. Round et al. (1984) examined the fibre composition of the human adductor

pollicis muscle during postmortem. The muscle was composed predominantly (80%) of

type I fibres although the contractile properties were similar to those obtained for the

quadriceps which have approximately equal amounts of type I and II fibres. The twitch

characteristics of the AP were different to the soleus, despite the higher proportion of

type I fibres of this muscle (Round et al., 1984). Edwards et al. (1977b) reported

similar force-frequency curves for the quadriceps and adductor pollicis muscle.

Contractile properties obtained in vivo are agreeable with those obtained in isolated

muscle preparations (Faulkner et al., 1979; Moulds et al., 1977).

2.2.6. Muscle weakness

Muscle weakness is a common symptom of neuromuscular disorders, manifest as the

inability to perform everyday activities. It is defined as the failure to generate force

which may be due to lack of motivation (neural drive), neurological disorders,

immobilisation of a limb after fracture or ageing (Edwards, 1978). Muscle weakness is

most pronounced in lower limb performance, and is of great concern due to its
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principle role in everyday activities. Several mechanisms responsible for weakness have

been identified through the development of different methods. So far, the inability to

produce maximum force output has been attributed to the failure of electromechanical

activation, depletion of fuel supply or degeneration of the contractile apparatus. In

light of these factors, Edwards (1978) devised a schematic representation which may

be used as a practical approach for diagnosing weakness (see Fig.2.2.6).

Electromechanical
activation

Impaired neuromuscular
:...:--- transmission

--- Impaired excitation-contraction
coupling

____ Reduced short-term energy stores

--- Impaired energy exchange

Contractile machinery
~ Smaller muscle cells

=---- Fewer muscle cells

Fig. 2.2.6: Practical scheme for analysis of muscle weakness

2.2.7. Muscle fatigue

Muscle fatigue, which leads to muscular weakness, is defined as the inability to sustain

expected force output (Edwards et al., 1981). Fatigue can occur anywhere between the

central nervous system (eNS) to cross-bridge cycling, an impairment at anyone (or

more) site listed in Fig. 2.2.4. It is therefore difficult to identify one site of fatigue.

Physiological changes are also manifest, such as the slowing of relaxation. In clinical

assessments, muscle fatigue is quantified using volitional and electrically stimulated

tests. Each technique is subject to criticism; volitional contractions are reflective of the

functional capacity of muscle representative of daily activities, but are dependent upon

the motivation and functional central drive of the subjects (Binder-Macleod and

Snyder-Mackler, 1993). Electrical elicited fatigue is independent of motivation and

determines whether failure to maintain the generated force is the result of lack of
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neural drive ('central fatigue') or processes occurring within the muscle ('peripheral

fatigue') (Edwards, 1978).

2.2.7.1. Central fatigue

Comparison of the volitional forces with electrically stimulated contractions has

provided a measure of 'central fatigue'. The contribution of central mechanisms in

eliciting fatigue was reported as early as 1892, when Lombard found that the work

capacity of the finger muscle was maintained during electrical stimulation, but reduced

during maximal voluntary contractions (MVC) (Fitts, 1994). It has been claimed that

muscle fibre recruitment between volitional contractions and electrical stimulation

differs and only those muscle fibres beneath the electrodes are activated during

electrical stimulation (Fitts, 1994). Volitional contractions produce more work

resulting in a higher rate of fatigue.

Several authors have used smoothed rectified electromyography (s.r.e) to record the

electrical activity of the muscle during a maximal voluntary contraction (MVC) and

electrical stimulated contractions (Stephens and Taylor, 1972; Bigland-Ritchie et al.,

1978). Sustained maximal voluntary contraction of the first dorsal interosseus muscle

and s.r.e fell proportionatly to loss of force during the first 60s of the contraction,

resulting in a constant s.r.e/force.With time, however, force declined more rapidly.

This was perceived as a failure of neuromuscular drive (Stephens and Taylor, 1972).

These findings differ to those performed on the quadriceps. Bigland-Ritchie et al.

(1978) found that s.r.e/force ratio remained constant even when force was decreasing.

Even inwell-motivated subjects the tendency of central fatigue was overcome during a

brief extra effort.

The causes of muscle fatigue are multifactorial, and can take place at various sites

within the central nervous system, the neuromuscular junction and several locations

Within the muscle fibres (Edwards, 1978). Under laboratory conditions, when subjects

are well-motivated, muscular fatigue has been shown consistently to have peripheral

origins.
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2.2.7.2. Peripheral fatigue

Merton (1954) was the first to demonstrate the importance of peripheral fatigue when

measuring maximal voluntary effort of the adductor pollicis muscle superimposed with

stimulations of the ulnar nerve. Fatigue was reported to be of peripheral origin,

occurring beyond the neuromuscular junction and attributed entirely to failure of the

muscle contractile system. These conclusions were based on the observations that

stimulation of the motor nerve failed to restore the initial force output and recovery

from fatigue was not restored when circulation of the muscle was occluded.

Subsequent studies have corroborated these findings, maintaining that events proximal

to the neuromuscular junction (NMJ), or transmission of information across the NMJ,

are not responsible for the the significant limitation to muscular performance (Bigland-

Ritchie and Woods, 1984).

The peripheral failure to generate force is due to metabolic factors involving a

reduction in ATP, accumulation of hydrogen ions (It) or the depletion of glycogen

stores. Two other forms of peripheral fatigue have been recognised, depending on the

site of fatigue. Low frequency fatigue is characterised by a loss of force when tested at

low frequencies of stimulation (10 to 20 Hz), measured as a lowered 20/50 Hz ratio

i.e. the force generated at 20 Hz as a percentage of the force at 50 Hz. This is

attributed to the excitation-contraction failure. Force which is reduced at high

frequencies of stimulation (50 to 100 Hz) is referred to as high frequency fatigue

resulting from the impairment of transmission at the neuromuscular junction or

conduction of the action potential also inhibits force production.. These forms of

fatigue are identified by changes in the force-frequency relationship.

2.2.7.2.1. Metabolic causes of fatigue

Whilst controversy exists as to the aetiology of fatigue, it is well acknowledged that

metabolic factors contribute, although may not be entirely responsible, for the

reduction in force output. The accumulation of hydrogen ions (It), ammonia (NH3)
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and inorganic phosphate (Pi) impair force generation, whereas the depletion of ATP,

phosphocreatine (PCr) and glycogen elicit fatigue.

The association between lactic acid, formed in muscle under anaerobic conditions, and

force led to the belief that this by-product of glycolysis causes fatigue. Following much

debate (see Fitts, 1994 for a review), it has since been established that the free It
derived from the dissociation of lactate adversely affects force production through its

effects on glycolysis and/or on the contractile mechanism (MacLaren et al., 1989). This

is most significant at work loads above 50-60 % of maximal aerobic capacity

(Hermansen, 1971) and preferentially affects fast type II fibres. High intensity exercise

also results in the accumulation of ammonia and acts as a possible inhibitory metabolite

(Fitts, 1994). Similarly to lactic acid formation, ammonia accumulation is pronounced

in fast twitch fibres. An increase in the concentration of inorganic phosphate is also

implicated in the aetiology of fatigue, and is considered to have an inotropic effect on

force production. The binding of Pi to myosin alters the cross-bridge to a weak-binding

state (Pate and Cooke, 1989) hence reducing the tension generated by the cross-

bridge.

Whilst the increase in Pi is associated with fatigue, the lack of intracellular phosphate

may result in the reduction of PCr resynthesis affecting the availability of this

immediate energy store (Fitts, 1994) and the regeneration of ATP. A reduction in ATP

is a predominant factor involved in fatigue during short-term anaerobic work. Whilst

the exhaustion of glycogen influences the capacity to undertake high intensity

activities, this source of fatigue is important during submaximal exercise where slow

oxidative fibres are recruited. Using muscle biopsy, the depletion of glycogen stores

has been reported to be closely related to fatigue during sustained exercise at 65-75%

ofmaximal oxygen uptake (Hermansen et al., 1976).

It is impossible to isolate anyone metabolic factor in the cause of fatigue, although the

contribution from different metabolites is controlled by the intensity of exercise and the

fibre composition of the muscle involved.

57



2.2.7.2.1. High frequency fatigue

Fatigue at the neuromuscular junction (NMJ) is the first site of fatigue resulting from

high frequencies of stimulation. Jones et al. (1979) reported a reduction in force

following stimulation at high frequencies of around 80 Hz after a few seconds of 10 to

20% of the initial value. This rapid force loss is accompanied by a change in EMG,

suggesting a failure of action potentials along the surface membrane of the muscle fibre

(Moxham et al., 1982). Stephens and Taylor (1972) proposed that during a maximal

voluntary contraction of the FDI, fatigue originates initially from failure at the NMJ.

Conversely, Bigland-Ritchie et al. (1982) found that NMJ failure is not responsible for

fatigue during the first 60 seconds of a maximal voluntary contraction and is therefore

not a significant factor.

The development of high frequency fatigue has been attributed to the accumulation of

potassium in the t-tubules and extracellular spaces, which results in the slowing of the

action potential (Jones et al., 1979, 1981). Observations on calcium gradients support

these propositions (Westerblad et al., 1990), although the effects of potassium on high

frequency fatigue is supported by Sacco et al. (1994). The tibialis anterior was

stimulated under ischaemic conditions at optimum and shortened lengths of different

frequencies. Delivery of 30 Hz to the shorter muscle generated the same characteristics

as stimulating the muscle at an optimum length at a higher frequency of 60 Hz.

Recovery was most rapid when the muscle was shortened. This is possibly due to the

restriction from shortened muscle in the movement of potassium which accumulates in

the t-tubules, and when the muscle is lengthened, the potassium can diffuse freely out

of these areas (Sacco et al., 1994).

The importance of high frequency fatigue is questionable since the firing rates of motor

units during voluntary contractions are within the range of 5 to 30 Hz. The fall in firing

rate from 30 Hz during sustained isometric contractions (Bigland-Ritchie et al., 1986)

appears to reduce the tendancy of fatiguing from high frequencies and thus preventing

the accumulation of potassium.
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2.2.7.2.2. Low frequency fatigue

Low frequency fatigue is characterised by a loss of force at low frequencies of

stimulation, and a right-hand shift in the force frequency curve (Fig. 2.3.5). Adequate

excitation of the muscle membrane suggests that failure of exitation-contraction

coupling occurs. This form of fatigue has been found to occur after dynamic exercise,

and may last up to 24 hours. Edwards et al. (l977a) have examined electrically

stimulated force generation of the quadriceps following box-stepping and cycling

exercise. They reported a reduction in 20 to 50 Hz tetanic tensions of 50% following

box-stepping and in one instance, cycling. This loss in force reflected the occurrence of

low frequency fatigue due to excitation-contraction uncoupling. This form is fatigue is

characterised by the slow recovery rate of up to 24 hours.

Davies and White (1982) investigated three types of dynamic exercise, level running,

uphill walking and box-stepping on low frequency fatigue. Twitch and tetanic tensions

following the box-stepping was reduced at 10 and 20 Hz, and 20/50 Hz ratio was

lower, which lasted 22 hours. Even though their results were similar to Edwards et al.,

(1977a), Davies and White (1982) claimed that their subjects were weaker, but not

more fatiguable following exercise. They also questioned the use of percutaneous

stimulation in generating force at 20 and 50 Hz, suggesting that the shape of the force-

frequency curve is voltage dependent. Edwards et al. (1984) have subsequently

reported that the 20/50 Hz ratio is a reliable indicator of force-frequency relationship

of the stemomastiod muscle using percutaneous electrical stimulation in fresh and

fatigued muscle.

The mechanisms involved in the loss of force resulting from a failure of excitation-

contraction coupling could be due to the impairment of sarcoplasmic calcium (Ca2+)

release or myofibrillar Ca2+ sensivity (Cooper et al.,1988). Force loss induced by

increases in myoplasmic inorganic phosphate (Pi)' causing myofibrillar Ca2+

insensitivity, cannot explain the persistance oflow frequency fatigue since Pi returns to

normal within minutes of cessation of activity. Metabolic or ionic changes are therefore

unlikely to cause low frequency fatigue characterised by a long recovery rate. It is
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possible that damage to the muscle fibre is responsible for this form of fatigue (Jones

1981), since it is most evident in muscles following eccentric or lengthening

contractions (Newham et al., 1983) and when the muscle is exercised isometrically at a

long length (Jones et al., 1989).

2.2.7.3. Relaxation rate

The slowing of relaxation following tetanic contractions is characteristic of fatigued

skeletal muscle. The reduction in relaxation rate is believed to be the contribution to

the maintenance of force (Jones, 1981), and prevent the muscle from performing rapid

continuous movements. Metabolic changes are suggested to regulate the relaxation

rate, although precise mechanisms are inconclusive. A reduced rate in the dissociation

of cross-bridges may be involved (Edwards et at, 1975), a process requiring the

removal of calcium by sequestration in the sarcoplasmic reticulum (Westerblad and

Allen, 1996). In a comparison of normal subjects and patients with myophosphorylase

deficiency, Cady et al. (1989) demonstrated that whilst It accumulation is responsible

for slowing of relaxation, there is another process which is independent of H', Wiles et

al. (1979) reported similar relaxation rates from electrically stimulated and volitional

contractions, but were not able to find a relationship between relaxation rate and fibre

composition, determined from muscle biopsy.

Whilst the purpose of the slowing of relaxation is apparent, the precise mechanisms

involved remain inconclusive. There is evidence to support the role of hydrogen ion

accumulation, although current evidence suggests that other factors are also involved

which have not been confirmed. A reduction in the rate of cross-bridge dissociation, an

ATP-dependent process, is implicated in the slowing of relaxation. Therefore, a

combination of metabolic factors which are difficult to isolate are responsible for the

slowing of relaxation, which occurs independently of fibre-type and the mode of

stimulation (electrical versus volitional contraction).
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2.2.8. Factors affecting muscle strength

The factors which affect muscle strength are numerous and to review them all would

exceed the scope of this thesis. The two most relevant factors appertaining to this

work are ageing and reproductive hormones. References to isometric, dynamic and

eccentric actions will be made.

2.2.8.1. Ageing

As life expectancy increases, so does the percentage population of elderly people.

Understanding the effects of ageing in skeletaI muscle has therefore become an

increasingly important area of research. Muscle strength is correlated with the capacity

to undertake activities such as walking speed and stair climbing (Aniasson et al., 1983).

A reduction in muscle strength will therefore compromise the functional status of the

elderly.

2.2.8.1.1. Muscle strength

Maximal strength is attained in young adulthood around 20-30 years, and declines with

age. This was first reported as early as 1835 by Quetelet, who found loss of strength

from 30 years (Larsson et al., 1979; Vandervoort and McComas, 1986; Narici et aI.,

1991). The onset of weakness has since been proposed to develop later, although there

is controversy as to when this occurs. Larsson et aI. (1979) found that maximal

isometric and dynamic leg strength measured on an isokinetic device is attained at 20-

29 years, and remains constant unti140-49 years. After 50 years, strength declined by

28.1 % at 70 years compared with a younger group. These findings are in agreement

with Asmussen and Heeboll-Nielsen, (1961), who reported peak isometric strength of

the knee extensors at 30 years in males. In females, strength peaked at 20 years and

decreased at an accelerated rate from 40 years. Aniansson et aI. (1983) found a

significant decrease in isometic and isokinetic torque in both sexes for the knee

extensors between 70 and 75 years, whereas Borges (1989) reported a significant

decrease in isometric strength at 60-70 years in males and females. A further 30% loss
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in peak torque of the knee extensors in both sexes was documented in 78-81 year olds

(Danneskiold-Sarnsoe et aI., 1984). Strength losses with age are more pronounced in

lower limb proximal muscles (Larsson, 1978). However, reductions in strength of

other muscles are also manifest. Under isometric (Vandervoort and Hayes, 1989) and

isokinetic (Cunningham et at, 1987) conditions, maximal strength of the plantar flexors

declined with age.

Eccentric strength is not compromised to the same extent as concentric strength for

knee extensors in elderly males and females (Vandervoort et al., 1990; Poulin et al.,

1992), although the mechanism for this is not known. Narici et ai. (1991) measured

maximum strength in a distal upper limb muscle, the adductor pollicis (AP), in males

aged 20-91 years and found that strength declined significantly from 59 years, and by

the eighth decade strength was 57.6% of males in the second decade. Frontera et al.

(1991) reported strength of the elbow extensors and flexors at 22.2 and 16.7% lower

respectively in older women. In a longitudinal, Kallman et al. (1990) found that grip

grip increased into the fourth decade, with an accelerated loss of strength thereafter.

However, they also found that many older subjects maintained their strength

throughout the duration of the 9 year study, whereas middle-aged and younger

subjects lost strength. These findings demonstrate that great inter-individual variation

in strength loss exist across all ages.

There is evidence to suggest that isometric strength is better maintained than dynamic

strength in the elderley. An increased speed-dependent loss of force with age has been

documented in several studies (Larsson, 1978; Larsson et al., 1979; Murray et al.,

1985; Harries and Bassey, 1990; Laforest et al., 1990). Aniansson et al. (1983)

reported a loss of force with increasing angular velocities which was more marked in

males and females aged 70 years. Since peak torque was recorded at a knee angle of

0.52 rad (60°) there was probably insufficient time to allow for maximal activation at

faster velocities. Borges (1989) reported that the time course, or onset, for the

significant reduction in isokinetic torque occurs between 40-50 years in females across

velocities of 0.21, 1.57 and 2.62 rad/s. This selective loss in dynamic leg strength

measured isokinetically at increasing angular velocities is attributed to a reduction in

62



fast twitch fibres with age (Grimby and Saltin, 1983). This may be secondary to a

decrease in physical activity recruiting these muscle fibres.

2.2.7.8.2. Muscle mass

Muscle strength is proportional to the "active cross-sectional area" of the muscle

(Larsson, 1978). The relationship between strength and cross-sectional area (CSA)

(Ikai and Fukunaga, 1968) would therefore indicate that the decrease in strength is

attributable to a reduction in muscle mass. Indeed, substantial atrophy has been

detected in the quadriceps of old women, which was 33% smaller than young women

(Young et al., 1984) and 25% smaller in old compared to young males (Young et al.,

1985) ..

Changes in the components of muscle account for the decrease in muscle mass.

Atrophy of type II muscle fibres (Larsson et al, 1979; Lexell et al, 1988), a loss of

muscle fibres (Grimby and Saltin, 1983; Lexell et al., 1988) and a loss of functioning

motor units (Campbell et al., 1973) have been proposed. It has been claimed that the

loss of fibres begin at 25 years, and accelerates thereafter (Lexell et al., 1988). These

latter results support the increase in the speed-dependent loss of force with age.

2.2.8.1.3. Specific force

While a certain percentage of strength loss is attributable to a reduction in muscle

mass, there is growing evidence to suggest that there are qualitative changes inmuscle

such that weakness is greater than loss of muscle mass. This specific decrease in force,

has been reported inmice (Brooks and Faulkner, 1988; Phillips et al., 1991) and human

(Bruce et al., 1989) muscle. Brooks and Faulkner (1988) detected a decrease in force

per cross-sectional area (forceJCSA) of around 11% in the soleus muscle and 20% of

the extensor digitorum muscle (EDL) for isometric and shortening velocities. Phillips

et aI. (1991) reported a similar magnitude in loss of 13.3% for the soleus muscle in

aged mice.
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This weakness in animals has also been detected in humans. Using a method validated

for measuring CSA of the AP muscle (Bruce et al., 1989), a 27% reduction in

normalised force was found in elderly muscle compared with young controls,

confirming the occurrence of a specific loss of force in human muscle not attributable

to atrophy (Bruce et al., 1989). Young et al. (1984, 1985) reported a reduction in

maximal voluntary force/CSA for elderly males (Young et al., 1985) but not for elderly

females (Young et al., 1984). However, the problems inherent in accurately assessing

the CSA of a large, multi-pennated muscle group such as the quadriceps, particularly

when a large amount of atrophy has occurred, may have resulted in the failure to detect

such losses. Some ageing studies which have estimated muscle mass have failed to

detect a loss of specific strength. Frontera et al. (1991) proposed that muscle weakness

of knee and elbow extensors and flexors in the elderly was proportional to muscle

mass, as estimated from urinary creatinine excretion. Davies et al. (1986) found that

specific tension of the triceps surae was 40% lower in the elderly compared to young

subjects, although the error of calculating CSA from anthropometric measurements

probably disguised the 'real' change in specific force. Measurement error will always

confound accurate readings of CSA. However, there are improved methods of

measuring muscle size available, albeit expensive (i.e. nuclear magnetic imaging,

computed tomograghy). Using computed tomography, Overend et at. (1992) measured

the ratio of CSA and isometric (90°) and dynamic strength (2.09 rad/s) of knee

extensors and flexors. The authors did not report any age-related difference in

isometric strengthlCSA, although the concentric strength ratio was significantly lower

in elderly men, indicating a loss of strength greater than the decrease in muscle mass.

In humans, a reduction in specific strength has only been documented for isometric

strength.

2.2.8.1.4. Contractile properties

Ageing of skeletal muscle is not only characterised by changes in strength: alterations

in the contractile properties have also been found to occur. Electrically evoked

impulses of whole muscle demonstrate that time to peak tension and relaxation

time/rate are slower in elderly muscle compared with young for the triceps surae
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(Davies et al., 1986), adductor pollicis (Narici et al., 1991) and quadriceps (Beltran-

Niclos et al., 1995). Davies et al. (1986) reported not only significantly weaker muscles

in the elderly, but greater fatiguability. In contrast, Narici et al. (1991) found the AP

more resistant to fatigue in older subjects, possibly due to the decrease in size and

number of type II fibres and an increase in the fatigue resistance of the existing large

proportion of type I fibres. The inconsistency in findings are probably due to the

different muscles tested and the variation in fatigue protocols. A leftward shift in the

force-frequency curve (Narici et al., 1991) is supported in other studies of the human

quadriceps (Beltran-Niclos et al., 1995) and aged mice (Brooks and Faulkner, 1988).

This was suggested to occur as a result of significant muscle atrophy.

2.2.8.2. Reproductive hormones

A vast number of hormones have direct or indirect effects on skeletal muscle. For a,,

review, see FIorini (1987). The role of female sex hormones on muscle function has

received relatively little attention. This is surprising given the widespread use of

oestrogens to enhance meat production in farm animals (FIorini, 1987). The most

frequently used model for the examination of reproductive hormones on muscle

performance has been the human menstrual cycle. Lately, the endocrinopathology of

the menopause has also generated interest in its effects on muscle strength.

2.2.8.2.1. The human menstrual cycle

With increased participation of females in sporting activities, much of the earlier work

investigating the menstrual cycle on muscular performance was prompted from

speculation of a possible detrimental effect of the cycle phase on athletic performance.

Athletes have supported these claims, perceiving that the premenstrual and first two

days of the menstrual phase impairs performance (Erdelyi, 1962). However, it is the

studies which measure muscular performance objectively which have practical

applications. Wearing et al. (1972) measured hip flexion/extension and performances

from the standing broad jump, and reported that the poorest performance occurred

during menses, consistent with self-reports from athletes (Erdelyi, 1962), but peaked
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pre-menstrually. Quadagno et al. (1991) measured performance of weight-lifters and

swimmers at three phases, pre-menstrual, menstrual and post-menstrual across three

cycles. They did not report any difference over the three phases. The problems

associated with comparing explosive sports is the variability in the nature of the

activity, and fitness of the subjects who are prone to disruptive cycles with increasing

levels offitness (Loucks and Horvath, 1985).

Studies in which dynamic strength performances have been assessed under laboratory

conditions have failed to detect any changes in leg strength measured isokinetically

across angular velocities of 1.05 to 4.18 radls (Dibrezzo et al., 1988, 1991, 1994;

Richardson and George, 1993). Conversely, there have been several report of changes

in isometric strength across the menstrual cycle for different muscles (Wirth and

Lohman, 1982; Davies et al., 1991; Phillips et al., 1993a, 1996; Sarwar et al., 1995).

These studies, however, have not yielded consistent findings. Wirth and Lohman

(1982) reported greatest handgrip strength during the follicular phase compared with

the luteal phase. In another study, hand grip was highest during menses with respect to

the follicular and luteal phase (Davies et al., 1991).

Petrofsky et al. (1976) measured isometric grip strength in 7 females, 3 of whom were

taking oral contraceptives (OC). Whilst there were no changes in force production

between the pre-ovulatory and luteal phases in non-OC users, endurance time at 40%

of maximal isometric strength was lower during the luteal phase. The low number of

subjects tested may be accountable for this discrepancy with previous studies. Allen

and Bailey (1982) assessed grip strength in two groups of subjects, one group was

motivated and the other group was a control, across four phases - pre-menstrual,

menstrual, post-menstrual and mid-cycle - and found no significant change in strength

across the cycle between groups.

Motivating subjects does not guarantee maximal effort during a voluntary contraction.

Furthermore, the palmar flexors may be more difficult to maximally activate compared

with the quadriceps which are probably recruited more frequently at high intensities.

Sarwar et at. (1995) found that hand grip strength peaked mid-cycle compared with

66



early follicular, mid-follicular, mid-luteal and late-luteal phases. Whilst maximal

activation of the palmar flexors was not determined, the pattern of force change

emulated those of the quadriceps, in which twitch interpolation confirmed that strength

changeswere peripherallymodulated.

These findings so far support a role of reproductive hormones influencing force

production. The variability in cycle phase and research design masks the hormone

milieu responsible for these changes. The most detailed study to date of the hormonal

fluctuations during the menstrual cycle is the work on the adductor pollicis (AP)

muscle. In a preliminary report, a peak in force of the AP was found during the

follicularphase with a rapid reduction around mid-cycleof20% (Phillips et al., 1993a)

In the full study, Phillipset al. (1996) made 8 measurements of force production of the

AP over 3 cycles, and interpolated missing values. The results supported their

preliminary findings of an ovulatory dip in force, preceded by a follicular peak in

strength.

These authors further advocate the role of oestrogen in exerting a positive inotropic

effect on skeletal muscle. The change in strength from peak to trough occurred within

2 days. Since the pre-ovulatory transient surge in oestrogen lasts -24 hours (Ojeda,

1992), these endocrinological changes could easily be missed. Furthermore, oestradiol

levels did not correlate with strength measured at the same time. Phillips et al. (1996)

attributed this discrepancy to a phase lag between oestrogen and muscle force changes.

Petrofsky et al. (1976) also suggested that some latency exists between hormonal

changes and the isometric muscular response. However, other studies which correlated

strength with oestrogen found similar results to Phillips et al. (1996). Bassey et al.

(1995) reported a negative association between oestrogen and handgrip strength,

which has been implicated in previous studies (Wirth and Lohman, 1982; Davies et al.,

1991). Rice (1988) performed a battery of strength tests during 1 to 5 days of the

menstrual cycle and correlated these indiceswith oestradiol levels. They did not detect

a significant relationship between these two variables. These results indicate that

another hormone in addition to/instead of oestrogen is likelyto be involved.

l1VERPOOL JOHN MOORES UNIVERSITY
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Muscle function can also be described from the contractility of the muscle. Sarwar et

al. (1995) examined the contractile properties of the quadriceps through percutaneuos

stimulation at 5 phases - early/mid-follicular, mid-cycle, mid-luteal and late-luteal. A

leftward shift of the force-frequency curve as a result of slowing of relaxation was

reported at the ovulatory stage, when the muscle was also more fatiguable. The

mechanisms affecting these characteristics of contractile properties are probably related

to metabolic changes, such as an increase in Pi or decrease in pH (Cady et al., 1989)

rather than direct effects of reproductive hormones. The increase in fatigue resistance

mid-luteal has also been reported in respiratory muscles (Chen and Tang, 1989),

probably attributed to the progesterone-induced rise in basal body temperature,

resulting in an increased blood supply to the muscle and the reduction in fatigue. These

results however, are not consistent with findings of Petrofsky et al. (1976) who

demonstrated lower endurance mid-luteal compared with pre-ovulatory measurements.

With only two measurements, and few subjects (n=4) this latter study is flawed.

The effects of oral contraceptives on muscle strength have not been as well

documented, despite the widespread use of these exogenous compounds in athletes

(Lebrun, 1994). Despite few subject numbers, Petofsky et al. (1976) did not find any

difference in hand grip strength between the OC and non-OC users. Isometric

endurance at 40% maximal force was also stable in the OC group (n=3) but fluctuated

in the non-OC users, depending on forearm temperature. Wirth and Lohman (1982)

found no variation in isometric grip strength in ~C-users across two phases, but

reported lower endurance time and force production compared with non-OC's. The

lower strength values for the quadriceps and hand grip in ~C-users across 5 phases of

the cycle was attributable to lower body weight of the' control group (Sarwar et al.,

1995). The suppressive effects of endogenous hormones by oral contraceptives

stabilises force production in OC-users, and do not appear to be detrimentral to

muscular performance.
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2.2.8.2.2. The menopause

An examination of the time course of age-related losses in specific force of the

adductor pollicis muscle have revealed that the onset of this weakness differs between

males and females (Phillips et al., 1993b). A significant reduction in the force per

cross-sectional area (CSA) is manifest around 50 years of age in females, whereas in

males this force loss begins much later at 60 years plus. These results are shown in Fig.

2.3.7. These findings implicate an involvement of reproductive hormones influencing

force production, since women of this age group are experiencing declining levels of

reproductive hormones in response to ovarian failure. This has also been corroborated

in animal studies. Ovariectornised mice have a lower force/CSA of the soleus muscle

than young control mice (Phillips et aI., 1993c). Oestrogen deficiency is the single most

significant factor in post-menopausal osteoporosis (Riggs et aI., 1982) and Rutherford

and Jones (1992) reported a significant weakness of the quadriceps in osteoporotic

women compared with an age-matched healthy group.
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Fig. 2.2.7: The relation hip between mean (±SE) specific force and age in males and pre-menopausal
females 45 years and under (II), peri- or post-menopausal women (n=67) not on HRT (A) and peri-
or post-menopausal women (n=25) on HRT (V). Specific force is expressed as a percentage of the
mean value for young ubjects. From Phillips et al., 1993b.
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Whilsta reduction in reproductive hormones is associated with a loss of specific force,

its effects on absolute strength are conflicting. Petrofsky et al. (1975) and Cauleyet al.

(1987) observed a reduction in handgrip strength in females 50 years and older.

Handgrip strength in post-menopausal women was greater in those taking HRT,

although when age, height and physical activity were taken into account, hormone

status became less significant(Cauley et al., 1987). Bassey et al. (1996) examined data

from a large representative survey and reported muscle function parameters between

four groups of women. These comprised women who had regular menstrual cycles,

irregular menstrual cycles, post-menopausal, amenorrhoeic women and a group taking

hormone replacement therapy. There were no differences in leg extensor power or

isometric strength of the quadriceps or handgrip between the four groups after

correcting for fat free mass. In an older group of women (60 to 70 years), muscle

performance measured through conventional isotonic exercises (e.g. 1 repetition

maximum) was not significantlydifferent between oestrogen replacement users versus

hypoestrogenic females. Calmels et al. (1995) however, found that isokinetic

measurements of the elbow flexors at 0.52 and 3.13 radls declined rapidly during the

5th and 6th decades in post-menopausal females.

Phillips et al. (1993b) demonstrated a loss of specific force, i.e. a loss of force per

cross-sectional area. Comparisons in absolute strength may therefore be confounded by

differences in muscle size. The problems with measuring CSA in older women,

particulary using the technique employed by Phillips and co-workers is the increasing

amount of fat which replaces contractile material (Forsberg et al., 1991) which

exaggerates the amount of contractile tissue contributing towards force production.

This tends to be more pronounced in women taking HRT.

Hormone replacement therapy is proposed to confer protection against muscle

weakness associated with the menopause. Controlling for age, height and weight,

Phillips et al. (1993b) reported higher force/CSA in women taking HRT compared

with females who were not (Fig. 2.3.7.). In a recent large prospective randomised

controlled trial, 116 post-menopausal women were tested for handgrip strength over
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48 weeks and leg extensor power over 24 weeks. Hormone replacement therapy, of

oestrogen only or oestrogen and progestogen preparations, was not found to increase

handgrip strength or leg extensor power (Armstrong et aI.,1996). These findings are

consistent with those ofKohrt et al. (1995). Following the adminstration ofHRT of

the same preparation, 32 healthy women aged 60 to 72 years were tested over 11

months. Peak torque of the quadriceps and hamstrings at 0 and 1.05 rad/s did not

change in the control or HRT groups (Kohrt et aI., 1995).

The mechanisms by which reproductive hormones exert their effect is uncertain. In the

human adductor pollicis muscle of elderly (Phillips et at, 1991), hypo estrogenic post-

menopausal women (Phillips et al., 1993b), and in the soleus muscle of ovariectomised

mice (Phillips et aI., 1993b) weakness is restored by applying a rapid stretch during an

isometric contraction. Lengthening the muscle forces all the cross-bridges into the high

force state regardless of the force state at the onset of the stretch (Lombardi et al.,

1990). It is therefore apparent that the hormones may affect the equilibrium between

"high" and "low" force states at the cross-bridge. This model of varying tensions at the

cross-bridge is discussed in section 2.3.2.1. Phillips et al. (1993b) proposed that this

inotropic effect may be caused by oestrogen altering the sensitivity of the cross-bridges

to the metabolites inorganic phosphate [Pi] or lowered pH. The precise mechanism, or

the hormone responsible i.e. oestrogen or progesterone, has not been confirmed.
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3.0. THE DEVELOPMENT OF EXPERIMENTAL METHODS

The aims of this chapter are to establish the inherent mechanical and biological

variability of the equipment employed in the experimental work (Chapter 4.0). Study

3.2 was undertaken to determine the reliability of the LIDO Active® isokinetic

dynamometer for measuring concentric strength across a range of slow and fast

angular velocities. The results are used in the design of the experimental protocol for

Study 3.3 in the assessment of reliability of muscular performance in middle-aged

women. Reliability of the strain gauge system, used for measuring volitional and

electrically stimulated contractions, is established in Study 3.4. These results will be

importantfor interpreting changes in musclefunction withfluctuations in endogenous

hormones in Chapter 4.2. Finally, the repeatability of the hand dynamometer for

measuringforce production of thefirst dorsal interosseus (FDI) is examined in Study

3.5. It is also important to determine the reliability of stimulating this small muscle

percutaneously.

3.1. Introduction

The assessment of skeletal muscle function, either pre- or post- intervention or in

single measurements, necessitates reliable and reproducible measures of force output

during day-to-day testing (Stokes, 1985). The degree of reliability, however, depends

on the purpose for which the results are used. The measurement of maximal strength

provides an index of muscle function and is a useful method to assess both ageing

populations and patients with myopathic disorders (Edwards et al., 1977b). Where

sequential measurements during treatment are necessary, it is important to reduce any

variability which may disguise real changes in strength. This can be accomplished

through carefully designed protocols, standardised application of the protocol and the

use of sensitive equipment (Frontera et al., 1993).
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3.1.1. Methods of assessingmuscle performance

Muscular performance is commonly assessed by measunng maximal voluntary

contractions in a static position. This facility is available on computerised isokinetic

dynamometers, although cheaper alternatives such as the strain gauge (Edwards et al.,

1977b) and torque transducer are commonly used. Many of the earlier studies

measured isometric strength of small muscles such as the adductor pollicis (Merton,

1954;Edwards et al., 1977b),jirst dorsal interosseus (Stephens and Taylor, 1972) and

abductor digiti minimi (Burke et al., 1974). In 1977, Edwards and Hyde introduced

the hand held myometer for measuring a muscle group where the patient was required

to push against the device, counteracted by the experimenter's resistance. Problems

were encountered with this technique, which included the lack of precise positioning

and the limitations of the strength of the tester, and thus its use was restricted to

children and adults with severe weakness. Unfortunately, the repeatability of these

pieces of equipment has not been reported and it is therefore difficult to compare

different devices for reliability.

The quadriceps muscle group, which has an important role as a weight-bearing muscle,

is most often examined isometrically (Young et al., 1984, 1985) using a strain gauge

systemwith the knee flexed at 90° (Edwards et al., 1977b). The coefficient of variation

(CV) for repeated measurements employing this method has been reported in young

females at 7.7% (Young et al., 1984) and 8% for young males (Young et al., 1985).

The use of CV as an estimate of reliability will be discussed later (section 3.1.2).

Electrical stimulation is routinely used to determine maximal activation of the muscle

during an isometric contraction (Merton, 1954; Belanger and McComas, 1981;

Rutherford et al., 1986) in which superimposed 1 Hz impulses disappear during

maximal contractions. In the quadriceps, the muscle is usually stimulated

percutaneously although suprarnaximalstimulation via the femoral nerve has been used

(Edwards et al., 1977b). This method is not advised since it is painful and there is

danger of dislocating the patella (Edwards, 1978). Smaller muscles with easily

accessiblemotor nerves e.g. adductor pollicis, can be stimulated supramaximally.
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Developments in the use of hand dynamometry have provided the opportunity for

measuring grip strength. This measurement is particularly useful in monitoring

generalisedor local disease (Anderson and Cowan, 1966) and is correlated with other

performance indices (Danneskiold-Samsoe et al., 1984; Kallman et al., 1990).

Repeatability studies on grip strength are limited.Kallman et al. (1990) reported a 6%

CV for repeated grip tests using an adjustable hand dynamometer in subjects aged 20

to 100years. When elderly subjects (7th decade) are considered separately, an increase

in CV to 14.1 and 13.7% are reported for females and males respectively (Anderson

and Cowan, 1966). It was not reported whether the CV represented repeated

repetitions or day-to-day trials.

Isometric contractions do not represent habitual daily movements and isokinetic

dynamometry which measures concentric strength, has therefore gained popularity

(Lord et al., 1992). Isokinetic devices allow dynamic movements through a range of

motion (ROM) where the velocity remains constant and the change in muscular torque

is 'accommodated' by the dynamometer. The reliability of these devices have been

assessed (Moffioid et al., 1969; Johnson and Siegel, 1978; Tredinnick and Duncan,

1988; Gleeson and Mercer, 1992), and CV's of 2.9 - 13.1% have been reported for

peak torque of the quadriceps at different velocities over separate days (Thortensson et

al., 1976;Naricietal., 1991;Gleeson and Mercer, 1992).

The movement involved in isokinetic dynamometry results in a change in muscle

length. Standardisation of positioning of the subject on the device is therefore a

prerequisite of testing. Reliable test protocols have been established to ensure maximal

efforts are recorded. Maximum warm-up contractions are required before recording

true peak torque (Johnson and Siegel, 1978) and a minimumof 3 trials is necessary to

achieve stable isokineticdata for peak torque (Gleeson and Mercer, 19922). Sawhill et

al. (1982) maintained that more trials are needed at higher angular velocities (6.96

rad/s). These results from young healthy subjects do not represent the performance

from other populations. In the elderly, for example, it has been reported that two trials

are insufficient in attaining stable peak torque (Murray et al., 1985; Harries and

Bassey, 1990; Frontera et al., 1993). Furthermore, a five percent increase was found to
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occur from the first to second repeated test at 1.74 radls in 68 year old females

(Harries and Bassey, 1990), twice that observed by Frontera et al. (1993). Murrayet

al. (1985) also reported a greater peak torque in the second test, although only the

isometric test at 450 reached statistical significance.

3.1.2. Statistical errors in repeatability studies

In many studies in which reliability has been reported for muscle strength devices,

incorrect statistical techniques have been used. Results from prior studies must

therefore be interpreted with caution. The analysis of variance or t-test techniques

determine if there are any systematic changes or trends in the data as a result of a

practice or familiarisation effect. If this is significant, subsequent tests of reliability are

invalid. The correlation coefficient is often employed to measure reliability (Francis and

Hoobler, 1987; Brown et al., 1992; Lord et al., 1992., Frontera et al., 1993). This

technique is highly influenced by the heterogeneity of subjects, and is a measure of

relationship rather than agreement (Bland and Altman, 1986). Intraclass correlation,

recommended for repeatability studies (Vincent, 1994), may also be compromised by

large inter-individual differences (Atkinson, 1995). The coefficient of variation (CV%)

measures agreement of test-retest data, and is reported as an index of reliability (Sale,

1991). This statistical technique is also subject to error and criticism. Firstly, there are

eight different methods of calculating CV which may yield different results. Secondly,

the CV should only be used if the variability increases as the scores diverge i.e. the CV

assumes that stronger subjects are more variable in repeated measures. This feature,

known as heteroscedasticity, is present if the relationship between the mean scores and

differences of test-retest data is significant. Finally, the CV uses the standard deviation

which excludes one third of the population ie. the CV does not imply a 95% error

range (Strike, 1991). To allow for this, the standard deviation should be multiplied by

1.96 (then divided by overall mean x 100). It is therefore apparent that the CV

reported in studies is underestimated.

Bland and Altman (1986) advocated the use of 95% limits of agreement for expressing

reliability. The agreement limits are calculated from the mean of the difference in test-
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re-test scores ± 2 standard deviations and assumes that for any new subject tested, two

repeated measurements would differ by ± newtons or less. Plotted on a graph, the

variability can be illustrated and interpreted more easily. If the data are prone to

heteroscedasticity a logarithmic transformation should be undertaken before plotting

the data. Each of the following studies will be analysed using the above techniques.

3.2. DAY-TO-DAY RELIABILITY OF LEG STRENGTH MEASURED

ISOKINETICALLY USING THE LID09 ACTIVE DYNAMOMETER

Aspects of this work have been presented at the British Association of Sport and

Exercise Sciences Annual Conference, Aberdeen, 1994.

3.2.1. Introduction

The reliability of the LIDO Active" dynamometer (Loredan, Davis, CA, USA) for

measuring leg strength, utilising the isokinetic mode, was assessed in this study. The

aims of the study were to:

1] Examine the day-to-day variability in maximal strength of the knee extensors

(KE) and knee flexors (KF) using reciprocal movements.

2] Assess the reliability of slow and fast angular velocities on maximal repeated

performance. These aims were fulfilled using a protocol adapted from

previous studies, as reported in the literature (Johnson and Siegel, 1978; Gleeson

and Mercer, 1992).
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3.2.2. Methods

(i) Subjects

Ten subjects, seven males and three females, volunteered to participate in the study and

gave written consent. Subjects were recruited if they were free of pain and injury to the

lower extremities. Ethical approval was obtained from Liverpool John Moores

University Human Ethics Committee. Table 3.2.1 summarises subject characteristics of

age, height and mass.

Table 3.2.1: Mean (:tsd) of age, height and mass of young, healthy subjects

Sex n Age (years) Height (em) Mass (kg)

Male 7 24.1 (1.6) 1.79 (0.61) 77.7 (13.1)

Female 3 25.3 (0.6) 1.66 (0.90) 57 (8.5)

(ii) Procedure

Dynamic concentric strength was measured on an isokinetic dynamometer (LIDO

Active", Loredan, Davis, CA). Each subject was tested with the same protocol on four

separate occasions, at least two days apart and at the same time of day (10.00±1 hr).

The first sessions was a familiarisation with the equipment and the procedures

involved. Subjects were measured for height and mass. The dominant leg was reported

as the right leg for the whole group.

A standardised warm-up was initially performed on a Monark Cycle ergometer for 5

min with no resistance, at 60 rev/min. This was followed by 3 min of static stretching

of the relevant muscle groups. The subjects were seated in an adjustable chair; the

upper body stabilised with straps secured across the shoulders, chest and hips. A

resistance pad was also positioned on the thigh, proximal to the knee joint to localise

the quadriceps and hamstrings (Plate 3.2.1).
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The axis of rotation of the dynamometer shaft was aligned with the axis of rotation of

the knee joint, midway between the lateral condyle of the tibia and the lateral condyle

of the femur. The cuff of the dynamometer's lever arm was attached to the ankle,

proximal to the malleoli. These positions were recorded for individual subjects and

standardised for subsequent trials. Range of motion (ROM) was preset to 0 to 90°.

The gravity compensation procedure required subjects to relax, while the leg was

passively extended and flexed through the entire ROM.

Subjects were instructed to grasp the handles adjacent to the chair during the tests and

they then performed two submaximal knee extension and flexion contractions. Testing

consisted of four reciprocal maximal voluntary isometric movements at angular

velocities of 1.05 rad/s, 3.13 rad/s and 5.22 rad/s. This testing order for velocity was

standardised from the slowest to the highest as recommended by Wilhite et al. (1992).

Each trial was separated by one minute of passive recovery. Verbal instructions were

also standardised and visual feedback was given. Gravity corrected peak torque was

selected from the strength indices as a measure of muscular performance.

78



Plate 3.2.1. The isokinetic dynamometer (LidoActive", Loredan, Davis CA) measuring dynamic
strength of the knee extensors andflexors
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(iii) Data analysis

The Statistical Package for the Social Sciences (SPSS) and Excel (Windows version

3.1) were used for data analysis. The following tests were undertaken on the data for

each reliability study:

1. Analysis of variance with repeated measures (or t-test for two sets of data) was

employed to detect mean differences between the test-retest trials for leg extensors

and flexors across the range of angular velocities.

2. Parameters which revealed non-significant differences, indicating no trend in mean

strength, were analysed for error linearity i.e. the relationship between the mean and

differences of test-retest scores.

3. The 95% limits of agreement were calculated from mean difference between the

two tests ± standard deviation x 2. The Bland-Altman plots illustrate the deviation

from the mean across individual samples. If the error linearity was significant,

demonstrating heteroscedasticity, logarithmic transformations of the data were

performed. Significant differences also support the use for coefficient of variation

(CV%).

4. The coefficient of variation was calculated using conventional methods (SDI overall

mean x 100).

3.2.3. Results

The results of the repeated measures ANOV A and reliability measurements for leg

extensors and flexors across velocities are shown in Table 3.2.2.

Leg extensors

There were no significant differences (p>0.05) in peak torque between trials at each

velocity for muscle performance as revealed by the ANOV A results. There was a lack

of relation between mean scores and difference in test-retest data at all velocities,

hence the CVs reported are not 'true' indices of reliability. Peak force decreased with
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higher angular velocities (Fig. 3.2.1) and consequently limits of agreement were

narrower at 3.13 and 5.22 rad/s compared with the slower velocity of 1.05 rad/s.

However, at 5.22 rad/s the agreement limits were wider than at 3.13 rad/s. The

reliability at fast velocities must therefore be questioned.

Leg flexors

The ANOV A results do not reveal a serial effect over the three trials for any angular

velocity tested (p>0.05) (Table 3.2.2). At the slower velocities, the error linearity was

not significant. This relationship was significant at 5.22 rad/s (r = 0.68; p<0.05). The

95% limits of agreement for flexors across all angular velocities were high, whereas at

3.13 and 5.22 rad/s they exceeded those of leg extensors. This demonstrates that the

flexors have poor reliability since peak torque is much lower for flexion compared with

knee extension (Fig. 3.2.1).

Table 3.2.2: Results of the repeated measures ANOVA, coefficient of variation (CJIO/o), error linearity
and 95% limits of agreement for knee extensors and flexors of the dominant leg

Muscle group 95°/. limits of cvss F,.,values Error linearity+
Velocity (rad/s) agreement (Nm) (p values)
Right ntenson

1.05 rad/s -34.9 to 50.3 9.6 0.49 (0.62) 0.44
18.9*

3.13 rad/s -11.4 to 15.0 4.1 0.02 (0.98) 0.10
7.9*

5.22 rad/s -18.2 to 18.4 7.3 0.53 (0.62) 0.40
14.2·

Right Flexors
1.05 rad/s -31.4 to 33.8 12.7 2.35 (0.12) 0.31

24.8·
3.13 rad/s -20.9 to 13.1 8.2 1.93 (0.17) 0.45

16.1·
5.22 rad/s -17.0 to 10.8 7.9 1.22 (0.32) 0.68

15.5*..cv%. = standard deviation x 1.961 overall mean x 100
t ""the relationship ofr is calculated from the mean oftllt2 and the difference in scores
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Mean (± SEM) peak torque (Nm) for knee extension and flexion across three test

sessions are shown in Fig. 3.2.1. a) and b). It is evident that peak torque declines as the

angular velocity increases.

Fig. 3.1.1: Mean (±SE)peak torque of the leg extensors (a) andflexors (b) across three trials at
angular velocities of 1.05, 3.13 and 5.22 rad/s.
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The 95% limits of agreement are plotted on graphs (Fig. 3.2.2). They illustrate the

variability in strength performance under controlled conditions day-to-day.

Bland-Altman Plot of Knee Extensors at Bland-Altman Plot of Knee Flexors at 1.05
1.05 radls radls
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Fig. 3.2.2: shows the relationship between the mean (centre line) and difference in day-to-day scores
across a range of velocities for leg extensors and flexors. The outer lines denote the 95% limits 0/
agreement ± 2 standard deviations. Poor reliability or agreement is characterised by the deviation 0/
data points away from the mean.
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3.2.4. Discussion

Determining the inherent variability in repeated testing of muscular strength is

important for subsequent interpretation of changes in performance resulting from

experimental intervention, rehabilitation and/or training protocols. In the present study,

there were no significant changes in peak torque between test sessions at each velocity.

This indicates that performance was not affected by serial influences such as training or

learning, and that random error was responsible for overall variability.

The coefficients of variation (CV) were reported for comparison purposes. The mean

CV ranged between 4.1-12.7% depending on muscle group and angular velocity of

movement. These results compare favourably with other studies (Thortensson et aI.,

1976; Gleeson and Mercer, 1992) for gravity-corrected peak torque. The CV for

flexors was greater than those obtained for the extensors, although they are within the

range of normal biological systems of 10-15% (Stokes, 1985). The results suggest that

the test protocol is reliable and can be used to measure quadricep and hamstring

strength during sequential measurements. However, there was a lack of relation

between mean scores and differences in test-retest data (except for flexors at 5.22

rad/s), which contravenes the use of CV's. Coefficient of variation assumes that the

test-retest variability increases with the stronger subjects (Bland, 1987). Futhermore,

the CV's were much higher with the inclusion of the whole population (Table 3.2.2),

and thus may be deemed less reliable.

Under these conditions, it is important to report the 95% limits of agreements. They

give some indication of the variability in performance day-to-day, although the range of

values considered reliable is dependent on the judgement of the experimenter. The

limits of agreement of the extensors at the low velocity represent 15-23% of the mean

test-retest scores. Whilst this appears to be high, the corresponding CV is 9.6%. The

95% limits of agreement at 3.13 rad/s (7.0 to 9.0% of mean test-retest) indicate that

repeated measurements at this velocity are most reliable for the extensors. The

negative mean scores for flexors at 3.13 rad/s and 5.22 rad/s show a tendency towards

a decrease in performance from the second trial to the third trial. This reflects the
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greater variability observed in flexor strength measurements (Burdett and Van

Swearingen, 1987) which may be compromised by the reciprocal movements. This

variabilityis also reflected in the agreement limitswhich range between 12.0 to 26.3%

of the mean test-retest scores across all velocities. Therefore, greater verbal

encouragement is probably required when undertaking reciprocal movements,

particularlyduring flexion.

The results from this study have identified biological and mechanical variation as

sources of error, and any changes which occur from experimental intervention must

therefore exceed this variability. The risk of a type I error may otherwise confound

correct interpretation of muscular performance. The application of the coefficient of

variation is useful only if the same statistical methods are employed, the variability is

proportional to mean scores and adjustments are made for inclusion of the whole

population. Ifthese conditions are not met, then it is necessary to use the 95% limitsof

agreement, although it is difficult to compare reliability with other studies as this

technique is not yet widelyused.

In conclusion, day-to-day testing of peak torque on the LIDO Active" dynamometer

using the protocol described is recommended at slower angular velocities.

Measurements at faster velocities (5.22 rad/s plus) and of flexors at all velocities are

highly variable. Recommendations for future testing include the use of slower angular

velocities, with four efforts following a warm-up to record true peak torque. More

trials should be undertaken with the flexors, although care should be taken not to

fatigue the muscle groups. This is more important with the extensors when isometric

strength is also to be measured. These recommendations will be used to modify the

testing protocol and this will be examined in section 3.3.
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3.3. REPEATABILITY OF ISOKINETIC AND ISOMETRIC MUSCLE

STRENGTH IN MIDDLE-AGED WOMEN

3.3.1. Introduction

The reliability of isokinetic muscle testing in a young heterogeneous sample using the

LIDO Active" dynamometer has been established in section 3.2. These results

demonstrated poorer reliability for the flexors at all velocities, and at higher angular

velocities for the extensor muscles. It is important that the variability of measurements

be assessed in the population in which they are to be used (Stokes, 1985). If this

variability is large, erroneous interpretation of muscle strength changes may be made.

The aims of this study were to:

1] Examine the variability in leg strength using slower angular velocities of 1.05,

2.09 and 3.13 radls as recommended in sections 3.2.

2] Assess the reliability of isometric strength of the leg (900 knee flexion) and grip

strength.

3.3.2. Methods

(i) Subjects

Twenty three middle-aged females were recruited from staff at Liverpool John Moores

University after giving written consent. Eleven subjects were taking hormone

replacement therapy (HRT) and 12 were not receiving treatment. A questionnaire was

completed prior to participation to exclude subjects who suffered myopathic disorders,

and those who were physically active. Age, height and mass of subjects are

summarised in Table 3.3.1.
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Table3.3.1: Mean (r SD) for age, height and mass of post-menopausal subjects

Group n Age (years) Height (em) Mass (kg)
Range

Non-HRT 12 53.2 (4.5) 158.7 (6.0) 62.8 (9.9)
47-60

HRT 11 50.5 (4.8) 160.0 (6.2) 69.8 (13.3)
47-61

(ii) Procedure

Dynamic and isometric strength was measured on the LIDO Active'" (Loredan, Davis,

CA) dynamometer on three separate occasions within a two week period. Test sessions

were scheduled at the same time of day for each subject. The first visit to the

laboratory was used as a practice session.

Prior to testing, subjects cycled on a Monark drop-load cycle ergometer for 5 mins at a

low resistance, at 60 rev/min. This warm-up was standardised. Subjects were seated on

the dynamometer chair, positions were recorded for subsequent trials and muscle

function of the dominant leg was measured.

3.3.2.1. Dynamic muscle strength

Standardised measurements of muscle torque for extensors and flexors were made at

angular velocities of 1.05, 2.09 and 3.13 rad/s. The highest velocity measured in this

study was 3.13 rad/s according to the recommendations from section 3.2. The

procedure of use to measure isokinetic muscle strength have been described previously

(section 3.2). Two submaximal and 2 maximal warm-up trials were undertaken prior to

performing 4 maximal reciprocal movements. Subjects were encouraged to extend and

flex the leg as hard as possible. Instructions were standardised.

3.3.2.2. Isometric muscle strength

Maximal voluntary contraction (MVC) of the leg extensors was measured at 900

flexion of the knee joint 5 mins after undertaking the dynamic strength testing. The

quadriceps were isolated as much as possible and arms were folded throughout the
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test. Subjects were instructed to push hard against the measuring device until maximal

force was attained. Three maximum contractions were repeated, with 1 min rest

periods between each trial. The highest value was recorded.

Grip strength was measured using a hand-held dynamometer (Takei, model 5101 Grip-

D, Tokyo). Subjects were instructed to hold the dynamometer above the head with the

arm extended. The arm was brought downward whilst full force was exerted onto the

torque transducer. The highest grip strength of three maximal efforts was recorded.

(iii) Data analysis

The Statistical Package for the Social Sciences (SPSS) and Excel (Windows version

3.1) were used to analyse data. Mean strength between two test sessions was analysed

using the dependent t-test for paired sample. The error linearity, 95% limits of

agreement and coefficient of variation (CV%) were calculated according to the criteria

described in section 3.2.

3.3.3. Results

3.3.3.1. Dynamic leg strength

Leg extensors - concentric

The t-test revealed a significant difference in strength at 1.05 rad/s from test 1 to test

2, implicating a serial effect of repeated testing at this velocity (t=-2.67; p<0.05). This

did not occur at 2.09 or 3.13 rad/s, where the percent change in strength was much

lower (Table 3.2.2). The error linearity was not significant across all velocities and thus

the use of CV's is inappropiate in this instance. The 95% limit of agreement are plotted

in Fig. 3.3.1.

Legflexors

A significant difference between test 1 and test 2 data was also found at 1.05 rad/s

(t22= -3.49; p<O.Ol) and 2.09 rad/s (t22= 2.28; p<0.05). This is reflected by an 8.6 %

increase in mean strength at 1.05 rad/s. There were no significant changes at the faster
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velocity (3.13 rad/s). The variability of flexors are shown in Fig. 3.2.1, where the 95%

limits of agreement are illustrated.

3.3.3.2. Isometric strength

The results of the t-test did not show any significant differences in strength over the

two test sessions for isometric leg strength (t22= -0.43; p>0.05) or grip strength (b =
-0.37; p>O.OS).The r value from the error linearity test were also not significant (Table

3.2.2), hence the CV reported are not representative of its reliability. Bland-Altman

plots of all parameters, displaying the 95% agreement limits and the mean of test-retest

differences are plotted in Fig. 3.3.1 .

. Table 3.3.1: Mean (ISD), percent change and t values for test one and two.

Variable Test 1 (Nm) Test 2 (Nm) % chanae tuM
Knee extensors

1.05 rad/s 110.7 (25.8) 115.1 (27.8) 4.0 -2.67 (0.05)t
2.09 rad/s 83.6 (16.5) 84.7 (16.6) 1.2 -0.91 (0.38)
3.13 rad/s 65.0 (17.0) 65.2 (16.3) 0.3 -0.22 (0.83)

Knee flexors
1.05 rad/s 58.7 (12.7) 63.7 (15.5) 8.6 -3.49 (0.002)*
2.09 rad/s 48.5 (10.2) 51.0 (12.1) 2.2 2.28 (0.03)t
3.13 rad/s 40.4 (9.8) 40.4 (9.2) -0.1 0.05 (0.96)
Isometric
Leg 90° 103.9 (22.7) 104.9 (21.7) 0.96 -0.43 (0.669)
Grip 27.4 (4.58) 27.S7 (3.97) 0.66 -0.369 (0.716)

(ft Ibs) (ft Ibs)
tSlgmficant at p<0.05 levels for two-tailed t-test
• Significant at p<O.Ot level for two-tailed t-test

Table 3.3.3: Tests of agreement of the test-retest data - error linearity (r,) 95% Limits of agreement
and coefficient of variation ("/q) in middle-aged females.

Muscle group Error linearity 95% Limits of Coefficient of
(r) ae:reement (Nm) Variation (%)

Knee extensors *
1.05 radls -0.11 -16.0 to 24.8 9.0 17.7
2.09 rad/s 0.20 -11.0 to 13.3 7.4 14.5
3.13 radls -0.04 -7.6 to 8.0 6.1 11.6

Knee flexors
1.05 radls 0.t7 -7.6 to 17.7 11.3 22.2
2.09radls 0.29 -8.1 to 13.1 10.7 20.9
3.13 radls -0.17 -8.9 to 8.8 10.9 21.4
Isometric
Leg 90° 0.37 -20.2 to 22.1 10.1 19.5
Grip O.tO -4.02 to 4.36 (ft lbs) 7.6 14.9

..• Coefficient of "lnlhoD (./.) .. standard deviation x 1.961 overall mean x 100
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Fig. 3.3.1: The relationship of the mean and difference in strength scores between day 1 and day 2
for different muscle groups and across varying velocities. The closer the mean (centre line) is to zero,
and central tendency of data points towards the mean, the better the agreement. The 95% agreement
limits (outer lines) represent both non-HRT and HRT subjects combined. The data points of both
groups have been plotted separately to show the variability. =Non-HRT; * = HRT group.

90



3.3.4. Discussion

Sequential measurements of muscle strength are often required to evaluate responses

to treatment, monitor effects of training programmes and muscle weakness due to

disease, immobilisation and so on. It is therefore important that dynamic and isometric

strength are adequately reproducible for the sample population tested. In this study,

repeatability was assessed in middle-aged hypo estrogenic females and age-matched

subjects taking hormone replacement therapy (HRT), sample groups matched to those

required in study 4.1.

The results show that a systematic increase in strength of the knee extensors at 1.05

radls occurred between test 1 and test 2 (p>0.05), an increase of 4%. These results

agree with previous studies (Harries and Bassey, 1990), where a five percent increase

in strength measured at 1.74 radls was reported between the first two test sessions. An

initial practice session, given to mitigate this tendency, was not sufficient to familiarise

subjects with movement at this velocity. Strength of the flexors also increased

significantly by 8.6% (p<O.OI) suggesting that reciprocal movements are not effective

for attaining peak. torque of both muscle groups. The use of reciprocal, maximal

contractions have been criticised (Rothstein et al., 1987), although the reliability of

these measurements have been reported (Levine et al., 1991). The 95% agreement

limits, calculated for strength of the KE's at 1.05 rad/s (14 to 22% of mean test-retest

scores) were in the same range as those observed in young subjects. Increasing the

number of practice trials rather than sessions, may compensate for this learning effect.

This will be considered in future testing of the post-menopausal women of the

longitudinal study.

In agreement with the findings from young subjects, the flexors demonstrate poor

reliability. The coefficients of variation for this muscle group across all velocities were

high (Table 3.3.3), although the lack of linearity contravenes the use of this reliability

index. The variability of this muscle group has been documented previously for females

(Burdett and Van Swearingen, 1987), males (Gleeson and Mercer, 1992) and both

sexes (study 3.2). Even though a physiological explanation cannot be proffered, all

studies employed reciprocal movements during extension and flexion.
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Maximal isometric strength of the knee extensors measured at 90° of knee flexion was

lower than concentric strength assessed at 1.05 rad/s. These results do not conform

with normal force-velocity relations determined in vivo where torque decreases as

velocity increases (Thortensson et al.,1976), or corroborate previous findings in elderly

females (Harries and Bassey, 1990; Murray et al., 1985) and in males (Osternig, 1975;

Thortensson et al., 1976). In theory, greater strength is generated during static

contractions since more myosin cross-bridges have time to attach (Edman, 1992).

During dynamic contractions, there is less time for the formation of cross-bridges as

the fibres shorten. Less tension is therefore elicited. It is presumed that force

generation at 90° of flexion is lower due a mechanical disadvantage. At this angle,

fibres lengthen and less cross-bridges attach. The employment of twitch interpolation

through electrically stimulated contractions is important to confirm maximal activation

of the muscle (Rutherford et al., 1986). This technique was not available for this study,

but will be utilised in study 4.1, where it will be important to preclude central

inhibition/motivation as factors in muscle weakness.

So far, there has been no indication of heteroscedasticity in the data. It appears from

Fig. 3.2.1 however, that stronger subjects yielded greater between-test variability for

isometric grip strength than weaker subjects. Surprisingly, the correlation coefficient

was not significant, indicating a lack of relation between mean scores and difference in

test-retest data. The coefficient of variation (7.6%) compares favourably with 6%

reported for grip dynamometry of repeated measurements (Kallman et al., 1990).

However, as suggested by the r value, the 95% limits of agreement are more

appropriate to report the variability of this data. There is good consistency between

day-to-day testing, where the limits of agreement are within 15 to 16.0% of the mean

test-retest scores. The disadvantage with grip dynamometry is the difficulty in

standardising hand position in subsequent tests. This did not appear to affect

differences in the mean day-to-day scores in this study.

There was evidence of a learning effect at the slower angular velocity (1.05 rad/s). This

could be multifactorial as a result of too few familiarisation sessions, warm-up/practice

trials and/or greater effort involved in reciprocal movements. Extension and flexion
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should, therefore, either be performed separately or more contractions undertaken to

achieve stable peak torque values. The variability of the flexors across all velocities in

middle-aged women is consistent with the findings in young subjects. Isometric grip

and leg strength appear to be reliable using the methods employed, although twitch

interpolation should be used during maximal isometric contraction of the knee

extensors.

In conclusion, based on these findings the protocol needs to be modified before being

employed in the longitudinal study (section 4.1) so that a greater number of

practice/warm up trials are allowed prior to testing. This will ensure the attainment of

peak torque at 1.05 rad/s. The flexors were highly variable when measured in post-

menpausal women, as reported in younger subjects in study 3.2. The interpretation of

changes in strength of this muscle group are therefore made with caution.

Superimposed electrical impulses to the knee extensors during a maximal voluntary

isometric contraction is recommended to confirm maximal activation of the muscle.
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3.4. DAY-TO-DAY VARIATION IN MUSCLE FUNCTION OF THE

QUADRICEPS ASSESSED FROM MAXIMAL VOLUNTARY

CONTRACTION AND PERCUTANEOUS ELECTRICAL STIMULATION.

3.4.1. Introduction

In the previous study, the reliability of isometric leg strength measurements was

assessed using the computerised LIDO® isokinetic dynamometer. This system is not

sensitive enough to analyse force production from electrically stimulated contractions

using the isometric mode. It was therefore necessary to utilise a strain gauge system

similar to that described by Edwards et al. (1977b) to measure maximal 'voluntary

contractions (MVC) and force generated from electrically stimulated contractions of

the quadriceps. These included responses to a train of electrical impulses of increasing

frequencies, referred to as the programmed stimulation myogram (PSM), and the

fatigue index (FI%) calculated from the force loss induced by repeated electrical

stimulation. The reliability of the protocol designed to measure these indices of muscle

function will be examined in this section. Depending on the results of this study, the

protocol will be implemented and/or modified for the use in study 4.2, to assess the

temporal changes in reproductive hormones on muscle function.

The aims of the study were to:

1] Investigate the reliability ofMVC of the quadriceps utilising the strain gauge

system.

2] Assess the reliability and repeatability of forces generated from electrically

stimulated contractions of increasing frequencies.

3] Compare, and examine the reliability of two fatigue protocols of different

stimulation patterns.
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· 3.4.2. Methods

(i) Subjects

Twelve young males volunteered to participate in the study with mean (±Sd)

characteristics: age 27.1 (±3.1); mass 82.8 (±17.4); height 1.76 (±0.06). Written

informed consent was obtained after details of the experiment were explained. All

subjectswere free of injury to the lower limb and were required to undertake the same

activities24 hours prior to testing.

(ii) Procedure

Voluntary and electrically stimulated contractions were measured with the subject

seated in an adjustable chair with the leg suspended at a 900 angle. To prevent

extraneous bodily movements, the hips and shoulders were restrained with straps.

Force of the quadriceps was measured from the ankle, where the attachment was

connected to a strain gauge by a metal force transducer (Plate 3.4.1). The quadriceps

were electrically stimulated using surface electrodes (7.6 by 12.7 em, Chattanooga,

Bicester, UK) positioned on the proximal and distal anteriolateral side of the thigh of

the dominant leg. Electrical impulses were delivered through the electrodes at 250

volts with a pulse width of 200 us using a computer driven stimulator (Model DS7,

Digitimer Ltd, Welyn Garden City, UK). Force output was channelled through an

amplifier, interfaced with a data acquistion system (Biopac MPI00WS~ Santa Barbara,

CA).

(iii) Experimental protocol

3.4.2.1. Maximalvoluntary contraction

Maximal voluntary contraction (MVC) of the quadriceps was measured three times

with a 1 min rest between each effort. Maximal activation of the quadriceps was

confirmed using percutaneous electrical stimulation of 1 Hz impulses, delivered to the

95



muscle during each contraction (Rutherford et al., 1986). The disappearance of the

impulses indicates maximal effort as shown in Fig. 3.4.1. Subjects were required to

fold their arms during each contraction, and to 'kick out' as hard as possible and as

fast on instruction from the experimenter.

lOON[

Fig. 3.4.1. A voluntary contraction at differing levels of effort, showing the extra force generated by
superimposed twitches. AI maximum voluntary contraction, the superimposed twitches disappear.
From: Rutherford et al., 1986.

3.4.2.2. Electrical stimulation

3.4.2.2.1. Contractile properties

A train of electrical impulseswas delivered to the quadriceps at increasing frequencies

of 1, 10, 20, 50 and 100 Hz. Each tetanic stimuli lasted 3 s and aSs rest was

programmed between each frequency (Fig. 3.4.2). The current was estimated from the

maximal 1 Hz impulses tolerated. For subjects Whodid not respond favourably to the

voltage selected, particularly at the higher frequencies, the current was reduced until a

tolerable level was attained. Although the aim was to stimulate over 20% of the

muscle, the force generated at 100 Hz ranged 10 to 46 % of maximal voluntary

contraction across the sample. The force-frequency relationship, plotted as an index of

the contractile properties of muscle, is normalised so the lower frequences are

expressed as a percentage of the force generated at 100 Hz. The response of

quadriceps muscle group to this pattern of frequencies, termed the programmed

stimulation myogram (PSM), was examined in fresh and fatigued muscle and the
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reliability of this test assessed under both conditions. The ratio between low, unfused

tetani and high, fused tetanic contractions (20/50% or 10/100%), as an index to the

shape of the force-frequency curve, was calculated from the forces generated during

thePSM.

Fig. 3.4.2: A train of electrical impulses (1,10,20,50, 100, 1Hz) of three seconds duration, with 5
seconds rest, delivered 5minutes be/ore, and immediately after thefatigue test. The unfused tetani at
10 and 20 Hz are evident in this myogram (as shown by arrows).

3.4.2.2.2. Fatiguability

Fatigue of the quadriceps was induced using electrically stimulated contractions,

modified from the protocol of Burke et al. (1973). Two different fatigue exercises

were employed to determine the most reliable and effective protocol for inducing

fatigue. Frequency of 40 Hz impulses were delivered over 3 min in both tests, with

differences in the duration of stimulation and on/off times of contractions. In the first

fatigue test, impulses lasted 3 s with aSs rest interval. In the second protocol, 1

second impulses were separated by a 1 s rest interval. The force generated during the

last 5 twitches of the test was expressed as a percentage of the initial 5 twitches and

called the fatigue index %.

The tests of muscle function of the quadriceps were assessed 6 times over a 3-month

period. The two fatigue protocols were assessed across 3 trials each, whereas other

indices of muscle function (MVC, contractile properties) were examined during the

initial three sessions. A standardised 5 min warm-up on a cycle ergometer (Monark) at

70 rev/min preceded the strength tests which were conducted at the same time of day

(± 1hour) on each occasion.
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The experimental protocol was as follows:

• 5 min warm-up on cycle ergometer
• 1 Hz impulses - to determine maximal tolerable current for MVC
• Stimulation at 1, 10, 20, 50, 100Hz - to determine maximal tolerable current
e 3 min rest:
• Maximal voluntary contractions x 3
e 5 min rest
• Stimulation at 1, 10, 20, 50 and 100 Hz
e 5 min rest
• Fatigue test
• Stimulation at 1, 10, 20, 50 and 100 Hz

(iv) Data analysis

The Statistical Package for the Social Sciences (SPSS) and Excel were used for data

analysis. Repeated measures ANOV A was initially performed on the data. If no serial

trends occurred, the error linearity test, 95% limits of agreement and coefficient of

variation (CV%) were calculated between data of test 2 and 3. These methods have

been detailed in section 3.1.

3.4.3. Results and Discussion

3.4.3.1. Maximal voluntary strength

There were no significant differences in MVC across the first three test sessions (F2,22

= 0.11; p>0.05). This suggests that there were no learning influences during the initial

tests. This is not an indicator of agreement and further analyses were subsequently

undertaken. The linearity between mean scores and difference of test and retest data

was non-significant (r = -0.36). This lack of relation violates the use of the coefficient

of variation as discussed earlier (section 3.1). For comparison purposes, however, CV

was calculated across all parameters. The CV's of both methods are shown in Table

3.4.1. The CV (%) for isometric strength of the quadriceps was 6.8%, compared with

9.6% for dynamic leg strength at 1.05 radls (see section 3.2). Other authors who have
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used a similar device reported CV between 2 tests at 4.0% and 4.4% for young and

elderly females respectively (Young et al., 1984). The present results compare

favourably with those obtained in previous research. However, in addition to the

characteristics of the data which do not uphold the use ofCV (ie. lack of linearity), the

high CV of 13.4% calculated here is the result of using the adjusted method. The 95%

limits of agreement (-90.7 and 89.73N) are plotted in Fig. 3.4.5.

3.4.3.2. Contractile properties

Electrical stimulation is used to assess muscle function and reveal the characteristics of

contractile properties beyond that of maximal voluntary contractions. The pattern of

force generation with increasing frequencies of electrical impulses enables the force-

frequency relationship to be established and the identification of the nature of fatigue.

The shape of the force-frequency curve can be revealed by examining the force

generated at low frequencies as a percentage of force at high frequencies. The most

reliable index - 10/100 or 20150%, in fresh and fatigued muscle will be reported.

3.4.3.2.1. 101100% ratio

Fresh muscle

The results of the repeated measures ANOV A found that the mean ratio of 101100 %

in fresh muscle were not significantly different across the three test sesions (F2.22=
0.72; p>0.05). The coefficient of variation was large (22.1% and 44.3% after

accounting for 95% of the population), indicating poor reliability. Even though the lack

of linearity contravenes the use of CV, the 95% limits of agreement concur with the

poor reliability of this ratio, with a range of ± 44.0% of the mean test-retest scores

(Fig. 3.4.6).

Fatigued muscle

There were no sequential effects of the 10/100 % across three test sessions following

the first (F2.22= 2.27; p>0.05) and second (F2.22= 1.86; p>0.05) fatigue protocols. The

reliability indices are shown in Table 3.4.1. The 95% limits of agreement were
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narrower after the second protocol (ranging -29.5 to 44.8% of mean test-retest scores)

compared to the first protocol (-36.1 to 50.44% of mean test-retest scores) although

neither test demonstrated good repeatability. This is also reflected by the high CV's

(unadjusted values of21.6 and 18.6% for the first and second protocols respectively).

The error linearity was non-significant and therefore the limits of agreement are

important for interpreting the reliability of this data.

3.4.3.2.2.20150%

Fresh muscle

The 20150 % ratio is used more often as a characteristic of the force-frequency curve

compared to the 10/100% ratio. Over the first three trials of the test-retest data, there

were no significant differences in the 20150% (F2,22 = 2.24; p>0.05). The mean

difference between test 2 and 3 was high (3.28 N) although the CV (9.8 or 19.2% for

adjusted population) was much lower compared to the 10/100%. The 20/50% is

therefore more reliable than the lower ratio, as indicated by the 95% limits of

agreement (ranged 14 to 25% of mean test-retest scores) (Fig. 3.4.6). The CV's

reported here are considerably higher than that documented for the quadriceps (5.5%)

(Edwards and Newham, 1984) and sternomastoid muscle (4.5%) (Edwards et al.,

1984) measured in a single person. However, the detail of calculating CV by these

authors was not reported. The overall mean of the 20150% was lower (66.5%)

compared with 80.7% reported by Edwards and Newham (1984), which could be

attributable to the differences in force generated in the two studies. The percutaneous

stimulation of the quadriceps, activating only a portion of the muscle, has been

questioned in previous work (Davies et al., 1982), with claims that the relationship

between forces produced at low- and high- frequencies are voltage dependent.

Edwards and Newham (1984) reported forces >10% MVC with 50 Hz stimulation

compared with 10-46% MVC at 100 Hz for the sample in this study. Even though the

authors claimed this ratio to be reliable, they were cautious about its reliability at very

low levels of voltage. The present results suggest that the 20150% ratio is more reliable

than 10/100% in fresh muscle.
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Fatigued muscle

The 20150% ratio, calculated across three test sessions following two different fatigue

protocols, were not significant different the first (F2,22 = 0.14; p>0.05) or second

fatigue protocols (F2,22 = 0.38; p>0.05). The unadjusted CV increased from 9.8% in

fresh muscle to 13.6% and 16.6% following the first and second fatigue test

respectively. Edwards et al. (1984) also reported an increase from 4.5% in fresh

muscle to 7.4% in the fatigued state for the sternomastoid muscle. The 95% limits of

agreement are shown in Table 3.4.1.

3.4.3.2.3. Force-frequency relationship

The response of the quadriceps across a range of stimulation frequencies is illustrated

in Fig. 3.4.3. Mean forces generated at each frequency did not vary across the three

trials. The ratios described above give an indication of the characteristics of the force-

frequency curve.

Force-Frequency Relationsbip Across Three Trials
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Fig. 3.4.3: The force-frequency curve over a range of stimulation frequencies of 1, 10, 20, 50 and 100
Hz. The comparison between three controlled test sessions.
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3.4.3.3. Fatiguability

Force generation at the end of the fatigue test was expressed as a percentage of the

initial value and termed the fatigue index (FI%). Two fatigue tests were performed to

i] determine which test is most effective inducing fatigue and ii] assess the

reproducibility of both protocols. The first test involved stimulating the muscle for 3 s,

with a 5 s rest period. The quadriceps in the second test were electrically stimulated for

1 s, with I a s rest. The frequency of stimulation of both tests was 40 Hz, and the

duration of stimulation lasted 3 min. The peak and mean tension of the impulse were

recorded and analysed separately.

Test 1 - ANOV A did not reveal any significant changes in FI% for peak tension (F2•22

= 0.11; p<0.05) or mean tension (F2.22= 0.16; p<0.05) over three test sessions. Thus,

any day-to-day fatigue or learning effects were controlled. The unadjusted CV (9.9 and

11.0 for PT and MT respectively) were within the 'acceptable' range for biological

systems (Stokes,1985), although the lack of linearity and high adjusted values do not

render the use of this reliability index. The limits of agreement are reported in Table

3.4.2. The fatigue trace in Fig. 3.4.4 illustrates the force loss over 3 min.

1 minute.. .
Fig. 3.4.4. The fatigue trace of the first protocol showing the force loss across time.

Test 2 - There were no significant differences in the test-retest data of the second

protocol for peak tension (F2.22= 0.9; p>O.05) and mean tension (F2•22 = 0.25; p>0.05),

excluding a serial effect of repeated testing. There was also a lack of linearity between

the mean scores and difference between test 2 and 3 in this method (r values in Table
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3.4.2.) which contravenes the use of CVs. Despite this, the CV (%) did not differ

widely between the two protocols. The second protocol was more comparable to the

fatigue test employed in other studies than the test of 3 s stimulation. The coefficient of

variation of the fatigue index documented for the adductor pollicis (16%) and the first

dorsal interosseus muscle (15%) (Rutherford and Jones, 1988), where the muscle is

stimulated for 250 ms every second for 3 min, are higher than those reported for the

quadriceps in this study. However, because of the different statistical methods of

calculating CV, it is misleading to make comparisons of different muscles across

studies, particularly if the error linearity is not known. Fig. 3.4.5 illustrates the fatigue

loss across this test.

1 minute

Fig. 3.4.5: Thefatigue trace of the second protocol. Force loss is greater across the test.

Many factors affect the force generated and rate of fatigue produced during electrically

stimulated contractions. These include stimulation intensity, pulse frequency, length of

test, duration of stimulus and on/off times. The first three factors were controlled or

standardised for each test, the latter factors were manipulated in two different

protocols. Any discrepancies between test-retest data were therefore due to random

variation. The 95% limits of agreement were slightly narrower for the first protocol

which may suggest better repeatability, although these differences were very small

(Table 3.4.2). Magnitude of force loss was significantly greater in the second protocol

for peak tension (PT) (36.7%) and mean tension (MT) (40.9%) (Fig.3.4.5) compared

with PT (21.7%) and MT (23.2%) of the first protocol (Fig.3.3.4). Significant

differences were found between these tests for the two parameters (PT - t=6.616; MT
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- t=6.635;p<0.01). The second protocol was considered a more effective method of

inducing fatigue.

In summary, ANOVA has shown that there were no learning effects across the three

trials for any parameter measured. The variability between test-retest trials were

therefore due to random biological and mechanical variation. The lack of linearity

between the difference in test-retest data and mean scores excluded the use of CV,

although this is the most frequently reported index of reliability across previous studies

and has therefore been calculated for comparison here. The 95% limits of agreement

are important despite a less defined interpretation of reliability; the degree of reliability

is judged by the experimenter. In conclusion, the protocol used in this study was not

subject to learning or serial influences of repeated testing, and will be employed in

study 4.2 to investigate the effects of endogenous reproductive hormones on muscle

function. The random variability was quite large however, particularly for electrically

stimulated contractions. This could be due to electrode placement and level of voltage.

Extra care will therefore be taken to standardise these variables. Following close

examination of the results, the use of the 20/50% ratio and the second fatigue protocol

(I s intervals) appears to be more consistent and reliable indices of muscle function

than the 10/100% and first fatigue protocol (3 s stimulation) respectively.

Table 3.4.1. Test-retest reliability indices for maximum voluntary contraction (MVC), 101100 and
20150 Hz ratios fA; in fresh andfatigued muscle.

FRESH FATIGUED
MVC 10/100 (%) 20/50 (%) 10/100 (%) 20/50 (%)
(N) Test t Test 2 Test 1 Test 2

Mean Difference -0.492 -0.025 3.283 2.27 2.42 0.79 1.81
SO (45.1 I) (6.01) (6.51) (6.85) (5.90) (8.02) (9.43)
OveralJ mean 660.64 27.19 66.51 31.66 31.76 58.8 56.73

Linearity (r) -0.36 0.18 0.21 0.07 0.17 0.01 0.06
CV%
t 6.8 22.1 9.8 21.6 18.6 13.6 16.6

: 13.4 43.3 19.2 42.4 36.4 26.7 32.6

95% -90.7 to - 12.1 to -9.7 to -11.43 to -9.38 to -15.2 to -17.1 to
LA 89.7 12.0 16.3 15.97 14.22 16.8 20.7
t SD of differences divided by overall mean x J 00
: SD x 1.96 divided by overall mean x 1
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Table 3.4.2: Test-retest reliability for fatigue index (FI%) of peak tension and mean tension
(expressed as the endforce as a percentage of initial force). Test1 involved stimulating the muscle for
3 s with a 5 s rest. One second impulses were delivered in test 2 with a 1 second rest.

FATIGUE TEST
METHOD Test 1 Test 2

Peak tension Mean tension Peak tension Mean tension
Mean of Di fference -0.56 0.32 42.21 1.03

(± SD) (7.79) (8.45) (8.20) (6.66)
Overall mean • 78.3 76.8 63.3 59.0

Error linearity (r) -0.46 -0.1 0.14 -0.06
CV%

Unadjusted t 9.9 11.0 12.9 11.3
Adjusted: 19.5 21.6 25.4 22.1

95% Limits of Agreement -ro.t to -17.2 to -14.2 to -LU to
15.0 16.5 18.6 14.4

• Test + retest
t SD of differences divided by overall mean x 100
: SD x 1.96 divided by overall mean x 100
95%U are the 95% limits of agreement
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Bland-Altman Plot of Mean Strength
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Fig. 3.4.6: The relationship between the mean scores and difference in test-retest data for MVC,
101100%and 20150%infresh muscle.The outer lines represent the 95% limits of agreement where sd
denotes ± standard deviation. The broken line is the overall mean of the test-retest data.
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3.5. RELIABILITY OF A HAND DYNAMOMETER FOR MEASURING

MUSCLE FUNCTION OF THE FIRST DORSAL INTEROSSEUS MUSCLE

(FDI)

3.5 .1. Introduction

Small muscles, such as the adductor pollicis (AP) and first dorsal interosseus (FDI) are

often used for assessment of muscle function. They are easily accessible and less

complex than larger, multiple groups and can be stimulated painlessly via their

respective motor nerve. The hand dynamometer used in this study and later chapters

was constructed to measure force of the FDI. It was portable and could therefore be.
transported for testing outpatients visiting The Liverpool Women's Hospital. The

dynamometer was utilised for the measurement of force production of the FDI from

maximal voluntary contractions (MYe) in studies 4.2, 4.3 nd 4.4, and electrically

stimulated contractions in studies 4.3 and 4.4. The aims of the study were to:

1] Establish the reliability of the FDI for measurements ofMYC using the hand

dynamometer

2] Assess the repeatability of the forces produced from electrical stimulations

delivered percutaneously.

3] To measure force loss induced from repeated electrically stimulated contractions.

3.5.2. Methods

(i) Subjects

Young males subjects (n=14) gave written consent to participate in the study. Mean

(±SD) characteristics are age:26.9 (4.37), range 22-39 years; mass: 77.6 (8.45) kg;

height: 175.7 (6.97) metres. Subjects were excluded if they suffered pain or discomfort

of the hand, or were taking any medication likely to affect performance.
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(ii) Experimental procedure

Maximal voluntary contraction, contractile properties and fatigue resistance were

assessed on 3 occasions, separated by 3-5 days. Force production was measured using

a custom-built dynamometer designed to isolate the FDI muscle. The forearm, which

rested on the diagonal slope of the platform, was secured at the wrist, mid-forearm and

lower portion of the elbow joint. The lateral side of the distal interphalangeal joint of

the index finger was aligned with the force transducer attached to a strain gauge

(Model UL4000, Maywood Instruments Limited, UK). The strain gauge was

calibrated with known weights. The thumb was fully abducted and secured with a strap

around the proximal phalange. The remaining fingers were strapped together and

restrained by velcro webbing to prevent force production from other muscles (Plate

3.4.1.). Upward movement of the index finger was prevented by a clamp tightened at

the base of the phalange. The position of the hand was standardised for each session to

ensure the muscle length was consistent between trials. The hand and forearm were

initially immersed in warm water at 44°c for 10 min to increase blood flow and

throughout the experiment a reading lamp was positioned at a standard distance over

the muscle. Whilst muscle temperature was not measured, this procedure was

standardised and repeated on both occasions in an attempt to standardise muscle

temperature.

The FDI was stimulated percutaneously with self-adhesive surface electrodes (3S

healthcare, London, UK). The cathode was positioned on the belly of the FDI and the

anode placed near the carpometacarpal joint of the thumb. The muscle was stimulated

with 1 Hz and a 40 Hz tetani to confirm accurate location of the electrodes. Electrical

impulses were applied at 150 volts at a pulse width of 100 us duration with a computer

driven Digitimer stimulator (Model DS7, Digitimer Ltd, England). The force output

was amplified and visually displayed on an Apple Macintosh computer, interfaced with

a data acquisition system (Biopac MPIOOWS, Santa Barbara, CA).
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Plate 3.5.1. Dynamometer howing the index finger in relation to 1J force transducer 2J electrodes
and 3J thumb
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3.5.2.1. Maximal voluntary contraction

Maximal voluntary contraction of the FDI was measured whilst fully abducting the

index finger. This is the only muscle involved in producing this movement.

Superimposed percutaneous stimulation was employed to ensure maximal activation of

the FDI. Disappearance of the 1 Hz impulses confirmed maximal volitional force. Each

trial was preceded by a 60 seconds rest interval. The highest of three trials was

recorded.

3.5.2.2. Contractile properties

A train of electrical impulses were delivered percutaneously to the FDI using the same

protocol as the leg of 1, 10, 20, 50 and 100 Hz of 3 s duration, with a 5 s recovery.

The frequency at low velocities was expressed as a percentage of high frequencies

(10/100 and 20/50%) to characterise the force-frequency curve. This method has been

described in section 3.4.

3.5.2.3. Fatigue characteristics

Fatigue resistance of the FDI was assessed using a protocol modified from Burke et al.

(1973). This involved repeatedly stimulating the muscle for 3 min at 40 Hz with a 1 s

interval between each tetanic contraction. This protocol was adapted, based on the

recommendations in section 3.4. Using percutaneous stimulation, forces generated at

100 Hz ranged 5-53.7% (mean of 30.14% ±14.3) MVC. Typical myograms of a

tetanic contration in a fresh and fatigued state are shown in Fig. 3.5.1.a] and b]. The

fatigue index (FI%) was calculated as for the leg (end force as a percentage of initial

force). Speed of relaxation was measured as the time taken for peak force to reach

half-peak force. A 5 min rest was allocated between the train of increasing frequencies

and before commencing the fatigue test.
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Fig. 3.5.1: A 40 Hz tetanic twitch offresh [a] andfatigued [b] muscle. The horizontal arrow
represents the half-relaxation time (time taken/or muscle to reach half-relaxation).

(iii) Data analysis

The statistical methods of analysing the data have been described previously (section

3.2). A repeated measures ANOVA was initially used to identify any trends over the

test sessions. If a serial effect did not occur, the error linearity and 95% limits of

agreement were calculated between the first two tests. The coefficient of variation was

calculated irrespetive ofr, for comparison purposes.

3.5.3. Results and discussion

3.5.3.1. Maximal voluntary contraction

There were no significant differences in maximal voluntary contraction (MVC) over

the three trials (F2,24= 0.51; p>o.05). There was a lack of relation between mean

strength scores and test-retest difference and thus the 95% limits of agreement were

used to interpret the reliability. The overall mean was 44.18N with -8.54 to 8.43 N

95% limits of agreement (ranging ±19% of mean test-retest scores) (Fig 3.5.2.).

Hence, for any new young subject tested, two repeated measurements (including the

first visit) would differ by 8 N or less. Changes in strength due to hormonal influences

would have to exceed 8 N or otherwise they would be disguised by the inherent
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variability. Unadjusted CV was 9.6% compared with 12% for the FDI in other studies

(Rutherford and Jones, 1988).

3.5.3.2. Contractile properties

The repeatability of day-to-day measurements of contractile properities of the FDI

were assessed by comparing the forces generated at low frequencies with those at high

frequencies (10/100 and 20150% ratios).

3.5.3.2.1. 101100% ratio

There was no significant difference in the 10/100% ratio over the three trials (F2,24 =
1.10; p>0.05). There was a lack of linearity between mean scores and differences in

test-retest data (r= 0.46), and CV's were very high (64.1 % and 125.6% for unadjusted

and adjusted data respectively). This compares with 15.9 and 32.3% found for 20/50%

ratio, respectively. The 95% limits of agreement are also very wide (Fig 3.5.3) (-131.0

to 125.3 % of mean test-retest scores) which further suggests poor reliability of this

ratio as a feature of the force-frequency curve. This ratio will be excluded from

analysis in the experimental studies.

3.5.3.2.2. 20150% ratio

The repeated measures ANOVA was not significant for the 20/50% ratio over the

three trials (F2•24 = 1.43; p>0.05). The overall mean of the two trials was high (-3.95)

denoting a decrease in the percentage of this ratio from the first to the second test.

This was not statistically significant. The overall mean of 72.2% compares with 80.7%

for the quadriceps (Edwards and Newham, 1984) and 79.0% for the

sternocleidomastoid muscle (Edwards et aI., 1984). Results are shown in Table 3.5.1.

The limits of agreement demonstrates that this ratio is more reliable than the lower

ratio (10/100%) and will be used in the study 4.4.
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3.5.3.3. Fatiguability

There were no significant differences in the ANOVA for peak tension (F2,20= 0.08;

p>0.05); mean tension (F2,20= 0.35; p>0.05) or relaxation time (F2,20= 0.31; p>0.05)

across the three trials. The differences in test-retest data are shown in Table 3.5.2.

Overall mean of peak tension (49.2 N) was higher compared with mean tension (44.1

N), although the reliability does not differ. Relaxation time however, has poor

reliability, with a high mean difference and wide 95% limits of agreement. This is not

demonstrated by the CV and it was therefore not surprising that error linearity was not

significant. Table 3.5.2. lists the results of these parameters.

The reliability of the dynamometer for measuring muscle function of the FDI has been

assessed over three day-to-day sessions. The ANOV A results were not significantly

different for all variables measured, precluding a learning or familiarisation effect of

repeated measures. This is important since a practice session is not possible in the

experiments where this protocol will be employed. The variability is quite large,

possibly due to the inter-individual differences in stimulation intensity. Intra-individual

voltages were kept constant..

In conclusion, maximal volitional and electrically stimulated contractions are not prone

to a serial or learning effect measured day-to-day, and can therefore be used in studies

4.3 and 4.4, where a familiarisation session will not be given. The 95% limits of

agreement indicate that the measurement of maximal voluntary contraction of the first

dorsal interosseus muscle, using the hand dynamometer, is reliable. There is greater

variability with forces generated from electrically stimulated contractions. This is more

pronounced for the 10/100% ratio, and therefore this index of force/frequency will be

excluded. This poor reliability was also reported for the quadriceps. Relaxation rate

was highly variable, but will be reported as a measure of the speed of muscle. There is

a concomitant increase of the CV with the limits of agreement for electrical stimulation

compared with those reported for maximal force production. It is anticipated that the

repeatability of these variables will be enhanced if increased voltages are used.
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However, not all subjects were tolerant of higher voltages. This may be overcome with

supramaximal stimulation of the ulnar nerve. This was not undertaken due to problems

forseen with patients recruited and tested at the hospital, unfamiliar with the sensations

and procedure.

Table 3.5.1: Test-retest reliability for maximum voluntary contraction (MVC). 101100 and 20150 Hz
ratios (%).

METHOD MVC(N) 10/100% 20/50%
Mean Difference -0.05 -0.54 -3.95

(±SD) (4.24) (11.99) (11.54)
Overall Mean 44.18 18.71 72.23

Error Linearity (r) 0.31 0.46 -0.52
CV%

Unadjustedt 9.6 64.1 15.9
AdjustetJ: 18.8 125.6 31.3

95% Limits of -8.5 to 8.34 -24.54 to 23.45 -27.03 to 19.13
Agreement

t Unadjusted" SD 1overall mean x 100
: Adjusted = SO x 1.961 overall mean x 100

Table 3.5.2: Test-retest reliability for fatigue parameters - fatigue index (FfO/o)of peak tension (P1),
mean tension (MT) and relaxation rate. These indices are expressed as the end force as a percentage
of the initial force.

METHOD Peak Tension Mean Tension Relaxation Rate
Mean Difference -1.04 -2.71 -15.88

(±SD) (9.08) (9.08) (25.87)
Overall Mean (%)* 49.24 44.05 182.46

Error Linearity (r) 0.27 0.42 0.34
CV%

Unadjustedt 18.4 19.1 14.2
AdjustetJ: 36.1 37.3 27.8

95% Limits of -19.2 to 17.1 -19.2 to 13.7 -67.6 to 35.9
Agreement ...

• End force as a percentage of initial fort Unadjusted = SD 1overall mean x 100
: Adjusted - SO x 1.961 overall mean x 100
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Bland-Altman Plot ofMVC for the FDI
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Fig. 3.5.1: The relationship between mean scores and test-retest differences for maximal voluntary
contraction (MVC). /01/00% ratio and 20150% ratio. The centre line represents the mean of test I
and test 2. and the outer lines are the 95% limits of agreement (mean % 2SD).
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3.6. Summary

1) The reliability of the LIDO~ Active dynamometer for measuring concentric strength

of the knee extensors was established in a sample of young heterogenous subjects.

Whilst the equipment was deemed reliable at 1.05 and 3.13 rad/s, the variability was

greater at higher angular velocities (5.22 rad/s).

2) The reliability of the knee flexors was compromised across all angular velocities.

This was attributed to the requirement to perform recriprocal movements.

3) The assessment of the variability in muscle performance of middle-aged women

revealed a systematic increase of peak torque of the knee extensors at 1.OSrad/s.

Whilst the effort involved in undertaking reciprocal extensor/flexor actions could

contribute to this learning effect, it is anticipated that extra warm-up trials will

stabilise peak torque. Strength of the leg flexors were also highly variable, and are

not considered a reliable muscle group for assessing hormonal influences.

4) Day-to-day measurements of maximal isometric handgrip and leg strength have

proven reliable, although it is recommended that the twitch interpolation technique

be employed to confirm the maximal activation of the quadriceps.

5) The strain gauge assembly, utilised for measuring the force-generating capacity of

the quadriceps, was reported to be a reliable system Forces generated from

electrically stimulated contractions were prone to greater variability in performance.

This was particularly noted for the ratio of forces at 101100 Hz. The variabilty was

also greater in fatigued, compared to fresh muscle.

6) The hand dynamometer was deemed reliable for measurements of maximal force

production of the first dorsal interosseus muscle. Forces generated from electrically

stimulated contractions were highly variable, particularly for the 10/100 Hz ratio.
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CHAPTER FOUR

THE EXPERIMENJTAL

STUDIES



4.0. THE EXPERIMENTAL CHAPTER

In the previous chapter the reliability of the equipment to be employed for assessing

hormonal influences on musclefunction was established. These results have been used

to determine the most reliable and effective methodsfor measuring aspects of muscle

function. Those which have exhibited great variability day-to-day will not be used.

The experimental studies described within this chapter aimed to establish the

influence of reproductive hormones on muscle function. Four separate studies were

undertaken, measuring different muscles in young and middle-aged women, and

assessing musclefunction through volitional and electrically stimulated contractions.

In study 4.1, the rate of force loss in hypoestrogenic post-menopausal women was

assessed over 12 months, a model which represents a chronic loss of hormones..

Performance was compared with a perimenopausal group and a sample of women

taking hormone replacement therapy (HRT). Additionally, the role of HRT was

investigated. Temporal changes in hormones on maximal force of a large muscle

group (quadriceps) and a small single muscle, the first dorsal interosseus (FDl) was

examined during the menstrual cycle (study 4.2). Responses to electrically stimulated

contractions were also examined in the quadriceps to gain further insight into the

mechanisms of hormonal action.

These studies will determine the effects of chronic and acute changes in reproductive

hormones on muscle function. The main objective of study 4.3 was to elucidate the

role of oestrogen on muscle strength, where acute changes in oestrogen were

examined in the FDI whileprogesterone remained relatively stable. Finally, study 4.4

investigated changes in musclefunction of the FDI and assessed the effects of HRT in

post-menopausal women. The influence on muscle function during changes from a

hypoestrogenic to a hormonally replenished state was determined, with afocus on the

differences of an oestrogen and oestrogen/progestogen primed muscle during the

phases of HRT.
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4.1. A LONGITUDINAL ANALYSIS OF MUSCLE STRENGTH IN MIDDLE-

AGED FEMALES OF DIFFERENT HORMONAL STATUS

Aspects of this work have been presented at the First European Congress of Sports

Science, Nice, May, 1996 and at the Neurobiology of Ageing Conference, Dublin,

March. 1997. An abstract has been published in the Journal of Physiology, 501.P.

170P,1997.

4.1.1. Introduction

An age-related decline in muscle strength of the order of30-40% (Larsson et at, 1979)

is concomitant with a reduction in muscle mass (Grimby and Saltin, 1983). Recently, a

decline in the force-generating capacity of the adductor pollicis muscle (AP), expressed

as force per cross-sectional area (force/CSA), was reported in the elderly at 27%

compared with younger controls (Bruce et at, 1989). Given the difficulty inmeasuring

physiological cross-sectional area in humans, even in a paralleI-fibred muscle such as

the AP, isolated whole muscle in rodents have been examined. A reduction (20%) in

specific force of hindlimb muscle has also indicated an age-related deficit in strength

independent of atrophy (Brooks and Faulkner, 1988; Phillips et al., 1991). The onset of

this weakness, investigated in males and females aged 17 to 90 years (Phillips et at,

1993b), is most rapid in peri-postmenopausal women. Since women taking hormone

replacement therapy (HRT) do not exhibit this weakness, a hormonal component is

strongly implicated.

Problems arise when reporting specific force in a multiple muscle group such as the

quadriceps. Due to its architectural complexity, the CSA is difficult to measure

accurately and, as a result, there have been conflicting reports of the changes in

specific force with ageing. A loss of strength in the quadriceps, unexplained by atrophy

has been documented in elderly men (Young et al., 1985) but not inwomen (Young et

al., 1984). Muscle mass in both studies was measured using ultrasound scanning.

Muscle mass, estimated from urinary creatinine excretion, was related to strength of

lower, proximal, and upper distal limbs (Frontera et al., 1991). However, using

computed tomography Rutherford and Jones (1992) found a decline in force/CSA
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from the 5th decade in women and a total loss of specific force between the 2nd and

8th decade of27%.

Whilst Phillips et al. (1993b) have reported the onset and time-course of muscle

weakness of the AP in a cross-sectional study, the rate of individual force loss has not

been examined. The object of this study was to monitor maximal strength of the

quadriceps over 12 months in hypoestrogenic women (1-3 years post-menopausal).

Muscle mass was not measured because of the difficulties associated with this muscle

group, although an aged-matched control group taking HRT was assessed. The

quadriceps was selected due to its role as a weight-bearing 'functional' muscle group;

hand grip strength was also examined as an upper limb comparison. The effects of

hypoestrogenia/progestogenia on shortening velocity of the quadriceps was also

examined. The following hypotheses were devised:

Hypothesis 1. Maximal strength declines inwomen within 1 to 3 years post-

menopause over 12 months.

Hypothesis 2. There is no change in maximal strength in females taking

hormone replacement therapy (HRT).

Hypothesis 3. Strength loss is of the same proportion with increasing

angular velocities.

The aims of this study were to:

1] Determine if strength loss occurs over a 12 month period.

2] Assess the role ofHRT in preserving muscle strength

3] Examine the effect of hormonal status on shortening velocity ofthe quadriceps

4] Investigate the response of different muscle groups to hypoestrogenia.
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4.1.2 Methods

(i) Subjects

Thirty middle-aged female subjects volunteered to participate in the study. Subjects

were recruited from the menopause clinic at Liverpool Women's Hospital and by

advertisements in a local newspaper. Subjects were subdivided into three groups;

eleven women were taking hormone replacement therapy (RRT) either shortly before

or soon after baseline measurements (RRT preparations are shown in Table 4.1.2).

Nine females were perimenopausal and experiencing symptoms of the climacteric ie.

vasomotor disturbances, irregular periods. Finally, ten postmenopausal women were

recruited according to the inclusion criteria listed below. A venous blood sample was

taken to confirm high follicle stimulating hormone (FSH) and luteinising hormone (LH)

levels (>20 U/L). Baseline characteristics of subjects are shown in Table 4.1.1. There

were no significant differences in mass (p=0.79) or height (p=0.86) between the three

groups. These parameters were used to calculate body mass index (BMI) (kg/m')

(Table 4.1.1.).

Table 4.1.1: Mean (±SD) baseline characteristics of subjects in the peri-, post- and HRT groups.

Variables Peri-menopause Post-menopause HRT

Age (yrs - decimal) 49.96 (3.11) 51.97 (3.08) 50.05 (3.84)
Height (m) 1.59 (3.52) 1.62 (6.85) 1.59 (5.45)
Mass (kg) 73.58 (9.11) 72.33 (14.57) 67.50 (10.31)
BMI • 28.88 (2.83) 27.36 (4.67) 26.56 (2.03)
LTPA (kJ/wk) ; 5168 (2539) 10409 (9741) 6181 (6149)
• Body mass index
; Leisure time physical activity

A questionnaire was administered to all volunteers for inclusion/exclusion into the

study. Medical and gynaecological profiles and history ofRRT were reported. Physical

activity was assessed using the Leisure Time Activity Questionnaire (Lamb and Brodie,

1991) to ascertain fitness levels of subjects. This survey requires the recollection of

leisure time physical activity over a 'typical' two week period (Appendix 1.0). Energy

expenditure was calculated from the weekly activities recalled. Differences in activity

levels are presented in Table 4.1.1. Large inter-individual variations exist, although
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energy expenditure was mainly attributed to gardenlhousehold activities. Ten percent

of subjects suffered from thyroid disease, which was treated with exogenous thyroxine

replacement.

Inclusion criteria Exclusion criteria
a) Sedentary, but physically healthy Myopathic/neuropathic/skeletal

disorders likely to affect performance

Medication possibly affect motivation

Hypertensive (> 140/90)

b) Aged 45-55 years

c) Normotensive

Postmenopausal group

d) Amenorrhoea at least 12 months

e) High FSHlLH levels (>20 U/l)

Amenorrhoea> 5 years

Premature menopause «40 years)

Perimenopausalgroup

f) Vasomotor symptoms Amenorrhoeic

g) Irregular periods (cycle length >35 days) Younger 45 years

HRT

h) Beginning HRT/taking HRT 1-2 months > 55 years

Table 4.1.2. Hormone replacement therapy preparations taken by subjects (n=ll)

Route of Preparation Oestrogen Progestogen
administration

Oral Climagest (xl) Oestradiol valerate Norethisterone
Oral Trisquens (x I) Oestradiol/oestriol Norethisterone acetate
Oral Prempak-C (x2) Oestradiol/oestriol Norgestrel

Transdermal Estracombi (xl) Oestradiol Norethisterone acetate
Oral Livial • (3) - -
Oral Premarin** (x2) Conjugated oestrogens -

Transdermal Estracombi" (xl) Oestradiol -
• Livial contains tribolone - a gonadomimetic .
•• These preparations are unopposed oestrogens taken by hysterectomised women

Dropouts

. Forty subjects were initially recruited into the study. Fourteen females were taking

hormone replacement therapy, thirteen subjects were assigned to the peri-menopausal

group and thirteen subjects were post-menopausal. Ten subjects (HRT = 3; peri-

menoapausal = 4; Post-menopausal = 3) dropped out between baseline and the second
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testing session due to medical and/or personal problems. Following the penultimate

testing session, three subjects in the postmenopausal group were withdrawn from the

study due to illness (x2) and death (xl). Analysis of data was therefore undertaken

over 9 and 12 months.

(ii) Procedure

On arrival at the laboratory, body mass of subjects was recorded and, following 5 min

of seated rest, blood pressure was measured using an automatic sphygmomanometer

(Model 8111, Dynamar, Critikom, Bracknell, UK). Subjects with values greater than

1501100 were diagnosed a hypertensive and were requested to seek medical advice

before continuing with the study. Leg and grip strength was then measured following a

5 min, self-paced warm-up on a cycle ergometer (Monark).

Strength measurements

Dynamic strength of the quadriceps and hamstrings was assessed using an isokinetic

dynamometer (LIDO Active", Davies CAl according to the protocol described in

Chapter 3.3. Due to the systematic increase in peak torque between test 1 and 2 at

1.05 rad/s in section 3.2, this parameter was stablised with 2 submaximal and 4

maximal practice trials. Maximal voluntary isometric contraction (MVIC) of the

quadriceps was measured with the leg flexed at the knee at an angle of 90°. The

maximum force-generating capacity of the muscle group was monitored with

percutaneous stimulation using surface eletrodes. One Hz twitches were delivered at a

tolerable current for 10 s. The MVIC was recorded when the superimposed twitches

diminished. One min rest was given between each contraction. Following a 5 min

recovery, the highest of 5 trials was recorded.

Intraindividual tests were undertaken at the same time of day (± 1 hour). A

familiarisation session preceded the baseline trial. Subjects were required to visit the

laboratory every ten weeks for 12 months, arranged with the experimenter one to two

weeks beforehand. A total of 5 sessions, excluding the familiarisation test, were

attended.
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(iii) Data Analysis

The Statistical Package for Social Sciences (SPSS) was used for data analysis. Mean

(± standard deviation) and percent changes were calculated. A two-way analysis of

variance (group x3) with a repeated measures factor of visit (x5), was employed to

calculate strength changes between groups over the 12 months. Analysis was also

undertaken across 4 visits (up to 9 months) of all the subjects (n=30) so that the

performances of the post-menopausal subjects who dropped out before the final test

session were analysed. A two-way ANOV A with a repeated measures factor of

velocity (x4) and visit (x2) was also used to calculated the differences in strength of the

three groups across all angular velocities, and standardised peak torque. To avoid the

occcurrence of a Type I error (when the assumption of sphericity, or homogeneity of

variance is not true), the Huynh-Feldt correction factor was used. Post-hoc tests

(Scheff e) were carried out to determine differences between variables from the

ANOV A. Significance was set at a 5% level.

Allometric modelling

Physiological variables are often dependent on body size. To normalize for differences

in body size allometric modelling was used to 'remove' these individual influences

from the analysis using the equation:

Y = ahbl.mb2 e (equation 1)

where Y represents the physiological variable, h = height, m = body mass and e the

multiplicative error ratio term. The model naturally overcomes the presence of

heteroscedasticity (when the error diverges with an increase in mean scores) and, after

log transformation, the model parameters can be fitted using' the linear regression

methods. Since strength varies with body size (Edwards et al., 1977b), force was

adjusted for height and mass according to the method of Nevill (1994).
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4.1.3. Results

Mean force values ± standard deviation (SD) of different muscle groups across all

angular velocities are shown in Tables A.l, A.2 and A.3 (Appendix 2.0) for HRT, peri-

and post-menopausal groups respectively. Measurements in three post-menopausal

women were not recorded at the last test due to reasons described in the methods, and

thus were excluded from analysis over 12 months.

4. J.3. J. Longitudinal changes in strength between peri-, post-menopausal and

hormonally replenished women over J2 months

Maximal force, measured across a range of angular velocities, was assessed over 12

months between three treatment groups. Force was log transformed and corrected for

covariates log of height and weight. The two-way ANOV A with repeated measures

did not reveal any significant differences between (group x 3) or within (visit x 5)

subjects (p>0.05). There was no significant group/visit interactions at any velocity for

the muscle groups tested. The interaction plots for these factors are shown in Fig 4.1.1

to 4.1.8. The F values (significance ofF), with b exponent of height and weight, for all

variables are shown in Table A.4 (Appendix 2.0).

The log of height and weight were incorporated into all analyses as covariates, and

were omitted if they were not significant. Height was not included as a covariate for

isometric strength, which affected the significance of the b exponent of weight. Height

and weight were included for concentric contractions (1.05 to 3.13 rad/s) and hand

grip strength.
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Fig. 4.1.1. Mean force values for isometric contraction (900 flexion) of the knee extensors between
the HRT, Post-menopausal (Post.M) and Peri-menopausal (Peri.M) groups over 12 months. HRT
N=II. Post.M N=7. Peri.M N=II. The F value is presented for Group v Visit interaction. Lnwt
indicate log of covariate weight and its b value.
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Fig. 4.1.2. Mean force values for concentric contraction of the knee extensors (KE) at 1.05 radls
between the HRT, Post-menopausal (post.M) and Peri-menopausal (Peri.M) groups over 12 months.
HRT N=II. Post.M. N=7. Peri.M N=ll. The Evalue is presentedfor Group v Visit interaction. Lnwt
and Lnht indicate log of covariates weight and height respectively - and their b values.
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Fig. 4.1.3. Mean force values for concentric contraction of the knee extensors (KE) at 2.09 radls
between the HRT, Post-menopausal (post.M) and Peri-menopausal (Peri.M) groups over 12 months.
HRT N=l1, Post.M. N=7. Peri.M. N=l1. The Fvalue ispresentedfor Group v Visit interaction. Lnwt
and Lnht indicate log of covariates weight and height, respectively - and their b values.

Maximal Strength of the KE at 3.13 rad/s
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Fig. 4.1.4. Mean force values for concentric contraction of the knee extensors (KE) at 3.13 radls
between the HRT, Post-menopausal (Post.M) and Peri-menopausal (Peri.Mi) groups over 12 months.
HRT N=l1, Post.M. N=7. Peri.M. N=JJ. The Fvalue is presentedfor Group v Visit interaction. Lnwt
and Lnht indicate log of covariates weight and height, respectively - and their b values.
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Maximal Strength of the KF at 1.05 radls
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Fig. 4.1.5. Mean force values for concentric contraction of the knee flexors (KF) at 1.05 rad/s
between the HRT, Post-menopausal (Post.M) and Peri-menopausal (Peri.M} groups over 12 months.
HRT N=ll, Post.M N=7. Peri.M. N=ll. The Fvalue is presented for Group v Visit interaction. Lnwt
and Lnht indicate log 0/covariates weight and height, respectively - and their b values.
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Fig. 4.1.6. Mean force values for concentric contraction of the knee flexors (KF) at 2.09 rad/s
between the HRT, Post-menopausal (post.M) and Peri-menopausal (Peri.M) groups over 12 months.
HRT N=ll, Post.M N=7. Peri.M. N=ll. The Fvalue is presented/or Group v Visit interaction. Lnwt
and Lnht indicate log of covariates weight and height, respectively - and their b values.
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Maxirml Strength of the KF at 3.13 rad/s
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Fig. 4.1.7. Mean force values for concentric contraction of the knee flexors (KF) at 3.13 rad/s
between the HRT, Post-menopausal (Post.M) and Peri-menopausal (Peri.M) groups over 12 months.
HRT N=ll, Post.M. N=7. Peri.M N=ll. The Fvalue ispresented for Group v Visit interaction. Lnwt
and Lnht indicate log of covariates weight and height, respectively - and their b values.
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Fig. 4.1.8. Mean force values of isometric grip strength between the HRT, Post-menopausal (post.M)
and Peri-menopausal (Peri.M] groups over 12 months. HRT N=ll, Post.M N=7. Peri.M. N=l1.
The F value is presented for Group v Visit interaction. Lnwt and Lnht indicate log of covariates
weight and height, respectively - and their b values.
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4.1.3.2 Comparison of post-menopausal women and females taking HRT over 9

months

There were no significant differences in strength between the three treatment groups

over 12 months. The peri-menopausal group was removed, and the differences in

performance of hypoestrogenic post-menopausal females compared with a group

taking hormone replacement therapy (HRT). The role ofHRT on muscle strength was

also examined. Strength measurements up to 9 months were analysed so that all ten

post-menopausal subjects were included in the analysis. At the slow, or zero, angular

velocities of the knee extensors there was significant group x visit interaction for

isometric (F30S7= 4.4S; p<O.OS) and concentric strength at LOS rad/s (F3,S7= 4.04;

p<0.05).

There were also significant differences over time (the 'within' subjects factor) for both

variables. Post-hoc tests located significant differences in isometric strength for the

post-menopausal group between TI and T4, TI and T3, T2 and T4 and TI and T3

(p<O.Ol), whilst force remained stable for the HRT group (Fig 4.1.9). The deficit in

force measured isokinetically at 1.05 rad/s for the post-menopausal group was

significant between TI and T4; T3 and T4 (p<0.05); T2 and T3; T2 and T4 (p<O.Ol). A

slight increase in strength at the last session was observed for the HRT group, although

this was not significant (4.1.10). There were no sigificant changes in strength at the

faster angular velocities for the knee extensors (2.09 and 3.13 rad/s), although the

HRT group were were able to generate greater force compared with the post-

menopausal females at all time points (Fig. 4.1.11 to 4.1.12). Strength of the knee

flexors are not reported here because of the variability in force of this muscle group

(demonstrated in section 3.3), but are shown in Fig. 4.1.S to 4.1.7 for all groups.

The interaction plot of mean force for grip strength (Fig. 4.1.13) vary over the

duration of the testing for both groups. Significant differences between visits were

found (HRT group = T2 and T3; T3 and T4 (p<O.OS): Post-menopausal group = TI and

T2 (p<O.05); TI and T4 (P<O.Ol)) although these changes were variable.
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Maximal Isometric Strength ofKE (90°)

• HRT (n=l l)
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Fig. 4.1.9. The relationship betweeen mean (±SE) isometric force (900 knee flexion) of the knee
extensors (KE) between hypoestrogenic and hormonally replaced females over 9 months. The broken
line represents the meanforce of the number offemales who completed all j tests (n=7). Lnwt is the
abbreviation of log of covariate weight and its b value. SE = standard error.

Maximal Strength ofKE at 1.05 rad/s
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Fig. 4.1.10. The relationship betweeen mean concentric force (±SE) of the knee extensors (KE) at
1.05 rad/s between hypoestrogenic and hormonally replaced females over 9 months. The broken line
represents the meanforce of the number offemales who completed all 5 tests (n=Z). Lnwt and Lnht
are abbreviations of log of covariates weight and height respectively, and their b values. SE =
standard error.
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Maxirml Strength ofKE at 2.09 radls
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Fig. 4.1.11. The relationship betweeen mean concentric force (±SE) of the knee extensors (KE) at
2.09 radls between hypoestrogenic and hormonally replaced females over 9 months. The broken line
represents the mean force of the number offemales who completed all 5 tests (n=Z). Lnwt and Lnht
are abbreviations of log of covariates weight and height respectively, and their b values. SE =
standard error.

Maximal Strength ofKE at 3.13 radls
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Fig. 4.1.12. The relationship betweeen mean concentric force (±SE) of the knee extensors (KE) at
3.13 radls between hypoestrogenic and hormonally replaced females over 9 months. The broken line
represents the mean force of the number offemales who completed all 5 tests (n=7). Lnwt and Lnht
are abbreviations of log of covariates weight and height respectively, and their b values. SE =
standard error.
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Lnwt=0.736
p<O.Q1

Lnht = 1.835
p< 0.1

Maxirral Isorretrc Grip Strength

• HRT (n=l l)

--0-- Post.M. (=10)
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Fig. 4.1.13. The relationship betweeen mean force (±SE) of isometric grip strength between
hypoestrogenic and hormonally replaced females over 9 months. The broken line represents the mean
force of the number offemales who completed all 5 tests (n=7). Lnwt and Lnht are abbreviations of
log of covariates weight and height respectively, and their b values. SE = standard error.

4.1.3.3. Percent change over 12 months between three group

Differences in the percent change of strength of the knee extensors and grip strength

between baseline (TI) and 9 (T.) and 12 (Ts) months are illustrated in Fig. 4.1.14 to

4.1.18. A one-way ANOV A calculated differences in the magnitude of change in force

deficit (%). No significant changes were found between the three groups across 9

months or 12 months (p>0.05).

4.1.3.4. Percent change over 9 months - HRT versus post-menopausal women

Comparisons in the percent change in strength for baseline and 9 months were made

between the HRT and post-menopausal groups. Significant differences were found for

isometric (t19 = 2.43;p<0.05) and dynamic strength measurements at 1.05 radls (t19 =
2.29;p<0.05).
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Isorretrc strength of the KE

Group
Post.M.
Group

Fig. 4.1.14. Percent change (± SE) inforce(Nm) from baseline (I'l) to 9 (1'~)and 12 (1'j) months for
isometric contraction of the knee extensors (KE) measured at 90° of knee flexion. SE = standard
error,' Post.M. = post-menopausal women; HRT = hormone replacement therapy; Peri.M. = peri-
menopausal females.
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Fig. 4.1.1S. Percent change (± SE) inforce(Nm)from baseline (I'l) to 9 (1'4)and 12 (Ts ) monthsfor
concentric contraction of the knee extensors (KE) measured at a velocity of 1.05 rad/s. SE = standard
error; Post.M. = post-menopausal women; HRT = hormone replacement therapy; Peri.M. = peri-
menopausal females.
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Corcentrc strength oftbe KE at 2.09 radls
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Fig. 4.1.16. Percent change (± SE) in force (Nm)from baseline (I'}) to 9 (1'4) and 12 (Ts ) months for
concentric contraction of the knee extensors (KE) measured at a velocity of 2. 09 rad/s. SE = standard
error; Post.M. = post-menopausal women; HRT = hormone replacement therapy; Peri.M. = peri-
menopausal females.
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Fig. 4.1.17. Percent change (± SE) inforce (Nm)from baseline (I'}) to 9 (1'4) and 12 (l'j) months for
concentric contraction of the knee extensors (KE) measured at a velocity of 3.13 rad/s. SE = standard
error; Post.M. = post-menopausal women; HRT = hormone replacement therapy; Peri.M. = peri-
menopausal females.
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Isometric hand grip strength
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Fig. 4.1.18. Percent change (± SE) inforce (Ft lbs) from baseline (1'/ ) to 9 (1'4) and 12 (1'5) months
for grip strength measured during an isometric contraction. SE = standard error; Post.M. = post-
menopausal women; HRT c: hormone replacement therapy,' Peri.M. = peri-menopausal females.
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4.1.3.5. Force-angular velocity relationship

The force-velocity curves were examined between treatment groups at baseline and at

12 months. The relationship between absolute strength and angular velocity at both

time points are shown in Fig. 4.1.19 and 4.1.20. The log transformation of strength

was calculated statistically with the log of height and weight as covariates to correct

for body stature (Fig. 4.1.23 and 4.1.24). A two-way ANOVA with repeated measures

of velocity (x4) and visit (x2) showed that there was no affect of group on force by

visit (F2,22 =0.68; p>O.OS)or by velocity (F6,66 = 1.93; p>O.OS). Further, there was no

interaction between group by velocity or visit (F6,66 = 1.80; p>O.OS).

The force produced isometrically at 90° of flexion was lower than at slower angular

velocities of LOS rad/s. This is not typical of the force-velocity curve in which force

declines with increasing angular velocity. This trend was not affected when strength

was normalised for body size. Force was greatest isometrically at 60° of flexion when

measured on the final visit. Further measurements at a faster angular velocity of S.22

135



rad/s resulted in lower force production. This pattern occurred for all treatment groups

and when scaled for body size (Fig. 4.1.20 to 4.1.22).

4.1.3.6. Standardised force-velocity relationship

The relative rate of force loss with angular velocity was examined by expressing force

as a percentage of isometric force. Force is relative to maximal isometric force,

although in this study maximal force was attained at 1.05 rad/s. Since relative force is

presented, scaled results were not used.

A comparison of standardised force between baseline and 9 months are shown for the

HRT group (Fig. 4.1.23) and post-menopausal females (Fig. 4.1.24). There was no

significant affect of forces over time and across velocities for either group (p>0.05).

This is evident in the HRT group (Fig. 4.1.23), although higher relative force with

increasing velocities in the post-menopausal group indicate that greater relative force is

generated at 9 months. This is probably due to a significant decline in isometric force at

9 months and the maintenance of forces at higher angular velocities. Forces at 1.05

rad/s had decreased in proportion to isometric force.

A comparison between groups at baseline (Fig. 4.1.25) and at 9 months (Fig. 4.1.26)

shows that the HRT group generates higher forces as a percentage of their isometric

force. There were no significant differences between groups x velocity (F3,57 = 2.11;

p>0.05) or by visit (F 1,19 = 0.51; p>0.05).
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Force- Velocity Curve for at Baseline

-+-HRT
-o-Post.M
-x-Peri.M

0(90) 1.05 2.09 3.13

Velocity (rad/s)

Fig. 4.1.19. Force (Nm) - angular velocity relationship for absolute strength at baseline between the
three treatment groups. HRT =hormone replacement therapy; Post.M. =Post-menopausal group;
Peri.M.=Peri-menopausal group.
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Fig. 4.1.20. Force (Nm) - angular velocity relationship for absolute strength at 12 months between
the three treatment groups. HRT =hormone replacement therapy; Post.M. =Post-menopausal group;
Peri.M. »Peri-menopausal group.
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Force - Angular Velocity Curve at Baseline
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Fig. 4.1.21. Log of force (Nm) - angular velocity relationship for strength at baseline between the
three treatment groups. Mean values adjusted from the log of strength and covariates height and
weight. HRT =hormone replacement therapy; Post.M. =Post-menopausal group; Peri.M. =Peri-
menopausal group.
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Fig. 4.1.22. Log of force (Nm) - angular velocity relationship for strength at 12 months between the
three treatment groups. Mean values adjusted from the log of strength and covariates height and
weight. HRT =hormone replacement therapy; Post.M. =Post-menopausal group; Peri.M.=Peri-
menopausal group.
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Standardised PT at increasing angular
velocities in the HRT group
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Fig. 4.1.2J. Mean standardised peak torque against angular velocity of knee extension of females in
the HRT group at baseline and 9 months (1"4). Concentric force is expressed as a percentage of
isometricforce measured at 90° of knee flexion.
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Fig. 4.1.14. Mean standardised peak torque against angular velocity of knee extension of post-
menopausal females at baseline and 9 months (1"4). Concentric force is expressed as a percentage of
isometric force measured at 90° of knee flexion.
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Standardised PT between HRT and
postmenopausal women at baseline
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Fig. 4.1.25. A comparison of standardised peak torque against angular velocity betweenfemales in
the HRT and post-menopausal groups at baseline. HRT =Hormone replacement therapy; Post.M. =
Post-menopausal group.

Standardised PT between HRT and
postmenopausal women at 9 months

- 120
~._,
" 100=r3'..e 80-".~- 60~
"iiex: 40

-<>-HRT

--6- Post.M.

o 2.09 3.131.05

Angular velocity (rad/s)

Fig. 4.1.26. A comparison of standardised peak torque against angular velocity between females in
the HRT and post-menopausal groups at 9 months. HRT = Hormone replacement therapy; Post.M. =
Post-menopausal group.
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4.1.4. Discussion

.
The force per cross-sectional area of the adductor pollicis (AP) muscle is significantly

weaker in peri-post-menopausal women compared with age-matched females taking

hormone replacement therapy (HRT) (Phillips et al., 1993b). These findings have

provoked much interest, particularly with the clinical implications of an increased risk

of falling associated with muscle weakness (Wickham et al., 1989). Muscle groups of

significant functional capacities, the quadriceps and handgrip, were assessed over 12

months in post-menopausal women, peri-menopausal women experiencing eratic

changes in the menstrual cycle, and a group of females taking HRT.

Maximal strength between the three groups did not significantly change over 12

months for any muscle group tested or at any angular velocity. However, a reduction

in mean strength at both zero and slow angular velocities was observed in the post-

menopausal group when all three groups were compared (Fig. 4.1.1 and 4.1.2). These

strength changes were not manifest in the peri-menopausal or the HRT groups where

strength remained relatively constant over the duration of testing. Mean strength was~
higher in the peri-menopausal group than the females of the post-menopausal and HRT

groups. Differences in bodyweight may contribute to this, although it is possible that a

strength deficit resulting from oestrogen deficiency had not yet affected this group of

women who, despite elevated gonadotropin levels, still menstruated. The lower

strength scores found during isometric contractions cannot be explained, although

differences in strength were scaled in the statistical analysis.

The peri-menopausal females represent a group with unstable hormonal patterns and

consequently irregular cycles. Given the reported changes in strength during the

menstual cycle (Phillips et al., 1996; Sarwar et al., 1995), these subjects should be

tested at standardised times for reliable assessment of muscle function. This group

were therefore excluded, and subsequent analyses undertaken between the

hypoestrogenicl hypoprogestogenic post-menopausal women and the age-matched

HRT group. Since 3/10 post-menopausal subjects dropped out between 9 and 12

months, the final test session was not analysed. A significant loss of force of the
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quadriceps (knee extensors) for isometric and concentric contractions at slow angular

velocities (1.05 rad/s) (10.0 and 9.1% respectively) was reported in the

postmenopausal group. There were no differences at higher angular velocities (2.09 or

3.13 rad/s), or for the knee flexors and handgrip strength. Maximal strength was stable

in the HRT group for all parameters measured.

These findings demonstrate a hormonally-related loss of strength of the quadriceps, at

a rate of 9-10% per annum, for zero or slow shortening contractions in women within

1-3 years post-menopause. Recent longitudinal studies assessing muscular performance

and hormone status have failed to corroborate these results. In a randomised controlled

study, leg strength was measured at 0 and 1.05 rad/s over 11 months in post-

menopausal women aged 60 to 72 years. There were no changes in peak torque for

either the control group or a HRT group taking the same preparation from the onset of

the study (Kohrt et al., 1995). Leg strength was measured at velocities employed in the

current study but the age range differed. The subjects in Kohrt's study were

considerably older, whereas the target age of females in this study was 51 to 55 years,

depending on the age at menopause. The subjects were recruited 1 to 3 years post-

menopause since this is the vulnerable age of rapid bone loss which attain a plateau

after 5 years (KroIner and Nielson, 1982). The rate of force loss observed in this study

is hypothesised to follow the same pattern as the response of bone loss (KroIner and

Nielson, 1982). Strength deficits related to the loss of reproductive hormones may

have already taken place in 60 to 72 year old subjects. At this age, age-related atrophy

would be responsible for further reductions in strength (Grimby and Saltin, 1983).

In a study examining the effects of HRT on muscular performance and balance,

Armstrong et al. (1996) failed to detect a loss of leg and handgrip strength over 24 and

48 weeks respectively in post-menopausal women not taking HRT. This age group of

45 to 70 years ranged from middle-aged menopausal women to elderly females. These

results were consistent for women taking HRT. 'Whilst the current findings indicates

the time course and rate of strength loss associated with the menopause, supporting

the cross-sectional observations, other longitudinal studies do not support these

suggestions. The changes in strength following the menopause may be attributable to
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muscle atrophy. Armstrong et al. (1996) suggested that declining activity levels are

more accountable for strength losses at the menopause rather than hormonal

deficiency. If this is the case, there would have been a significant loss of force at

higher velocities, particularly since type II fibres are lost more quickly in disuse

atrophy. Furthermore, this weakness was not manifest in the HRT or perimenopausal

women.

The time-course for muscle weakness has been reported in cross-sectional studies in

which a dramatic decline in force/CSA of the AP muscle occurred following the

menopause (Phillips et al., 1993b). These findings are supported by Calmels et al.

(1995), who demonstrated an accelerated loss in muscle strength of the elbow flexors

measured isokinetically at 0.52 and 3.13 radls between the 5th and 6th decades. This

weakness was associated with a reduction in bone mineral density of the lumbar and

femoral regions. The authors also proposed that the strength deficit of the lower limb

was not manifest until the 7th and 8th decade conflicting the current findings.

Rutherford and Jones (1992) reported a significant decrease in the force/CSA of the

quadriceps, where CSA was measured using computed tomography, between the 5th

and 6th decades which concur with the results from the longitudinal data.

Consistent findings of an effect of reproductive hormones on muscle strength are

mainly derived from studies measuring upper limb, distal muscles. Measurements from

lower limb proximal muscles are more conflicting. Bassey et al. (1996) compared

muscular performance of the quadriceps and handgrip strength between four

representative age-matched group of females with different hormonal status. In this

cross-sectional study, strength corrected for covariates age and fat-free mass did not

differ between any group. Taafe et al. (1995) used conventional isotonic exercises (e.g.

1 repetition maximum) to assess muscle strength in post-menopausal women and

females taking oestrogen replacement therapy (ORT). There were no differences in

performance when corrected for body mass between the ORT and non-ORT groups.

These subjects were older (7th decade) than those reported previously.
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Handgrip is often measured to assess muscle function in upper limbs. The time course

of changes in grip strength of males and females over a wide age range has been

demonstrated to peak in the third decade, declining linearly thereafter (Kallman et al.,

1990). A marked reduction in grip strength has been reported in women after 50 years,

around the time of the menopause (Petrofsky et al., 1975; Cauley et al., 1987). Cauley

et al, (1987) proposed that exogenous oestrogens delay the age-related loss of grip

strength. However, multiple linear regression revealed that height, age and activity

levels independently predict handgrip strength. There were no significant differences in

handgrip normalised for differences in body size when either two or three groups were

considered (p>0.05). The inability to standardise hand position may account for the

variation in strength over the 12 months (Fig. 4.1.8), although the results from section

3.3 found good day-to-day repeatability in maximal strength of this muscle group.

The mechanism by which reproductive hormones exert their effect is still uncertain,

although increasing evidence suggests an inotropic effect through increased force at

the cross-bridge. This is supported from work where a rapid stretch is applied to

muscle during an isometric contraction. In muscle from aged (Phillips et al., 1991) and

ovariectomised mice exlubiting weakness (Phillips et al., 1993b), an increase in the

ratio of stretch to isometric force occurs. This has also been demonstrated in the

human adductor pollicis muscle of post-menopausal women (phillips et at, 1993b).

During eccentric actions weakness in the elderly was less pronounced than in

concentric contractions (Vandervoort et al., 1990). Stretching the muscle is proposed

to force all the cross-bridges into a high force state (Lombardi and Piazzesi, 1990).

Reproductive hormones are thought to alter the equilibrium of the cross-bridges to the

low force state, similarly to the effects of an increase in inorganic phosphate (Pi)

(Phillips et al., 1992).

Muscle weakness is absent during lengthening, although force/CSA during isometric

and shortening contractions of the soleus and extensor digitorum in aged mice are

reduced at the same proportion, independent of shortening velocity (Brooks and

Faulkner, 1988). If the effects of ageing and hormonal are of the same aetiology, then

strength loss should be manifest in post-menopausal women irrespective of angular

144



velocity. Concentric contractions of the quadriceps were measured isokinetically at

increasing angular velocities of 0, 1.05, 2.09 and 3.13 rad/s. The only significant

changes in maximal strength were found for isometric and concentric contractions at

1.05 rad/s. Force declines with increasing angular velocity as a feature of the force-

velocity curve. At faster velocities, power is important which is additionally affected by

fibre composition. Bassey et al. (1996) compared leg power in women of varying

hormonal status and did not report any difference between regularly menstruating,

females, those with irregular cycles, women taking HRT and post-menopausal women

not taking hormonal supplementation. The authors also failed to detect a difference in

absolute strength of the quadriceps and handgrip. Leg extensor power did not change

over 24 weeks in hypo estrogenic or hormonally replenished females (Armstrong et al.,

1996).

The force-velocity curves were analysed further between treatment groups at baseline

and at the last test session. With the exception of isometric contraction, strength

declined with increasing velocities for all treatment groups, characteristic of the

hyperbolic curve of force-velocity relations described by Hill (Gulch, 1994). There

were no significant differences between groups across angular velocity at baseline or at

12 months for absolute or log transformation of strength corrected for body size

(p>0.05). Isometric strength was measured at 90° of knee flexion. This is not the

optimal angle for generating maximal force which is affected by muscle length

(Osternig, 1986). Murray et al. (1985) reported peak torque at 60° knee flexion. At the

final test, the force-velocity curve was investigated further with the additional variables

of isometric (600 of knee flexion) and concentric contractions at 5.22 rad/s. This

modified angle for isometric tests generated a greater force than at slower angular

velocities. There were no significant differences however, between the three groups

across velocities for absolute or normalised srength (Fig. 4.1.20 and 4.1.22).

Angle of peak torque was not measured in this study, although the decreasing strength

with higher angular velocities has been postulated to be the result of a larger
I

acceleration period at faster velocities in which it is necessary for the limb to 'catch up'

to the predetermined speed of the dynamometer (Osternig, 1986). At high velocities of
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muscle shortening, the joint passes the optimal angle for maximal force before

contractile component attain maximal tension. The proportion of fast twitch fibres also

accounts for ability to develop maximal force at faster velocities (Thortensson et al.,

1976). Mean force across velocities decreases for post-menopausal women and

increases for HRT females when strength is corrected for differences in body size at

baseline and at 12 months (Fig. 4.1.20 and 4.1.22). These differences are not

significant,but are marked at the end of the study in concert with the loss of strength

across all angular velocities.

Standardised force-velocity relations were calculated to compare the relative rate of

force loss with angular velocity across time and between groups. Force was expressed

as a percentage of isometric force. Speed-dependent loss of force is reported to

accelerate in elderly women (Harries and Bassey, 1990) and in both sexes (Aniansson

et aI., 1983; Laforest et al., 1990) across increasing angular velocities. There were no

significanteffects of hormonal changes on the standardised force-velocity relationship.

However, in post-menopausal women (Fig 4.1.24) the relative force at 9 months was

greater than at baseline at higher angular velocities probably because force was

maintained at higher angular velocities while isometric force and concentric force at

1.05 rad/s decreased over time.

There were no significant differences in standardised force-velocity relations between

the HRT and post-menopausal group, although it appears that the HRT group were

able to generate greater force at increasing angular velocities relative to isometric

force. This suggests that force was reduced at a greater rate with speed in the post·

menopausal groups at both time points. Since this did not reach statistical significance,

it appears that forces at higher angular velocities were not affected by changes in

hormonal status.

Maximal strength of the quadriceps at slow angular velocities reduced significantly

over 12 months in hypoestrogenic post-menopausal women. The deficiency in

reproductive hormones at the menopause is associated with this strength loss. The

stability of force production in females taking hormone replacement therapy
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demonstrated the efficacy of this treatment as a prophylaxis to muscle weakness. Thus,

in women where HRT is contraindicated consideration should be given to alternative

treatment, such as the implementation of exercise protocols.
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4.2. THE RELATIONSHIP BETWEEN REPRODUCTIVE HORMONES AND

MUSCLE FUNCTION OF THE QUADRICEPS AND FIRST DORSAL

INTEROSSEUS (FDI) DURING THE MENSTRUAL CYCLE IN YOUNG,

HEALTHY FEMALES

4.2.1. Introduction

The results from study 4.1 revealed a significant loss in force of the quadriceps over 1

year in hypoestrogenic post-menopausal women_.The reduction in maximal strength for

isometric and slow velocities of shortening (1.05 rad/s) at 9 to 10% per annum was not

evident at faster angular velocities. These findings suggest that hormonal losses

resulting in the menopause are implicated in this reduction in force, supported by the

observations that females taking HRT do not exhibit this weakness.

It is apparent therefore that the quadriceps are responsive to the chronic reduction in

endogenous oestrogen and/or progesterone. The loss of reproductive hormones at the

menopause does not occur rapidly, but can take up to 10 years from the onset of the

climacteric to attain baseline post-menopausal hormonal levels. It is unknown if this

response to oestrogen and progesterone deficiency is rapid, or is a prolonged

adjustment. The -10% loss in force production was found within 3 years

postmenopause. To assess the sensitivity of muscle to changes in oestrogen and the

loss of progesterone, acute changes in these hormones across the menstrual cycle will

be examined in young females. Subjects will be monitored repeatedly across the cycle

thus controlling for differences in muscle size.

The menstrual cycle is a ciracmensal rhythm characterised by fluctuations in

reproductive hormones, regulated by pituitary gonadotropins luteinizing hormone (LH)

and follicle stimulating hormone (FSH). A comparison of the sensitivity of a large

muscle group, the quadriceps to a small muscle, the first dorsal interosseus will be

undertaken. The hormonally-related force loss found in study 4.1 was not evident at

increasing velocities of shortening in post-menopausal women. Previous studies

examining strength across the menstrual cycle have failed to detect changes in dynamic
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contractions at 2.09 and 3.13 radls (Dibrezzo et a1., 1991; Richardson and George,

1993). Muscle function - maximal voluntary contraction (MVC), contractility of the

quadriceps through delivery of increasing frequencies of electrically stimulated

contractions, and fatigue resistance will therefore be examined isometrically.

The changes in maximal voluntary contraction (MVC) during the menstrual cycle has

been investigated in the adductor polllcis (AP) (Phillips et a1., 1996) and the quadriceps

muscle group (Sarwar et al., 1995). Sarwar et a1. (1995) reported peak strength of the

quadriceps at mid-cycle which was attributed to the high oestrogen levels prior to the

LH surge. Without hormone samples and frequent strength measurements, these

conclusions are based on conjecture. Phillips et al. (1996) fulfilled these

reconunendations and found that the peak in force of the AP muscle was followed by a

rapid loss observed around mid-cycle. These strength changes were not correlated with

circulating oestrogen levels. although this hormone was attributed to the loss of force

observed. In this study, oestrogen, progesterone, FSH and LH levels will be measured

and related to muscle function. These hormones will also be used as a marker for

accurate comparisons in muscle strength between subjects. The assessment of muscle

function of the leg will be performed over seven separate measurements, and ten

measures ofmaximal strength of the FDI will be made.

The aims of the study were to:

1] Examine changes in maximal voluntary contraction of the quadriceps and FDI

across the cycle where frequent measurements were made.

2] Investigate contractile properties of the quadriceps during the menstrual cycle.

3] Assess the fatiguability of the quadriceps across different phases.

These aims will be fulfilled through the following hypotheses:

Hypothesis 4: Maximal strength of the quadriceps and FDI is greater when

oestrogen concentrations are at their highest.
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Hypothesis 5: Changes in hormone levels result in a shift of the force-frequency

curve.

Hypothesis 6: The quadriceps are least fatiguable when progesterone levels

are high.

4.2.2 Methods

(i) Subjects

Young, healthy active females were recruited for the study. They were subdivided into

two groups often subjects; the first group consisted of 10 women (age - 26.6 [5.48]

range 19-34 years: weight - 59.9 [9.13] kgs; height - 1.62 [0.07] metres) (mean ±

standard deviation) who were not taking any form of hormonal treatment. This non-

oral contraceptive (non-OC) group had cycle lengths of28-35 days as determined from

self-report and temperature charts recorded from the preceding cycle (see Appendix

3.0). The control group (n=10) (age - 26.5 [4.77]; weight - 61.1 [9.94] kgs; height -

1.66 [0.06] metres) (mean ± sd) were taking combined oral contraceptive (n=7) or

triphasic preparations (n=3). Details of the oral contraceptive (OC) preparations are

given below (Table 4.2.1). Subjects gave written informed consent and were excluded

if they experienced pain or injury to the lower limb or hand.

Table 4.2.1: Oral contraceptive preparations of the control (OC) group.

Preparation Oestrogen (m~ Progestogen (mg)
Combined
Loestrin Ethinyloestradiol 20 Noresthisterone acetate" 1

Cilest (x2) Ethinyloestradiol 35 Norgestimate 0.25
Femodene (x2) Ethinyloestradiol 30 Gestodene 0.075

Marvelon Ethinyloestradiol 30 Desogestel 0.15
Brevinor Ethinyloestradiol 35 Norethisterone 0.5
Trlphasict
Trinordiol Ethinyloestradiol 30 (6 days) Levonorgestrel (6 days) 0.05

Logynon (x2) 40 (5 days) (5 days) 0.075
30 (10 days) (10 days) 0.125

• Converted (> 90%) 10 norethisterone as the active metabolite
t Both triphasic pills have the same formulation
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(ii) Procedure

4.2.2.1. Blood measurements

Blood samples from the antecubital vein were taken on five visits and sampled for

progesterone, oestrogen, follicle stimulating hormone (FSln, luteinizing hormone

(LH). These hormones were assayed at The Royal Liverpool Hospital. These results

were used to confirm cycle phase. All samples were taken at the same time of day for

each subjects. According to a 28 day cycle, the phases were divided into: menses (days

1-3); mid-follicular (MF-days 7-9); pre-Lll peak (PreLH-day 12, or 3 hours prior to

ovulation); LII peak (LfI-day 14); post LH peak (PoLH-days 16-17); mid-luteal (ML-

days 21-23) and late-luteal (LL-days 25-28). Blood samples were taken at menses,

preLH, LH peak, post-LH peak and mid-luteal. The oral contraceptive (OC) users

were tested on corresponding days throughout their cycle. A blood sample was taken

at midfollicular instead of menses which represented the seventh pill-free day. Menses

corresponded to the first day off the pill, and mid-follicular as day 7, the last pill-free

day.

Leg measurements - Seven strength measurements were made across the cycle. Cycle

phases were estimated from the midcycle LH peak, assisted with oral temperature

charts recorded from the preceding cycle, and estimated from ovulation - 14 days prior

to menstruation.

First dorsal interosseus - Strength measurements of the FDI were undertaken at the

same time as the quadriceps. An extra four sessions were also performed on day 4

(between menses and mid-follicular), day 10 (before pre-ovulation), day 19/20 (prior

to mid-luteal) and day 26.
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4.2.2.2. Maximal voluntary contraction

Maximal voluntary contractions (MVC) of the quadriceps and FDI were measured

using a strain gauge. A 5 min warm-up on a cycle ergometer (Monark) at 55 rev/min

preceded strength measurements of the leg, and 10 minutes immersion in hot water

increased blood flow to the FDI. The best of three MVCs were recorded. The protocol

for the leg and FDI are detailed in Chapter 3.3 and 3.4 respectively.

4.2.2.3. Contractile properties

The contractile properties of the leg in fresh and fatigued muscle were measured from

electrically stimulated contractions delivered at 1, 10, 20, 50 and 100 Hz. The ratio

between 20 and 50 Hz were used as an index of the force-frequency curve.

4.2.2.4. Fatigue resistance

Fatiguability of the quadriceps was assessed using the protocol, adapted from Burke

(1973), described in Chapter 3.3. The muscle was stimulated with 40 Hz impulses for

1s intervals over 3 min. This method proved more effective inducing fatigue compared

with the protocol of 3 s stimulation.

(iii) Data analysis

A repeated measures ANOVA (repeated factor of visit) was employed to detect

differences between phases of all varaiables for the experimental non-OC and oral

contraceptive (OC) users. Missing data post-LH peak were interpolated when analysis

was undertaken across all phases. Analysis was also performed across six phases

(minus postovulation). A post-hoc test (Tukey's) was used to identify differences

found from the ANOV A. Measurements of the OC group were also analysed in this

way, with combined and triphasic pill users pooled. They were also analysed separately

to compare the different preparations on muscle function.
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4.2.3 Results

4.2.3.1. Hormone levels across the menstrual cycle

The reproductive hormones oestrogen and progesterone, and gonadotropins LH and

FSH were measured at 5 time points across the menstrual cycle. The characteristics of

these hormones are described below.

4.2.3.1.1. Reproductive hormones

Oestrogen (17~-oestradiol) and progesterone levels in non-OC users are shown in Fig.

4.2.1. Values are missing at phases where samples were not taken. Oestrogen

increased during the follicular phase and peaked mid-cycle (marked as the LH peak)

which is consistent with high oestrogen concentrations inducing the LH surge.

Subsequently, oestrogen decreased rapidly (within 1-2 days) in concert with ovulation.

Oestrogen then increased mid-luteal but does not return to the same levels of the

follicular phase. Progesterone levels were low during the early and late follicular phase.

A gradual increase was then observed with the LH peak which sharply increased

thereafter. The peak in progesterone occurred mid-luteal, which is consistent with

ovulation (levels >35 nmol/l).

In the OC group, hormone levels were measured on the seventh pill-free day rather

than day 1 as with the non-OC group. Oestrogen and progesterone levels remained low

due to the suppression of the hypothalamic-pituitary-ovarian axis. Oestrogen levels

were slightly higher in the first phase in response to the relief of the inhibitory effects of

the exogenous hormones and subsequent increases in FSH. (Fig. 4.2.1). The ratios of

oestrogen to progesterone were calculated for individual values and are plotted in Fig.

4.2.3.
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Fig. 4.2.1: Relationship between oestrogen and progesterone during the reproductive cycle,
comparing non-DC and DC-users. Men = menses; MF = mid-follicular; Pre = pre-luteinizing
hormone (LII) peak; LHpeak; Po = post-Lll peak; ML = mid-luteal; LL = late-luteal.
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4.2.3.1.2. Gonadotropins

The gonadotropin concentrations in non-OC and OC users are shown in Fig. 4.2.2.

The cyclical changes in FSH and LH in ovulating females are indicated by the rise in

these hormones midcycle. Follicle stimulating hormone increases steadily during the

follicular phase, with a modest peak in concert with the surge in LH. This LH surge

induces ovulation. Both gonadotropins decreased thereafter.

Gonadotropin Concentration in Non-OC's
During the Menstrual Cycle
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Fig. 4.2.2: Relationship betweenfollicle stimulating hormone (FSH) and luteinizing hormone (LH) in
non oral contraceptive (non-DC) and DC-users during the menstrual cycle. Men = menses; MF =

mid-follicular; Pre = pre-luteinizing hormone (LH) peak; LH peak; Po = post-LH peak; ML = mid-
luteal; LL = late-luteal.
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Fig. 4.2.3. The ratio of oestrogen to progesterone in non-OC and OC users. Men = menses; MF =
mid-follicular; Pre = pre-luteinizing hormone (LlI) peak; LH peak; Po = post-LH peak; ML = mid-
luteal; U = late-luteal.

4.2.3.2. Maximal voluntary strength of the quadriceps

4.2.3.2.1. Absoluteforce

In the non-DC group, significant changes inmaximal voluntary force of the quadriceps

were found across the cycle for all phases (x7) (F6•4S=3.48: p<0.05) and across 6

phases (FS.40= 4.20: p<0.05); the post-LH peak phase was excluded due to a greater

number of missing values which were interpolated. Muscle strength was lowest pre-LH

peak and increased by 12% at midluteal (Fig.4.2.4). The post-hoc test revealed that

menses, mid-follicular, mid-luteal and late-luteal phases were significantly different

from pre-LH peak (p<0.01). There were also significant changes in strength measured

at the LH peak from mid-follicular, late-luteal (p<0.05), and mid-luteal (p<O.OI).

Force production of the quadriceps did not change significantly across the cycle for the

DC group (p>O.05). Results of the DC group were also analysed separately according

to contraceptive preparation (Fig. 4.2.5). There were no significant changes in strength

of the combined DC group (F9•S4=0.6: p>0.05). In the triphasic group there was a low

number of subjects (n=J), hence too few degrees of freedom in the residual error

calculation. The results from both groups were therefore pooled for each variable

analysed.
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Fig. 4.2.5: Comparison of maximal leg strength between combined and triphasic OC-users. The two
first data points represent pill free days (PF). Pre = Pre-LH peak; LH peak; Po =post-LH peak; ML
= mid-luteal; LL = late-luteal - phases which correspond to the reproductive events in non-OC
subjects. • = low oestrogen/progestogen; •• = high oestrogen/medium progestogen; ••• = low dose
oestrogen/high progestogen components of triphasic preparations (Table 4.2. J).
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4.2.3.2.2. Relative force

Muscle force was expressed relative to the mean of all measurements for each subject

so that proportional changes in strength could be examined (Phillips et at, 1996) (Fig.

4.2.6). The changes in relative force were significantly different over the 7 time points

in the non-C group (F6,48 = 2.06; p<0.05), but not in the OC subjects (FS,54 = 1.35;

p>o.05).

Relative Force of the Quadriceps Across the
Menstrual Cycle
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Fig. 4.2.6: Mean (±SE) relative muscle strength of the quadriceps in non-OC and OC users across
the menstrual cycle. Force is expressed relative to the mean of all measurements (dashed line) for
that subject.

4.2.3.3. The relationship between relative muscle force and hormonal patterns

The relationship between the relative force of the quadriceps and hormones governing

the menstrual cycle were explored to determine if hormonal concentrations are related

to the changes in strength. Correlations were performed between strength and

hormone levels measured on the same occasion for individual subjects across the cycle.

There were no significant correlations between force and oestrogen (r = -0.264) (Fig.

4.2.7), LH (r = -0.255) or FSH (r = -0.125). There was a significant positive

correlation between relative force and progesterone (r = 0.330; p<0.05) (Fig. 4.2.8)

and a negative correlation with the ratio of oestrogen:progesterone (r = -0.416;

p<0.05) (Fig. 4.2.9).
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Fig. 4.2.7: The relation between relative muscle force and oestrogen concentrations for individual
subjects across the menstrual cycle when measured at the same time. The solid black line represents
the regression line.
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Fig. 4.2. B: The relation between relative muscle force and progesterone concentration for individual
subjects across the menstrual cycle when measured at the same time. The solid black line represents
the regression line.
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Fig. 4.2.9: The relation between relative muscle force and the oestrogen.progesterone ratio (E2:Pg)
for individual subjects across the menstrual cycle when measured at the same time. The solid black
line represents the regression line.

4.2.3.4. Maximal voluntary strength of the first dorsal interosseus (FDI)

4.2.3.4.1. Absolute force

The pattern of force production for the FDI differed from that of the quadriceps across

the menstrual cycle in both groups (Fig. 4.2.10). Further, there were no significant

changes in maximal strength of the non-OC group over 10 measurements (F9•72=1.15:

p>0.05) or between the 7 main phases (F6•48=1.37: p>0.05). The strength of the FDI

was greater in the non-OC group although there were no significant differences

between groups for all measurements made (F1•17=0.28: p>0.05). Maximal force of the

FDI in the OC group did not change significantly across the cycle (p>0.05).

Differences in mean maximal strength between combined and triphasic subjects are

shown in Fig. 4.2.11.

4.2.3.4.2. Relativeforce of/he FDI

The relative force ofthe FDI in non-OC and OC users is plotted in Fig. 4.2.12. There

were no significant differences when proportional changes in strength were considered

, for the non-OC (F9•72 = 1.25) and OC (F9•81 = 0.31) groups (p>0.05) across 10

sessions. The relative force of the OC group, subdivided into combined and triphasic

groups, is shown in Fig. 4.2.13.
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users Across the Menstrual Cycle
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Fig. 4.2.10: Comparison of mean (±SE) maximal strength of the first dorsal interosseus muscle (FDI)
across the menstrual cycle of non-DC and DC-users. men = menses; MF = mid-follicular; Pre = pre-
LHpeak; LH peak; Po = post-LH peak; ML = mid-luteal; U = late-luteal.
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Fig. 4.2.11: Comparison of maximal strength of the first dorsal interosseus muscle (FDI) between
combined and triphasic {X-users. The two first data points represent pill free days (PF). men =
menses; MF = mid-follicular; Pre = pre-Lll peak; LH peak; Po = post-LH peak; ML = mid-luteal;
LL = late luteal. • = low oestrogen/progestogen; •• = high oestrogen/medium progestogen,' ••• =
low dose oestrogen/high progestogen components of triphasic preparations (fable 4.2.1).
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Fig. 4.1.12: Mean (iSE) relative muscle strength of the FDI in non-OC and OC users across the
menstrual cycle. Force is expressed relative to the mean of all measurements (dashed line) for that
subject.
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Fig. 4.1.13: Comparison of maximal strength of the first dorsal interosseus muscle (FDI) between
combined and triphasic OC-users. The two first data points represent pill-free days (PF).

162



4.2.3.5. Contractile properties of the quadriceps

4.2.3.5.1.20150% - Fresh muscle

The ANOVA did not reveal any trend in the 20/50% ratio across the menstrual cycle in

the non-OC group (F6.4s=2.l5: p>0.05). There were no changes between phases for the

OC group (F6.s4=1.32:p>0.05). The mean (±SE) ratio across the cycle between the

two groups is shown inFig 4.2.14.

2O-6Q01o Ratio between Non-« and OC-usersIn Fresh
Muscle
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Fig. 4.1.14: A comparison of the mean (±SE) 20-50% ratio between non-OC and OC-users measured
in fresh muscle across the menstrual cycle. The forces generated at 20 Hz was expressed as a
percentage of force at 50 Hz, calculated from a train of increasing frequencies of electrical
stimulation.

4.2.3.5.2.20-50% - Fatigued muscle

The 20-50% ratio in fatigued muscle did not change significantly across all phases

tested for the non-OC (F6.4s=1.15: p>0.05) and OC groups (F6•s4=1.33: p>0.05). The

20-50% ratio in non-OC and OC users is shown in Fig 4.2.15. A comparison of this

ratio between fresh and fatigued muscle is illustrated in Fig 4.2.16 and 4.2.17 for the

non-OC and OC groups respectively. In non-OC's, the ratio was higher in fresh muscle

across all phases compared with fatigued muscle. There was greater variability in the

OC-users, with a mid-cycle decrease inmean 20-50% ratio.
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20-50% Ratio between Non-OC and OC-users in
Fatigued Muscle
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Fig. 4.1.15: A comparison of the mean (±SE) 20-500/6ratio between non-DC and OC-users measured
in fatigued muscle across the menstrual cycle. The forces generated at 20 Hz was expressed as a
percentage of force at 50 Hz. calculated from a train of increasing frequencies of electrical
stimulation.
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Fig. 4.2.16: A comparison of the mean (±SE) 20-50% ratio in fresh and fatigued muscle of the non-
oc group. The forces generated at 20 Hz was expressed as a percentage of force at 50 Hz, calculated
from a train of increasingfrequencies of electrical stimulation.
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20-50%Ratio of oc-users in Fresh and Fatigued Muscle
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Fig. 4.2.17: A comparison of the mean (±SE) 20-50% ratio in fresh and fatigued muscle of the DC
group. The forces gen rated at 20 Hz was expressed as a percentage of force at 50 Hz, calculated
from a train of increasingfrequencies of electrical stimulation.

4.2.3.6. Fatigue Index (%)

There were no significant differences in peak tension of the non-OC (F6,48=1.13:

p>O.05) or OC (F6•54=O.57: p>O.05) groups across seven phases ofthe menstrual cycle.

Mean values of peak tension in relation to oestrogen is shown in Fig. 4.2.13. Changes

in mean tension of th non-OC and OC groups are shown in Fig. 4.2.19.

Fatigue lndex% (PT) ofNon-OC and OC-users
Across the Menstrual Cycle
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Fig. 4.2.18: Fatigue index (0/0) of peak tension (PT) in non-OC and DC across the menstrual cycle.
Plasma oestradiol (E2) level values of each group are superimposed to compared the pattern of
fatigue between phase with circulating oestrogen.

165



~r---------------------------~
(:: 80;70
't- 60
Ii:

SO
~+---~---r--~----~--~--~---4

Fatigue Indu·/. (MT) ofNon-OC and OC·users
Across the Menstrual Cycle

Men MF Pre ill Po ML LL
peak

MenstrualPhase

Fig. 4.2.19: Fatigue index ('/0) of mean tension (M1) in non-OC and OC across the menstrual cycle.
Mean tension represents the meanforce of the tetanic contraction.
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4.2.4. Discussion

Maximal force of the quadriceps in females not taking oral contraceptive preparations

clearly showed cyclical changes when measured across the menstrual cycle. Strength

was analysed a] across 6 time points of the cycle with all absolute scores and b] at 7

time points with values interpolated at one phase due to missing data. These time

points were ascertained according to predicted changes in hormones which were

retrospectively confirmed with plasma hormonal levels taken at the time of strength

measurements. The mid-cycle LH peak was used as a reference point for a

physiological marker to synchronise cycles. Maximal force was also correlated with

hormones for individual data when both strength and hormone samples were obtained.

When each time point was considered, significant changes in force of the quadriceps

were detected across the cycle. Force was stable during early-mid follicular, but

droped dramatically 1 to 3 days prior to the LH peak. The speed of this force loss was

not realised here since 5 to 6 days elapsed between mid-follicular and pre-LH peak

measurements. A steady increase in strength occurred thereafter, reaching its peak

mid-luteal. Maximal force mid-luteal was greater than the force at the mid-follicular

phase. Significant differences were confirmed between the force generated pre-LH

peak and menses, mid-follicular, mid-luteal and late-luteal phases. There were also

significant changes with strength measured at the LH peak the mid-follicular, mid-

luteal and late-luteal phases.

In the OC group, there were no significant changes in the strength of the quadriceps.

There was a notable decrease from menses to mid-follicular, during the pill-free week

although this did not influence the overall performance in strength. The results from

the non-OC group, however, do not agree with the strength changes reported in past

studies when measurements were made 2 to 3 times during the cycle for handgrip

(Wirth and Lohman, 1982; Davies et al., 1991) or le,g strength (Dibrezzo et al., 1991;

Richardson and George, 1993) or when more detailed measurements were undertaken

(Sarwar et al., 1995; Phillips et al., 1996).
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The concept that hormones influence physical performance has received much

attention over the past decades. However, the variability in protocols of testing and

definitions of cycle phases have precluded the comparison of results between studies

with consequential inconclusive findings. For example, greatest strength has been

reported for handgrip during the follicular compared with the luteal phase (Wirth and

Lohman, 1982), and at menses compared with the follicularand luteal phase (Davies et

aI., 1991). No differences in grip strength were reported when measured at the

premenstrual, menses, postmenses and mid-cycle phases (Allen and Bailey, 1982) or

between pre-ovulatory and luteal phases (petrofsky et al., 1976). Sarwar et al. (1995)

tested isometric leg strength and handgrip five times across the cycle in regularly

menstruating females. Measurements were taken early follicular (days 1-7), mid-

follicular, mid-cycle (days 7-12), mid-luteal and late-luteal. Maximal strength,

confirmed in the quadriceps using superimposed electrical impulses, was highest mid-

cycle compared with the other phases measured. The greatest difference of 11%

occurred with the late luteal phase. Mid-cycle in their study corresponded with

ovulation, estimated from temperature charts and counting back 14 days from onset of

next menses. These findings support the preliminary results of Phillips et al. (1993a)

who reported a 20% increase in force of the adductor pollicis (AP) muscle from day 1

to day 14 of the cycle. There were no significant differences between day 1 and 21.

Oestrogen, a predominant hormone during the follicularphase, undergoes rapid short-

term changes in production mid-cycle as a result of the feedback effects of the

gonadotropins secreted at this time. Oestrogen peaks prior to the LH surge (Ojeda,

1992) and declines to its lowest 2 to 3 days later in concert with ovulation. These

changes in oestrogen can therefore be easily miscalculated. Recently Phillips et al.

(1996) reported a marked reduction in force to its lowest level, 1-2 days after the

preovulatory peak in strength, coinciding with ovulation. These results support the

strengthening role of oestrogen.

In the present study the time course of strength changes were also examined in greater

detail, focusing on the mid-cycle hormonal fluctuations. However, in contrast to

Phillips et al. (1996), weakest strength measures of the quadriceps were found 1 to.2
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days prior to the LII peak, with peak MVC observed mid-luteal (days 20-22). The

higher force values at this point were not significantly different to the follicular phase.

Unless hormonal measures are undertaken, any endocrine effect on the changes in

strength are based on conjecture. To examine the role of the cyclical hormones further,

relative force values (to mean measurements across cycle) of the quadriceps were

correlated with plasma oestrogen (17-(3 oestradiol), progesterone, FSH and LH

concentrations measured on the same occasion. There was no significant relationship

between strength and circulating oestrogen levels, although a negative tendency was

observed (Fig. 4.2.7). A significant negative correlation between oestrogen and

isometric handgrip strength has been reported recently (Bassey et al., 1995) and has

been implicated in previous studies (Davies et aI., 1991; Wirth and Lohman, 1982).

Strength of the biceps brachii, triceps surae and handgrip were measured in nine

eumenorrheic females 8 times over 4 weeks. A 5% fall in handgrip strength for a 200

pmol/l increase in oestrogen was documented (Bassey et al., 1995). Rice et al, (1988)

undertook a battery of strength tests and correlated performances during days 1 to 5

with oestradiol levels. No significant relationship was found, although measurements

were made at only one phase.

Although Phillips et al. (1996) outlined the role of oestrogen in enhancing force

production they were unable to detect a significant association between relative force

of the adductor pollicis muscle and plasma oestradiol when measured around

ovulation. They attributed this to a time lag between the rapid changes in force and the

effects of oestrogen. The results from the present study do not support these

indications. A significant relationship was detected between relative strength of the

quadriceps and progesterone levels and it is believed that this hormone is linked with

the increase in force production. There was an increase in strength from the pre-LH

peak to the mid-luteal phase which corresponded to rising progesterone levels.

Previous studies investigating strength across the menstrual cycle have not measured

progesterone levels. A further noteworthy observation was a significant negative

relationship between relative force and the ratio of oestrogen:progesterone. There was

no relationship between strength and FSH or LH.
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The possibility of progesterone influencing force production of skeletal muscle is not

implausible. There is increasing evidence that progesterone is actively involved in bone

metabolism (Prior, 1990) and has been associated with ovulatory disturbances in young

active females (Prior et al., 1990a). Spinal bone loss of 2% per annum was reported in

healthy young women with progesterone deprived, but normal endogenous oestradiol

production (Prior et al., 1990a). Given the relationship between bone and muscle

strength in postmenopausal women (Rutherford and Jones, 1992), it is possible that

muscle weakness postmenopause, and during the menstrual cycle is caused through

progesterone deficient/reduced states.

The possible mechanisms by which progesterone exerts its effects on skeletal muscle

are indicated in studies examining its actions on other tissues. Progesterone has been

associated with calcium mobilisation from intracellular stores of the pituitary in rats

(Ortmann et al., 1995), which has significant ramaifications on the availability of

calcium for contraction in skeletal muscle. Further, progesterone exposure to excised

myometrial strips of pregnant women increases the frequency and tonus of this smooth

muscle (Fu et al., 1994). It has been proposed that hormones (oestrogen) may

influence the sensitivity of the cross-bridges to phosphorus metabolites i.e. inorganic

phosphate (Pi) (Phillips et al., 1993), an increase of which has been reported to alter

the equilibrium of low and high force states of the cross-bridge (Pate and Cooke,

1989). During the oestrus cycle of hamsters, Shivaji et al. (1995) did not find any

significant difference in Pi or pH using 31P NMR. An increase in phospho creatinine

(PCr) and ATP in the uteri of oestrus animals was found with increasing levels of

oestradiol, although progesterone per se did not cause an increase in the concentration

ofPCr and ATP.

The mechanisms of actions of progesterone are still highly speculative and

progesterone receptors have not been identified on skeletal muscle. Given the above

discussion it is still important to state that oestrogen is still implicated in force

production since a negative relationship was found between strength and the ratio of

oestrogen to progesterone. When oestrogen was unopposed (pre-LH peak), strength
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was at its lowest. With high progesterone and increasing oestrogen levels, strength was

greatest. Whether progesterone and oestrogen combined or progesterone alone

enhances force production is not known, since under no physiological conditions is

progesterone secreted in isolation. It is apparent, however, that muscle weakness

occurs under an "oestrogen-only milieu".

The force patterns produced by the quadriceps in this study are not consistent with

those of Sarwar et al. (1995) who also tested the quadriceps. It does not seem likely

therefore that the changes in strength are dependent on the muscle group tested ..
Phillips et al. (1996) measured force production of the adductor pollicis muscle, a small

parallel fibred muscle of the hand. Whereas the pattern of force is similar to that

obtained with the quadriceps in this study, the onset and magnitude of change are not.

However, maximal strength of the first dorsal interosseus (FDI) was also assessed on

the same occasion as the quadriceps, with extra measurements undertaken between the

main phases. There were no significant changes in force of the FDI for the non-DC

group. These results were surprising given the effects of hormonal changes on the AP.

This contradict the suggestion that smaller muscles are more sensitive to changes in the

hormonal milieu compared with a complex, multi-pennated muscle group such as the

quadriceps.

Maximal strength is one method of assessing muscle function. The measurement of

force production in response to electrically .stimulated contractions at increasing

frequencies determines the contractile properties of muscle. When expressed

numerically, the forces generated at 20 Hz are calculated as a percentage of 50 Hz.

The effects of hormonal status on the contractility ofmusc1e was assessed.There were

no significant changes in the 20/50 % across the cycle for the non-DC group (or DC

users). The fluctuations that were observed were therefore not attributable to hormonal

changes. Even though the electrical stimulation technique is a common method for

. identifying muscular dysfunction in patients with myopathic disorders (Edwards,

1978), it has only been employed in one study to assess the effects of reproductive

hormones on muscle function. Sarwar et al. (1995) reported a left-shift in the force-

frequency curve from mid-luteal to mid-cycle. This was attributed to the slowing of
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relaxation mid-cycle. Whether mid-cycle in their study is representative of the peak or

the trough of this hormone is not known, although they assumed that this measurement

was undertaken at ovulation. If so, oestrogen is at its lowest at this time, which does

not uphold their proposal of an effect of oestrogen. Relaxation time was not assessed

in this study, although the changes observed by Sarwar et al. (1995) are more likely to

be due to the secondary effects of hormones via changes in core temperature rather

than directly.

Muscle fatigue of the quadriceps was induced through electrically stimulated

contractions" over 3 min. The end force as a percentage of the initial force was

expressed as the fatigue index. There were no significant differences in the fatigue

index measured for the quadriceps across the cycle. Both volitional respiratory fatigue

(Chen and Tang, 1989) and electrically elicited fatigue of the quadriceps (Sarwar et al.,

1995) have been reported to be lowest at mid-luteal phase, probably due to the higher

circulating progesterone levels as a result of the increase in core temperature (Prior et

al., 1990b). The modified fatigue protocol used in this study (stimulating for 1 s with a

1 s rest) would be expected to be induce ischaemia similarly to the protocol used by

Sarwar et al. in which the muscle was stimulated for 0.25 s every second for 3 min.

The greater proportion of stimulated muscle (20-30 % ofMVC) elicited by Sarwar and

co-workers, compared with -20 % in this study, may account for greater variability in

force production and as a consequence fatiguability.

These results support a hormonal influence on force production of the quadriceps.

Further, they demonstate that force loss can be acute and unless frequent

measurements are made across the cycle, these changes can be missed. There were no

corresponding changes in strength of the first dorsal interosseus muscle or in the

contractility or fatiguability of the quadriceps. Despite the relationship between

strength and progesterone, the menstrual cycle does not render itself a good method

for examining hormones. The changes in oestrogen are particularly acute and

temporary, with accompanying changes in the gonadotropins and progesterone. A

clearer model for isolating the effects of reproductive hormones is needed to

investigate fully these phenomena.
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4.4. THE EFFECT OF HORMONE REPLACEMENT THERAPY (HRT) ON

MUSCLE FUNCTION OF THE FIRST DORSAL INTEROSSEUS MUSCLE (FDI)

4.4.1. Introduction

It has been established that maximal voluntary contraction (MVC) of the quadriceps is reduced

in post-menopausal women. The strength loss, at a rate of 9-10% per annum, is manifest

within 1 to 3 years of the menopause in association with the reduction in reproductive

hormones. Females taking hormone replacement therapy do not experience this weakness. The

mechanisms of action are not known, although under hypo- and hyperoestrogenic conditions

no change in strength of the FDI is observed (study 4.3). This indicates that oestrogen is not

the sole mediator for influencing force production. During the menstrual cycle, MVC was

greatest during the mid-luteal phase corresponding with high progesterone levels (study 4.2).

The objective of this study was to investigate the effect of HRT on muscle function

administered from an oestrogen and progesterone deficient state, with a focus on the

differences in oestrogen alone, and the oestrogen/progestogen component. Oestrogen was

administered during the first 14 days of HRT and a progestogen component is added during

last 7 days in attempts to mimic the normal menstrual cycle, allowing for a more controlled

method of examining cyclical changes. Whether these synthetic hormones act as a substitute to

endogenous reproductive hormones is not known. The following hypotheses were devised to

undertake this study:

Hypothesis 9: Force production of the FDI increases from baseline levels during HRT

Hypothesis 10: The oestrogen and progestogen phase ofHRT results in greater

force production of the FDI compared with the oestrogen-only phase.

Hypothesis 11: Contractile properties of the FDI differ with the administration ofHRT.

Hypothesis 12: Adrninstration ofHRT induces greater fatigue resistance compared with

baseline values.
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The aims of this study were to:

1) Examine the changes in strength at baseline and during HRT.

2) Investigate fatiguability of muscle.

3) Monitor changes in contractile properties.

4) Compare the difference in muscle function between oestrogen alone, and oestrogen

and progestogen components ofHRT.

4.4.2. Methods

(i) Subjects

Nine healthy post-menopausal women (age: 55.78±6.74; mass: 64.8±10.2: height: 1.59±O.05

(mean±SD» gave informed written consent to participate in the study. Subjects were recruited

from the Menopause Clinic at Liverpool Women's Hospital, where blood samples were taken

to confirm their hormonal status (mean bloods are shown in Table 4.4.1). Following

consultation with the doctor, subjects were referred for a baseline measurement, prior to taking

hormone replacement therapy (HRT). All subjects were prescribed oestrogen and oestrogen-

progestogen treatment (preparations are shown in Table 4.4.2). The dominant hand was

selected for assessment, except in one subject inwhom the PDI of the non-dominant hand was

tested due to rheumatism of the fingers of the dominant hand. All other subjects were free of

pain or disease of the hand.
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Table 4.4.1. Mean (±SD) oestradiol, luteinizing hormone (LH) andfollic1e stimulating hormone (FSH) in post-
menopausal women (n=9).

VALUES Oestrogen (pmolll) FSH (VII) LH (uJl)
MEAN 68.33 70.5 53.5
±SD 46.45 29.2 18.9

RANGE <37-190 26.2-113.7 30.6-88
Normal values t <150 >20 >20

t Normal post-menopausal values

Table 4.4.1. Hormone replacement therapy preparations administered to subjects

ROUTE OF PREPARA nON OESTROGEN PROGESTOGEN
ADMlNISTRA TION
ORAL FEMOSTON (X3) Oestradiol Dydrogesterone P
ORAL TRlDESTRA (X2) Oestradiol valerate Medroxyprogesterone

acetate P
ORAL PREMIQUE (Xl) Conjugated oestrogens Medroxyprogesterone

ESTRACOMBI (X2) Oestradiol
acetate P

PATCH Norethisterone T
TRANS DERMAL PRO-GEST (XI) Oestradiolloestrone

Progesterone P
CREAM
P = progesterone derivative
T= testosterone derivative

(iiJ Procedure

Maximal voluntary contraction (MVC), contractile properties and fatiguability of the FDI were

assessed on three occasions. The first measurement was taken on the same day HRT was

prescribed to establish baseline strength. Subjects were requested back to the laboratory four

months following the start of HRT. Two measurements were undertaken during treatment a)

during the oestrogen phase and b) during the oestrogen/progestogen phase of treatment. The

order of testing for measurements during HRT was counterbalanced.

Following the warm-up of the muscle in heated water, the electrodes were positioned on the

hand and stimulated at 1 Hz, with increments of voltage to the highest, but tolerable, level of

stimulation. An isolated lateral movement of the index finger was achieved prior to recording.

A programmed stimulation of electrical impulses, from unfused to fused tetanic contractions

was delivered to the muscle to ensure adjacent muscles were not recruited at higher

frequencies of stimulation. Clear visible recordings of the myogram was also required. The

data of 2/9 subjects for electrically stimulated contractions were excluded from analysis due to

their intolerance of the sensation of the electrical stimulation. Details of the procedure for
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assessment of MVC, contractility and fatigue resistance of the FDI are described in Chapter

3.5.

(iii) Data analysis

A repeated measures analysis of variance (ANOVA), with visit as the repeated factor, was

employed to calculate trends over the three test sessions for all variables. Post-hoc analysis

(Tukey's test) was used to localise differences between trials.

4.4.3. Results

4.4.3.1. Maximal voluntary contraction

The results of the ANOVA shows that there was no significant difference between baseline

measurements of strength and phases of treatment (F2•16=3.03: p<O.1). A t test undertaken

between baseline measurements and the oestrogen/progestogen phase of treatment induced a

significant difference (ts = -2.S1;p<O.OS). Mean (±SE) ofmaximal strength across test sessions

are shown in Fig. 4.4.1.

Maximal Voluntary Contraction

~.--------------------------------
••
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g
~ 20
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o
Baseline Oestrogen Progestogen!

Oestrogen
Trials

Fig. 4.4.1: Mean (±SE) maximal voluntary contraction (N) of the first dorsal interosseus muscle (FDl) in post-
menopausal women at baseline, and during the oestrogen and progestogen phases of hormone replacement
treatment. The • indicate significant difference (difference between • and ··al p<O.05)
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4.3.3.2. Contractile properties

The 20/50% ratio was calculated as the force generated from 20 Hz as percentage of 50 Hz.

Whilst there were no significant difference in this ratio between treatments (F2,12=0.1:p>0.05)~

the mean (±SD) was higher for the oestrogen phase (70.5 9±19.5% compared with 67.D±12.8

and 67.4±18.8% for baseline and progestogen, respectively). The comparison between

conditions in the force-frequency curve as an indicator of the contractile properties of muscle,

is shown in Fig. 4.4.2. At lower frequencies (up to 20 Hz) greater force as a percentage of

100Hz was generated during HRT phases. This was maintained in the progestogen phase at

high frequencies, although force for oestrogen-only declined. There were no significant

differences in forces between phases at each frequency (p>0.05).

Force-Frequency Curve of the FDI before and
duringHRT
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Fig. 4.4.2: The force-frequency curve across increasing frequencies of electrical stimulation between baseline
and the oestrogen and progestogen phases of hormone replacement therapy (HR1). Forces at lower
frequencies is expressed as a percentage offorce at J00 Hz.
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4.4.3.3. Fatigue Index (0/0)

There were no significant differences in fatigue index for peak tension (F2.12=2.43; p>O.05) or

mean tension (F2.12=1.10; p>O.05) across the three treatment trials. Fig. 4.4.3 illustrates mean

(±SE) FI% for baseline, oestrogen and progestogen phases ofHRT.

Fatigue Index (%) Across Various Hormonal Milieu
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Oestrogen

Trials

Fig. 4.4.3: A comparison of mean (±SE) fatigue index for peak tension (PI) and mean tension (MIJ between
baseline measurements and subsequently at the oestrogen and progestogen phase of hormone replacement
therapy (HRI).
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4.4.4. Discussion

The influence of reproductive hormones on force generation in skeletal muscle is becoming

more apparent. Under hypo-oestrogenic/hypo-progestogenic conditions, muscle strength is

compromised. In this study, muscle strength was measured prior to hormonal treatment and

monitored during two phases of HRT following 4 months of administration. There was no

significant increase in strength between baseline and the two phases of HRT. When the

oestrogen-only phase was excluded, a significant increase in strength between baseline and the

oestrogen/progestogen phase was observed.

The prevention of muscle weakness of the adductor pollicis (AP) has been reported in post-

menopausal women taking hormone replacement therapy compared to a hypoestrogenic post-

menopausal group (Phillips et al., 1993b). It is not clear if HRT maintains strength, or

enhances the force-generating capacity as no studies have monitored performance before and

after the administrationofHRT. In this study, the results revealed that during the progestogen

phase, muscle strength was higher than during the oestrogen-only phase of treatment. These

findings have important implications in the administration of HRT, since hysterectomised

women do not require progestogen, and are routinely administered unopposed oestrogen.

Progestogens is only added to preparations for women with an intact uterus to prevent

endometrial hyperplasia and reduce the occurrence of carcinoma (Whitehead and Godfree,

1992).

Since the mechanismsofhonnonal action on muscle function are still speculative, it is not clear

if endogenous reproductive hormones act in the same way on skeletal muscle as exogenous

synthetic hormones. Due to the rapid hepat~cmetabolism of oral (micronised) progesterone

(Whitehead et al., 1990), progestogens are administered inHRT preparations. They can either

be of C-19 nortestosterone derivatives (e.g. norgestrel, norethindrone) which are androgenic

or of the C-21 derivatives of progesterone (eg. medroxyprogesterone). The undesirable side

effects of progestogens - breast tenderness, bloatedness, oedema, abdominal cramps,

irritability and anxiety - implicate their effects on electrolyte imbalance and on the central

nervous system. It is also believed that progestogens antagonize the beneficial effects of
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oestrogen on the arterial system by decreasing HDL and increasing LDL. Even though this was

initially attributed to androgenic progestogens, medroxyprogesterone, a progesterone

derivative, has also been shown to reduce HDL-cholesterol (Ottosson et at, 1985). The

antagonistic effects are not class-specific and dydrogesterone does not have the same effect as

medroxyprogesterone, despite being a progesterone derivative.

It is therefore difficult to suggest what mechanisms are operating for progestogens to enhance

strength. The difference in source of derivatives, and inter-class variability of progestogens

makes it difficult to isolate its effects. Phillips et al. (1993b), whose work supports the role of

oestrogen for influencing specific force, suggested that oestrogen exerts its effects through

altering the sensitivity of the cross-bridges to inorganic phosphate (Pi) and pH. High Pi (and

low pH) switches the equilibrium of cross-bridge attachment between low and high force states

but when a rapid stretch is applied to the muscle, this weakness is absent. Stretching forces the

cross-bridges into the high-force state regardless of the force state at the onset of the stretch

(Lombardi and Piazzesi, 1990). The influence of progesterone on these metabolites warrants

examination.

It may be construed that a systematic increase in strength occurred as a result of

familiarisation, particularly since no practice session was undertaken. Given that the IVF

patients were subject to the same protocol and no change in force production was found, and

that the oestrogen and progestogen phases were counterbalanced, it is reasonable to speculate

that reproductive hormones influenced muscle function.

The 20/50% is an indicator of the force-frequency curve, and any changes in force at these

frequencies will be reflected in this ratio. The mean ratio across phases was higher for the

oestrogen phase due to the reduction in force at 50 Hz (Fig 4.4.2). These differences were not

significantly different, probably due to too few subjects and great inter-individual variation.

The cause for a drop in force at this higher frequency for the oestrogen phase is not known.

However, there is a clear left-shift in the force-frequency curve in the progestogen phase from

baseline. This shows that greater force is generated across all frequencies as a percentage of

100 Hz compared to the hypo-hormonal state. A left-shift in the force-frequency curve has also

been demonstrated during the menstrual cycle for the quadriceps at mid-cycle (corresponding
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to high oestrogen, low progesterone) from mid-luteal (corresponding to high oestrogen, high

progesterone) (Sarwar et al., 1995). These results do not concur with those obtained with

exogenous hormones in post-menopausal women. Furthermore, it may be erroneous to

compare responses from the quadriceps, a large multi-pennated muscle group with the FDI, a

single-fibred muscle, despite the similar fibre composition (Johnson et al., 1973).

If the lack of hormonal influences at the level of the cross-bridge was responsible for muscle

weakness, forces generated at low-frequencies would be expected to be affected, via

excitation-contraction coupling. The observation that forces are also lower at higher

frequencies of stimulation at baseline may indicate also that progestogen affects neuromuscular

transmission, maybe mediated through acetlycholine (ACh) release, or propagation of the

neurotransmitter signal. The role of oestrogen and progesterone on muscle function need to be

established before their mechanisms of action can be investigated.

Fatigue of the FDI was induced through electrical impulses delivered over 3 min. There were

no significant differences in the fatigue index (%) across phases of treatment, for peak tension

(PT) or mean tension (Mf). The lack of changes in fatigue resistance with hormonal

manipulation has been found with each study using this measure (study 4.2 and 4.3). However,

Sarwar et at. (1996) reported a pattern of change in fatiguability across the menstual cycle. The

quadriceps were least fatiguable at the mid-luteal phase, when progesterone levels are at their

highest. The authors attributed the fatigue resistance at this phase to progesterone, which in

addition to its thermogenic properties, preserves glycogen stores during the luteal phase. The

muscle would be expected to be reliant on glycogen due to the ischaemic conditions induced

by the fatigue protocol. Whether progestogens have the same effect on glycogen storage as

'natural' progesterone is not known. However, the lack of trend in the fatigue index could be

more easily explained by the some factor such as using percutaneous stimulation of the muscle

rather than supramaxima1 stimulation via the motor nerve, where greater force output would be

attained. This did not occur during the menstrual cycle examined in study 4.2.

In conclusion, there was a significant difference in strength before and during HRT, in which

progestogen and oestrogen combined resulted in an increase in the force-generating capacity of

the muscle. There were no other changes in either contractility or fatigue resistance of the
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muscle as a result oflIRT, and thus the question of the mechanism of action of hormones on

muscle function is still unresolved. The positive role of progestogens on muscle strength is

paradoxical to the many side effects of this synthetic hormone which can reduce the quality of

life of affected post-menopausal women. However, without this component added to HRT

preparations to prevent endometrial hyperplasia, carcinoma is highly likely.
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4.5. Sununary

1) Maximal force of the quadriceps declined over 9 months in hypo estrogenic post-menopausal

females at 9 to 10%, measured isometrically and at 1.05 rad/s. There was no evidence of a

reduction in strength at higher angular velocities, or for handgrip.

2) Muscle weakness was not observed in menopausaVpost-menopausal females taking

hormone replacement therapy (HRT). This implicates reproductive hormones in strength

losses.

3) Isometric strength in young females declines during the menstrual cycle, corresponding with

pre-Lll peak. Strength peaked at the mid-luteal phase when progesterone was highest. The

relationship between these parameters suggests that progesterone is involved in force

generation.

4) The fluctuations in strength of the quadriceps are not manifest in the FDI. There were also

no changes in contractility or fatigue resistance in the quadriceps related to changes in

endogenous hormones.

5) Strength meas~ements across the cycle in oral contraceptive users were not unaltered,

indicating that continuous administration of exogenous steroid sex hormones do not

influence force production.

6) Acute changes in oestrogen were not accompanied by changes in strength or fatiguability of

the FDI. Unopposed oestrogen does not therefore appear to be involved in force changes.

7) Following four months of oestrogen/progestogen replacement therapy, strength did not

increase from baseline to different phases of hormone replacement therapy (HRT) in post-

menopausal females. Strength of the FDI increased from baseline to the

oestrogen/progestogen phase by lS.2±20.6% which may further implicate progesterone-

related component in force production.

193



CH··.i··A·~P'··p)T····'rrRFIVE"...' ,- rl· I rlJJ - _. _., - _I ~ ~

S)(NTHESIS OF FINDIN6S



5.0. SYNTHESIS OF FINDINGS

Thepurpose of this chapter is to collate the findings from the studies undertaken in

this thesis and determine the extent to which the hypotheses and aims have been

realised The outcome of the findings will be discussed in reference to the

consequences and clinical application of the results.

5.1. REALISATION OF AIMS

The rate of strength Joss in hypoestrogenic post-menopausal women was ascertained in

the longitudinal study, fulfilling aim 1. Maximal strength of the quadriceps declined

markedly at a rate of 10 and 9 % for 0 and 1.05 rad/s respectively, but was not evident

at higher angular velocities or in grip strength.

In the menstrua1 cycle model peak strength of the quadriceps occurred at the mid-luteal

phase in concert with greatest progesterone concentration (aim 2a), demonstrating

changes in strength of the quadriceps but not for the first dorsal intersseus (FDI). In

the IVF model, despite large acute changes in oestrogen, no changes in strength wree

reported. These data suggest that oestrogen does not promote an independent effect

on muscle strength (aim 3). The efficacy of hormone replacement therapy (HRT) in

preventing post-mcnopausalloss in muscle strength was established in study 4.0. This

indicated that combined oestrogen and progesterone had an effect (aim 4.0).

Other indices of muscle function i.e. contractile properties and fatigue resistance, were

investigated during acute changes in endogenous hormones (aim 2b and 3b) and with

the administration of honnone replacement therapy (HRT) (aim 4b). There were no

changes in fatiguability or contractile properties under these conditions.

The secondary aims of the methodology section (Chapter 3) were also realised,

establishing the reliability of the equipment, techniques and protocols employed in the

experimental studies.
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5.2. REVIEW OF HYPOTHESES

The hypotheses proposed throughout the experimental studies will be reviewed, and

accepted or disproved according to the findings,

Hypothesis 1. Maximal strength decline over 12months in women

within 1 to 3years post-menopause.

This hypothesis is accepted, a reduction in strength in post-menopausal women was

reported for isometric and dynamic leg strength at 1.05 rad/s. This was only significant

however, when the post-menopausal group was compared with the HRT group only.

The peri-menopausal group had no effect.

IIypothesis 2. There is no change in maximal strength in females

laking hormone replacement therapy (HRT).

Maximal strength remained stable for each strength parameter measured. This

hypothesis was accepted.

Hypothesis 3. Strength loss in hypoestrogenic post-menopausal

women is of the same proportion with increasing

angular velocities.

This hypothesis was rejected. Strength loss in post-menopausal women was only

significant at zero or slow angular velocities (1.05 rad/s).

Hypothesis 4. Maximal strength of the quadriceps and FDI is greater

when oestrogen concentrations are at their highest.

Maximal strength of the quadriceps did not peak with high oestrogen levels. There was

no significant relationship between muscle and circulating oestrogen. This hypothesis

was rejected. Maximal force of the FDI did not change.
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Hypothesis 5. Changes in hormone levels result in a shift of the force-

frequency curve.

This hypothesis was rejected since there was no change in the 20150 Hz ratio during

the menstrual cycle.

Hypothesis 6. The quadriceps are least fatiguable when progesterone

levels are high.

There were no changes in the fatigue resistance of the quadriceps during the menstrual

cycle, and therefore progesterone did not exert the effect as previously postulated. This

hypothesis was rejected.

Hypothesis 7. Maximal force production increases from hypo- to

hyperoestogenic conditions during in vitro fertilisation

treatment.

This hypothesis was rejected. The hypo- and hyperoestrogenic conditions experienced

during in vitro fertilisation treatment did not have an effect on maximal force generated

in the FDI.

Hypothesis 8. The fatigue resistance of the FDI changes during

hypo- and hyperoestrogenic conditions.

The fatigue resistance of the FDI also remained stable across treatment and this

hypothesis was therefore rejected.

Hypothesis 9. Force production of the FDI increases from baseline

levels during HRT.
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This hypothesis was rejected since force did not increase when both phases of

treatment (oestrogen and oestrogen/progestogen) were considered. Exclusion of the

oestrogen-only phase resulted in an increase in force between baseline and the

oestrogen/progestogen phase.

Hypothesis 10. The oestrogen - progestogen phase of HRT results in

greater force production of the FDI compared with

oestrogen-only.

This hypothesis was rejected. There was no difference in maximal strength of the FDI

between the two phases ofHRT.

Hypothesis 11. Contractile properties of the FDI differ with

the adminstration of HRT.

This hypothesis was rejected. The 20/50 Hz ratio was no different before or after the

administration ofHRT.

Hypothesis 12. Administration of HRT induces greater fatigue

resistance compared with baseline values.

The fatiguability of the FDI during electrically stimulated contractions did not alter

with hormonal replacement. This hypothesis was subsequently rejected.
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5.2. GENERAL DISCUSSION

The longitudinal study has revealed that a significant loss of strength occurred in post-

menopausal women of 9 and 10% per annum for dynamic (1.05 rad/s) and isometric

contractions respectively. This rapid weakening of the quadriceps corresponds with the

accelerated loss of bone mass reported at the menopause in response to the reduction

in reproductive sex hormones. Whether this rate of force loss continued was not

examined in this study, although it is predicted that it would reach a plateau similarly to

that shown for menopausal bone loss. The group of peri/post-menopausal women who

were undergoing hormone replacement therapy (HRT) did not experience any strength

deficits, further implicating the involvement of reproductive hormones in regulating

force production. These data suggest that HRT may confer protection against muscle

weakness of the quadriceps, an important muscle group for ambulation and balance.

and thereby reducing the risk of falling and sustaining an osteoporotic fracture.

The findings from this study corroborate cross-sectional data of Phillips et al. (1993b),

who reported a significant reduction in specific force i.e. force per cross-sectional area

(force/CSA) of the adductor pollicis (AP) in women at -50 years. Furthermore,

specific force was greater in post-menopausal women taking HRT compared with

hypoestrogenic age-matched controls. Whilst both studies demonstrated an

hormonally-related strength loss, the hormone responsible cannot be elucidated in the

menopause/post-menopausal model. Phillips et at. (1993b) advocated oestrogen as the

hormone affecting muscle strength. They verified this supposition from observations of

strength changes during the menstrual cycle (Phillips et al., 1996). A pre-ovulatory

peak in strength of the AP, followed by a rapid decline 1 to 2 days later was reported

to parallel the acute changes in oestrogen characteristic of the ovulatory phase.

However. they failed to find significant correlations in relative strength with circulating

oestrogen levels (Phillips et al., 1996).

The changes in force production of the quadriceps during the menstrual cycle in this

thesis did not support those reported by Phillips et al. (1996). A gradual increase in

strength was observed during the follicular phase of the cycle, which was followed by a
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rapid drop prior to the LH surge. A secondary, greater rise in force production reached

its peak mid-luteal These force changes were not coincident with fluctuations in

oestrogen, and there was no relationship between relative strength and circulating

oestradiol,

The menstrual cycle does not lend itself as a good model to isolate any independent

effect of oestrogen. The in vitro fertilisation (IVF) model was therefore employed to

assess muscle function of the first dorsal interosseus (FDI) during 1] down-regulation

of the hypothalamic-pituitary-ovarian axis with suppression of pituitary and

reproductive hormones and 2] during up-regulation with consequently

supraphysiological oestrogen levels. No changes in strength were found during this

treatment. The IVF model provides a unique method of assessing the independent

effects of oestrogen. The massive, acute changes in this hormone, which exceed those

of the menopause, are not observed during normal physiological events. These findings

demonstrate unequivocally that oestrogen alone does not affect the force generating

capacity of muscle.

Finally, there were also Indications from the study assessing the effects and

components ofHRT on strength of the FDI, that oestrogen is not the sole regulator of

force production. From baseline measurements in post-menopausal women, strength

did not increase significantly after four months of treatment when assessed during the

oestrogen-only phase. These findings are preliminary since few subjects were test~d

(n=9), and they only provide tenuous suggestions against oestrogen as the effects of

exogenous hormones on muscle strength, particularly the role in restoring strength, are

not fully understood.

There are reports of oestrogen receptors on skeletal muscle in animal (Dahlberg, 1982)

and humans (Smith et al., 1990). If oestrogen is not the sole regulator of changes in

strength, then some other hormone must be involved. Gonadotropins are important in

the regulation of the reproductive cycle and the synthesis of oestrogen and

progesterone, exerting their effects on reproductive tissues, principally the ovaries.

Both luteinizing hormone (LII) and follicle stimulating hormone (FSH) are elevated in
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post-menopausal women, increasing 18 fold pre-menopausal values. This is

considerably higher for LH. The loss of strength in post-menopausal women could

possibly be associated with the rapid, and very high increases in the gonadotropins.

The trends in strength changes during the menstrual cycle do not contradict this, as

strength peaked mid-lutealwhen gonadotropin levels were low. However, correlations

between relative force and circulating LH and FSH were not significant, suggesting

that gonadotropins were not responsible for changes in strength. This is further

substantiated in the IVF study. Down-regulation suppressed the pituitary release ofLH

and FSH, as well as the reproductive hormones, and subsequent administration of

exogenous pituitary hormones did not result in any reduction in strength.

Progesterone is the only other major hormone involved in reproductive functioning

which could be involved in the strength changes observed so far. Progesterone is

actually the hormone that first becomes deficient at the climacteric. Even though

oestradiol declines at the menopause, a small amount is still produced from the

peripheral conversion of androstenedione to oestrone whereas progesterone is very

low. The findings from this thesis strongly implicatethe involvementof progesterone in

the changes of force production. This was initially observed in the menstrual cycle

study, in which maximal strength of the quadriceps peaked mid-luteal when

progesterone was at its highest. A significant correlation between strength and

circulating progesterone confirmed this pattern of strength change with progesterone

levels.

The IVF model also provided useful evidence supporting the role of progesterone.

During IVF treatment, progesterone does not increase markedly from the baseline

measurements until human chorionic gonadotropic (hCG) hormone is administered. In

this study, the strength measurements were taken prior to hCG administration, and

therefore at a time when progesterone concentration remains constant, as did the

strength of the FDI.

The mechanismby which progesterone may affect muscle strength is conjectural at this

time. There is no known evidence of the presence of progesterone receptors on

200



skeletal muscle, although given the recent proposals of a hormally-mediated effect on

muscle function, this may not yet have been investigated. Progesterone and its

metabolites e.g. 3a, Sa - tetrahydroprogesterone, exert diverse effects on various

tissues such as the brain, uterus, smooth muscle and the oocyte. Their effects, which

may be mediated via the classical intracellular receptor, membrane receptors or via the

GAB~ receptor system, depend upon the tissue involved, the dose of progesterone

and time of administration. Ifprogesterone is found to act rapidly, then the latter two

mechanisms are probably involved. Prolonged effects would involve the intracelluar

receptor through which progesterone inhibitsuterine contractility.

The studies within this thesis do not favour the responsibility of oestrogen for

regulating changes in force production. However, the involvementof oestrogen should

not be ignored. Oestrogen may act together with progesterone to exert its effect on

muscle. A significantrelationship between the ratio of oestrogen to progesterone with

leg strength during the present menstrual cycle study implicates the involvement of

both hormones. It was observed that strength peaked mid-luteal when progesterone

and oestrogen were both present. However, force production was also high during the

follicular phase when oestrogen concentrations were greater than progesterone.

Therefore, it may be that progesterone exerts its effects on an oestrogen-primed

muscle. Indeed, this has been demonstrated in reproductive tissue such as the uterus;

the presence of oestrogen is necessary to up-regulate progesterone receptors in the

uterus in preparation for the proliferative luteal phase. Furthermore, the facilitative

effect of progesterone is required for gonadotropin secretion. Oestradiol alone does

not initiate the preovulatory gonadrotropin surge in the ovariectomized rat. Oestradiol

priming is essential for progesterone to exert its action on gonadotropin secretion since

oestrogens are required for the induction of hypothalamic and anterior pituitary

progesterone receptors. Given the pattern of strength changes during the menstrual

cycle it is plausible to suggest an effect upon skeletal muscle. This can be examined

further using the IVF model, and measuring strength at hypo- and hyper oestrogenic

conditions, and following heG administration (when progesterone levels have

increased). Itwould also be of use to examine the effects of progesterone derivatives in

the form of the progestogen only pill on strength.
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The change in strength across the menstrual cycle was not prolonged and appeared to

fluctuate in concert with reproductive hormones. The temporal reduction in force

observed mid-cycle was followed by an increase in strength which shortly attained its

optimal point. This indicates that this is a temporary, but reversible effect. If the same

mechanism operates in hormally-deficient muscle of post-menopausal women, this has

important clinical implications for preventing or treating muscle weakness within this

age-group. The most efficacious treatment for preventing bone loss is HRT, which has

been reported to maintain muscle strength in post-menopausal women This was

confirmed in the longitudinal study since post-menopausal women taking HRT did not

exhibit a reduction in strength.

The recovery of the loss of the force generating capacity of the quadriceps with

fluctuations in endogenous hormones appears to occur with administation of

exogenous hormones. An increase in strength of the FDI was observed m

hypo estrogenic post-menopausal women following hormone replacement therapy from

26.6N at baseline to 30.0N of the oestrogen/progestogen phase, a difference of

+IS.2±20.6%. This further supports the role of oestrogen/progesterone as previously

proposed, corroborated by the lower force values obtained during the oestrogen only

phase. It therefore appears that HRT may restore strength rather than just preventing

further weakening. An adjustment period greater than 4 months for taking HRT may

be necessary for the complete restoration of strength. There is current evidence which

indicates that an increase in strength of the adductor pollicis does occur over 12

months following HRT administration (Woledge, 1997. Unpublished findings,

University College London).

The mean strength of the FDI before (26.6N) and after (30.0N) HRT are comparable

with the differences in strength in young hypoestrogenic IVF patients (-27.0N) and

young females during the menstrual cycle (32-34.0N). The low strength values

observed in the IVF patients may therefore be the result of a decrease in strength in

response to pituitary down regulation, and consequently low reproductive hormones.
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An initial measurement prior to treatment, i.e. during the preceding cycle, would clarify

this and is therefore a recommendation for future research.

If the preservation of muscle strength is conferred by HR.T, then administration of

exogenous hormones would reduce the muscle weakness which impairs performance

and induces vulnerability to falling. The main benefits of this treatment would be two-

fold including the reduction of the accelerated bone loss associated with the

menopause. Unfortunately, this solution would only assist a small proportion of the

female population. Hormone replacement therapy opposed with a progestin is

accompanied by side-effects related to the progestogen component. Hence, this is not

always a favourable treatment in progestogen sensitive females. Under these

circumstances, the promotion of exercise regimens is important, and would not only

increase muscle strength, but would provide a protective mechanism in bone and on

the cardiovascular system.
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6.0. RECOMMENDATIONS FOR FUTURE WORK

The role of reproductive hormones in regulating muscle strength is a very new

concept, and has important implications in both a clinical environment and in a sporting

context. The findings from the experimental work has therefore lead to many

unanswered questions, and has also generated many more. The recommendations for

future work will focus on in vivo studies, although it is recognised that data from in

vitro research is needed to fully understand the role of oestrogen and progesterone on

skeletal muscle.

(1) A longitudinal study undertaken over a longer duration, from 5 to 10 years, is

needed, to reveal in greater detail the time course of the strength changes associated

with the menopause. This would also determine whether the rapid loss in strength

observed over 1 year plateau as the post-menopausal era is prolonged. The beneficial

effects of exercise and/or HRT assessed over this time period would determine the

most effective prophylaxis in preventing hormonally-related muscle weakness.

(2) There is still speculation of whether reproductive hormones are involved in

regulating muscle function. Assessment of strength before IVF treatment ie. during the

preceding cycle, and during IVF treatment would demonstrate if a loss of strength

occurred as a result of pituitary down-regulation. While this may further implicate the

role of reproductive hormones, it would also justify the low strength values of the FDI

attained in IVF patients.

(3) The outcome of this thesis is that reproductive hormones exert an effect on muscle

strength, and that progestrone is likely to be involved. This needs to be investigated

further. It is impossible to isolate the effects of progesterone in vivo, although the

proposed synergistic effects of oestrogen and progesterone can be tested using the

following models:

a) Utilising the IVF model, assessing strength during treatment when oestrogen levels

are manipulated, and following the administration of heG would allow the
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comparison of strength when oestrogen and progesterone (and LHlFSH) are very

low, when oestrogen is high but progesterone is low, and when oestrogen and

progesterone are high. Strength can be measured confidently under these controlled

conditions, unlike the endogenous fluctuations during the menstrual cycle.

b) Assessment of strength before and during the administration of the progestogen-

only pill in young women would allow the effects of this progesterone-derivative to

be examined. The progestogen-only pill suppresses ouvlation is some women and

thus careful monitoring of hormone levels would be necessary.

c) Oestrogen and progesterone are elevated during pregnancy. Monitoring strength

before and during pregnancy would elucidate the effects of a rise in hormones levels

on muscle function. The rapid decline in these hormones on strength could be tested

postpartum.

(4) Preliminary findings suggest that HRT may restore strength. This needs to be

examined further using larger subject numbers, and controlling for the HRT

preparation. In a large randomised study, baseline levels of strength in post-

menopausal women should be compared with measurements taken after the

stabilisation on HRT, using combined preparations (i.e. in women with an intact

uterus).

(5) The reversible effects of hormonally-related strength deficits applicable to post-

menopausal women can be measured with endogenous hormonal changes. Medically-

induced amenorrhoea is used to relieve disorders such as endometriosis with the same

methods as the IVF treatment, but for a longer duration (up to 6 months). Using these

patients, strength before, during hypoestrogeniaJprogesteronia, and in a follow-up trial

will allow the changes in strength to be characterised. This will also establish if any

strength deficits are reversed with resumption of menses, which will have important

applications for menopausal and amenorrhoeic sedentary and athletic women.
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APPENDICES



APPENDIX ONE

LEISURE TIME ACTIVITY

QUESTIONNAIRE



5. Physical activity

5.1 Have the last two weeks been typical of your normal levels of leisure time
physical activity? yes/no

5.2 Ifno, inwhat ways were they not typical?

---------------------------------------------------------------------------------
---------------------------------------------------------------------------------

5.3 On a scale of 1-5, rate the level of your present fitness compared to other people
your age?

very poor poor average good excellent

1 2 3 4 5



Date of activity recall•••••••••••••••.•••

Activity List

ACTIVITIES (1) FREQUENCY DURATION SWEAT

-----------------------------------------------------------
Aerobic dancing (intense) yes/no

Boxing:
In ring
Sparring

Soccer

yes/no
yes/no

yes/no

yes/no

yes/no
yes/no
yes/no

yes/no

yes/ no

yes/no

yes/no

yes/no

yes/no
yes/no
yes/no
yes/no
yes/no
yes/no

yes/no

---- yes/no

yes/no
yes/no
yes/no

Basketball

Circuit training

Hill climbing:
With 5 kg load
With 10 kg load
With 20 kg load

Cycling (race)

Gardening (digging)

Hockey

Jogging

Judo

Running
11.5 min/mile
9 min/mile
7.5 min/mile
6 min/mile
5.5 min/mile
cross country

Squash

Swimming:
Back stroke
Breast stroke
Crawl (slow)

Please indicate how often (frequency) tbe activity was performed, for how long (duration) and
whether you sweated. For example: If you performed the activity once a day for 20 minutes but
did not sweat then:

1 20 mins yes/no



ACTIVITIES (2) FREQUENCY DURATION SWEAT

Aerobic dancing (moderate) yes/no

Badminton yes/no

Ballet

Crieketr-
Batting
Bowling

Cycling (leisurely: 9.4mpb.)

Dancing

Hill climbing (no load)

Ice skating (less than 9 mph.)

Karate

Roller skating

Tennis:
Singles
Doubles

Walking (4.5 mpb. level)

Weight lifting/training

yes/no

yes/no
yes/no

yes/no

--- yes/no

------ yes/no

--- yes/no

yes/no

yes/no

yes/no
yes/no

yes/no

yes/no



ACTIVITIES (3) FREQUENCY DURATION SWEAT

---- yes/no

yes/no

yes/no

yes/no

yes/no
yes/no

yes/no

yes/no

yes/no

yes/no

yes/no

yes/no

yes/no
yes/no

yes/no

Bowls

Cricket (fielding)

Cycling (leisurely: 5.5 mph.)

Drumming

Gardening
Hedging
Raking

Golf

Horse riding

Lawn mowing (push-type)

Table Tennis

Sailing

Volleyball

Walking
J.Omph
4.0 mph

Window cleaning



ACTIVITIES (4) FREQUENCY DURATION SWEAT

yes/no

yes/no

yes/no

---- yes/no

yes/no

yes/no

yes/no

yes/no

yes/no

yes/no

yes/no

yes/no

Althetics (track and field)

Bowling (ten pin)

Canoeing

Caving/potholing

Fencing

Five-a-side soccer

Gymnastics

Lacrosse

Mountain climbing

Netball

Recreational swimming

Trampolining



APPENDIX TWo

MEAN ±SD OF FORCE FOR DIFFERENT MUSCLE

GROUPS ACROSS ALL ANGULAR VELOCITIES.

Al=HRT

A2=PERI-MENOPAUSAL WOMEN

A3=POST-MENOPAUSAL WOMEN



Table A.I. Mean values (± SD) of force across a range of angular velocities for the Hormone
Replacement Therapy (HR1) group. All subjects completed the five testing sessions for leg (Nm) and
grip (ft Ibs) strength.

HRTGroup
N=l1 EXTENSORS (NM) FLEXORS (NM)

Angular velocity (rad/s) T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

o (900 of flexion) 114.7 114.0 113.8 112.4 111.8 * * * * *
(28.2) (24.0) (22.4) (23.4) (24.4)

1.04 127.1 125.9 125.8 128.8 122.0 67.4 69.9 66.7 68.8 64.8
(25.2) (25.6) (31.8) (26.0) (29.9) (16.5) (20.6) (19.5) (19.8) (19.3)

2.09 93.6 94.8 94.4 93.7 93.4 54.1 55.7 54.8 54.0 52.4
(14.0) (19.3) (19.2) (16.2) (20.9) (13.9) (15.4) (15.7) (15.4) (15.3)

3.13 80.5 80.4 79.4 79.9 80.6 46.6 47.2 45.8 46.6 45.1
(14.9) (16.6) (14.4) (14.9) (16.8) (11.4) (14.4) (11.6) (12.7) (13.0)

5.22 * * * * 74.1 * * * * 48.1
(16.3) (12.6)

0(600 flexion) • • • * 141.4 * * * * *
(28.5)

Grip Strength (Ft lbs) 27.2 26.2 27.4 26.2 25.6
(4.6) (4.6) (3.7) (5.2) (4.2)



Table A.2. Mean values (± SD) of force across a range of angular velocities for the Perimenopausal
group. All subjects completed the five testing sessions for leg (Nm) and grip (ft Ibs) strength.

PerLM. Group
N=9 EXTENSORS (NM) FLEXORS (NM)

Angular velocity (rad/s) T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

o (900 of flexion) 117.7 115.9 112.3 111.3 112.1 • • • • •
(28.4) (29.0) (30.9) (31.5) (29.0)

1.04 136.8 134.3 131.3 133.0 133.9 68.3 70.1 69.1 72.2 64.3
(29.5) (27.7) (19.3) (30.0) (20.3) (22.1) (20.5) (15.6) (21.4) (15.0)

2.09 100.9 100.9 101.4 98.6 103.1 59.2 58.7 56.3 58.7 59.2
(24.1) (18.9) (21.2) (16.7) (17.2) (15.8) (16.5) (14.8) (11.8) (10.4)

3.13 87.4 87.6 88.6 85.3 89.7 50.4 51.1 48.4 50.6 50.3
(19.6) (16.7) (18.6) (16.4) (17.4) (11.9) (12.8) (14.2) (13.2) (10.8)

5.22 • • • • 79.3 • • • • 55.4
(22.1) (17.0)

• • • • 145.8 • • • • •0(600 flexion)
(34.2)

Grip Strength (Ft lbs) 29.3 27.7 29.0 28.4 27.1
(3.0) (3.2) (3.0) (2.9) (3.4)



Table A.3: Mean values (± SD) offorce across a range of angular velocities for the Post-menopausal
group. All subjects completed the first four testing sessions for leg (Nm) and grip (ft Ibs) strength.
Only 7 subjects completed every session (>12 months).

Post.M. Group
N=lO EXTENSORS (NM) FLEXORS (NM)

Angular velocity (radls) T1 T2 T3 T4 T5 T1 T2 T3 T4 T5

o (900 of flexion) 122.3 123.8 113.5 109.7 109.4 * * * * *
(19.9) (20.8) (22.7) (20.4) (27.7)

1.04 127.5 131.0 122.8 116.5 124.1 68.2 70.4 67.2 66.7 69.0
(17.8) (27.4) (27.6) (26.5) (20.1) (16.5) (20.6) (19.5) (19.8) (19.3)

2.09 90.9 90.5 89.7 86.7 89.4 54.1 55.7 54.8 54.0 52.4
(16.6) (22.1) (20.4) (20.3) (13.6) (13.4) (15.4) (15.7) (15.4) (15.3)

3.13 76.8 77.4 78.0 75.3 80.1 44.8 44.5 44.9 44.7 47.3
(15.9) (13.8) (17.7) (20.0) (12.4) (12.1)(7.32) (11.5)(11.3) (9.7)

5.22 * • * * 72.0 • • * * 50.S
(11.5) (10.7)

0(600 flexion) * • * * 146.7 * * * * *
(28.4)

Grip Strength (Ft lbs) 28.S 27.2 27.6 27.0 27.4
(7.1) (6.8) (7.0) (6.6) (5.5)

Values in italics for the last test represents N=7.
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Effects of acute changes in oestrogen on muscle function of the
first dorsal interosseus muscle in humans

J. P. Greeves , N. T. Cable *, M. J. M. Luckas t,T. Reilly and M. M. Biljan t

Centre for Sport and Exercise Sciences, Liverpool John Moore8 University, Byrom Street,
Liverpool L3 3AF and t Reproductive Medicine Unit, Liverpool Women8 Hospital,

Crown Street, Liverpool L8 7S8, UK

1. To investigate the effect of the female reproductive hormones on muscle function, patients
undergoing in vitro fertilization were tested during two phases of treatment. The first was
following the down regulation of pituitary gonadotrophin releasing hormone (GnRH)
receptors and the second after 9 days of gonadotrophin injections.

2. Maximal strength and fatiguability of the first dorsal interosseus muscle were assessed when
oestrogen and progesterone were low, and less than 2 weeks later when oestrogen production
reached supraphysiologicaJ levels.

3. There were no significant changes in either strength or fatigue resistance during acute,
massive fluctuations in oestrogen. These results occurred at a time when progesterone levels
remained relatively low.

4. Contrary to previous work, the present results suggest that oestrogen does not affect muscle
strength.

The menopause is defined as a loss of ovarian function,
characterized by very low concentrations of oestrogen and
progesterone (Whitehead &; Godfree, 1994). This hormonal
change has been aseooieted with a significant reduction in
maximal voluntary contraction per cross-sectional area.

. (MVC/CSA) in postmenopa.usa.l women for the adductor
pollicis muscle (Phillips, Rook, Siddle, Bruce & Woledge,
19936; Phillips, Rowbury, Bruce & Woledge, 1993c) and
the quadriceps (Rutherford &; Jones, 1992). Administration
of hormone replacement therapy prevents the loss of specific
~or~ ~iated with the menopause (Phillips et al. 1993b),
indicating that this muscle weakness is related to changes in
reproducti~e hormone status, rather than an age-related
decrement 10 the force-generating capacity of muscle (Bruce,
Newton &; Woledge, 1989).

Both oestrogen and progesterone levels diminish at the
meno~ause and thus the hormone responsible for the
reduction Of. force-generating capacity is uncertain. In
eumenorrhoeio younger females there are cyclical changes in
strength of the adductor pollicis (Phillips, Gopinathan,
Meehan, Bruce &; Woledge, 1993a) and the quadriceps
(Sarwar, Beltran Niclos & Rutherford, 1996) during the
menstrual cycle. Maximum strength is reported to coincide
with the mid-cycle peak of oestrogen and lowest force
production occurs at the post-ovulatory trough of oestrogen
concentrations (Phillips, Rutherford, Birch, Bruce &;

Woledge, 1995). Current evidence therefore supports the
positive rol~of oestrogen for enhancing strength.

In the present study, the independent effect of oestrogen on
muscle function was examined in young females undergoing
in vitro fertilization (IVF). In this model, oestrogen levels
are significantly reduced after 3weeks of administration of
gonadotrophin releasing hormone (GnRH) analogues, which
downregulate pituitary GnRH receptors. Secretion of
gonadotrophin and ovarian steroid hormones is subsequently
suppressed. This is followed by 9-10 days of injected
exogenous gonadotrophins, which hyperstimulate the ovaries
to produce multiple follicles and consequently very high
oestrogen levels.

Maximal voluntary contraction (MVC) and fatigue
characteristics of a small muscle, the first dorsal interosseus
(FDI), were measured following downregulation and during
hyperstimulation of the ovary.

METHODS
Subjects
Fourteen volunteers undergoing in vitro fertilization treatment,
with a mean ± S.D. age of 34'7 ± 4'2 years, height of 162'2 ± 4'5 cm
and body mass of 61'1 ± 6'2 kg were recruited from the
Reproductive Medicine Unit of the Liverpool Women's Hospital.
Informed consent was obtained by the medical staff and the
patients were referred to the laboratory. The cause of infertility in

• To whom correspondence should he addressed.
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Table 1. Oestradiol concentrations and endometrial thicltnet18
of patients ... determinants of adequate downreguJa.tion and
hyperstimuJa.tion of in llitro fertilization treatment

Condition Oestradiol
(pmol T']

Endometrial lining
(mm)

Hypoestrogenia
Hyperoestrogen ia

10-100
1551-9935

all the ubjects recruited in this study was damaged fallopian tubes.
Their follicle stimulating hormone (FSH) levels at day 2 or 3 of the
menstrual cycle were 2 to 6 U 1--1indicating normal ovarian fUl'lOtion
and reserve (Toner, 1993). Patiente with abnormal fotl'
stimu1&ting hormone (FSH): luteinizing hormone (LII) rat· ,
oligom norrhoe& or ultrasonic evidence 8ugge&ting polyoyatio
ova.ria.n syndrome were excluded from the study. Pati nte taking
medica.tioo likely to affect mu.acle strength did not pactioip&te.
8ubjecta gave their written informed oonaent to p&rtioipate in tbe
BtIldy. whi<il WIllI approved by the Etbial ChnmiIitAl(l8 of Livotpool
John Moores Univemty and The Royal LiVerpool Uni~ty'
Hospital.

Experimental protocol

Maximal voluntary oontraction and fatigue resiatance of the FDI
were measured on two occasions, aepuated by 9 day •. All
were performed in the morning. The first measurem t wu

Fi ure 1
Uyn mom
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experiment a reading lamp was positioned at a standard distance
over the muscle. Whilst muscle temperature was not measured, this
procedure was repeated on both occasions in an attempt to
standardize muscle temperature.

The FDI was stimulated percutaneously with self-adhesive surface
electrodes (3M Hea.lthcare, St Paul, MN, USA). The cathode was
positioned on the belly of the FDI and the anode placed near the
carpometacarpal joint of the thumb. The muscle was stimulated
with 1 and 40 Hz tetani to confirm accurate location of the
electrodes. Electrical impulses were applied at 150 V at a pulse
width of 100 p.s duration with a computer-driven Digitimer
stimulator (ModelDS7, Digitimer Ltd, Welwyn Garden City, UK).
The force output was amplified and visually displayed on an Apple
Maointosh computer, interfaced with a data acquisition system
(BiopaoMPl00WS, Santa Barbara, CA, USA).

Maximal voluntary oontraction
Maximal volunatary contraction of the FDI was measured whilst
fully abducting the index finger. This is the only muscle involved in
producing this movement. Superimposed percutaneous electrical
stimulation was employed to ensure maximal activation of the FDI.
Disappearance of the 1 Hz impulses confirmed maximal volitional
force. Eaoh trial was preceded by a 60 s rest interval. The highest
of three trials was recorded. The coefficient of variation (c.v.)from
repeated tests using this technique in our laboratory is 9'6% with
limits of agreement ranging from -8'54 to 8'43 N.

Fatigue charaoteristics
Fatigue resistance of the FDI was assessed using a modified Burke
protocol (Burke, Levine, Tsairis & Zajao, 1973). This involved
repeatedly stimulating the muscle for 3 min at 40 Hz with a 1 s
interval between each tetanic contraction. Patients were not able to

A --n
t.../-------

1 S

c

tolerate voltages that were sufficient to elicit maximal stimulation
of the muscle, although the current was constant for individual
subjects between tests. Forces of up to 20% of maximal voluntary
contraction (MVC)were recorded. Figure 2A and B displays typical
myograms of a tetanic contraction in a fresh and fatigued state. The
fatigue index (FI) was calculated as the percentage loss of force over
the 3 min (Fig. 2C). Speed of relaxation was measured as the time
taken for peak force to reach half-peak force. A 2 min rest was
allowed between the MVC and before commencing the fatigue test.
Fatigue results are presented for seven subjects; the remaining
patients did not tolerate the 40 Hz electrical impulse.

Statistical analysis
Differences in MVC and fatigue characteristics (force loss, mean
time to peak tension and relaxation rate expressed as percentage of
initial force) between the two test conditions were assessed using
Student's paired I tests. The significance levelwas set at 5%.

RESULTS
Maximal voluntary contra.ction
There were no significant differences in maximal voluntary
contraction of the FDI between the low (27'9 ± 1'6 N) and
high (27'5 ± 1'5 N) oestrogen conditions (means ± S.E.M.)

(P> 0'05). This is seen in Fig. 3.

Fatigue test
A typical myogram of the fatigue test is shown in Fig. 2C.
There were no statistically significant differences in any of
the fatigue parameters measured during the fatigue test
between the two trials (P> 0'05). There was a loss of peak

B

/~.

~ -------j~-
1 s

Figure 2. Typical myograms from the fatigue test
A, tetani in fresh muscle showin.g half-relaxation time (t",). B, tetani in fatigued muscle illustrating slowing
of relaxation. C, trace from a fatigue test (I s, 40 Hz twitch for 3 min).
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tension over the 3 min of 36'4 ± 6'8 % in the hypoestrogenic
and 42'5 ± 15'6% in the hyperoestrogenic condition. Mean
twitch tension also diminished to 58'9 ± 7'6 and
57'5 ± 9'2% of its initial value following the low and high
oestrogen concentrations, respectively. Half-relaxation time
increased by 52'9 ± 16'4 and 81'4 ± 20'1 % during the
fatigue test in hypo- and hyperoestrogenic conditions,
respectively.

DISCUSSION
Muscle function wa.s measured in IVF patients following (1)
downregulation of pituitary GnRH receptors and (2)
administration of exogenous gonadotrophins. The hormonal
consequences of this treatment are low oestrogen levels due
to a. lack of pituitary stimulation and subsequently massive
inereasss in oestrogen concentrations due to development of
multiple follicles. Under these conditions, we did not observe
any change in maximal strength or fatigue resistance of the
FDI.

These results suggest that oestrogen does not influence force.
However, muscle weakness reported in postmenopausal

250

PT MT tl',

Figure 3
Maximal voluntary contraction (MVC; me&118± S.R.M.) of the first
dorsal interosseus (FDI) muscle in hypoestrogenic (II) and hyper-
oestrogenic females (0). There was no significant difference
between treatments.

women is prevented in females taking hormone replacement
therapy (Philllips et al. 1993b) implicating the role of
reproductive hormones in this loss of strength. Evidence
from studies undertaken during the menstrual cycle also
indicates oestrogen is responsible for these changes in
strength, as maximal strength is greatest around midcycle,
at the peak of oestrogen production (Phillips et al. 1993a;
Sarwar et al. 1996).

In the above models, oestrogen is accompanied by
fluctuations in the other main reproductive hormone,
progesterone, and peptide gonadotrophins follicle stimulating
hormone (FSH) and luteinizing hormone (LH), this makes
it impossible to isolate the hormone responsible for a.
strengthening effect. In IVF patients, pituitary down-
regulation suppresses both oestrogen and progesterone.
Oestrogen increases with subsequent gonadotrophin
administration while progesterone remains low. Although
progesterone concentrations were not measured in the
present study, progesterone values during this procedure
remain low until buman chorionic gonadotrophin (hCG) is
given prior to egg collection (Harada et al.1995). Patients in
this study were-tested before hCG was given. Consequently,

Figure 4. Fatigue characteristics of the FDI
muscle in hypoestrogenic and hyperoestrogenio
females
•• hypoestrogenia; D. hyperoestrogenia. Values at the
end of the fatigue test for peak tension (fYf). mean
tension (MT)and half-relaxation time (/1<,) are reported
as a percentage of initial value. There were no
significant differences between treatments for any
variable.
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muscle strength Was examined when both oestrogen and
progesterone concentrations were very low and again with
high oestrogen and low progesterone concentrations.

To our knowledge, this is the first study to assess the
strength-related effects of oestrogen independently from
other reproductive hormones. Furthermore, down regulation
of GnRH receptors at the stage of IVF treatment inhibits
gonadotrophin secretion. The subsequent administration of
these peptide hormones, initiating follicular growth, results
in high concentrations of the gonadotrophins concurrent
with the increasing levels of oestrogen. These results
therefore also suggest that muscle strength is not influenced
by fluctuations in LH and FSH which occur at this time.

Since the present study argues against an independent role
of oestrogen on muscle strength, the alterations in force
production cited in previous work (Phillips el al.1993a, b, c;
Sarwar et al. 1996) may be influenced by progesterone, or
may be a consequence of an interaction between oestrogen
and progesterone. This possibility is supported by the
observation that the force-generating capacity of the FDI in
the IVF patients was much lower than age-matched females
at the same stage of the menstrual cycle in our laboratory
(J. Greeves, unpublished observations). Due to the nature of
subject recruitment in the present study, it was not possible
to establish baseline values of MVC prior to pituitary
down regulation. The possibility therefore exists that the
MVCs measured after down regulation may be reduced in
response to a decline in progesterone concentrations. The
fact that MVC values remained constant following hyper-
stimulation of the ovary (producing large increases in
oestrogen but little change in progesterone] further
implicates progesterone as a moderator of muscle strength.
This hypothesis warrants further investigation:

Our findings against a positive effect of oestrogen have
been demonstrated in previous work. Bassey, Coates,
Culpan, Littlewood, Owen & Wilson (1995) reported that
oestrogen h~ a negative influence on strength. In young,
eumenorrhoelC females, oestrogen concentration was
inversely related to handgrip strength, which declined by
5% with ~ 200 pmol T' rise in oestrogen. Furthermore, in
olJer subjects (aged 45-54 years) of varying menstrual
status, no differences in strength of the quadriceps or in
handgrip strength have been observed (Bassey, Mockett &
Fentem, 1996).

Few studies have used fatiguability as a parameter for
assessing muscle function in relation to hormonal changes.
Electrical stimulation was employed to determine the
fatigue resistance of the FDI via electrically evoked
impulses. There were no significant differences in fatigue
characteristics between the hypo- and hyperoestrogenic
conditions. These observations are contrary to those
reported previously. Sarwar et al. (1996) measured the
quadriceps during five stages of the menstrual cycle, early
and mid-follicular, ovulatory and mid- and late luteal. The
muscle was slower and more fatiguable at ovulation,

compared with the late-luteal phase. No changes were
observed in women on the combined oral contraceptive pill
as a control group.

The fatigue protocol used in the present study differed from
that employed by Sarwar et al. (1996). The frequency of
stimulation was the same although contraction time and
relaxation were longer in duration. AIl a consequence, the
FDI did not fatigue to the same extent as the quadriceps.
This difference was not the result of stimulating a larger
muscle, since the fatigue index of the adductor pollicis and
the FDI are also higher using a similar protocol to previous
studies (Tanaka McDonagh & Davies, 1984; Rutherford &
Jones, 1988; Sarwar et al. 1996). Since the FDI muscle in
the present study was less fatigued, it is possible that any
hormonally induced strength changes were less apparent.
However, given the precise manipulation in the hormonal
milieu, it is far more likely that the lack of change in FI
reflects minimal change in concentration of progesterone.
This hypothesis is supported by the t0bservation that
fatiguability relates to changes in basal body temperature
secondary to increases in progesterone concentration during
the luteal phase (Sarwar et al. 1996).

In conclusion we have failed to detect an independent effect
of oestrogen on muscle function. Given that muscle strength
remained constant when both LH and FSH also changed
markedly, the present results suggest that changes in
progesterone alone, or in combination with other reproductive
hormones, may be responsible for the changes in strength
previously reported, both postmenopausally and during the
menstrual cycle.
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INFORMED CONSENT FORM

Title: The reliability of day-to-day testing of isokinetic leg strength

Researcher: Julie Greeves

The study aims to evaluate test-retest variation of leg strength using the isokinetic
dynamometer at 3 different velocities. You will be required to attend the laboratory on
4 different occasions separated by at least 2-3 days. The first session will familiarise
you with the equipment and procedures involved.

You will initially complete a 5 minute warm-up on the cycle ergometer (65 rpm) and 3
minutes of static stretching of the relevant muscle groups (quadriceps and hamstrings),
Leg strength will be measured on the computerised isokinetic dynamometer and peak
torque of the left and right knee extensors and flexors will be recorded. You will
perform two submaximal and four reciprocal maximal voluntary contractions (MVC)
at angular velocities of 60, 180 and 3000/s. Each trial will be conducted at the same
time of day (l0:00±1 hour) for each session.

All information will remain confidential. Feedback on performance will be given after
the completion of the experiment.

I.••••••••••••••••••••••.•••••••••••••.••••.••••••understand the experimental protocol and have no
objection to participating in this study. I also reserve the right to withdraw from
testing at any time.

SIGNED . DATE .



SUBJECT INFORMED CONSENT

Title: The reliability of day-to-day testing of leg and grip strength in post-
menopausal women with and without hormone replacement therapy

Researcher: Julie Greeves

Experimental protocol

The aim of the study is to assess the test-retest variation of leg and grip strength in
post-menopausal women. One group will be receiving hormone replacement therapy
(HRT) and the other group will be oestrogen deficient ie. not receiving HRT.

Initially a questionnaire will be distnbuted to determine your present health and
gynaecological details. You will then be required to visit the laboratory on 3 different
occasions each lasting 25-30 minutes, separated by 3-4 days. The first session will
familiarise you with the equipment and procedures involved.

You will undertake a 5 minute warm-up on a cycle ergometer at a low resistance,
followed by 3 minutes of static stretching of the upper leg muscles. Leg strength will
be measured at 3 different speeds of the preferred leg of the knee extensors and flexors
for 4 maximal contractions. This will be preceded by 2 submaximal contractions as a
practice run. Each trial will be separated by one minute of passive recovery.

Following a 5 minute rest period, you will be required to contract your muscles
maximally against a non-movable resistance. To ensure you are working maximally (as
hard as possible), electrodes will be positioned on the involved muscle group. This will
cause nQ discomfort or pain. The final test will measure your maximal hand grip
strength and the best of 3 trials will be recorded.

Yo~ will be fre~.ofinjwy to thelower body and dominant ann, or ofpainldiscomfort
which may debilitate performance. Also, you must refrain from strenuous activity 24
hours prior to testing. It is important that constant exercise levels are maintained
throughout the experimental period. Testing will be conducted at the same time of day
for each session

All infonnation will remain confidential. If you would like a fitness assessment ie.
Blood pressure, skinfolds (fat measurements) and lung function, this can be arranged
(this is not obligatory).

1 am willing to participate in this study having
read and understood the experimental protocol. I reserve the right to withdraw
my consent at any time.

SIGNED . DATE .



INFORMED CONSENT FORM

Title: Day-to-day variation inmuscle function of the quadriceps determined
by programmed stimulation electromyography (PSEM) and fatiguability

Researcher: Julie Greeves

This study aims to evaluate the variability in muscle function of the quadriceps assessed
using programmed stimulation electromyogram (PSEM) and fatiguability tests. The
PSEM test involves delivering electrical impulses of two second duration at
frequencies of 1, 10, 20, 50 and 100 Hz. Fatiguability will be measured with 40 Hz
impulsed per second for 3 minutes. You will be required to visit the laboratory on three
occasions. The first sesstion will be a familiarisation trial with the electrical stimulation
techniques. This will be followed one week later by two visits, separated by 3-4 days.
It is important that exercise is not undertaken on the day of testing as this will affect
performance. Exercise should also be controlled the day preceding the trial.

The test protocol will involve:-
• 5 minutes warm-up on the cycle ergometer at 60 rpm
• PSEM
• 5 minute rest
• Fatigue test of 40 Hz/s with one second rest intervals
• PSEM

The PSEM test will cause some discomfort. If this is not tolerated, the experiment will
be terminated. There may be some muscle soreness the following day and thus tests
will be scheduled carefully.

SUBJECT DECLARATION

I············ understand the experimental protocol and have no
objection to partiCipating in the study. I also reserve the right to withdraw from
testing at any time.

SIGNED . DATE .

EXPERIMENTERS SIGNATURE .



SUBJECT INFORMED CONSENT FORM

Title: The Reliability of the hand dynamometer for measuring Strength and
Contractile Properties of the First Dorsal Interosseus Muscle (Index
Finger)

Researcher: Julie Greeves

The aim of this study is to determine the reliability of repeated measurements of
maximal strength and contractile properties of the first dorsal interosseus (FDI)
muscle. The FDI functions to move the index finger away from the middle finger. You
will be required to visit the laboratory on three occasions at 2 to 3 day intervals.

The following tests will be undertaken on each visit:-

• The hand will be immersed in hot water for 10 minutes to stabilise the temperature
of the finger

• Three maximal voluntary contractions with the index finger - (pushing as hard as
you can away from the middle finger)

• Five minute rest
• Electrical stimulation test, whereby the finger is stimulated at increasing frequencies.

Each frequency will last 2 seconds, with a 5 second rest interval.
• Five minute rest
• Three minute fatigue test. The muscle will be fatigued for 3 minutes with one

second interval impulses.

Each test session will last approximately 30-35 minutes. If the electrical stimulation is
not tolerated, the experiment will be terminated. All information will be confidential.

SUBJECt DECLARATION

I···············..••••••••••••••••••••••••••••••••.AM WILLING TO PARTICIPATE IN THIS STUDY,

HAVING READ AND UNDERSTOOD THE EXPERIMENTAL PROTOCOL. HOWEVER, I

RESERVE THE RIGHT TO WITHDRAW FRO~ TESTING AT ANY TIME WITHOUT
FURTHER EXPLANATION.

SIGNATURES:-

Subject: . Date: .

Experimenter: .



LIVERPOOL JOHN MOORES UNIVERSITY

INFORMED CONSENT FORM

Researcher: Julie Greeves

Title: The Effect of Hormone Replacement Therapy on Muscle Strength in
Postmenopausal Women

Experimental Protocol

The aim of this project is to determine whether a decline in the reproductive hormone
oestrogen associated with the menopause, causes a reduction in the strength of the quadriceps
(thigh) muscle. Differences in strength will be compared in two groups of postmenopausal
women: One group will be receiving hormone replacement therapy (HR T) and the other group
will be oestrogen deficient ie. not receiving, or have not received any form of HR T.

Initially, a questionnaire will be distributed to determine your present health, family medical
history and gynaecological details. Following this, you will be asked to attend the laboratories
at John Moores University, The Royal Liverpool University Hospital and The Liverpool
University, prior to HRT and once every three months over a 12 month period.

Body composition will be assessed at John Moores University. This will involve height and
weight, and skinfold measurements taken at four sites of the body ie. front and back of the arm,
above the hipbone and under the shoulder blade. Blood pressure, grip and leg strength and
venous blood samples will also be taken. Grip strength will be measured using a hand-held
device, and leg strength will be determined whilst performing a kicking action and contracting
against a non-movable resistance. To ensure you are working maximally (as hard as possible),
electrodes will be positioned on the involved muscle group. This will cause !1Q discomfort or
pain. Blood will be drawn from the antecubital vein (of the forearm) to determine hormonal
levels. For subjects receiving HRT, blood samples may possibly be taken at the gynaecology
clinic.

All information will be kept strictly confidential and your identity will not be revealed in any
way. If you would like a fitness test then this will be arranged.

SUBJECT DECLARATION

1 am willing to participate in the study having read and
understood the experimental protocol. I am aware of the length of time the experiment will
last and reserve the right to withdraw my consent at any lime,

SIGNATURES: SUBJECT. . DATE .

UNBIASED WITNESS .

EXPERIMENTER .



INFORMED CONSENT FORM

Researcher: Julie Greeves

Title: The effects of the menstrual cycle on strength and contractile
properties of a distal and proximal muscle group

Experimental protocol
1. Each stage of the menstrual cycle will be determined by monitoring oral
temperature. This will be taken on awakening each morning (± 2 hours) for two
complete cycles using a digital thermometer provided. Instructions will be given
separately. The data will be recorded on the sheet provided, and temperature readings
will be plotted on the attached temperature chart starting from day 1 of menses. A
questionnaire will also be completed prior to testing.

2. You will be required to attend the research laboratory at John Moores University for
8 visits. These include:
i] A familiarisation session with the electrical stimulation procedure and finger strength
technique.
ii]Once during menses (between day 1-5)
iii]Mid-follicular (day 12)
iv] Pre-ovulation (day 14)
v] Ovulation
vi] Post-ovulation
vii] Mid-luteal
vi] Late-luteal
On each visit you will be monitored as follows:-

Strength measurements
Index finger: Maximal strength of the index finger will be measured during a pushing
movement away from the middle finger. To ensure maximal effort is employed, the
muscle will be stimulated percutaneously using electrodes attached to the hand. This
will cause minimum discomfort.

Quadriceps: You will be secured in a chair with the leg suspended at 90°. The
quadriceps will be electrically stimulated during a maximal effort of pushing against a
non-movable resistance. The muscle group will then be stimulated whilst relaxed at
increasing frequencies (1, 10, 20, 50 and 100 Hz) for 2 seconds at each frequency.
You will be rested for 5 minutes and the procedure will be repeated 6 times in 30
minutes. This test will cause some discomfort and may affect results if a familiarisation
session is not performed.

All information will be confidential;

I ' agree to participate in this study having read and
understood the experimental protocol as described above. I do, however, reserve the
right to withdraw from testing at any time without further explanation.

SIGNED DATE .



mFORMEDCONSENTFORM
Title: The Effect of Oestrogen Changes on Strength and Contractile Properties of the

First Dorsal Interosseus Muscle (Index Finger)

Researcher: Julie Greeves (BSc Hons)

The aim of this study is to determine whether a decline in the reproductive hormone
oestrogen causes a change in strength and contractile properties of the first dorsal
interosseus (FDI) muscle. This muscle functions to move the index finger away from
the middle finger. Differences in performance will be monitored before, during and
after treatment. Maximal voluntary effort and electrical impulses of increasing
frequencies to the muscle (called programmed stimulation electromyogram (PSEM)),
will be perfonned.

The test protocol will involver-
i] Immersion of the hand and forearm in water for 10 minutes at 45° to stabilize

muscle temperature
ti] One Hz twitches (electrical impulses) delivered to the finger muscle via

electrodes to ensure correct stimulation of the muscle
iii] Maximal voluntary contraction superimposed with 1 Hz twitches
iv] A PSEM (increasing frequencies of electrical impulses of 1, 10, 20, 50, 100 Hz

and 1Hz for 2 seconds each)
v] Fatigue test offrequent stimulation for 3 minutes
vi] APSEM

A rest period of3 minutes will be given between each phase of testing. The PSEM test
will cause some discomfort. If this is not tolerated, the experiment will be terminated,
All information will remain confidential. The test will last approximately 20-30
minutes.

SUBJECT DECLARATION

I understand the experimental protocol and have no
objection to participating in this study. I also reserve the right to withdraw from
testing at any time.

SIGNATURES

SUBJECT .
DATE .

EXPERIMENTER .

UNBIASED
WITNESS .



SUBJECT INFORMED CONSENT FORM

TITLE: The effects of hormone replacement therapy on muscle function of the
first dorsal interosseus muscle (FDI) in post-menopausal women before
and during treatment. ~.

The aim of this study is to assess the effect of hormone replacement therapy on muscle
function of the index finger (first dorsal interosseus). You will be required to visit the
laboratory on 3 occasions over 4 months. The first visit will follow your appointment
at the menopause clinic. You will then be asked to attend the laboratory for two visits
four months later, following a routine visit to the menopause clinic. The following tests
will be undertaken on each visit:-

• The hand will be immersed in hot water for 10minutes to stabilise the temperature
of the finger

• Three maximal voluntary contractions with the index finger - (pushing as hard as
you can away from the middle finger)

• Five minute rest
• Electrical stimulation test, whereby the finger is stimulated at increasing frequencies.

Each frequency will last 2 seconds, with a 5 second rest interval.
• Five minute rest .
• Three minute fatigue test. The muscle will be fatigued for 3 minutes with one

second interval impulses.
• Skinfolds, estimating your percentage body fat, will also be assessed at four sites:-

the front and back of the arm, shoulder blade and hip bone.

Each test session will last approximately 30-35 minutes. If the electrical stimulation is
not tolerated, the experiment will be terminated. All information will be confidential.

SUBJECT DECLARATION

I AM WILLING TO PARTICIPATE IN THIS STUDY,

HAVING READ AND UNDERSTOOD THE EXPERIMENTAL PROTOCOL. HOWEVER, I

RESERVE THE RIGHT TO WITHDRAW FROM TESTING AT ANY TIME WITHOUT

, FURTHER EXPLANATION.

SIGNATURES:-

Subject: . Date: .

Experimenter: .

Unbiased witness: .


