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ABSTRACT

Ultrasonic phased array systems are becoming increasingly popular
as tools for the inspection of safety-critical structures within the
non-destructive evaluation industry. The data-sets captured by these
arrays can be used to image the internal structure of individual
components, allowing the location and nature of any defects to
be deduced. Although there exist strict procedures for measuring
defects via these imaging algorithms, sizing flaws which are smaller
than two wavelengths in diameter can prove problematic and the
choice of threshold at which the defect measurements are made
can introduce an aspect of subjectivity. This paper puts forward
a completely objective approach specific to cracks based on the
Kirchhoff scattering model and the approximation of the resulting
scattering matrices by Toeplitz matrices. A mathematical expression
relating the crack size to the maximum eigenvalue of the associated
scatteringmatrix is derived. Analysis of this approximation shows that
the method will provide a unique crack size for a given maximum
eigenvalue whilst providing a quick calculation method which avoids
the need to numerically generate model scattering matrices (the

computation time is up to 103 times faster). A sensitivity analysis
demonstrates that the method is most effective for sizing defects
that are commensurate with or smaller than the wavelength of the
ultrasonic wave. The method is applied to simulated FMC data arising
fromfinite element calculationswhere the crack length towavelength
ratios range between 0.6 and 1.9. The recovered objective crack size
exhibits an error of 12%.
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1. Introduction

Non-destructive evaluation (NDE) is the name given to the group of techniques employed

to inspect safety critical structures non-invasively. Such structures include oil rigs, nuclear

power stations and aircraft [1]. The development of NDE is essential as the detection and

characterization of flaws in such structures can prevent catastrophic failure. Additionally,

it is a cost-effective approach as components need only be replaced when a defect occurs
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within them. Some commonNDE technologies include industrial radiography [2], electro-

magnetic testing [3], laser inspection [4], liquid penetrant testing and ultrasonic testing [5].

Ultrasonic testing is the most widely applicable of these techniques as it is comparatively

inexpensive, portable and it can be used for sizing internal defects of various shapes and

sizes [6]. Piezoelectric transducers [7] are the most widely used and contain an active

piezoelectric element which converts the electrical pulse into mechanical energy (and vice

versa). The elastic wave is emitted from the transducer and travels through the component

under inspection. The wave is then reflected and scattered from any obstacles within the

component before being received by the transducer. In recent years there has been an

increase in the use of ultrasonic arrays for NDE inspections [8–10]. An ultrasonic array

is a single transducer that is comprised of a number of piezoelectric elements (typically

between 64 and 256), where each element acts as both a transmitter and a receiver. There

are several advantages of arrays to conventional ultrasonic probes (a device which contains

only a single element); they cover a larger inspection area thus reducing the time taken

to conduct an inspection and they can be used to produce a range of ultrasonic fields

such as plane, focused and steered beams. The full set of time domain transmitted and

received signals recorded by an ultrasonic array is referred to as the Full Matrix Capture

(FMC) data [11]. This is a three-dimensional (transmitting element, receiving element

and time) data block and is generated by firing an ultrasonic wave through one element

and then receiving the reflected signal across the entire array. This process is repeated for

each element until the entire set of signals is recorded to form the FMC data-set. Once the

FMCdata has been collected, post processing algorithms are applied to extract information

associated with a flaw, presenting a difficult inverse scattering problem. Considerable effort

has been expended in developing imaging techniques to characterize internal defects via the

exploitation of these FMC data-sets (or their equivalent in other fields) [12–14]. However,

even for the simplest of planar crack defects, an element of subjectivity is introduced

using such imaging techniques to size objects (particularly those which measure less than

two wavelengths), due to their reliance on the choice of imaging threshold at which the

defect measurements are taken. Thus exploring the analytical inversion of a scattered

field for the purposes of shape reconstruction [15] presents an attractive alternative as

the measurements obtained are objective. Such work has previously been carried out in

[16], where analysis of the solution to the direct problem of high-frequency scattering

by a crack was analysed and it was shown that by application of Fourier-type inversion

integrals to scattering data, the inverse problem can be solved for the case where the plane

in which the crack lies is known a priori. In [17], the Kirchoff model and Geometric

Theory of Diffraction models are used to compare the pulse-echo scattered signals of

smooth planar cracks over a range of angles. The Kirchoff model is again exploited in

[18], where it is used in conjunction with the Born approximation to develop a defect

classification method, differentiating between volumetric flaws and cracks. More recent

work exploits the development of ultrasonic phased arrays, which allow a wider range of

incident/scattered wave angles to be interrogated systematically. The work carried out in

[19–21] exploits this development in technology by using frequency domain scattering

matrices to obtain objective crack length measurements.

In this paper a novel approach to crack-sizing is introduced which utilizes the spectral

information contained within these scattering matrices. Despite having an interest in

subwavelength flaws, which are associated with the low frequency regime, the method is
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based on the Kirchhoff scatteringmodel, a high-frequency approximation to the scattering

of a linear elastic wave from an ellipsoid within a homogeneous medium. This allows

potential generalization of the technique to larger flaws (which are of course more struc-

turally damaging) whilst remaining valid in our regime of interest (it is well known that

high frequency approximations work well even when the high frequency assumptions are

relaxed). Thus we can study the case where the flaw is commensurate with the wavelength,

straddling both the low and high frequency regimes. This paper focuses on the simplest

case of a single planar crack flaw as this is obviously the most important case to consider

first; even this case can benefit from removing any subjectivity from the crack sizing. By

restricting attention to the case where a crack (approximated by an ellipse) lies parallel

to the array, the model scattering matrices can be approximated by Toeplitz matrices

and an expression relating the crack size to the maximum eigenvalue of the associated

scattering matrix is thus derived. Using a series of further approximations it is shown that

for subwavelength flaws a linear approximation is valid. This of course allows us to uniquely

determine the flaw size for a given maximum eigenvalue and provides a very efficient

inversion algorithm where the need to generate model scattering matrices is replaced with

the calculation of a single value (decreasing the computation time by up to a factor of 103).

The formula is analysed numerically to assess its sensitivity to the system parameters and

is finally applied to simulated FMC data arising from finite element calculations.

2. The Kirchhoffmodel and scatteringmatrices

The Kirchhoff model is used to provide a high frequency approximation to the scattering

of a linear elastic wave from a crack in a homogeneous medium. The signals scattered

from a crack in the host material are represented in the frequency domain by scattering

matrices, which are a function of the transmitted and received waves. An analytical form

for the scattering amplitude can be derived by assuming that the flaw is an ellipsoid with

dimensions a1, a2 and a3. To simulate a zero volume flaw (a crack) in the x1 = 0 plane,

the ellipsoidal axis a1 is set equal to zero and the ultrasonic waves emanating from the

array lie in the plane x3 = 0. The flaw is positioned so that its centre lies at the origin. An

expression for the scattering amplitude of an ellipsoidal crack by a transmitted pressure

wave in a homogeneous elastic medium is then given by (equation (10.168), [22])

An(ei, es) = −
ia2a3eslesnesjCkplj(eip − erp)nk

2ρc2|ei − es|re
J1

(2π

λ
|ei − es|re

)

(1)

where ei and es are the unit vectors in the transmitting and receiving direction of the

ultrasonicwave. It is important to note that in this paper only pressurewaves are considered

(it has been shown that studying only the first arriving scattered longitudinal waves is

enough to obtain information pertaining to the crack length [16]). The unit vector er
represents the direction of the specular reflection from the crack; the specular reflection is

in the direction of themaximum amplitude reflected wave. The angle between the specular

reflection direction and the normal to the crack is equal to that between the direction of

the transmitted wave and the normal. In addition, c is the wave speed for a pressure wave,

ρ is the host material density, λ is the wavelength of the transmitted pressure wave, Ckplj is

the elastic modulus tensor and J1 is the Bessel function of the first kind of order 1. Letting
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eq = (ei − es)/|ei − es| and u2, u3 be the unit vectors along the x2, x3 axis, respectively, the
effective radius of the crack, re, can be defined by

re =
√

a22(eq · u2)2 + a23(eq · u3)2 = a2|eq · u2| (2)

since ei and es are perpendicular to u3. In an isotropic, homogeneous medium the elastic

modulus tensor in Equation (1) reduces to Ckplj = Lδkpδlj + µ(δklδpj + δkjδpl), where L

and µ are the Lamé co-efficients, and (1) can be rewritten as

An(ei, es) = − ia2esn(L((ei − er) · n) + 2µ((ei − er) · es)(es · n))

2ρc2|(ei − es) · u2|
× J1

(2πa2

λ
|(ei − es) · u2|

)

, (3)

where the scale factor a3 has been dropped and the scattering amplitude has been converted

into a scalar value by taking the scalar product with the direction of reception, es. The

transmit and receive wave directions can be defined at a discrete set of values and if these

completely surround the flaw it is called full aperture. By calculating the absolute value of

the scattering amplitude given in Equation (3) for every possible pair of transmitting and

receiving angles (at a fixed frequency), a scattering matrix can be constructed, with the

largest entries occurring close to the specular reflection.

3. Approximation to a limited aperture ultrasonic array

The Kirchhoff model provides the response from a full aperture, circular array. However,

in this work the circular array is replaced by a discretized linear array (a limited aperture)

as this is all that can be measured in practice. The approximation to a linear array allows

the expression for the scattering matrices given by Equation (3) to be parameterized. The

unit vector in the receiving direction for the nth element in the ultrasound array is given

by

e(n)s = d
√

d2 + y2n
i + qn

√

d2 + q2n
j =

√

1 − q̂2ni + q̂nj, (4)

where d is the minimum distance between the centre of the flaw and the ultrasound array

(it is assumed here that the flaw is located centrally below the array), qn dictates the element

position,

qn = △q

2
(N + 1 − 2n), (5)

where N is the total number of elements in the ultrasound array and the periodicity of the

array elements (the pitch) is given by

△q = l

N − 1
, (6)

where l is the array length (aperture) as shown in Figure 1. In the analysis below, it is

assumed that N is even and that the array elements are evenly spaced (that is the array

pitch �q is constant). The forthcoming analysis is simplified if q̂n is approximated as a
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Figure 1. A schematic demonstrating the geometry of the linear array. The unit vector e
(n)
s is in the

receiving direction for array element n on the array, e
(1)
i is the transmit vector from element 1 and e

(1)
r

is the resulting specular refection (the angle θ between e
(1)
i and the normal n is the same as the angle

between e
(1)
r and the normal n). The array is of length l, the flaw is at a depth d from the array and △q

gives the pitch between the array elements. The values qi on the y-axis relate to the position of element
i = 1, . . . ,N relative to the origin at the crack centre.

linear function of n. Combining Equations (4)–(6) then

q̂n = l
√

4d2 + l2(1 − h(n))2

N + 1 − 2n

N − 1
, (7)

where h(n) = 2(n − 1)/(N − 1). The denominator in the expression for q̂n in (7) is

manipulated further to give

q̂n = l√
4d2 + l2

N + 1 − 2n

N − 1

1√
1 − α

, (8)

whereα = l2(2h−h2)/(4d2+l2). Since 0 ≤ h(n) ≤ 2 for n = 1, . . . ,N then 0 ≤ 2h−h2 ≤
1, and since 0 < l2/(4d2+ l2) < 1, then α is small. A Taylor series approximation is applied

to Equation (8) to approximate q̂n by q̂n = ŷn + O(α) where ŷn = �y(N + 1 − 2n)/2

and �y = 2l/((N − 1)
√
4d2 + l2). Note that in the NDE regime where the quantity

l/(N − 1) (the array pitch) is of the order 10−3, it holds that �y < 1. Additionally, as an

approximation to q̂n, ŷn ≤ 1 (these assumptions are used in the forthcoming analysis).

From Equation (4) the transmitting (on element m) and receiving (on element n) unit
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vectors are therefore given by

e
(m)
i = −

√

1 − ŷ2mi − ŷmj, m = 1, . . . ,N , (9)

and

e(n)s =
√

1 − ŷ2ni + ŷnj, n = 1, . . . ,N . (10)

By restricting attention to the case where the flaw is orientated to lie along the x2 axis

(i.e. the flaw lies parallel to the ultrasonic array) the specular reflection (denoted by the

subscript r) can be written as

e(m)
r =

√

1 − ŷ2mi − ŷmj, m = 1, . . . ,N , (11)

mirroring the angle of the incident wave with respect to the crack normal. Finally, since

the flaw lies on the x2 axis (that is u2 = j and n = i), Equation (3) becomes

A(ŷm, ŷn) =
√

1 − ŷ2m
ρc2|ŷn + ŷm| (L + 2µ(1 − ŷ2n))J1

(

2π â2|ŷn + ŷm|
)

(12)

where â2 = a2/λ is the crack radius to wavelength ratio. In the next section a crack sizing

method is developed which relates the maximum eigenvalue of the scattering matrix A to

the length of the crack.

4. Crack sizing using themaximum eigenvalue

It is clear from empirical observations that there is a relationship between the size of the

crack and the form of the scattering matrix [20]. It would therefore be advantageous if an

analytical approach could be developed to capture this correlation. From the scattering

matrix in Figure 2(a) it can be seen that the dominant values aggregate around the

skew diagonal. A diagonal-constant matrix is known as a Toeplitz matrix and there is

a considerable body of research concerning these special matrices [23–26]. In an effort to

benefit from this body of work, the scattering matrix, A, given by Equation (12), will be

approximated by a Toeplitz matrix. First, the matrix A is transformed to AT via

AT(ŷm′ , ŷn) = A(ŷm, ŷn) where m′ = N − m + 1 (13)

so that the dominant values accumulate around the main diagonal as shown in Figure 2(b)

(this is equivalent to reflecting the matrix entries about a vertical axis centred on the

central column). The transformed scatteringmatrix,AT , will be approximated by aToeplitz

matrix where the row containing the maximum value of AT(ŷm, ŷn) is used to create the

approximation, ĀT . This row is highlighted by the hollow squares in the transformed

matrix, AT , in Figure 2(b). This right-most half row (N/2 entries) is then used as the

generator of a Toeplitz matrix. The resulting matrix is shown in Figure 2(c). To begin we

observe that in Equation (12) the term

J1
(

2π â2(ŷn + ŷm)
)

ŷn + ŷm
(14)
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(a) (b) (c)

Figure 2. The original scattering matrix, A (Equation (12), is shown in (a). The transformed matrix AT
(Equation (13)) is shown in (b) where the hollow squares highlight the section of the rowwhich is used to
construct the Toeplitz approximation. This is the row where the maximum occurs at n = m = N/2 + 1.
The black lines highlight the rows which are shown to be approximately equal to the portion of the row
where the maximum occurs. Matrix (c) shows the Toeplitz matrix, ĀT , constructed using the row where
the maximum occurs.

obtains its maximum when ŷn + ŷm = 0. The prefactor to the Bessel function in Equation

(12) is given by
√

1 − ŷ2m(L + 2µ(1 − ŷ2n′)), (15)

and, since 0 ≤ ŷ2m, ŷ
2
n ≤ 1 (see Section 3), is also maximized when ŷm = ŷn = 0. As the

array is centred on the x1-axis, this means that ŷm = ŷn = 0 corresponds to the centre of

the array. If N is odd then the central element is given by n = m = (N + 1)/2 and if N is

even then the smallest value is ŷm = ŷn = −△y/2 which occurs at n = m = N/2 + 1. In

what follows the focus will be on the case whereN is even (the analysis is virtually identical

for the case where N is odd) and so we will take this row of A (and hence AT ) to form our

Toeplitz approximation. Substituting ŷm = −△y/2 into Equation (12) gives the first N/2

entries in the first row of the Toeplitz matrix ĀT as

ĀT(ŷp) =
2
√

1 − △y2/4(L + 2µ(1 − ŷ2p))

ρc2(2ŷp − △y)
J1

(

2π â2

(

ŷp − △y

2

)

)

, (16)

where p = N/2 + 1, . . . ,N ; this row is highlighted in the scattering matrix shown in

Figure 2(b). The remaining terms in the first row of ĀT are set equal to zero (that is

ĀT(ŷj) = 0, j = N/2 + 1, . . . ,N , see Figure 2(c)). Note that the absolute value present in

Equation (12) has been removed since ŷp−△y/2 < 0 and−3.8317 < 2π â2(ŷp−△y/2) < 0

in our regime of interest and so it follows that J1(2π â2(ŷp − △y/2)) < 0.

4.1. An approximation for the maximum eigenvalue of the Toeplitz form of the

scatteringmatrix

In the forthcoming section an approximation which relates the crack radius to wavelength

ratio, â2 = a2/λ, to the maximum eigenvalue σmax of the Toeplitz matrix used to

approximate to the scatteringmatrix is derived. Thismaximumeigenvalue is approximated
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using an upper bound, σB, which is given by [27]

σB = (ĀT)1 · w (17)

where (ĀT)1 denotes thefirst rowof thematrix (ĀT)1 = ((ĀT)1,1, |(ĀT)1,2|, . . . , |(ĀT)1,N |),
w = (1,w2, . . . ,wN ) with

wk = 2 cos

(

π
⌊

N−1
k−1

⌋

+ 2

)

, k = 2, . . . ,N , (18)

and ⌊.⌋ denotes the floor function. The first row of the Toeplitz matrix, ĀT(ŷp), is given

by Equation (16) and when substituted into Equation (17) the maximum eigenvalue

approximation can be written

σB = ĀT(ŷN/2+1) +
N

∑

t=N/2+2

|AT (ŷt)|wt

= ĀT(ŷN/2+1) +
N

∑

t=N/2+2

Ft(â2)
J1

(

2π â2
(

ŷt − △y/2
))

2π â2
(

ŷt − △y/2
) wt , (19)

where

wt = 2 cos

(

π
⌊ 2(N−1)
2t−2−N

⌋

+ 2

)

, (20)

with k = t − N/2, and the prefactor is given by

Ft(â2) = 2π â2
√

1 − (△y)2/4

ρc2
(L + 2µ(1 − ŷ2t )). (21)

In order to view the explicit dependency of σB on â2 it is necessary tomake approximations

to the expression within the summation in Equation (19). The Bessel function within

Equation (19) is approximated by

J1
(

2π â2
(

ŷt − △y/2
))

2π â2
(

ŷt − △y/2
) =

{

f
(1)
t (â2) if N/2 + 2 ≤ t ≤ t∗

f
(2)
t (â2) if t∗ + 1 ≤ t ≤ N

where the approximation for small arguments [28] is used to give

f
(1)
t (t, â2) ≈ 1

2

(

1 − 1

4

(

π â2

(

ŷt − △y

2

))2
)

, (22)

and for large arguments [28]

f
(2)
t (t, â2) ≈ 1

2π2

(

â2

(

ŷt − △y

2

))− 3
2

cos
(

2π â2

(

ŷt − △y

2

)

− 3π

4

)

. (23)

The index t∗ determines when the argument of the Bessel function converts from small

values to large values (an expression for t∗ can be determined as a function of the system
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parameters and â2 [29] ). Evaluating Equation (16) at p = N/2 + 1 gives

ĀT

(

−△y

2

)

= FN/2+1(â2) =
2â2π

√

1 − (△y)2/4
(

L + 2µ
(

1 − (△y)2/4
))

ρc2
, (24)

where 0 < △y < 1. The approximation to Equation (19) is split into two summations and

is therefore given by

σB ≈ FN/2+1(â2) +
t∗

∑

t=N/2+1

Ft(â2)f
(1)
t (â2)wt +

N
∑

t=t∗+1

Ft(â2)f
(2)
t (â2)wt . (25)

Further approximations are applied to Equation (23) to allow σB to be expressed in terms

of a polynomial in t. This will be useful later where the aim is to extract the parameter â2 in

order to obtain an explicit expression which relates σB to â2. Let f
(2)
t (â2) = s

(1)
t (â2)s

(2)
t (â2)

where

s
(1)
t (â2) = 1

π2

( 2

â2△y(N − 2t)

)
3
2

(26)

and

s
(2)
t (â2) = cos

(

π â2△y(N − 2t) − 3π

4

)

. (27)

By taking Taylor series expansions of these expressions around the pointm = (t∗ +N)/2

(the midpoint between t∗ and N), we yield the approximations

s̄
(1)
t (â2,m) = 1

2π2

(

1

â2△y(N − 2m)

)3/2 (

1 + 3

N − 2m
(t − m)

)

(28)

and

s̄
(2)
t (â2,m) = cos

(

π â2△y(N − 2m) − 3π

4

)

(

1 − 2
(

â2π△y(t − m)

)2
)

+ sin
(

π â2△y(N − 2m) − 3π

4

)

(

−2â2π△y(t − m) + 4

3

(

â2π△y(t − m)

)3
)

.

(29)

We now approximate f
(2)
t by

f̄
(2)
t (â2,m) = s̄

(1)
t (â2,m)s̄

(2)
t (â2,m). (30)
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Substituting Equations (28) and (29) into Equation (25) gives an approximate expression

for σB:

σB ≈ FN/2+1(â2) +
t∗

∑

t=p+1

Ft(â2)f
(1)
t wt

+
N

∑

t=t∗
Ft(â2)s̄

(1)
t (â2,m)s̄

(2)
t (â2,m)wt . (31)

Finally, wt given by Equation (20) is approximated by a linear function. First the floor

function within the cosine in Equation (18) is dropped (a justification is given in [29]) to

give

wt = 2 cos

(

π(2t − 2 − N)

2(2t − 3)

)

. (32)

The function is then approximated by a Taylor series about 3N/4 (the midpoint in the

range t = N/2 + 1 to t = N) to give

w̄t(N) = 2 cos

(

π(N − 4)

6(N − 2)

)

−
8π(N − 1)

(

t − 3N/4
)

9(N − 2)2
sin

(

π(N − 4)

6(N − 2)

)

. (33)

This is substituted into Equation (31) to obtain

σB = FN/2+1(â2)

+
t∗

∑

t=N/2+2

Ft(â2)f
(1)
t w̄t(N)

+
N

∑

t=t∗
Ft(â2)s̄

(1)
t (â2,m)s̄

(2)
t (â2,m)w̄t(N). (34)

The first summation in Equation (34) involves the product of three terms. Since yt is a

linear function of the index t then from Equation (21) Ft(â2) is a quadratic function in

t, from Equation (22) f
(1)
t is a quadratic function in t, and from Equation (33) w̄t(N)

is a linear function of t. Therefore, this first summation is a fifth order polynomial in

t. Similarly, the second summation in Equation (34) involves the product of four terms.

From Equation (28) s̄
(1)
t is linear in t, and from Equation (29) s̄

(2)
t is cubic in t, and so this

second summation is a seventh order polynomial in t. Hence this allows σB to be expressed

in the following form

σB = Ââ2 +
6

∑

l=1

S
(1)
l (â2)bl(â2) +

8
∑

l=1

S
(2)
l (â2)dl(â2), (35)
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where

Â =
π

√

(1 − △y2/4)(L + 2µ
(

1 − △y2/4
)

)

ρc2
, (36)

S
(1)
l (â2) =

t∗
∑

t=N/2+2

t l−1, S
(2)
l (â2) =

N
∑

t=t∗+1

t l−1, (37)

and bl and dl are functions of â2. Since t
∗ is a function of â2 then to derive an equation

where the dependency on â2 is explicit, it is necessary to rewrite these summations so that

t∗ does not appear as a limit. Using a closed form expression for the sum to n terms of tp

[30] then

S
(1)
l (â2) = (t∗ + 1)l

l
+

l
∑

k=1

Bk

l − k

(

l − 1

k

)

(t∗ + 1)l−k − (N/2 + 2)l

l

−
l

∑

k=1

Bk

l − k

(

l − 1

k

) (

N

2
+ 2

)l−k

(38)

and

S
(2)
l (â2) = (N + 1)l

l
+

l
∑

k=1

Bk

l − k

(

l − 1

k

)

(N + 1)l−k − (t∗ + 1)l

l

−
l

∑

k=1

Bk

l − k

(

l − 1

k

)

(

t∗ + 1
)l−k

(39)

where Bk is the kth Bernoulli number. The coefficients bl are expressed in terms of a

polynomial function in â2 as bl(â2) = b
(1)
l â2 + b

(2)
l â32 where b

(1)
l and b

(2)
l are functions

of the number of elements in the array, N , △y, Lamé coefficients L and µ, wave speed c

and material density ρ. The dependency on â2 is extracted from the first summation in

Equation (35) to give

6
∑

l=1

S
(1)
l (â2)bl(â2) =

6
∑

l=1

S
(1)
l (â2)(b

(1)
l â2 + b

(2)
l â32)

= â2Ŝ1(â2) + â32Ŝ2(â2) (40)

where

Ŝ1(â2) =
6

∑

l=1

S
(1)
l (â2)b

(1)
l and Ŝ2(â2) =

6
∑

l=1

S
(1)
l (â2)b

(2)
l . (41)



12 L. J. CUNNINGHAM ET AL.

The coefficients dl are extracted from the second summation in Equation (35) and are of

the form

dl(â2) = B(â2)

(

((d
(0)
l + d

(1)
l â2 + d

(2)
l â22 + d

(3)
l â32 + d

(4)
l â42) cos (p(â2))

+ (d
(5)
l + d

(6)
l â2 + d

(7)
l â22 + d

(8)
l â32 + d

(9)
l â42) sin (p(â2))

)

, (42)

where

B(â2) =
(

1

π â2△y(2N − 2t∗ − 3)

)5/2

, (43)

and

p(â2) = π

4
+ â2π△yt∗. (44)

The second summation in the expression for σB, Equation (35), can now be expressed in

the form

8
∑

l=1

S
(2)
l (â2)dl(â2) = B

8
∑

l=1

S
(2)
l (â2)

(

(d
(0)
l + â2d

(1)
l + â22d

(2)
l + â32d

(3)
l + â42d

(4)
l ) cos (p(â2))

+ (d
(5)
l + â2d

(6)
l + â22d

(7)
l + â32d

(8)
l + â42d

(9)
l ) sin (p(â2))

)

= Ŝ3(â2) cos (p(â2)) + Ŝ4(â2) sin (p(â2)), (45)

with

Ŝ3(â2) = B(â2)(D0 + D1â2 + D2â
2
2 + D3â

3
2 + D4â

4
2)

= B(â2)

4
∑

k=0

Dk(â2)â
k
2 (46)

and

Ŝ4(â2) = B(â2)(D5 + D6â2 + D7â
2
2 + D8â

3
2 + D9â

4
2)

= B(â2)

9
∑

k=5

Dk(â2)â
k−5
2 , (47)

where

Dj(â2) =
8

∑

l=1

S
(2)
l (â2)d

(j)
l . (48)

The terms d
(i)
l where i = 1, . . . , 10 and l = 1, . . . , 8 are independent of â2 and again are

functions of the system parameters. The expression in Equation (45) can then be expressed

in the form
8

∑

l=1

S
(2)
l (â2)dl(â2) = Q(â2) cos (p(â2) − φ(â2)), (49)
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(a) (a)

Figure 3. Here the values for the approximation of the maximum eigenvalue σB given by Equation (50)
(full line) and the linear approximation of themaximum eigenvalue given by Equation (51) (dashed line)
are plotted against â2, the crack radius towavelength ratio for the casewhere the flaw lies (a) 50mmand
(b) 100mm from the array. The numerically calculated eigenvalues arising from the scattering matrix
generated by Equation (12) are also plotted (dotted line).

where φ(â2) = tan−1
(

Ŝ4(â2)/Ŝ3(â2)
)

and Q(â2) =
√

Ŝ3(â2)2 + Ŝ4(â2)2. Finally, the

approximation to the maximum eigenvalue, σB, from the scattering matrix, A, defined by

Equation (12), can be written

σB(â2) = (Â + Ŝ1(â2))â2 + Ŝ2(â2)â
3
2 + Q(â2) cos (p(â2) − φ(â2)), (50)

after Equations (40) and (49) are substituted into Equation (35). If t∗ = N then σB(â2) is

further reduced to give

σB(â2) = (Â + Ŝ1)â2 (51)

since Ŝ1 is now independent of â2 in Equation (37) as t∗ = N . The maximum eigenvalue

approximation (Equation (50)) and its linear approximation (Equation (51)) are plotted

against â2 in Figure 3(a), along with the maximum eigenvalues obtained numerically from

the scattering matrices given by Equation (12) for the case where N = 64, l = 128mm

and d = 50mm. Excellent agreement for small values of â2 (â2 < 0.3) can be observed. If

the distance between the flaw and the array is increased to d = 100mm (see Figure 3(b)),

the linear approximation remains valid for â2 < 0.4 The linear dependency of the largest

eigenvalue on â2 given by Equation (51) in this subwavelength regime shows that the

recovered crack length will be unique and that this inverse methodology is well-posed. In

addition, the simplicity of Equation (51) will lead to a very fast numerical implementation

of this methodology, circumventing the need to numerically calculate all the eigenvalues

in the matrix Equation (16).

4.2. Sensitivity to system parameters

In order to assess the robustness of this approximation, a comparison with the nu-

merically calculated maximum eigenvalue from the original scattering matrix (given by
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(a)

(c)

(b)

(d)

Figure 4. Themaximumeigenvalues (approximatedby Equation (50) (dashed) andobtainednumerically
from the scattering matrices arising from Equation (12) (full line) plotted against â2 as (a) the number
of elements changes (N = 32 (blue), 64 (yellow), 128 (green) and 256 (orange), the array length is
fixed at l = 128mm and depth at d = 50mm), (b) the array length varies (l = 32mm (blue), 64mm
(yellow), 128mm (green) and 256mm (orange), the number of elements is fixed at N = 64 and depth
at d = 50mm) and (c) the distance of the flaw from the array increases (d = 25mm (blue), 50mm
(yellow), 75mm (green), 100mm (orange), the number of elements and array length are fixed atN = 64,
l = 128mm). Plot (d) shows the relative partial derivative of σB with respect to â.

Equation (12)) was made as the system parameters were varied. It was shown that by

increasing the number of elements N whilst keeping the array length constant (l =
128mm), an increase in the maximum eigenvalue was observed (see Figure 4(a)). This

suggests that σB is more sensitive to the size of the crack as the density of the array

elements increases. The effect of varying the array pitch of the ultrasonic linear array (by

allowing the array aperture l to increase whilst the number of elements remained fixed at

N = 64) was examined similarly (see Figure 4(b)) and reiterates that a higher density of

elements is more beneficial than an increased linear aperture. Finally, the sensitivity of the

maximum eigenvalue approximation to the distance between the array and the flaw was

studied and it was shown that the greater the depth of the flaw relative to the array, the

more sensitive the eigenvalue is to changes in the crack length (see Figure 4(c)). One benefit

of obtaining the explicit expression for the maximum eigenvalue of the scattering matrix
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(over its numerical calculation) is that it permits analytical insight on the behaviour of the

system parameters. For example, it allows us to examine the sensitivity of the maximum

eigenvalue to the crack length at a set of fixed system parameters (d = 50mm,N = 64 and

l = 128mm) by calculating the partial derivative of σB with respect to â2. The results are

plotted as â2 is varied in Figure 4(d) and a discontinuity around â2 ≈ 0.5 is observed. This

can be attributed to the change in t∗ which is dependent on â2 and determines whether

the approximation for small or large arguments is used. It can be observed that σB is

particularly sensitive to changes in the crack radius to wavelength ratio when â2 < 0.5.

This suggests that the inverse problem of recovering â2 from measured values of the

maximum eigenvalue is viable when the crack length is commensurate with (or in the

neighbourhood of) the wavelength. When this threshold is exceeded it is suggested that

another technique, such as an image-based method (the Total Focussing Method (TFM)

for example [11]) should be used.

5. Results from simulated data

In this section we apply the method to simulated FMC data generated using the finite

element package PZFlex [31]. Note that although the mathematics derived in this paper

is carried out in terms of the crack radius to wavelength ratio â2, the following results

will be discussed in terms of crack length to wavelength ratio, â, for consistency with

the existing literature. The finite element package was used to simulate the ultrasonic

phased array inspection of a homogeneous steel block containing a 5mm crack lying

parallel to the array at a depth of 50mm, excited by a 1.5MHz single cycle sinusoid

(the parameters used in this simulation are given in Table 1). Within the finite element

simulation, the domain was meshed with elements of dimension λ/15. With a centre

frequency of 1.5MHz, this gave an element size of approximately 200µm, thus lying

below the Rayleigh scattering limit of 300µm and so sufficient to model accurate wave

propagation [32]. Each resulting transmit-receive time domain signal was transformed

into the frequency domain using a Fast Fourier Transform. A −3 dB window was taken

around the 1.5MHz central frequency to give a usable bandwidth of 0.75 − 2.25MHz

giving rise to a range of 0.6 to 1.9 for the crack length to wavelength ratio, â = 2a2/λ

(or alternatively the crack radius to wavelength ratio range is 0.3 < â2 < 0.95). The

simulation included a number of effects which are not taken into account by the Kirchhoff

model. For example, in the Kirchhoff model the effects of mode conversion are neglected;

only a pressure wave is considered. The discrepancies between the model and simulation

result in an amplitude difference and therefore the scattering matrices were necessarily

normalized. The scattering matrices from the simulated data, AS(m, n, f ), and from the

model, AK (m, n, a, f ), (where m, n = 1, . . . ,N correspond to transmitting and receiving

element indices) were normalized with respect to the l2-norm to allow the signatures of

each to be compared as the crack length, a, and frequency, f were varied. We let σS(f )

denote the numerically calculated maximum eigenvalue from the normalized scattering

matrix arising from the simulation, at a frequency, f , and σK (a, f ) denote the numerically

calculated maximum eigenvalue from the normalized matrix arising from the Kirchhoff

model at frequency f and crack length a. The differences between σS(f ) and σK (a, f ) are
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Table 1. Parameters used in the finite element simulation of the ultasonic phased array inspection of a
homogeneous medium with a horizontal crack inclusion.

Ultrasonic transducer array parameters Value Units

Number of elements 64 –
Pitch 2 mm
Element width 1.5 mm
Transducer centre frequency 1.5 MHz
Array length 128 mm

Wave speed in host material 5900 ms−1

Density of host material 7890 kg/m3

Flaw length 5 mm
Depth of flaw 50 mm
Depth of sample 78.6 mm
Time sample rate 17.3 ns

Figure 5. This plot shows D(a) from Equation (52), integrated over a range of frequencies (0.75–
2.25MHz) comparing the maximum eigenvalues from the scattering matrices from the simulated data,
σS(f ), and the Kirchhoff model, σK (a, f ), as the crack length, a, is varied within the model.

summed over the frequency range as the crack length a is varied,

D(a) = ||σS(f ) − σK (a, f )||2, (52)

whereD(a) is the objective function (based on the L2 normwhereby the difference between

the measured and modelled spectra is integrated over the frequency range of interest) for

whichwe are seeking the value of a forwhich the globalminimum is obtained. Figure 5 plots

D(a) as the crack length a is varied within the model and shows a clear global minimum

for a = 4.4mm (there is therefore no uniqueness issue to concern us here). The actual

crack length in the simulation is 5mm and so the percentage error in the value recovered

using themaximum eigenvaluemethod is 12%, which is a reasonable error considering the

assumptions within themodel and the effects within the simulation which are not included

within the model.
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6. Discussion

The method proposed in this paper presents a novel approach for the sizing of subwave-

length cracks. Typically, within the non-destructive evaluation industry, flaw characterisa-

tion is secondary to detection and takes place at the imaging stage, where some threshold

is applied to an image (perhaps generated by the TFM) and groups of pixels lying above

this threshold are used to measure the flaw dimensions. This can be problematic on two

levels: firstly, there is no standardized procedure for sizing subwavelength defects and so

estimations are subjective and may vary between companies and operators; secondly, it is

difficult to automate this type of measurement. The method presented here is a completely

objective approach which could potentially supplement existing methods. And so, once a

time domain image has been constructed, time windows containing defect scattering can

be identified and transformed into the frequency domain and scattering matrices can thus

be generated. Once at this stage, the method implemented in Section 5 can be applied

autonomously and an objective crack size measurement can thus be obtained. It must be

mentioned that scattering matrices have already been exploited for objective crack sizing

in [19–21]. However, the benefit of the method proposed here is that the generation of

reference scattering matrices for comparison with those arising from the data is negated

and instead only the calculation of a single value is required, which is computationally

more efficient. The inversion process implemented in Section 5 relies on the comparison

of the maximum eigenvalues of scattering matrices arising from the observed data with

maximum eigenvalues arising from amodel based on the known experimental parameters

(host medium properties, array configuration etc.) integrated over a range of frequencies

determined by the transducer’s bandwidth. There are two ways to calculate these model

eigenvalues: either by generating model scattering matrices using the Kirchhoff approxi-

mation, numerically obtaining the eigenvalues and taking the maximum, or by using the

explicit expression for themaximum eigenvalue as presented in this paper. To demonstrate

the computational benefits of this approach, we can compare the computation times taken

to generate Figure 3(a) usingMathematica. Here, the numerical approach (which involved

generating the scattering matrix and then calculating the eigenvalues numerically – dotted

line) took O(10) seconds. Evaluating equation (50) over the entire range of â2 (full line)

took only O(1) seconds. Furthermore, the linear approximation (dashed line) took only

O(10−2) seconds, almost 103 times faster. This improvement is advantageous for the

inversion process as these calculations are repeated over a large range of crack lengths and

frequencies, and thus the saving in computational time is magnified. Finally, it must be

noted that attention was restricted to cracks which lie parallel to the ultrasonic array in

this paper. To study the effects of crack orientation, one could relax this assumption but as

this adds significantly to the complexity of the formulation this remains future work.

7. Conclusions

In this paper a formula which relates the maximum eigenvalue from a scattering matrix

to the length of a crack within an elastic solid was presented. This formula shows that

there is a one to one relationship between the two and that this can be used to tackle the

inverse problem of objectively sizing a crack in an elastic solid given the ultrasonic array

output data. The Kirchhoff model was used to approximate the scattering matrices which

arise when a linear elastic wave encounters a crack within a homogeneous medium. By
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restricting our attention to cracks lying parallel to the array, the scattering matrix from

the model was approximated by a Toeplitz matrix and an upper bound to the maximum

eigenvalue from this Toeplitzmatrixwas used to derive an explicit relationship between the

maximum eigenvalue and the crack radius to wavelength ratio, â2 = a2/λ. The sensitivity

of the maximum eigenvalue approximation, σB, to changes in the system parameters was

also examined. From this analysis it was concluded that σB ismost sensitive to changes in â2
when â2 < 0.5 and that there is little change in σB for â2 > 0.5. This implies that themethod

of using the maximum eigenvalue to determine the size of a crack in a homogeneous

material (the inverse problem) is most effective when the crack is of similar length to the

wavelength (that is, when â2 ≈ 0.5). For larger cracks, it is recommended that another

method is adopted, such as an image-based method (for example the TFM). The method

was applied to time domain FMC data from a finite element simulation and the crack

size was objectively recovered exhibiting an error of 12%. Aside to providing an entirely

objective crack size estimate, the method is advantageous over other scattering matrix

approaches in that it does not require the generation of reference scattering matrices for

comparison with the data, only the calculation of a single value is required. For the simple

case presented in this paper, our approach was up to 103 times faster than numerically

modelling the scattering matrix and obtaining its eigenvalues.
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