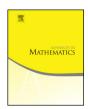


Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim



On the nuclear dimension of strongly purely infinite C*-algebras

Gábor Szabó ¹

Fraser Noble Building, Institute of Mathematics, University of Aberdeen, Aberdeen AB24 3UE, Scotland, UK

ARTICLE INFO

Article history:

Received 7 October 2015 Received in revised form 5 November 2016

Accepted 8 November 2016 Available online 17 November 2016 Communicated by Dan Voiculescu

MSC: 46L85

46L35

Keywords: Nuclear dimension Purely infinite C*-algebra Toms-Winter conjecture

ABSTRACT

We show that separable, nuclear and strongly purely infinite C*-algebras have finite nuclear dimension. In fact, the value is at most three. This exploits a deep structural result of Kirchberg and Rørdam on strongly purely infinite C*-algebras that are homotopic to zero in an ideal-system preserving way. © 2016 The Author. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

0. Introduction

Over the last decade, our understanding of simple, nuclear C*-algebras has advanced enormously. This has largely been spurred by the interplay between certain topological and algebraic regularity properties, such as finite topological dimension, tensorial absorption of suitable strongly self-absorbing C*-algebras and order completeness of

E-mail address: gabor.szabo@abdn.ac.uk.

Supported by: DFG SFB 878 Groups, Geometry and Actions and EPSRC grant EP/N00874X/1.

homological invariants, see [6] for an overview. Indeed, this reflects the Toms-Winter regularity conjecture [6,20,21], which has spawned an investigation of simple C*-algebras that has lead to deep results at a fast and furious pace. We refer to [2] and its excellent introduction for an overview of the current state-of-the-art concerning the Toms-Winter regularity conjecture. The most recent highlight of the Elliott classification program is certainly the combination of papers [7,5,4,16] (by many hands), which have completed the classification of separable, unital, simple C*-algebras with finite nuclear dimension and satisfying the UCT. See in particular [16, Section 6] for a comprehensive summary.

Apart from applications in classification, it now stands to reason (see [17,13,1]) that the interplay between finite nuclear dimension and \mathcal{Z} -stability goes beyond the simple case and should indeed extend to the realm of non-simple, nuclear C*-algebras that are sufficiently non-type I. In particular, it is tempting to conjecture that all separable, nuclear and \mathcal{Z} -stable C*-algebras have finite nuclear dimension. Given that Kirchberg has established a deep classification result [8] for separable, nuclear, strongly purely infinite C*-algebras long ago, a natural step toward this conjecture is to handle the \mathcal{O}_{∞} -absorbing case first. Note that a separable, nuclear C*-algebra A is strongly purely infinite if and only if $A \cong A \otimes \mathcal{O}_{\infty}$ (see [18, 3.2] and [11, 5.11(iii), 8.6]), and if and only if $A \cong A \otimes \mathcal{Z}$ and A is traceless (see [9, 3.12]).

In this note, we take this first step towards the above conjecture and verify that all separable, nuclear and \mathcal{O}_{∞} -stable C*-algebras have finite nuclear dimension, and in fact the nuclear dimension is at most three. In [1], it was shown that a nuclear dimension estimate

$$\dim_{\mathrm{nuc}}^{+1}(A\otimes\mathcal{O}_{\infty})\leq 2\dim_{\mathrm{nuc}}^{+1}(A\otimes\mathcal{O}_{2})$$

holds for all C*-algebras A. As an application, one could see that separable, nuclear, \mathcal{O}_{∞} -absorbing $\mathcal{C}(X)$ -algebras with simple fibres have finite nuclear dimension. Extending this technique in the first section, we show that in fact, a more general nuclear dimension estimate

$$\dim_{\mathrm{nuc}}^{+1}(A\otimes\mathcal{O}_{\infty})\leq 2\dim_{\mathrm{nuc}}^{+1}(A\otimes B)$$

holds for all C*-algebras A and all non-zero, separable C*-algebras B with $B \cong B \otimes \mathcal{O}_{\infty}$. This will be an application of Voiculescu's observation [19] that cones over C*-algebras are quasidiagonal, combined with a trick from [1] involving positive elements with full spectrum in simple, purely infinite C*-algebras. In particular, the above estimate implies that \mathcal{O}_{∞} has a dimension-reducing effect on separable, nuclear C*-algebras upon tensorial stabilization if and only if there is some non-zero, separable C*-algebra with this property. The deep structural results by Kirchberg and Rørdam [12] on C*-algebras homotopic to zero in an ideal-system preserving way then show that a certain purely infinite AH algebra constructed by Rørdam in [15] has such a dimension-reducing effect. This yields the main result.

1. 2-Coloured embeddings into purely infinite ultrapowers

The following is contained in the proof of [1, 3.3] and was originally observed by Winter:

Lemma 1.1. Let A be a unital, simple and purely infinite C^* -algebra. Let $h \in A$ be a positive contraction with full spectrum [0,1]. For every $\varepsilon > 0$, there is some $n \in \mathbb{N}$, numbers $0 \le \lambda_0 \le \lambda_1 \le \cdots \le \lambda_n \le 1$ and pairwise orthogonal projections $p_0, \ldots, p_n \in A$ such that $h =_{\varepsilon} \sum_{j=0}^{n} \lambda_j p_j$. Moreover, all the projections p_j may be chosen to represent the trivial class in $K_0(A)$.

Proof. Since A has real rank zero by [14, 4.1.1], the only thing left to show is that the projections may be chosen to be trivial in K-theory. Let $\varepsilon > 0$. Choose $n \in \mathbb{N}$, numbers $0 \le \lambda_0 \le \cdots \le \lambda_n \le 1$ and pairwise orthogonal projections $q_0, \ldots, q_n \in A$ as above without the K-theory assumption.

By [3, Section 1], we can find a non-trivial projection $\tilde{q}_n \leq q_n$ with $[\tilde{q}_n]_0 = 0 \in K_0(A)$, and set $p_n = \tilde{q}_n$. Now assume that $j \in \{1, \ldots, n\}$ is a number for which we have already constructed projections $\tilde{q}_n, \ldots, \tilde{q}_{n-j+1}$ and p_n, \ldots, p_{n-j+1} . Apply [3, Section 1] again to find a non-trivial projection $\tilde{q}_{n-j} \leq q_{n-j}$ such that $[\tilde{q}_{n-j}]_0 = -[q_{n-j+1} - p_{n-j+1}]_0 \in K_0(A)$, and set $p_{n-j} = \tilde{q}_{n-j} + q_{n-j+1} - p_{n-j+1}$. After n steps, we have constructed pairwise orthogonal projections p_0, \ldots, p_n , all being trivial in $K_0(A)$, such that

$$\sum_{j=0}^{n} \lambda_n (q_n - p_n) = \lambda_0 (q_0 - \tilde{q}_0) + \sum_{j=1}^{n} (\lambda_j - \lambda_{j-1}) (q_j - \tilde{q}_j).$$

Since h has full spectrum, we necessarily have $\lambda_0 \leq \varepsilon$ and $\lambda_j - \lambda_{j-1} \leq \varepsilon$ for all $j \in \{1, \ldots, n\}$. It follows that the above sum has norm at most ε . Hence $h =_{2\varepsilon} \sum_{j=0}^{n} \lambda_n p_n$. \square

As a consequence, we get:

Lemma 1.2. Let A be a unital, simple and purely infinite C*-algebra. Let $h_0, h_1 \in A$ be two positive contractions with full spectrum [0,1]. For every $\varepsilon > 0$, there is a unitary $u \in A$ with $h_1 =_{\varepsilon} uh_0 u^*$.

Proof. Let $\varepsilon > 0$. By 1.1, we can find numbers $k, n \in \mathbb{N}$, numbers $0 \le \lambda_0 \le \cdots \le \lambda_k \le 1$ and $0 \le \mu_0 \le \cdots \le \mu_n \le 1$, pairwise orthogonal projections p_0, \ldots, p_k and q_0, \ldots, q_n in A that are all trivial in $K_0(A)$, such that

$$\sum_{i=0}^{k} \lambda_i p_i =_{\varepsilon} h_0 \quad \text{and} \quad \sum_{j=0}^{n} \mu_j q_j =_{\varepsilon} h_1.$$

By breaking up projections, if necessary, we may assume that k=n and that $|\lambda_i - \mu_i| \leq \varepsilon$ for all $i=0,\ldots,n$. By breaking up the projections p_0,q_0 , if necessary, we may moreover assume that $\sum_{i=0}^n p_i \neq 1 \neq \sum_{i=0}^n q_i$.

It follows from [3, Section 1] that there exist partial isometries $v_0, \ldots, v_n, v \in A$ with

$$v^*v = \mathbf{1}_A - \sum_{j=0}^n p_j, \ vv^* = \mathbf{1}_A - \sum_{j=0}^n q_j$$

and

$$v_j^* v_j = p_j, \ v_j v_j^* = q_j \quad \text{for all } j = 0, \dots, n.$$

The element $u = v + v_0 + \cdots + v_n \in A$ then defines a unitary. We have

$$uh_0u^* =_{\varepsilon} u\left(\sum_{j=0}^n \lambda_j p_j\right)u^* = \sum_{j=0}^n \lambda_j up_j u^*$$

$$= \sum_{j=0}^n \lambda_j v_j \cdot v_j^* v_j \cdot v_j^* = \sum_{j=0}^n \lambda_j q_j$$

$$=_{\varepsilon} \sum_{j=0}^n \mu_j q_j =_{\varepsilon} h_1.$$

This finishes the proof. \Box

Lemma 1.3. Let A be a unital, simple and purely infinite C^* -algebra. Let $\omega \in \beta \mathbb{N} \setminus \mathbb{N}$ be a free ultrafilter. Let $h_0, h_1 \in A_\omega$ be two positive contractions with full spectrum [0,1]. Then h_0 and h_1 are unitarily equivalent.

Proof. Since A_{ω} is again simple and purely infinite, this follows directly from 1.2 and a standard reindexation argument. \square

The main technical observation of this section is the following:

Proposition 1.4. Let A be a separable C^* -algebra with a positive element $e \in A$ of norm 1. Let $\omega \in \beta \mathbb{N} \setminus \mathbb{N}$ be a free ultrafilter. Then there exist two c.p.c. order zero maps $\varphi_0, \varphi_1 : A \to (\mathcal{O}_{\infty})_{\omega}$ with $\varphi_0(e) + \varphi_1(e) = \mathbf{1}$.

Proof. By a result of Voiculescu [19], the cone over A is quasidiagonal. Hence we can find a *-monomorphism $\kappa: \mathcal{C}_0((0,1],A) \to \mathcal{Q}_{\omega}$, where \mathcal{Q} is the universal UHF algebra. By choosing some (necessarily non-unital) embedding $\mu: \mathcal{Q} \to \mathcal{O}_{\infty}$, the composition

 $[\]overline{}^2$ For example, this can be a composition of some non-unital embedding $\mathcal{O}_2 \hookrightarrow \mathcal{O}_\infty$ and some unital embedding $\mathcal{Q} \hookrightarrow \mathcal{O}_2$, which exists by [10, 2.8].

 $\psi_0 = \mu_\omega \circ \kappa : \mathcal{C}_0((0,1], A) \to (\mathcal{O}_\infty)_\omega$ is a *-monomorphism. The positive element $h = \psi_0(\mathrm{id}_{[0,1]} \otimes e) \in (\mathcal{O}_\infty)_\omega$ then has full spectrum [0,1].

Applying 1.3, we find a unitary $u \in (\mathcal{O}_{\infty})_{\omega}$ with $uhu^* = \mathbf{1} - h$. Then $\psi_1 = \mathrm{Ad}(u) \circ \psi_0$: $\mathcal{C}_0((0,1],A) \to (\mathcal{O}_{\infty})_{\omega}$ is also a *-monomorphism. This gives rise to two c.p.c. order zero maps $\varphi_0, \varphi_1 : A \to (\mathcal{O}_{\infty})_{\omega}$ via $\varphi_i(x) = \psi_i(\mathrm{id}_{[0,1]} \otimes x)$ for all $x \in A$ and i = 0, 1. We then have

$$\varphi_0(e) + \varphi_1(e) = h + uhu^* = 1,$$

as required. \Box

As a consequence, we get a general nuclear dimension estimate for \mathcal{O}_{∞} -stable C*-algebras that generalizes [1, 3.3]:

Corollary 1.5. Let A be a C*-algebra and B a non-zero, separable, \mathcal{O}_{∞} -stable C*-algebra. Then

$$\dim_{\text{nuc}}^{+1}(A \otimes \mathcal{O}_{\infty}) \leq 2 \dim_{\text{nuc}}^{+1}(A \otimes B).$$

Proof. Let $d = \dim_{\text{nuc}}(A \otimes B)$. Since B is assumed to be \mathcal{O}_{∞} -absorbing, we may also assume without loss of generality that A is \mathcal{O}_{∞} -absorbing. We may certainly also assume that A is nuclear, as there is otherwise nothing to show. By [17, 2.5, 2.6], it suffices to find an estimate for the nuclear dimension of the embedding $(\mathrm{id}_A \otimes \mathbf{1})_{\omega} : A \to (A \otimes \mathcal{O}_{\infty})_{\omega}$.

So let $F \subset A$ and $\varepsilon > 0$ be arbitrary. As B is non-zero, we can find some positive contraction $e \in B$ of norm 1. Apply 1.4 to find two c.p.c. order zero maps $\varphi_0, \varphi_1 : B \to (\mathcal{O}_{\infty})_{\omega}$ with $\varphi_0(e) + \varphi_1(e) = \mathbf{1}$. By the definition of d, we can find a finite-dimensional C*-algebra \mathcal{F} , a c.p.c. map $\mu : A \otimes B \to \mathcal{F}$ and c.p.c. order zero maps $\kappa^{(0)}, \ldots, \kappa^{(d)} : \mathcal{F} \to A \otimes B$ with

$$x \otimes e =_{\varepsilon} \sum_{j=0}^{d} \kappa^{(j)} \circ \mu(x \otimes e)$$
 for all $x \in F$.

Define the c.p.c. map $\Psi: A \to \mathcal{F}$ via $\Psi(x) = \mu(x \otimes e)$. Moreover, define for all i = 0, 1 and $j = 0, \ldots, d$ the c.p.c. order zero map $\Phi^{(i,j)}: \mathcal{F} \to (A \otimes \mathcal{O}_{\infty})_{\omega}$ via $\Phi^{(i,j)} = (\mathrm{id}_A \otimes \varphi_i) \circ \kappa^{(j)}$. Then we have

$$\sum_{i=0,1} \sum_{j=0}^{d} \Phi^{(i,j)} \circ \Psi(x) = \sum_{i=0,1} (\mathrm{id}_A \otimes \varphi_i) \left(\sum_{j=0}^{d} \kappa^{(j)} \circ \mu(x \otimes e) \right)$$
$$=_{2\varepsilon} \sum_{i=0,1} x \otimes \varphi_i(e) = x \otimes \mathbf{1}$$

for all $x \in F$. This yields a 2(d+1)-coloured decomposition of the map $(\mathrm{id}_A \otimes \mathbf{1})_{\omega} : A \to (A \otimes \mathcal{O}_{\infty})_{\omega}$ through finite-dimensional C*-algebras and finishes the proof. \square

2. \mathcal{O}_{∞} -stable C*-algebras have finite nuclear dimension

In this section, we prove our main result. This will be a consequence of the estimate 1.5, together with a deep structural result of Kirchberg and Rørdam from [12]. Let us now recall some of these results:

Definition 2.1 (see [15]). Let $\{t_n\}_{n\in\mathbb{N}}\subset[0,1)$ be a dense sequence. For every n, define the *-homomorphism

$$\varphi_n: \mathcal{C}_0([0,1), M_{2^n}) \to \mathcal{C}_0([0,1), M_{2^{n+1}})$$

via

$$\varphi_n(f)(t) = \operatorname{diag}\left(f(t), f\left(\max(t, t_n)\right)\right) \text{ for all } t \in [0, 1).$$

Set
$$\mathcal{A}_{[0,1]} = \lim_{\longrightarrow} \{\mathcal{C}([0,1), M_{2^n}), \varphi_n\}.$$

In [12], Kirchberg and Rørdam have shown a deep structural result for separable, nuclear, strongly purely infinite C*-algebras that are homotopic to zero in an ideal-system preserving way. An interesting consequence of this observation is that tensoring a given nuclear C*-algebra with $\mathcal{A}_{[0,1]}$ yields an AH₀ algebra with low dimension:

Theorem 2.2 (see [12, 5.12, 6.2]). For every non-zero, separable, nuclear C*-algebra B, the C*-algebra $B \otimes \mathcal{A}_{[0,1]}$ is an AH₀ algebra of topological dimension one. In particular, the decomposition rank of $B \otimes \mathcal{A}_{[0,1]}$ is one.

Combining this structural result with our nuclear dimension estimate from the previous section, we obtain our main result:

Theorem 2.3. Let A be a separable, nuclear C*-algebra. Then the nuclear dimension of $A \otimes \mathcal{O}_{\infty}$ is at most three.

Proof. The C*-algebra $\mathcal{A}_{[0,1]}$ is \mathcal{O}_{∞} -stable by [15, 5.3]. So combining 1.5 and 2.2, we get

$$\dim_{\mathrm{nuc}}^{+1}(A\otimes\mathcal{O}_{\infty})\leq 2\dim_{\mathrm{nuc}}^{+1}(A\otimes\mathcal{A}_{[0,1]})\leq 4.$$

This shows our claim. \Box

Remark 2.4. At first glance, it might appear that 2.2 (and therefore 2.3) depends on Kirchberg's classification [8] of non-simple, strongly purely infinite C*-algebras. However,

Kirchberg's classification theorem is only used in [12] to deduce that $\mathcal{A}_{[0,1]}$ (or more generally any separable, nuclear, strongly purely infinite C*-algebras homotopic to zero in an ideal system-preserving way) is in fact \mathcal{O}_2 -absorbing. While this is an important ingredient in verifying the AH₀-structure of the C*-algebras in question, one can refrain from appealing to classification by weakening the statement in 2.2 to $dr(B \otimes \mathcal{A}_{[0,1]} \otimes \mathcal{O}_2) = 1$ for all non-zero, separable, nuclear C*-algebras B. In particular, this weaker statement can be proved exclusively with the methods from [12], without classification, and is sufficient to deduce our main result 2.3.

References

- S. Barlak, D. Enders, H. Matui, G. Szabó, W. Winter, The Rokhlin property vs. Rokhlin dimension 1 on unital Kirchberg algebras, J. Noncommut. Geom. 9 (4) (2015) 1383–1393.
- [2] J. Bosa, N. Brown, Y. Sato, A. Tikuisis, S. White, W. Winter, Covering dimension of C*-algebras and 2-coloured classification, Mem. Amer. Math. Soc. (2016), in press, http://arxiv.org/abs/1506.03974.
- [3] J. Cuntz, K-theory for certain C*-algebras, Ann. of Math. 113 (1981) 181–197.
- [4] G.A. Elliott, G. Gong, H. Lin, Z. Niu, On the classification of simple C*-algebras with finite decomposition rank, II, http://arxiv.org/abs/1507.03437, 2015.
- [5] G.A. Elliott, Z. Niu, On the classification of simple unital C*-algebras with finite decomposition rank, in: Operator Algebras and Their Applications: A Tribute to Richard V. Kadison, in: Contemporary Mathematics, Amer. Math. Soc., Providence, RI, 2016.
- [6] G.A. Elliott, A.S. Toms, Regularity properties in the classification program for separable amenable C*-algebras, Bull. Amer. Math. Soc. 45 (2008) 229–245.
- [7] G. Gong, H. Lin, Z. Niu, Classification of simple amenable Z-stable C*-algebras, http://arxiv.org/abs/1501.00135, 2015.
- [8] E. Kirchberg, The classification of purely infinite C*-algebras using Kasparov's theory, preprint, 2003.
- [9] E. Kirchberg, Central sequences in C*-algebras and strongly purely infinite algebras, in: Operator Algebras: The Abel Symposium, vol. 1, 2004, pp. 175–231.
- [10] E. Kirchberg, N.C. Phillips, Embedding of exact C*-algebras in the Cuntz algebra O₂, J. Reine Angew. Math. 525 (2000) 17–53.
- [11] E. Kirchberg, M. Rørdam, Infinite non-simple C*-algebras: absorbing the Cuntz algebra O_∞, Adv. Math. 167 (2002) 195–264.
- [12] E. Kirchberg, M. Rørdam, Purely infinite C*-algebras: ideal-preserving zero homotopies, Geom. Funct. Anal. 15 (2) (2005) 377–415.
- [13] L. Robert, A. Tikuisis, Nuclear dimension and Z-stability for non-simple C*-algebras, Trans. Amer. Math. Soc. (2015), in press, http://arxiv.org/abs/1308.2941.
- [14] M. Rørdam, Classification of Nuclear C*-Algebras, Encyclopaedia of Mathematical Sciences, Springer, 2001.
- [15] M. Rørdam, A purely infinite AH-algebra and an application to AF-embeddability, Israel J. Math. 141 (2004) 61–82.
- [16] A. Tikuisis, S. White, W. Winter, Quasidiagonality of nuclear C*-algebras, Ann. of Math. (2016), in press, http://arxiv.org/abs/1509.08318.
- [17] A. Tikuisis, W. Winter, Decomposition rank of Z-stable C*-algebras, Anal. PDE 7 (2014) 673–700.
- [18] A.S. Toms, W. Winter, Strongly self-absorbing C*-algebras, Trans. Amer. Math. Soc. 359 (8) (2007) 3999–4029.
- [19] D. Voiculescu, A note on quasi-diagonal C*-algebras and homotopy, Duke Math. J. 62 (2) (1991) 267-271.
- [20] W. Winter, Decomposition rank and Z-stability, Invent. Math. 179 (2) (2010) 229–301.
- [21] W. Winter, J. Zacharias, The nuclear dimension of C*-algebras, Adv. Math. 224 (2) (2010) 461–498.