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Abstract

Core-satellite graphs (sometimes referred to as generalized friendship graphs) are an interesting class of graphs that generalize

many well known types of graphs. In this paper we show that two popular clustering measures, the average Watts-Strogatz clustering

coefficient and the transitivity index, diverge when the graph size increases. We also show that these graphs are disassortative. In

addition, we completely describe the spectrum of the adjacency and Laplacian matrices associated with core-satellite graphs. Finally,

we introduce the class of generalized core-satellite graphs and analyze their clustering, assortativity, and spectral properties.

1 Introduction

The availability of data about large real-world networked systems—commonly known as complex networks—has demanded the

development of several graph-theoretic and algebraic methods to study the structure and dynamical properties of such usually giant

graphs [1, 2, 3]. In a seminal paper, Watts and Strogatz [4] introduced one of such graph-theoretic indices to characterize the

transitivity of relations in complex networks. The so-called clustering coefficient represents the ratio of the number of triangles

in which the corresponding node takes place to the the number of potential triangles involving that node (see further for a formal

definition). The clustering coefficient of a node is bounded between zero and one, with values close to zero indicating that the relative

number of transitive relations involving that node is low. On the other hand, a clustering coefficient close to one indicates that this

node is involved in as many transitive relations as possible. When studying complex real-world networks it is very common to report

the average Watts-Strogatz (WS) clustering coefficient C̄ as a characterization of how globally clustered a network is [1, 2]. Such

idea, however, was not new as reflected by the fact that Luce and Perry [5] had proposed 50 years earlier an index to account for the

network transitivity, given by the total number of triangles in the graph divided by the total number of triads existing in the graph.

Such index, hereafter called the graph transitivity C, was then rediscovered by Newman [6] in the context of complex networks. Here

again this index is bounded between zero and one, with small values indicating poor transitivity and values close to one indicating a

large one (see also [7]).

It was first noticed by Bollobás [8] and then by Estrada [1] that there are certain graphs for which the two clustering coefficients

diverge. That is, there are classes of graphs for which the WS average clustering coefficient tends to one while the graph transitivity

tends to zero as the size of the graphs grows to infinity. The two families indentified by Bollobás [8] and by Estrada [1] are illustrated

in Figure 1 and they correspond to the so-called friendship (or Dutch windmill or n-fan) graphs [9] and agave graphs [10], respec-

tively. The friendship graphs are formed by glueing together η copies of a triangle in a common vertex. The agave graphs are formed

by connecting s disjoint nodes to both nodes of a complete graph K2.

The friendship graphs are members of a larger family of graphs known as the windmill graphs [11, 12, 13, 14, 15]. A windmill

graph W (η, s) consists of η copies of the complete graph Ks [11] with every node connected to a common one (see Figure 3). In a

recent paper Estrada [16] has proved that the divergence of the two clustering coefficient indices also takes place for windmill graphs

when the number of nodes tends to infinity. The agave graphs belong to the general class of complete split graphs, which are the

graphs consisting of a central clique and a disjoint set of nodes which are connected to all the nodes of the clique [17].
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Figure 1: Examples of graphs for which the average WS clustering coefficient and the graph transitivity diverge as the size of the

graphs goes to infinity.

It is important to note that this divergence between the two clustering coefficients also takes place in certain real-world networks

[16]. This phenomenon has passed inadverted among the plethora of papers that deals with clustering in real-world networks. In

Table 1 we illustrate some results collected from the literature in which the divergence of the two clustering coefficients is observed.

The dataset is selected to intentionally display the heterogeneity of classes of real-world networks which display such phenomenon.

They correspond to the interchange of emails among the employees of the ENRON corporation, a CAIDA version of the Internet as

Autonomous System, a metabolic network, a social network of Hollywood actors and a network of coauthors in Biology.

n m C̄ C

E-mail 36 692 183 831 0.50 0.09

Internet 26 475 106 762 0.21 0.007

metabolic 765 3 686 0.67 0.09

Actors 449 913 25 516 482 0.78 0.20

Coauthors 1 520 251 11 803 064 0.60 0.09

Table 1: Some real-world networks collected from the literature displaying divergence of the average WS clustering coefficient and

the graph transitivity. Here n and m denote the number of nodes and edges in the various graphs.

In this work we study a class of graphs which accounts for the clustering divergence phenomenon in networks with degree

disassortativity. These graphs, which we call core-satellite graphs, are formed by a central clique (the core) connected to several

other cliques (the satellites) in such a way that they generalize both the complete split and the windmill graphs. We prove here

that the clustering coefficients of these graphs diverge and that they are always disassortative. We also characterize completely

the eigenstructure of the adjacency and the Laplacian matrices of these graphs, and comment on the asymptotic behavior of such

quantities as the infection threshold and synchronizability index of these graphs. Finally, we provide evidence that supports the idea

of using the core-satellite graphs as models of certain classes of real-world networks.

2 Preliminaries

Here we always consider simple undirected and connected graphs G = (V, E) formed by a set of n nodes (vertices) V and a set of m

edges E = {(u, v) | u, v ∈ V} between the nodes. Let us now recall an important graph operation which will be helpful in this work.

Definition 1. The join (or complete product) G1∇G2 of graphsG1 and G2 is the graph obtained from G1∪G2 by joining every vertex

of G1 with every vertex of G2.

Let us now define some specific classes of graphs which will be considered in this work. As usual, we denote with Ḡ the

complement of a graph G.

Definition 2. The complete split graph is Σ (a, b) � Ka∇K̄b. The special cases Σ (1, b) � K2∇K̄b and Σ (2, b) � K2∇K̄b are known as

the star and agave graphs, respectively.

2



In Figure 2 we show some examples of complete split graphs.

�����

( )2,1Σ

( )3,1Σ

����

( )2,2Σ

( )3,2Σ

( )2,3Σ ( )2,4Σ

( )3,3Σ ( )3,4Σ

Figure 2: Illustration of some small complete split graphs including the classes of star and agave graphs.

Definition 3. The windmill graph is W (η, a) � K1∇ (ηKa). These are the graphs consisting of η copies of Ka meeting in a common

vertex. The special cases W (η, 2) � K1∇ (ηK2) are known as the friendship graphs.

In Figure 3 we show some examples of windmill graphs.

( )2,2W

( )2,3W

( )3,2W

( )3,3W

( )4,2W

( )4,3W

���������	

Figure 3: Illustration of some small windmill graphs including the classes of friendship graphs.

Let us now define a few graph-theoretic invariants that will be studied in this work. The so-called Watts-Strogatz clustering

coefficient of a node i, which quantifies the degree of transitivity of local relations in a graph is defined as [4]:

3



Ci =
2ti

ki(ki − 1)
(1)

where ti is the the number of triangles in which the node i participates. Taking the mean of these values as i varies among all the

nodes in G, one gets the average WS clustering coefficient of the network G:

C =
1

n

n∑

u=1

Cu. (2)

The so-called graph transitivity is defined as [6, 7]

C =
3t

P2

, (3)

where t is the total number of triangles and P2 =
∑n

i=1 ki(ki − 1)/2.

Another important network parameter is the degree assortativity coefficient which measures the tendency of high degree nodes

to be connected to other high degree nodes (assortativity) or to low degree ones (disassortativity). The assortativity coefficient is

mathematically expressed as [24]:

r =

m−1 ∑

i, j∈E kik j −
1

4m2

(∑

i, j∈E ki + k j
)2

1

2m

(∑

i, j∈E k
2
i
+ k2

j

)

− 1

4m2

(∑

i, j∈E ki + k j
)2
. (4)

Let A = (auv)n×n be the adjacency matrix of the graph. We denote by λ1 > λ2 ≥ · · · ≥ λn the eigenvalues of A. The dominant

eigenvalue λ1 is also referred to as the Perron eigenvalue or spectral radius of A, denoted ρ(A). Let ∆ be the diagonal matrix of the

vertex degrees of the graph. Then, the Laplacian matrix of the graph is defined by L = ∆ − A. We denote by µ1 ≥ µ2 ≥ · · · ≥ µn−1 >

µn = 0 the eigenvalues of L . The eigenvalue µn−1 is known as the algebraic connectivity of the graph and the eigenvector associated

to it is known as the Fiedler vector [26]. For reviews about spectral properties of graphs the reader is directed to the classic works

[27, 28].

3 Core-satellite graphs

The main paradigm for defining the core-satellite graphs is the following. We consider a group of central nodes in a network which

are connected among them. Then, there are a few cliques of the same size which are connected to the central core but which are not

connected among them. Formally, the core-satellite graphs are defined below.

Definition 4. Let c ≥ 1, s ≥ 1 and η ≥ 2. The core-satellite graph is Θ (c, s, η) � Kc∇ (ηKs). That is, they are the graphs consisting

of η copies of Ks (the satellites) meeting in a common clique Kc (the core), see Fig. 4.

( )2,2,3Θ( )3,2,2Θ ( )2,3,2Θ

Figure 4: Examples of core-satellite graphs. Nodes in the core are drawn in blue and those in the satellites in red.

Remark 5. The core-satellite graph generalizes the following classes of graphs:

• star graphs: Θ (1, 1, η);

• agave graphs: Θ (2, 1, η);
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• complete split graphs: Θ (c, 1, η);

• friendship graphs: Θ (1, 2, η);

• windmill graphs: Θ (1, s, η).

The core-satellite graphs were previously defined in the literature in the context of extremal graph theory. They are named generalized

friendship graphs in the works of Erdős et al. [18], Chen et al. [19] and Faudree et al. [20]. However, the same name appears in

connection to at least another class of graphs. The generalized friendship graph is defined by Ahmad et al. [21], Arumugan and

Nalliah [22], Shi et al. [23] and by Jahari and Alikhani [25] as the graph consisting of r cycles of orders n1 ≥ n2 ≥ · · · ≥ nr having a

common vertex. These graphs are also known as flowers. Thus, to avoid any confusion we propose here the more intuitive name of

core-satellite for these graphs.

4 General properties of core-satellite graphs

LetΘ (c, s, η) be a core-satellite graph and let us designate any node in the core as i and any node in a satellite as j. Then, ki = c+ηs−1

and k j = c + s − 1, also n = c + ηs and m =

(

c + p

2

)

− (η − 1)

(

c

2

)

. We now state our first result.

Theorem 6. Let Θ (c, s, η) be a core-satellite graph. Then, for given values of c and s the average Watts-Strogatz and the transitivity

coefficients diverge when the number of cliques η tends to infinity:

lim
η→∞

C̄ = 1, (5)

lim
η→∞

C = 0. (6)

Proof. First, we obtain an expression for the Watts-Strogatz clustering coefficient of windmill graphs. The Watts-Strogatz clustering

coefficient of any node in the core clique of Θ (c, s, η) is

Ci =
η (c + s − 1) (c + s − 2) − (c − 1) (c − 2) (η − 1)

(ηs + c − 1) (ηs + c − 2)
, (7)

and the rest of the nodes have C j = 1. Thus, C̄ = (cCi + ηs) /n, which gives

C̄ = 1 − cs2η2

n (n − 1) (n − 2)
= 1 − c (n − c)2

n (n − 1) (n − 2)
(8)

Now we consider the transitivity index of a windmill graph Θ (c, s, η). The total number of triangles in W (η, κ) is

t = η

(

c + s

3

)

+ (η − 1)

(

c

3

)

, (9)

and the number of 2-paths is

P2 = c

(

n − 1

2

)

+ ηs

(

c + s

2

)

. (10)

Thus, after substitution we get

C =
η (c + s) (c + s − 1) (c + s − 2) − c (η − 1) (c − 1) (c − 2)

ηs (c + s − 1) (c + s − 2) + c (c + ηs − 1) (c + ηs − 2)
. (11)

Obviously, lim
η→∞

C̄ = 1 and lim
η→∞

C = 0 for any given values of c and s, which proves the result. �

Next, we prove a result related to the way in wich nodes connect to each other in core-satellite graphs.

Theorem 7. Let Θ (c, s, η) be a core-satellite graph. Then, for any values of c ≥ 1, s ≥ 1, and η ≥ 2 the core-satellite graphs are

disassortative, i.e., r < 0.
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Proof. We first need a result previously obtained by Estrada [29] that expresses the assortativity coefficient in terms of subgraphs of

the corresponding graph,

r =
P2

(

P3/2 + C − P2/1

)

3S 1,3 − P2

(

P2/1 − 1
) , (12)

where Ps/t represents the ratio of paths of length s to paths of length t, S 1,3 is the number of star subgraphs with a central node and 3

pendant nodes, and C is the transitivity index. It has been previously proved in [29] that the denominator of (12) is positive. Thus, the

sign of the assortativity coefficient depends on the sign of P3/2 +C − P2/1. It is straighforward to realize that in a core-satellite graph

the number of paths of length 3 is zero. Consequently, the sign of r depends only on the sign of C − P2/1. We remind that 0 ≤ C ≤ 1.

Thus, let us consider the difference P2 − P1

P2 − P1 =
cki

2
(ki − 1) +

ηsk j

2

(

k j − 2
)

. (13)

Because η ≥ 2 then ki ≥ 2 (notice that if ki = 1 the resulting graph is just K2). If k j = 1 the core-satellite graph corresponds to the

star graph, which is a tree, and consequently has C = 0. Thus, the graph is diassortative. Let k j ≥ 2, then because η ≥ 2 we have that

ki ≥ 4, which implies that P2 − P1 > 1, i.e., P2/1 > 1 and consequently r < 0, which proves the result. �

5 Spectral properties of core-satellite graphs

In this section we give a full description of the spectral properties (eigenvalues and eigenvectors) of core-satellite graphs, and we

investigate extensions to more general types of graphs. We begin by proving the following result.

Theorem 8. The spectrum of the core-satellite graph Θ(c, s, η) consists of:

1. The eigenvalue λ = −1 with multiplicity c + η(s − 1) − 1;

2. The eigenvalue λ = s − 1 with multiplicity η − 1;

3. The eigenvalues λ± given by the roots of the quadratic equation

λ2 − (c + s − 2)λ + (c − 1)(s − 1) − ηcs = 0. (14)

Proof. For any positive integer p, we use 1p to denote the column vector with all entries equal to 1. Let A(Kc) and A(Ks) denote,

respectively, the adjacency matrices of the complete graphs with c and s nodes. Note that A(Kc) = 1c1
T
c − Ic, A(Ks) = 1s1

T
s − Is with

Ic and Is standing for the c × c and s × s identity matrices. With an obvious ordering of the nodes, the adjacency matrix of Θ(c, s, η)

can be written as the block matrix

A =





A(Kc) 1c1
T
s · · · 1c1

T
s

1s1
T
c A(Ks)
...

. . .

1s1
T
c A(Ks)





, (15)

with η copies of A(Ks) appearing on the block diagonal. Now let the vector

x =





x1

0
...

0





, x1 , 0, (16)

be partitioned conformally to A. Then the equation Ax = λx becomes





A(Kc)x1

(1Tc x1)1s
...

(1Tc x1)1s





=





λx1

0
...

0





.
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Clearly, this is equivalent to A(Kc)x1 = λx1, and x1 ⊥ 1c. Hence, λ = −1 and there are c − 1 linearly independent eigenvectors of the

form (16). Next, consider vectors of the form

x =





0

0
...

0

xi

0
...

0





, xi , 0, i = 1, . . . , η, (17)

where xi corresponds to the (i + 1)th diagonal block of A. Then the equation Ax = λx becomes





(1Ts xi)1c

0
...

0

A(Ks)xi

0
...

0





=





0

0
...

0

λxi

0
...

0





.

Clearly, this is equivalent to A(Ks)xi = λxi, and xi ⊥ 1s for i = 1, . . . , η. This yields another η(s−1) linearly independent eigenvectors

associated with the eigenvalue λ = −1.

Now, consider vectors of the form




0

α11s
...

αη1s





, (18)

with the αi not all zero. Then the equation Ax = λx becomes





∑η

i=1
αi(1

T
s 1s)1c

α1A(Ks)1s
...

αηA(Ks)1s





=





0

λα11s
...

λαη1s





.

Since at least one of the αi must be nonzero, this is equivalent to

A(Ks)1s = λ1s, α1 + · · · + αη = 0.

The first of these two conditions implies that λ = s− 1, and there are exactly η− 1 linearly independent eigenvectors of the form (18)

since the solution space of the homogeneous linear equation α1 + · · · + αη = 0 has dimension η − 1.

To determine the two remaining eigenvectors and corresponding eigenvalues, let

x =





1c

β1s
...

β1s





, β , 0. (19)
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Then the equation Ax = λx becomes




(c − 1)1c + ηβs

c1s + β(s − 1)1s
...

c1s + β(s − 1)1s





=





λ1c

λβ1s
...

λβ1s





,

which reduces to the two conditions

c − 1 + ηβs = λ, c + β(s − 1) = λβ. (20)

Conditions (20) yield

β =
λ − c + 1

ηs
, β =

c

λ − s + 1
, (21)

hence
λ − c + 1

ηs
=

c

λ − s + 1

which is easily seen to become equation (14) upon multiplication of both sides by ηs(λ − s + 1) and rearranging terms. Solving for λ

yields the two remaining (simple) eigenvalues of A:

λ± =
1

2

[

c + s − 2 ±
√

(c − s)2 + 4ηcs

]

. (22)

These two roots yield two distinct values β± of β via (21) and thus two distinct eigenvectors of A of the form (19). It is obvious that

these two eigenvectors are linearly independent (indeed, mutually orthogonal). �

Remark 9. This theorem generalizes the spectral analysis of windmill graphs given in [16] to core-satellite graphs.

Remark 10. We emphasize that the proof of the previous theorem explicitly reveals the structure of the eigenvectors of A; see

equations (16), (17), (18) and (19), together with the fact that the eigenvectors associated with the complete graphs are known.

We also point out another consequence of Theorem 8.

Theorem 11. The two eigenvalues under item 3 in Theorem 8 are the extreme eigenvalues of A. In particular, the Perron eigenvalue

(spectral radius) ρ(A) of A is given by

λ+ =
1

2

[

c + s − 2 +

√

(c − s)2 + 4ηcs

]

,

while the leftmost eigenvalue of A is given by

λ− =
1

2

[

c + s − 2 −
√

(c − s)2 + 4ηcs

]

.

Moreover, λ− is strictly less than the other eigenvalues of A.

Proof. We have

λ+ =
c + s − 2 +

√

(c − s)2 + 4ηcs

2
>

c + s − 2 +
√

(c − s)2 + 4cs

2
=

c + s − 2

2
+

√

(c + s)2

2
=

c + s

2
− 1+

c + s

2
= c+ s− 1 > s− 1 ,

proving that λ+ exceeds the other eigenvalues of A in magnitude.

Similarly,

λ− =
c + s − 2 −

√

(c − s)2 + 4ηcs

2
<

c + s − 2

2
−

√

(c − s)2 + 4cs

2
=

c + s

2
− 1 −

√

(c + s)2

2
= −1 ,

proving that λ− is strictly less than all the other eigenvalues. �

Remark 12. It follows that the principal eigenvector of A is of the form (19). Since this eigenvector is constant on each of the cliques

forming Θ(c, s, η), the eigenvector centrality [1] of each node is the same for all the nodes in each clique, as one would expect.

Furthermore, for η > 1 the nodes in the centrale core have higher centrality than the nodes in the satellite cliques, which is also to

be expected. In other words, in (19) we have that 0 < β < 1. This can be shown using conditions (21) together with the computed

expressions for λ±. See also Remark 18 below.
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( )543 1,1,1,1Θ ( )53 1,2,2Θ

Figure 5: Examples of generalized core-satellite graphs. Nodes in the core are drawn in blue and those in the satellites in red. In this

notation for instance 13, 14, 15 indicates that there is one clique of size 3, one clique of size 4 and one clique of size 5.

Remark 13. It also follows that Θ(c, s, η) has exactly four distinct eigenvalues. Moreover, it is clear from the expression given for λ+
that it must go to infinity as the graph size n = c + ηs goes to infinity, i.e., if at least one of the parameters c, s, or η tends to infinity.

It follows that the infection threshold, defined as τ = 1/ρ(A), vanishes as the graph size grows, showing that core-satellite graphs of

even modest size offer almost no resistance to the spreading of infections, gossip, rumors, etc. This is of course not surprising since

the diameter of a core-satellite graph is only 2. We refer to [30] for additional discussion of infection spreading in networks. See also

[16] for a discussion of the special case of windmill graphs.

6 Generalizing core-satellite graphs

A more realistic scenario for modeling real-world complex networks is to consider graphs in which not all satellite cliques are

identical. Consequently, we consider the generalization of core-satellite graphs to the case where the satellites cliques are not

restricted to have all the same number of nodes.

To this end, let t ≥ 1 and consider a graph consisting of a core clique with c nodes and η = η1 + η2 + · · · + ηt satellite cliques

where η1 cliques have s1 nodes, η2 cliques have s2 nodes, ... , and ηt cliques have st nodes, where si , s j for i , j. Here si ≥ 1 and

ηi ≥ 1 for all i = 1, . . . , t. As before, we assume that each node in every satellite clique is connected to each node in the core clique.

We introduce the following notation: letting

s = (s1, s2, . . . , st), η = (η1, η2, . . . , ηt) ,

we denote with Θ(c, s, η) the generalized core-satellite graph just decribed. Although this notation is very convenient for expressing

our mathematical results, it can be very cumbersome for illustrative examples. For that last purpose we will denote the number of

cliques of a given size by an integer, using a subindex for the size of the clique as illustrated in the Figure 5. Note that such a graph

has n = c +
∑t

i=1 ηisi nodes. Core-satellite graphs Θ(c, s, η) are obtained as special cases for t = 1. At the other end of the spectrum

we have the generalized core-satellite graphs in which all the satellite cliques have a different number of nodes, corresponding to the

case t = η, ηi = 1 for all i = 1, . . . , t.

We first investigate the phenomenon of clustering divergence and the degree assortativity of these graphs. Unfortunately, it is

difficult to extend the analytic approach used in section 4 to the case of generalized core-satellite graphs. Therefore, we perform

numerical experiments instead. Our computations indicate that the clustering divergence phenomenon observed for the simple core-

satellite graphs also occurs in the generalized case. These graphs also display degree disassortativity like their simpler analogues.

In Figure 6 we illustrate the divergence of the clustering coefficients of these graphs and the increase of their disassortativity as the

number of satellite cliques in the graph increases. For the sake of brevity, we only report here results for three kinds of generalized

core-satellite graphs having cores with 3, 5 and 10 nodes (we remark that in real-world networks it is rare to find cliques od size

larger than 10 [1]). Then, we consider satellites of size 3, 5 and 7 and generate graphs Θ (c, (3, 5, 7) , (p, p, p)) with c ∈ {3, 5, 10}
and 1 ≤ p ≤ 100. As can be seen in Fig. 6, as the number of satellites increases the average Watts-Strogatz clustering coefficient

approaches the asymptotic value 1, while the transitivity index drops to zero. The increase of the Watts-Strogatz index is slower

9
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Figure 6: Change in the average Watts-Strogatz clustering coefficient with the increase of the number of satellite cliques for gen-

eralized core-satellite graphs. The graphs have cores with size 3 (solid blue line), 5 (broken green line) and 10 (dotted red line).

Three sizes are used for the satellites: 3, 5 and 7. The number of satellites of each type is the same and varies between 1 and 100,

i.e., we generate graphs Θ (c, (3, 5, 7) , (p, p, p)) with c ∈ {3, 5, 10} and 1 ≤ p ≤ 100. In the insets the plots for the global clustering

(transitivity) and the assortativity coefficient are shown for the same graphs.

for the graphs with bigger core as expected by the fact that here more nodes with low clustering exists, namely, those in the core.

However, the assortativity coefficient of these graphs decays much faster than that for graphs with smaller cores. In all cases, the

assortativity coefficient is negative, similarly to what happens with the simple core-periphery graphs.

Next, we study the spectral properties of the generalized core-satellite graphs. Let us define the c × (ηisi) matrices

Bi =
[

1c1
T
si

1c1
T
si
· · · 1c1

T
si

]

︸                           ︷︷                           ︸

ηi times

, i = 1, . . . , t ,

and the (ηisi) × (ηisi) block diagonal matrices

Ai = A(Ksi) ⊕ · · · ⊕ A(Ksi)
︸                    ︷︷                    ︸

ηi times

=





A(Ksi )

A(Ksi )

. . .

A(Ksi)





, i = 1, . . . , t

(with ηi identical diagonal blocks). Then, for a suitable ordering of the nodes, the adjacency matrix of Θ(c, s, η), can be written in
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block form as

A =





A(Kc) B1 B2 · · · Bt

BT
1

A1

BT
2

A2

...
. . .

BT
t At





. (23)

This matrix is n × n with n = c +
∑t

i=1 ηisi. We have the following generalization of Theorem 8.

Theorem 14. The spectrum of the generalized core-satellite graph Θ(c, s, η) consists of

1. The eigenvalue λ = −1 with multiplicity c +
∑t

i=1 ηi(si − 1) − 1;

2. The eigenvalue si − 1 with multiplicity ηi − 1, for all i = 1, . . . , t with ηi > 1;

3. The roots of the following algebraic equation of degree t + 1:

(λ − c + 1)

t∏

i=1

(λ − si + 1) = c

t∑

i=1

ηisi

∏

j,i

(λ − s j + 1) , (24)

each of multiplicity one.

Proof. It is straightforward to verify that A has c−1 linearly independent eigenvectors of the form (16) corresponding to the eigenvalue

λ = −1. Likewise, it is easy to check that A has
∑t

i=1(si − 1)ηi linearly independent eigenvectors of the form (17) with s = si,

also corresponding to the eigenvalue λ = −1. Hence, A has (at least) c +
∑t

i=1 ηi(si − 1) − 1 = c +
∑t

i=1 ηisi − η − 1 linearly

independent eigenvectors corresponding to the eigenvalue λ = −1; since the total number of nodes is n = c +
∑t

i=1 ηisi, there remain

η + 1 =
∑t

i=1 ηi + 1 eigenvalues to account for.

Let us first assume that ηi > 1 for some i. Consider a nonzero vector of the form

x =





0

0
...

0

α11si
α21si
...

αηi1si
0
...

0





, α1 + · · · + αηi = 0 , (25)

where the (possible) nonzeros in x occur in the positions that correspond to the diagonal block Ai in A. Then one can easily check

that x is eigenvector of A associated to the eigenvalue λ = si − 1, and from the condition on the αi we immediately deduce that there

are ηi − 1 linear independent vectors of the form (25).

There remain t + 1 eigenvalues to account for, where t is between 1 and η. When t = 1 all the satellite cliques are identical and

we are back under the assumptions of Theorem 8, hence the remaining two eigenvalues are the roots of the quadratic equation (14),

to which (24) reduces for t = 1.

Assume t > 1 and consider a vector of the form

x =





1c

β11s1η1

...

βt1stηt





. (26)
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We note that vectors of this form are automatically orthogonal to all eigenvectors of the form (16) (with x1 ⊥ 1c), to all eigenvectors

of the form (17) (with xi ⊥ 1si), and to all eigenvectors of the form (25). Also, the span S of all vectors of the form (26) has dimension

t + 1. Hence, it must be the invariant subspace of A spanned by the eigenvectors associated with the remaining t + 1 eigenvalues of

A. Finally, we observe that any vector in S is also of the form (26) up to a scalar multiple.

For such vectors, the equation Ax = λx becomes





(c − 1)1c +
∑t

i=1 βiηisi1c

c1s1η1
+ β1(s1 − 1)1s1η1

...

c1stηt + βt(st − 1)1stηt





=





λ1c

λβ11s1η1

...

λβt1stηt





. (27)

Conditions (27) can be rewritten in the form

c − 1 +

t∑

i=1

βiηisi = λ , (28)

together with

c + βi(si − 1) = λβi , i = 1, . . . , t. (29)

Rearranging conditions (29) we obtain

βi =
c

λ − si + 1
, i = 1, . . . , t. (30)

Substituting (30) into (28) we obtain

c − 1 + c

t∑

i=1

ηisi

λ − si + 1
= λ ,

or, equivalently,
t∑

i=1

ηisi

λ − si + 1
=
λ − c + 1

c
.

The left-hand side of the last equation can be rewritten as

∑t
i=1 ηisi

∏

j,i(λ − s j + 1)
∏t

i=1(λ − si + 1)
,

finally leading to the equation

(λ − c + 1)

t∏

i=1

(λ − si + 1) = c

t∑

i=1

ηisi

∏

j,i

(λ − s j + 1) ,

which is precisely (24). Next, we will show that the t + 1 roots of this equation are all distinct, therefore each root λi yields a distinct

value of βi via (30) and therefore a distinct eigenvector (26), thus completing the proof. For suppose that there is a root λ̄ of (24) of

multiplicity at least two. Then the vector

x =





1c

β̄11s1η1

...

β̄t1stηt





, β̄i =
c

λ̄ − si + 1
, i = 1, . . . , t,

is an eigenvector of A associated with λ̄. But then there must be another eigenvector y of A associated with the same eigenvalue λ̄

and orthogonal to x. As argued above, this eigenvector y must lie in the subspace S, and therefore be again of the form (25). But

when we impose y to be of the form (25) and to satisfy Ay = λ̄y we are forced to conclude that y = x, contradicting the orthogonality

requirement. Hence, all roots of (24) must be simple. In particular, when all the cliques have different size (ηi = 1 for all i = 1, . . . , t)

there are η + 1 eigenvalues given by the roots of (24), and no eigenvalues of the form λ = si − 1. This completes the proof. �
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Remark 15. It is well known (Abel–Ruffini Theorem) that the solution by radicals of the general algebraic equation of degree 5 or

higher is impossible. We do not know if the equation (24) is solvable by radicals for any values of si, ηi, and t ≥ 4. For t = 2 and t = 3

equation (24) can be solved by radicals, but the roots are given by rather complicated expressions (Cardano’s and Ferrari’s formulas).

Hence, we do not attempt to explicitly write down the roots of (24).

Remark 16. The number of distinct eigenvalues of Θ(c, s, η) is given by

t + 2 + |{i | ηi > 1}| ,

where |X| is the cardinality of the set X. This quantity is equal to t + 2 (or η + 2, equivalently) when all the t satellite cliques have

different sizes.

Theorem 17. The spectral radius (Perron eigenvalue) ρ(A) of A is given by the largest root of (24) and satisfies the bounds

c − 1 +max
1≤i≤t

si < ρ(A) < c − 1 +

t∑

i=1

ηisi . (31)

Proof. We begin by recalling the well known inequalities

min
1≤i≤n

n∑

j=1

ai j < ρ(A) < max
1≤i≤n

n∑

j=1

ai j, (32)

which hold for the spectral radius of any nonnegative irreducible matrix with non-constant row sums [31, Lemma 2.5]. In our case

the upper bound is the maximum degree, which is attained by each node in the core clique and is equal to n − 1 = c − 1 +
∑t

i=1 ηisi.

The lower bound in (32) yields ρ(A) > c+min1≤i≤t si − 1, which in general is not enough to conclude that ρ(A) is given by the largest

root of (24) by Theorem 14. However, we can improve on this lower bound as follows. Assume (without loss of generality) that

s1 = max1≤i≤t si and consider a vector of the form

x =





1c

1s1η1

0
...

0





,

then

Ax =





(c − 1 + s1η1)1c

(c − 1 + s1)1s1η1

c1s2η2

...

c1stηt





≥ (c − 1 + si)x , ∀i = 1, . . . , t.

Hence, we have found a nonnegative vector x such that Ax ≥ rx for r = c − 1 +max1≤i≤t si. By a well known result (see [32, section

3]) this implies that ρ(A) ≥ r. Finally, it is straightforward to check that λ = c − 1 + s1 is not a root of (24), therefore it must be

ρ(A) > c − 1 + s1 = c − 1 +max1≤i≤t si, proving the lower bound in (31). �

Remark 18. It follows that the principal eigenvector of A is of the form (26). Since this eigenvector is constant on each of the cliques

forming Θ(c, s, η), the eigenvector centrality of each node is the same for all the nodes within a given clique, as one would expect.

Furthermore, the nodes in the core clique have higher centrality than the nodes in any of the satellite cliques (assuming of course

there is more than one of them), which is also to be expected. In other words, in (25) we have that 0 < βi < 1 for all i = 1, . . . , t. To

see this, note that the βi are given by

βi =
c

ρ(A) − si + 1
(i = 1, . . . , t),

see (30). By Theorem 17 we have ρ(A) > c − 1 + si for all i = 1, . . . , t, hence ρ(A) − si + 1 > c and therefore 0 < βi < 1 for all

i = 1, . . . , t.

Theorem 19. The spectral radius of a generalized core-satellite graph goes to infinity as the graph size n goes to infinity.
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Proof. Let Â be the adjacency matrix of the star graph with n nodes, with the central node numbered first. The spectrum of Â consists

of the eigenvalue 0 of multiplicity n − 2, plus the eigenvalues ±
√
n − 1. In particular, ρ(Â) =

√
n − 1. If A is the adjacency matrix of

a generalized core-satellite graph with n nodes, it is straightforward that A ≥ Â, where the inequality is component-wise. It is well

known [33, page 520] that this implies ρ(A) ≥ ρ(Â), hence we conclude that the spectral radius of A tends to infinity as the graph size

tends to infinity. �

Remark 20. This result implies that in any generalized core-satellite graph, the infection threshold τ vanishes as the graph size grows,

see Remark 13. Again, since the diameter of a generalized core-satellite graph is constant and equal to 2, this is to be expected.

We conclude this section with the description of the spectrum of the graph Laplacian L of Θ(c, s, η). Letting γ =
∑t

i=1 ηisi and

Li = L(Ksi ) ⊕ · · · ⊕ L(Ksi )
︸                    ︷︷                    ︸

ηi times

,

the graph Laplacian of Θ(c, s, η) can be written as

L =





L(Kc) + γIc −B1 −B2 · · · −Bt

−BT
1

L1 + cIη1 s1

−BT
2

L2 + cIη2 s2

...
. . .

−BT
t Lk + cIηt st





. (33)

We have the following result.

Theorem 21. The spectrum of the graph Laplacian associated with the generalized core-satellite graph Θ(c, s, η) consists of

1. The eigenvalue µ = c +
∑t

i=1 ηisi = n with multiplicity c;

2. The eigenvalue µ = c + si with multiplicity ηi(si − 1), for 1 ≤ i ≤ t;

3. The eigenvalue µ = c with multiplicity
∑t

i−1 ηi − 1 = η − 1;

4. The eigenvalue µ = 0 with multiplicity one.

Proof. It is straightforward to verify that L has c − 1 linearly independent eigenvectors of the form (16) with x1 ⊥ 1c associated to

the eigenvalue µ = c +
∑t

i=1 ηisi. In addition, the vector

x =





1c

β1η1s1

...

β1stηt





, β = − c
∑t

i=1 ηisi
,

is also eigenvector of L associated with the eigenvalue µ = c +
∑t

i=1 ηisi = n.

Next, it is easily checked that every nonzero vector of the form (17) with xi ⊥ 1si is an eigenvector of L associated with the

eigenvalue µ = c + si, and there are exactly ηi(si − 1) linearly independent eigenvectors of that form.

Consider now vectors of the form

x =





0

x1

...

xt





, where xi =





α1i1si
α2i1si
...

αηii1si





(i = 1, . . . , t). (34)

Then the equality Lx = µx is satisfied for µ = c if and only if

t∑

i=1

si

ηi∑

j=1

α ji = 0 . (35)
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Equation (35) is a homogeneous linear equation in the unknowns α ji, with 1 ≤ i ≤ t and 1 ≤ j ≤ ηi. Since the number of unknowns is

η1 + · · ·+ ηt = η, equation (35) admits η− 1 linearly independent solutions, each leading to a distinct eigenvector (34) of L associated

with c.

Finally, since Θ(c, s, η) is connected, L has the simple eigenvalue zero associated with the eigenvector with constant entries. �

Remark 22. The Laplacian eigenvalues of Θ(c, s, η) can also be obtained from general results about the Laplacian eigenvalues of the

join of two (or more) graphs and the fact that the Laplacian eigenvalues of a complete graph with p nodes are known (they are µ = p

with multiplicity p − 1 and µ = 0 with multiplicity 1); see, e.g., [34, Theorem 2.20]. The above proof has the advantage of being

self-contained and of explicitly exhibiting the eigenvectors of L.

Remark 23. It follows from Theorem 21 that the Laplacian of a generalized core-satellite graph Θ(c, s, η), with t > 1, has exactly

t + 3 distinct eigenvalues. For a core-satellite graph Θ(c, s, η) (where t = 1 and η1 = η > 1), the number of distinct eigenvalues is

four: µ = 0, µ = c, µ = c + s, and µ = c + ηs (see also Remark 13).

Remark 24. We observe that (generalized) core-satellite graphs are Laplacian-integral, i.e., the Laplacian eigenvalues are all integers.

Moreover, the algebraic connectivity (smallest nonzero Laplacian eigenvalue) of a generalized core-satellite graph is equal to c, the

size of the core clique, and is independent of the number or size of the satellite cliques. This is to be expected, since generalized

core-satellite graphs can be disconnected by disconnecting the core clique.

Remark 25. The ratio between the smallest nonzero eigenvalue of L and the largest eigenvalue of L is known as the synchronization

index of the network: Q = µn−1/µ1. Theorem 21 implies that

Q =
c

c +
∑t

i=1 ηisi
=

c

n
.

In particular, for windmill graphs we recover the fact that Q = 1/n, as already observed in [16]. Therefore, any two core-satellite

graphs of the same size n and with the same core clique Kc have exactly the same synchronization index, a somewhat surprising

result. Moreover, if c is fixed and n grows, the synchronization index decreases. This implies that unless the core size c grows and the

number and size of satellite cliques remains constant (or bounded), large (generalized) core-satellite graphs are bad synchronizers.

We refer to [35, 36, 37] for detailed discussions of network synchronizability.

7 Conclusions

Real-world graphs have a great variety of structures and complexities. Hence, the existence of different mathematical models—Erdős-

Rényi, Barabási-Albert, Watts-Strogatz, random geometric graphs, etc. However, not all of the structural properties of real-world

graphs are captured by these models. One simple example is the local-global clustering coefficient divergence. This structural effect

is simply due to the fact that in some networks the local clustering tends to the maximum while the global one tends to the minimum

when the size of the graphs grows to infinity. Here we have proposed a general class of graphs for which this clustering divergence

is observed and can be studied analytically. These graphs—here proposed to be called core-satellite graphs—are characterized by a

central core of nodes which are connected to a few satellites which may be of the same or different sizes. In this work we have inves-

tigated some general properties of these graphs, e.g., clustering coefficients, assortativity coefficients, as well as the eigenstructure of

both the adjacency and the Laplacian matrices. Core-satellite graphs can also be easily modified so as to model other properties of

complex networks, such as hierarchical structure [38]. All of these make core-satellite graphs a flexible model for certain classes of

real-world networks, opening some new possibilities for the analytic modeling of these systems.
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