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Aurélien Perrin, David G. Norman,

Dimitris P. Xirodimas, Robert Feil

Correspondence
david.lleres@igmm.cnrs.fr (D.L.),
aymeric.bailly@crbm.cnrs.fr (A.P.B.),
robert.feil@igmm.cnrs.fr (R.F.)

In Brief

How chromatin is structured in cells of

living organisms remains poorly

understood. Llères et al. adapted a FRET-

based microscopic approach to monitor

nanoscale chromatin compaction in the

germline of living C. elegans. The study

indicates heterogeneous compaction

levels along pachytene chromosomes

and reveals key roles of HP1 and

condensin complexes.

Llères et al., 2017, Cell Reports 18, 1791–1803
February 14, 2017 ª 2017 The Author(s).
http://dx.doi.org/10.1016/j.celrep.2017.01.043

mailto:david.lleres@igmm.cnrs.fr
mailto:aymeric.bailly@crbm.cnrs.fr
mailto:robert.feil@igmm.cnrs.fr
http://dx.doi.org/10.1016/j.celrep.2017.01.043
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.01.043&domain=pdf


Cell Reports

Resource

Quantitative FLIM-FRET Microscopy to Monitor
Nanoscale Chromatin Compaction In Vivo
Reveals Structural Roles of Condensin Complexes
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SUMMARY

How metazoan genomes are structured at the nano-
scale in living cells and tissues remains unknown.
Here, we adapted a quantitative FRET (Förster reso-
nance energy transfer)-based fluorescence lifetime
imaging microscopy (FLIM) approach to assay nano-
scale chromatin compaction in living organisms.
Caenorhabditis elegans was chosen as a model sys-
tem. By measuring FRET between histone-tagged
fluorescent proteins, we visualized distinct chromo-
somal regions and quantified the different levels of
nanoscale compaction in meiotic cells. Using RNAi
and repetitive extrachromosomal array approaches,
we defined the heterochromatin state and showed
that its architecture presents a nanoscale-com-
pacted organization controlled by Heterochromatin
Protein-1 (HP1) and SETDB1 H3-lysine-9 methyl-
transferase homologs in vivo. Next, we functionally
explored condensin complexes. We found that con-
densin I and condensin II are essential for hetero-
chromatin compaction and that condensin I addition-
ally controls lowly compacted regions. Our data
show that, in living animals, nanoscale chromatin
compaction is controlled not only by histone modi-
fiers and readers but also by condensin complexes.

INTRODUCTION

The eukaryotic genome is packaged into chromatin composed

of a basic, repetitive unit called a nucleosome (Luger et al.,

1997). Regularly spaced nucleosome arrays have been shown

to fold into organized structures, which can be condensed into

different secondary and tertiary higher order chromatin configu-

rations (Luger and Hansen, 2005; Woodcock and Dimitrov,

2001). Many nuclear events and genome functions have been

linked to the heterogeneous structuration of chromatin in meta-

zoans (Bickmore, 2013; Cremer et al., 2004; Gibcus and Dekker,

2013). Furthermore, proper development of organisms depends

on the regulation of gene activity, which involves the packaging

of the genome into transcriptionally active and inactive chro-

matin domains (Jenuwein and Allis, 2001; Sexton et al., 2007).

Despite the emergence of novel technologies, it remains a chal-

lenge to understand how chromatin is structured and packaged

at the nanoscale in individual cells of living organisms (Boettiger

et al., 2016; Lieberman-Aiden et al., 2009; Linhoff et al., 2015).

Chromosome architecture and levels of compaction have

been widely explored by using DNA fluorescence in situ hybrid-

ization (FISH) and chromosome conformation capture (3C) tech-

niques (Cremer et al., 2008; Dixon et al., 2012; Lieberman-Aiden

et al., 2009). More recently, ex vivo super-resolution imaging by

3D stochastic optical reconstruction microscopy (STORM) was

applied and, combined with DNA FISHwith fluorescently labeled

oligonucleotides, has demonstrated that epigenetically defined

sub-megabase domains have distinct folding characteristics

in Drosophila nuclei (Boettiger et al., 2016). Although the current

microscopic and 3C-based technological approaches are

powerful and generate a spatial resolution of %50 nm and

high-resolution interaction maps, they are performed on popula-

tions of cells and involve cross-linked chromatin, cell fixation, or

the use of probes limited to a small number of genetic loci.

Conversely, analysis of chromatin in intact living cells has been

hampered by limitations in the diffraction-limited resolution of

light microscopy that gathers information at spatial scales larger

than �200–300 nm, so that structural chromatin folding at the

nanoscale can be missed (Maddox et al., 2006; Mora-Bermúdez

and Ellenberg, 2007; Strukov and Belmont, 2009). Therefore,

currently available methodologies provide only indirect and

limited information about the regulation of the nanometer scale

configuration of chromatin in the cells of living organisms, in

which there is a complex relationship between chromatin organi-

zation, gene regulation and the environment.

Overcoming the technical difficulties for determining nano-

scale chromatin compaction, we developed a non-invasive

methodology that allows one to map and quantify levels of

Cell Reports 18, 1791–1803, February 14, 2017 ª 2017 The Author(s). 1791
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:david.lleres@igmm.cnrs.fr
mailto:aymeric.bailly@crbm.cnrs.fr
mailto:robert.feil@igmm.cnrs.fr
http://dx.doi.org/10.1016/j.celrep.2017.01.043
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.01.043&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


chromatin compaction (Figure 1A). In brief, our assay is based

on fluorescence lifetime imaging microscopy (FLIM) to measure

Förster resonance energy transfer (FRET) between histone-

tagged fluorescent protein fusions. The FLIM approach has the

advantage of measuring the fluorophore lifetime of the donor

protein species only. It provides accurate quantification due to

the independence of the fluorescence lifetime from the relative

concentrations of the interacting proteins and is independent

of its diffusion rates. Based on this underlying idea, we previously

reported a FRET-based methodology in which we assayed en-

ergy transfer between fluorescently tagged core histones incor-

porated into the chromatin of HeLa cancer cells (Llères et al.,

2009). The extent of FRET and its spatial distribution within nuclei

were quantified by FLIM. Since FRET occurs only when a donor-

and an acceptor-tagged histone are positioned less than 10 nm

apart, this combined FLIM-FRET approach yielded a spatial

readout of nanoscale chromatin compaction in the nuclei of

the studied HeLa cells (Llères et al., 2009).

We decided to make use of two-photon FLIM measurements,

which have the advantage of minimizing the effect of photon

Figure 1. Chromatin Compaction Monitored by FLIM-FRET in Gonads of Living Adult C. elegans

(A) Schematic presentation of how tagged-histone FLIM-FRET monitors nanoscale chromatin compaction; the shown example structures are theoretical.

(B) Gonads from C. elegansGFP::H2B worms (named GFP-H2B) were imaged using multiphoton laser scanning microscopy. Fluorescence intensities in the green

(upper panel) and red (middle panel) channels are shown. The mean fluorescence lifetime (t) was determined for each pixel (lower panel). Its spatial variation is

shown, with t values represented by a pseudo-color scale ranging from 2.0 to 2.7 ns.

(C) Gonads from C. elegansGFP::H2B/mCherry::H2B worms (named 2FPs-H2B) were imaged, and the GFP and mCherry fluorescence intensities are shown. The

spatial distribution of the mean t (ns) is depicted.

(D) Representative gonad from a 2FPs-H2B worm after mCherry(RNAi) depletion.

(E) Mean t value distribution curves in gonads of GFP-H2B (donor), 2FPs-H2B (donor/acceptor), and 2FPs-H2B mCherry(RNAi)-depleted (acceptor-depleted)

worms are shown.

Scale bars, 20 mm.

See also Figures S1 and S2.

1792 Cell Reports 18, 1791–1803, February 14, 2017



scattering in thick layers of sample. Being, therefore, less

affected by the heterogeneous nature of living tissues, we

explored whether quantitative multiphoton FLIM-FRET on

tagged H2B histones (Figure 1A) can be adapted to a living

organism. We chose C. elegans as a model system. Their trans-

parency makes these worms highly suitable for fluorescence

microscopy imaging. C. elegans allows also efficient gene

knockdown by RNAi, an advantage that we exploited to explore

the in vivo roles of candidate regulators of chromatin compaction

in the germline.

Using the FLIM-FRET assay adapted to living C. elegans, we

spatially reveal distinct domains and quantitatively discriminate

different levels of chromatin compaction in pachytene meiotic

germ cells. By using RNAi and exogenous extra-chromosomal

repeat arrays, we uncover the structural architecture of

heterochromatin. We show that its high degree of nanoscale

compaction is regulated by Heterochromatin Protein-1 (HP1)

and SETDB1 H3-lysine-9 methyltransferase homologs and

that its formation is linked to the presence of repeated

sequence elements. Furthermore, we investigate whether reg-

ulators of higher order features of chromosomes have an

impact on the nanoscale packaging of chromatin as well. We

found that, in pachytene-stage germ cells, depletion of the

condensin I subunit DPY-28 affects heterochromatin and also

lowly compacted regions, whereas the condensin II subunit

KLE-2 is required for heterochromatin compaction only. Our

combined experimental data establish that the differential

nanoscale compaction of chromatin in vivo depends not only

on epigenome writers and readers but also on different con-

densin complexes. The latter finding implies that the three-

dimensional chromosome architecture controlled by conden-

sins is functionally linked to the nanoscale compaction of

chromatin. This emerging biological insight should help to bet-

ter understand gene regulation and developmental processes

such as meiosis.

RESULTS

For this in vivo FLIM-FRET study, we investigated chromosome

and chromatin dynamics in the germline, the best characterized

C. elegans lineage for chromatin (Bessler et al., 2010; Mets and

Meyer, 2009). We exploited strains that stably expressed either

GFP-H2B alone (a strain hereinafter called ‘‘GFP-H2B’’) or both

the GFP-H2B and mCherry-H2B fusion proteins (FPs) (strain

‘‘2FPs-H2B’’) from a single transcription unit driven by the germ-

line-specific pmex-5 promoter to achieve endogenous expres-

sion levels in the germline (Frøkjær-Jensen et al., 2012) (Figures

S1A and S1B). Immunoblotting of chromatin-enriched protein

fractions showed that the H2B fusion proteins were expressed

appropriately and migrated at the expected sizes and repre-

sented about 4% of total histone H2B (Figure S1C). Compared

to the wild-type N2-Bristol strain, early mitotic divisions were

normal in the 2FPs-H2B embryos (Figure S1D). Development

and fertility were also unaffected in the two transgenic

lines, which suggested that the expression of GFP-H2B and

mCherry-H2B had not interfered with vital functions (Figure S1E).

As expected, theGFP-H2B andmCherry-H2B histones co-local-

ized within the nucleus, and their distribution overlapped with

that of genomic DNA, indicative of homogeneous incorporation

into chromatin (Figure S1F). Fluorescence recovery after photo-

bleaching (FRAP) analysis of strains GFP-H2B and 2FPs-H2B

showed a slow recovery of the tagged histones after photo-

bleaching, consistent with their stable incorporation into chro-

matin (Figure S1G).

Nanoscale Chromatin Compaction Monitored by
FLIM-FRET in Living C. elegans

Gonads from adult hermaphrodites were imaged following two-

photon excitation at 890 nm. The mean fluorescence lifetime

(i.e., time spent in the excited state) (t, in nanoseconds) of

GFP-H2B donor proteins was measured by FLIM in each pixel.

When FRET occurs, at a range of 1–10 nm, the donor’s (GFP-

H2B) lifetime is reduced due to energy transfer to the acceptor

fluorophore (mCherry-H2B). A marked decrease of the GFP-

H2B t value (t = 2.3 ns) was detected in 2FPs-H2B gonads

compared to GFP-H2B gonads (t = 2.6 ns) (Figures 1B, 1C,

and 1E). The GFP-H2B t reduction was no longer observed after

RNAi-mediated depletion of mCherry-H2B (t = 2.7 ns), which

confirms that the marked effect was due to FRET (Figures 1D

and 1E; Figure S2A). To rule out possible confounding effects

due to FRET between GFP-H2B and mCherry-H2B proteins

incorporated into the same nucleosome, we performed molecu-

lar modeling based on the known nucleosome structure (Luger

et al., 1997). This showed that the distance separating the GFP

and mCherry attachment sites, on the two H2B histones, was

too large (130 Å on average) to produce significant intra-nucleo-

somal FRET (Figure S2B). Combined, these data demonstrate

our ability to monitor fluorescence lifetime by multiphoton FLIM

in living animals and that FRET occurs from interactions between

fluorescent-tagged H2B histones incorporated in different,

but spatially close, nucleosomes as a result of chromatin

compaction.

Spatial Organization of Chromatin Compaction Levels in
Pachytene Cells
Like in mammals, when reaching the pachytene stage of germ

cell development, C. elegans chromosomes have acquired a

highly ordered structuration that is essential for subsequent

crossing over, recombination, and chromosome segregation

to occur (Lui and Colaiácovo, 2013). Accordingly, we observed

the strongest reduction of GFP-H2B t within the meiotic pachy-

tene region of the gonads in 2FPs-H2B worms (Figures 1C and

S3A). Indeed, quantification of GFP-H2B t in the cells at the

pachytene stage showed a significant decrease of the mean

lifetime t (t = 2.39 ± 0.09 ns, relative to t = 2.64 ± 0.06 ns in

GFP-H2B worms) (Figures 2A and 2B; Table S1). FRAP experi-

ments established that this lifetime decrease was not due to an

altered rate of tagged-histone exchange (Figure S1G). Since

pachytene chromosomes are highly structured, we verified

that the marked reduction in GFP-H2B t was not caused by

local concentration of the GFP-H2B donor alone. Importantly,

no obvious correlation (r = 0.22) was detected between the

measured GFP-H2B t and the corresponding GFP-H2B photon

counts (Figure S3B). Quantification and spatial mapping of

FRET in the individual nucleus of 2FPs-H2B pachytene-stage

cells revealed discrete regions in the nucleus associated with
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Figure 2. Spatial Organization of Chromatin Compaction Levels in Pachytene Cell Nuclei

(A) Higher magnifications of confocal (left) and FLIM (right) images of GFP-H2B and 2FPs-H2B pachytene-stage cells. Fluorescence lifetime (t) values are

presented in a continuous pseudo-color scale ranging from 2.0 to 2.8 ns. Scale bar, 10 mm.

(B) Scatterplots show the mean GFP fluorescence lifetime distribution in GFP-H2B (green diamonds; 195 cells, n = 7 gonads) and 2FPs-H2B (red diamonds; 327

cells, n = 10 gonads) worms. GFP lifetime is significantly reduced in 2FPs-H2B gonads compared to GFP-H2B gonads. ****p < 0.0001 (two-tailed Mann-Whitney

test); 95% confidence interval.

(C) Fluorescence intensity (left), FLIM (middle), and FRET (right) images of 2FPs-H2B cells. The spatial variation in the FRET efficiency is depicted (color scale

ranges from 0% to 80%). Scale bars, 5 mm.

(D) Upper panel: higher magnification of nuclei (fromC) reveals regions with distinct FRET efficiencies.White arrows highlight specific high-FRET regions. Meiotic

nuclei are outlined with dashed lines. Scale bar, 2 mm. Lower panel: FRET efficiency variation graph showing distinct populations. Low (in blue), FRET efficiency

between 10% and 30%; intermediate (in green), FRET efficiency between 30% and 60%; and high (in orange), FRET efficiency between 60% and 80%.

(E) Upper panel: high densities of GFP-H2B histone do not correlate with high-FRET percent regions. The orange, green, and blue arrows indicate example

regions with high-, intermediate-, and low-FRET percent regions, respectively, that are all of high GFP-H2B density. Lower panel: plot of GFP-H2B fluorescence

lifetime versus GFP photon count in the 2FPs-H2B strain. The calculated Pearson r correlation coefficient is indicated. Scale bar, 2 mm.

See also Figure S3 and Table S1.
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distinct FRET efficiencies (Figures 2C and 2D). These were arbi-

trarily grouped into four different classes: ‘‘sub-low FRET’’

(FRET efficiencies between 0% and 10%; dark blue), ‘‘low

FRET’’ (efficiencies between 10% and 30%; light blue), ‘‘inter-

mediate FRET’’ (efficiencies between 30% and 60%; green)

and ‘‘high FRET’’ (efficiencies between 60% and 80%; orange)

(Figures 2D and S3C). Single z sections included multiple

distinct high-FRET regions across the nucleus and showed

that these highly compacted regions were not confined to

one pair of chromosomes. Specifically, in our in vivo acquisi-

tions, we did not detect high FRET corresponding to a unique

compact globular structure associated to the X chromosome,

as observed after immunocytochemistry experiments in

C. elegans (Kelly et al., 2002). Although pachytene-stage

chromosomes are highly structured throughout, we find

that their nanoscale compaction is highly uneven along the

chromosomes. Some regions are highly compacted, whereas

others comprise lowly compacted chromatin. Interestingly, by

comparing the fluorescence intensity of GFP-H2B reflecting

the nucleosome density along DNA with the FRET efficiency

map (Figures 2E and 2D, respectively), we ascertained that

the bright nucleosome-dense regions (Figure 2E, colored arrow-

heads) were not exclusively associated to high-FRET regions

(orange arrowheads) but also corresponded to intermediate

(green arrowheads) and low-FRET (blue arrowheads) regions.

This general observation was confirmed by finding a negative

linear relationship (r = �0.263) between GFP-H2B intensity

and GFP-H2B lifetime in 2FPs-H2B cells (Figure 2E, graph).

This key finding indicates that FRET pixels are not simply

reflecting clustered regions of chromatin but, rather, reflect

the local packing state of chromatin.

The HP1 Homolog HPL-2 Is Essential for
Heterochromatin Compaction
To evaluate whether the tagged-histone FRET assay monitors

chromatin compaction levels associated to a defined epige-

netic status of chromatin, we studied repressed chromatin

that is marked by histone H3 lysine 9 methylation and bound

by heterochromatin protein-1 proteins. Even though HP1 me-

diates silent chromatin (Danzer and Wallrath, 2004; Wallrath

and Elgin, 1995), its contribution to in vivo nanoscale chro-

matin compaction has not been determined. Similarly, as in

mammals (Richards and Elgin, 2002), HPL-2 (the main HP1

homolog in C. elegans) and H3-lysine-9 dimethylation

(H3K9me2) define heterochromatin in C. elegans, which, in

this species, is largely confined to the distal and proximal

parts of the autosomes (Couteau et al., 2002; Garrigues

et al., 2015) (Figure S4A, top row). Upon RNAi against hpl-2,

the comparative FLIM-FRET analysis of 2FPs-H2B worms re-

vealed a significant decompaction, as indicated by a longer

GFP-H2B t and a concomitantly reduced FRET efficiency (Fig-

ures 3A and 3B). We confirmed that there was no develop-

mental delay, since this could have explained, in part, the

observed chromatin decompaction (Figure S4B). Importantly,

hpl-2(RNAi) strongly reduced the high- and intermediate-

FRET populations, without affecting the low-FRET population

(Figure 3C; Figure S4C). Our findings indicate that heterochro-

matin is organized into a nanoscale-compacted architecture

in vivo and that HPL-2 plays an essential role in this nanometer

scale compaction.

MET-2 Histone Methyltransferase Controls
Heterochromatin Compaction
The role of H3K9me2 in repressive chromatin compaction was

assessed by RNAi against met-2, the C. elegans homolog of

lysine methyltransferase SETDB1 (Andersen and Horvitz, 2007;

Bessler et al., 2010) (Figure 4A). The resulting almost-complete

loss of H3K9me2 correlated with an overall reduced compaction

of chromatin (Figures 4B and 4C; Table S1), caused by loss of the

‘‘high’’ and ‘‘intermediate’’ chromatin populations (Figure 4D). In

agreement with previous studies (Bessler et al., 2010; Garrigues

et al., 2015), no alteration in the staining patterns of HPL-2 and

H3K9me3 was detected in met-2(RNAi)-depleted cells (Figures

S4A and S4D, respectively). These findings show that the meth-

yltransferase MET-2 promotes heterochromatin compaction.

Although HPL-2 staining seemed, globally, not altered in met-

2(RNAi) pachytene cells, we cannot exclude that a minor fraction

of HPL-2 bound to H3K9me2 is lost upon met-2(RNAi) and con-

tributes to the decompaction detected by FLIM-FRET. The com-

bined results indicate that HPL-2 and MET-2 are both important

for nanoscale heterochromatin compaction and that their func-

tions are not necessarily independent.

A consistent feature of heterochromatin, including in nema-

todes, is the repetitive nature of its associated DNA (Stinchcomb

et al., 1985). In C. elegans germ cells, micro-injected exogenous

DNA can induce gene silencing through the formation of tan-

demly repeated arrays (Kelly et al., 1997). Such extra-chromo-

somal concatemers display hallmarks of heterochromatin,

including H3K9me2/3 enrichment (Kelly et al., 2002; Towbin

et al., 2010). To determine whether ectopic repeated DNA se-

quences can bring about compacted chromatin, we injected

the well-studied array-forming plasmid pRF4 (Kramer et al.,

1990) into the gonads of 2FPs-H2Bworms (Figure S5) and gener-

ated F1 offspring. A strong enrichment of HPL-2 and H3K9me2

was detected at the formed transgene arrays in the gonads of

the F1 offspring (Figure 5A, arrowheads). Strikingly, high-FRET

globular signals coincided with the extra-chromosomal arrays

(Figure 5B, arrowheads). Concordantly, we measured an overall

increase of high-FRET chromatin in the pRF4-containing F1 go-

nads (Figure 5C). The additional high-FRET signal due to the

plasmid array disappeared following hpl-2(RNAi) depletion (Fig-

ure 5C). This finding highlights a similar role of HPL-2 at the exog-

enous transgene array as that at endogenous heterochromatin.

The combined data evoke a general model in which repeated

DNAelements inducecompacted, heterochromatic structuration

through the recruitment and actions of HPL-2 and MET-2.

Condensin Complexes Are Essential for the Nanoscale
Compaction of Heterochromatin
Architectural proteins organize the genome at different length

scales (Phillips-Cremins et al., 2013). We investigated whether

the evolutionarily conserved condensin complexes, which regu-

late higher order chromosome configurations (Hirano, 2005),

play a role in nanoscale chromatin compaction in vivo. In mouse

oocytes, condensins are required for chromosome-thread for-

mation and chromosomal rigidity, and immune-FISH studies
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have shown that disruption of condensins I and II extends

meiotic chromosome axes in C. elegans (Houlard et al., 2015;

Mets and Meyer, 2009). However, the structural basis of these

effects and their consequences for nanoscale heterochromatin

compaction are not known.

DPY-28 is an essential component both of condensin I and

condensin IDC complexes, which regulate meiotic crossover dis-

tribution and frequency in germ cells and X chromosome dosage

compensation (DC) in somatic cells, respectively (Csankovszki

et al., 2009; Mets and Meyer, 2009; Tsai et al., 2008). dpy-

28(RNAi) depletion (Figure S6A) induced nanoscale decompac-

tion of pachytene chromatin (Figure 6A; Figures S6B and S6C;

Table S1). It affected heterochromatin mainly (high and interme-

diate), but also the less compacted chromatin (low) (Figure 6B).

Similarly, as reported for fixed cells (Mets and Meyer, 2009),

the essential condensin II subunit KLE-2 is involved in the regu-

lation of meiotic chromatin compaction (Figure 6A; Figures S6B

and S6C; Table S1). However, we found that condensin II con-

trols heterochromatin only, and its depletion did not affect the

less compacted chromatin (Figures 6A and 6B). Combined

depletion of the two condensin complexes by dpy-28;kle-

2(RNAi) led to globally unstructured chromosomes in gonads,

with the disappearance of the heterochromatin and less-com-

pacted chromatin populations, which resulted in a unique popu-

lation of ‘‘sub-low’’ FRET (Figure 6A; Figures S6B and S6C;

Table S1). Staining of HPL-2 in dpy-28(RNAi)- and kle-2(RNAi)-

depleted gonads showed that condensin depletion did not

markedly interfere with HPL-2 recruitment onto chromatin

Figure 3. HP1 Homolog HPL-2 Controls the Nanometer Scale Compaction of Heterochromatin

(A) GFP-H2B and mCherry-H2B expression is unaffected by hpl-2(RNAi) depletion. Spatial distribution of the fluorescence lifetime in 2FPs-H2B pachytene cells

following control (RNAi) and hpl-2(RNAi) depletion (bottom). Bars, 5 mm.

(B) Box-and-whisker plots show the FRET efficiency (percentage) for each condition; the mean FRET efficiency value is indicated at the bottom of each box.

****p < 0.0001, two-tailed Mann-Whitney test.

(C) The relative fraction of the four FRET populations—sub-low (FRET efficiency between 0% and 10%), low, intermediate, and high—in control (RNAi) and hpl-

2(RNAi) (100–120 cells from three gonads per condition). *p < 0.05 (two-tailed unpaired t test); n.s, nonsignificant.

See also Figure S4 and Table S1.
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Figure 4. MET-2 Controls Heterochromatin Compaction

(A) Top: control (RNAi) pachytene germ cell nuclei. H3K9me2 (red) is concentrated in a subset of chromosomal regions. Bottom: inmet-2(RNAi) pachytene nuclei,

hardly any H3K9me2 is detected. Chromosomes were stained with DAPI (blue). Scale bars, 5 mm.

(B) The spatial distribution of fluorescence lifetime is shown for 2FPs-H2B cells from control (RNAi) (top panels) or met-2(RNAi) animals (bottom panels).

Fluorescence lifetime values ranging from 2.2 ns to 3 ns are represented using a continuous pseudo-color scale. Scale bars, 5 mm.

(C) Statistical analysis of the FRET efficiency percentage for each condition, presented as box-and-whisker plots. The mean FRET efficiency value is indicated at

the bottom of each box. ****p < 0.0001 (two-tailed Mann-Whitney test).

(D) The relative fraction of the four FRET populations (sub-low, low, intermediate, and high) in nuclei (100–120 cells from n = 3 gonads) from control (RNAi) and

met-2(RNAi) cells. *p < 0.05; **p < 0.01 (two-tailed unpaired t test); n.s, nonsignificant.

See also Figure S4 and Table S1.
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(Figure S6D). Thus, condensins seem to contribute to hetero-

chromatin compaction through a mechanism independent of

HPL-2 recruitment.

To examine further the differential effects of condensin I or II on

chromosome structure, we manually traced and plotted the

FRET efficiencies profile along individual wild-type and dpy-28-

or kle-2(RNAi)-depleted pachytene chromosomes. Wild-type

chromosome showed high-FRET pixels alternating with interme-

diate-FRET pixels (Figure 6C). In contrast, we observed ‘‘high-in-

termediate’’ FRET alternating with ‘‘low to sub-low’’ FRET pixels

in dpy-28(RNAi)-depleted chromosome, whereas kle-2(RNAi)-

depleted chromosome displayed continuous low-FRET pixels

with some remaining intermediate-FRET regions at the chromo-

some extremities (Figure 6C).

Combined, the aforementioned findings indicate that, besides

their common roles, condensin I and condensin II complexes

have specific functions in chromatin compaction, particularly in

the context of the highly ordered lampbrush structure of meiotic

chromosomes.

DISCUSSION

We developed an imaging methodology to monitor chromatin

compaction in living animals and used it to explore the

C. elegans germline. This in vivo assay defines chromatin

compaction as nanoscale proximity between nucleosomes,

measured through FRET between stably incorporated GFP-

H2B andmCherry-H2B histones. We found that the structuration

of chromosomes in developing germ cells involves a global in-

crease in compaction. At the pachytene stage, the overall fluo-

rescence lifetime had become substantially reduced because

of extensive FRET occurring between the incorporated fluores-

cent histones. At this developmental stage, heterogeneously

structured chromatin regions with different degrees of compac-

tion are apparent along the chromosomes.

Additionally, our combined data define the largely autosomal

heterochromatin in C. elegans (Garrigues et al., 2015) as a highly

condensed structure in vivo and show that its nanoscale

compaction is controlled by HPL-2 and MET-2 (Figure 7). In

Figure 5. Tandem Repeat-Enriched Ectopic Chromosomes Acquire Heterochromatic Structure in Meiotic Cells
(A) In 2FPs-H2B gonads, the extra-chromosomal transgene array pRF4 is clearly visible as a distinct globule (arrowhead) in each nucleus, and its chromatin is

enriched in HPL-2 and H3K9me2. Chromosomes are stained with DAPI. Scale bar, 2 mm.

(B) Chromatin at the pRF4 transgene array shows high FRET (arrowheads). Scale bar, 2 mm.

(C) Distribution of FRET populations in pRF4-injected 2FPs-H2B worms and following hpl-2 RNAi depletion. **p < 0.01; ****p < 0.0001 (two-tailed Mann-Whitney

test); n.s, nonsignificant.

See also Figure S5.
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Figure 6. Condensin I and II Complexes Are Essential for Meiotic Heterochromatin Compaction

(A) Representative pachytene nuclei (left) and the spatial distribution of FRET regions (sub-low, low, intermediate, and high) (right) indicative of different chromatin

compaction states after control (RNAi) and RNAi depletion of different condensin subunit genes (dpy-28, kle-2, and dpy-28;kle-2). Scale bars, 2 mm.

(B) Relative fraction of the four FRET populations (sub-low, low, intermediate, and high) in pachytene nuclei following control (RNAi) and dpy-28(RNAi),

kle-2(RNAi), and dpy-28;kle-2(RNAi) (100–120 cells from three gonads per condition). *p < 0.05; **p < 0.01 (two-tailed unpaired t test); n.s, not significant.

(legend continued on next page)
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met-2(RNAi) worms, the loss of H3K9me2 correlated with het-

erochromatin decompaction, although HPL-2 binding was not

markedly reduced. This supports a recent study, which shows

that HPL-2 can associate with chromatin in an H3K9me2-inde-

pendent manner (Garrigues et al., 2015). Paradoxically, in her-

maphrodite worms, the autosomal chromosome arms are en-

riched in HPL-2 but show higher recombination rates than

central chromosomal regions, which do not show binding of

HPL-2 (Barnes et al., 1995; Garrigues et al., 2015). One hypoth-

esis to explain this apparent discrepancy is that the heterochro-

(C) 2D FRET image of synapsed chromosomes in a wild-type nucleus (top), a dpy-28(RNAi)-depleted nucleus (middle), and a kle-2(RNAi)-depleted nucleus

(bottom). Manual tracing of an individual chromosomes (dashed line) permits quantification of the FRET efficiencies (%) along the chromosome. Representative

FRET (%) profiles are shown (right panels). For each condition, the line profile quantification was performed starting at the chromosome extremity marked by an

asterisk. Scale bars, 1 mm.

See also Figure S6 and Table S1.

Figure 7. SummaryModel for In VivoMeiotic

Chromatin Compaction

At the pachytene stage, meiotic chromosomes

have acquired regions with different levels of

nanoscale compaction (dark blue, light blue, and

orange square boxes). Within the highly ordered

lampbrush structure of meiotic chromosomes,

heterochromatin compaction (high-FRET regions)

is regulated by the HP1 homolog HPL-2 (red

symbols) and by H3-lysine-9 methyltransferase

MET-2, a homolog of SETDB1. Condensin com-

plexes control local nanoscale compaction as well.

Whereas condensin II (orange symbols) regulates

heterochromatic chromatin predominantly, con-

densin I (yellow symbols) controls both hetero-

chromatin and lowly compacted chromatin (low-

FRET regions). At regions that show little or no

FRET (sub-low-FRET regions), condensin com-

plexes are presumed to be absent. The differential

nanoscale compaction activities associated to

condensin complexes may drive distinct morpho-

logical changes linked to loop array formation and

to longitudinal chromosome axis rigidity, respec-

tively. These may, in turn, affect the structural

properties of chromosomes, such as the longitu-

dinal rigidity of orthogonal axes, the number of

chromatin loops, the position of loops, loop size,

and, consequently, the meiotic recombination

landscape.

matin structuration controlled at the scale

of the nucleosomal array by HPL-2 may

help to define local boundaries with

increased recombination occurring be-

tween such regions. Since H3K9me3

was largely unaffected in the met-

2(RNAi) gonads, as previously observed

(Bessler et al., 2010), our data suggest

that MET-2-mediated H3K9me2 plays a

chromatin structural role on its own,

which might involve binding of other

reader protein(s) in addition to HPL-2.

Possible candidates could be malig-

nant-brain-tumor (MBT)-domain-contain-

ing proteins, known to preferentially interact with H3K9me2, or

chromatin-associated C2H2 zinc-finger proteins that modulate

access to chromatin remodeling complexes (Koester-Eiserfunke

and Fischle, 2011; Reddy and Villeneuve, 2004). Concerning the

role of the MET-2-mediated compaction, we note that met-2

deficiency increases the frequency of meiotic prophase chromo-

somal defects (Bessler et al., 2010). Thus, although MET-2 is not

strictly essential for meiosis, it is required for faithful execution of

the meiotic recombination program, and this may be linked to its

involvement in nanoscale chromatin compaction.

1800 Cell Reports 18, 1791–1803, February 14, 2017



We also explored the structural roles of condensins, which are

essential for chromosome condensation and the higher order

threads of chromatin fibers (Houlard et al., 2015; Shintomi and

Hirano, 2011). Besides their unique functions, condensin I and

condensin II have also overlapping roles in the higher order

structuration of chromosomes (Houlard et al., 2015; Nishide

and Hirano, 2014). Mutations in condensin I subunits, including

dpy-28, lead to an altered distribution and an increased cross-

over frequency at meiotic chromosomes (Mets and Meyer,

2009). These earlier observations are concordant with a reported

increase and shift in the distribution of RAD-51 foci associated

with double-strand break formation (Kleckner et al., 2004; Mets

and Meyer, 2009) and may be explained by the change in the

local structuration that we observed in vivo by FLIM-FRET.

Our technology reveals that condensin complexes are essen-

tial for the nanoscale compaction of chromatin as well. What

could be the structural basis and role of this function? We find

that condensins I and II both regulate the nanoscale compaction

of heterochromatin, whereas condensin I knockdown affected

the lowly compacted chromatin as well (Figure 7). The overlap-

ping roles and functional divergence between the two types of

complexes suggest that their binding may be different on pachy-

tene chromosomes, similarly as in embryos, where condensins I

and II are recruited partly to non-overlapping regions (Kranz

et al., 2013).

The differential effects of condensins on chromatin compac-

tionmay explain topologically the recent finding inmice that con-

densin II confers the longitudinal rigidity to mouse meiotic chro-

mosomes, whereas condensin I drives chromosome formation

(Cuylen et al., 2011; Houlard et al., 2015). In this regard, we

find that, along individual meiotic chromosomes, high-FRET

condensed regions that potentially correspond to meiotic chro-

mosomal axes are affected upon condensin II depletion. In

contrast, intermediate-FRET regions, which may represent less

compacted DNA loops protruding from the chromosome axes,

are mostly perturbed upon condensin I knockdown (Figure 6C).

It remains to be determined how the compaction regulated by

HPL-2 and MET-2 links in with that controlled by condensins.

Possibly, the high-FRET regions that persisted after condensin

I knockdown are controlled by HPL-2/MET-2, particularly at

the arms of the meiotic chromosomes where there is preferential

HPL-2/MET-2 binding (Garrigues et al., 2015).

The observed differential compaction activities of condensin

complexes may drive distinct morphological changes in the

loop arrays along the chromosome axis, as manifested by the

position of loops along DNA, the number of chromatin loops

and the loop-size formation (Goloborodko et al., 2016; Kleckner

et al., 2004; Mets and Meyer, 2009; Strick et al., 2004) (Figure 7).

Moreover, our study highlights that events occurring at a smaller

scale (controlled by HPL-2 and MET-2) and events at a larger

scale (condensin dependent) are both required to achieve spe-

cific compaction states at chromosomal domains. The latter

finding raises the question of how higher order looping and local

nanoscale organization of chromosomes could be linked, as well

as the question about the role of differential chromatin compac-

tion states in meiotic cells.

In conclusion, we transferred the principle of FLIM-FRET to

microscopic imaging in living animals that stably expressed fluo-

rescent-tagged histones and demonstrate that this technology

achieves non-invasive quantification and mapping of chromatin

compaction states with high sensitivity and precision. Since this

in vivo assay relies on collecting enoughGFP-emitted photons to

be able to extract representative and robust fluorescence life-

time values, a potential hurdle is the need to achieve stable,

cell-type-appropriate, and sufficiently high expression of donor

fluorophores. A limited level of expression may affect the re-

corded lifetime values and limit the range of detection of subtle

changes in chromatin compaction. Furthermore, it is important

to have experimental tissues that are readily accessible for

microscopy. Although we succeeded to perform FRETmeasure-

ments on germ cells within intact living worms, we noticed that,

by dissecting gonads, we eliminated some out-of-focus fluores-

cence and obtained sharper FRET images. We expect that, at

least in C. elegans, the dissection step could be avoided in

case the expression of fluorescent-tagged histones is driven

by somatic promoters. Despite these general requirements, the

methodology should be readily transferrable to other model spe-

cies. In mammals, it could be particularly interesting for early

embryogenesis or hematopoietic studies. As emphasized by

our functional studies on the HPL-2, MET-2, and condensin

complexes, the technology also offers the prospect of perform-

ing in vivo RNAi library screens of candidate factors. In conclu-

sion, our experimental system lays the basis for monitoring chro-

matin compaction in living organisms and offers the exciting

prospect to explore the effects of genetic and environmental fac-

tors on chromatin compaction.

EXPERIMENTAL PROCEDURES

Worm Strains and Culture Conditions

Strains ‘‘GFP-H2B’’ and ‘‘2FPs-H2B’’ used in this study refer to the C. elegans

strains EG4601 and EG6787, which have the following genotypes, respectively

(further information is available on http://www.wormbase.org):

d EG4601: oxIs279 [pie-1p::GFP::H2B + unc-119(+)]; and

d EG6787: oxSi487 [mex-5p::mCherry::H2B::tbb-2:30UTR::gpd-2 operon::

GFP::H2B::cye-1 30UTR + unc-119(+)] II; unc-119(ed3) III.

C. elegans strain N2 Bristol and strains ‘‘GFP-H2B’’ and ‘‘2FPs-H2B’’ were

cultured at 20�C on nematode growth medium (NGM) agar plates seeded

with E. coli strain OP50, following standard procedures (Brenner, 1974).

Worm Live-Imaging Preparation

For FRAP and FLIM-FRET acquisitions (discussed later), individually picked

worms were put onto an unseeded NGM plate to wash off bacteria and

were transferred onto a glass slide in a 10-mL drop of egg buffer (118 mM

NaCl, 48 mM KCl, 2 mM CaCl2*2H2O, 2 mM MgCl2*6H2O, 25 mM HEPES

[pH 7.3]). Worm gonads were dissected with a 23G syringe and immediately

covered with a coverslip, sealed subsequently with nail varnish.

FLIM-FRET Acquisitions

FLIM-FRET experiments were carried out on strains GFP-H2B (donor alone:

GFP-H2B protein) and 2FPs-H2B (donor and acceptor: GFP-H2B and

mCherry-H2B). FLIM was performed using an inverted laser scanning multi-

photon LSM780 microscope (Zeiss) equipped with an environmental black-

walled chamber.Measurements were performed at 20�Cwith a 403 oil immer-

sion lens, NA 1.3 Plan-Apochromat objective, from Zeiss. Two-photon excita-

tion was achieved using a tunable Chameleon Ultra II (680–1,080 nm) laser

(Coherent) to pump a mode-locked, frequency-doubled Ti:sapphire laser

that provided sub-150-fs pulses at an 80-MHz repetition rate, with an output
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power of 3.3W at the peak of the tuning curve (800 nm). Enhanced detection of

the emitted photons was achieved through the use of an HPM-100 module

(Hamamatsu R10467-40 GaAsP hybrid photomultiplier tube [PMT]). The fluo-

rescence lifetime imaging capability was provided by time-correlated single-

photon counting (TCSPC) electronics (SPC-830; Becker & Hickl). TCSPCmea-

sures the time elapsed between laser pulses and the fluorescence photons.

GFP and mCherry fluorophores were used as a FRET pair. The optimal two-

photon excitation wavelength to excite the donor (GFP) was determined to be

890 nm (Lleres et al., 2007). Laser power was adjusted to give a mean photon

count rate of about 4.104–105 photons per second. For FLIM acquisition in

C. elegans gonads, fluorescence lifetime measurements were acquired over

60 s, and fluorescence lifetimes were calculated for all pixels in the field of

view (2563 256 pixels). Particular regions of interest (e.g., full gonad or pachy-

tene nuclei) were selected using SPCImage software (Becker & Hickl).

FLIM-FRET Analysis

FLIM measurements were analyzed using SPCImage software (Becker &

Hickl). FRET results from direct interactions between donor and acceptor

molecules (Förster, 1949). FRET reactions cause a decrease in the fluores-

cence lifetime of the donor molecules (GFP). The FRET efficiency (i.e.,

coupling efficiency) is calculated by comparing the FLIM values obtained

for the GFP donor fluorophore in the presence and absence of the mCherry

acceptor fluorophore. Mean FRET efficiency images were calculated as the

FRET efficiency, E FRET =1� ðtDA=tDÞ, where tDA is the mean fluores-

cence lifetime of the donor (GFP-H2B) in the presence of the acceptor

(mCherry-H2B) expressed in 2FPs-H2B C. elegans, and tD is the mean fluo-

rescence lifetime of the donor (GFP-H2B) expressed in GFP-H2B C. elegans

in the absence of the acceptor. In the non-FRET conditions, themean fluores-

cence lifetime value of the donor was calculated from a mean of the tD by

applying a mono-exponential decay model to fit the fluorescence lifetime

decays.

In the FRET conditions used, we applied a bi-exponential fluorescence decay

model to fit the experimental decay curves fðtÞ= aDA e
�t=tDA +bD e

�t=tD.

By fixing the non-interacting proteins’ lifetime tD using data from control exper-

iments (GFP-H2BC.eleganssamples), the valueof tDAwasestimated. Then, the

FRETefficiency, indicatedhereasEFRET, wasderivedbyapplying the following

equation: E FRET = 1� ðtDA=tDÞ at each pixel in a selected region of interest

(ROI) using SPCImage software. ROIs represent pachytene nuclei in this study.

TheFRETdistribution curves from theseROIsweredisplayed from theextracted

associated matrix using SPCImage and then normalized and graphically repre-

sented using Excel and GraphPad Prism software. For each experiment, FLIM

was performed onmultiple pachytene cells from several independent dissected

gonads (see figure legends and Table S1).
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Mora-Bermúdez, F., and Ellenberg, J. (2007). Measuring structural dynamics

of chromosomes in living cells by fluorescence microscopy. Methods 41,

158–167.

Nishide, K., and Hirano, T. (2014). Overlapping and non-overlapping functions

of condensins I and II in neural stem cell divisions. PLoS Genet. 10, e1004847.

Phillips-Cremins, J.E., Sauria, M.E., Sanyal, A., Gerasimova, T.I., Lajoie, B.R.,

Bell, J.S., Ong, C.T., Hookway, T.A., Guo, C., Sun, Y., et al. (2013). Architec-

tural protein subclasses shape 3D organization of genomes during lineage

commitment. Cell 153, 1281–1295.

Reddy, K.C., and Villeneuve, A.M. (2004). C. elegans HIM-17 links chromatin

modification and competence for initiation of meiotic recombination. Cell

118, 439–452.

Richards, E.J., and Elgin, S.C. (2002). Epigenetic codes for heterochromatin

formation and silencing: rounding up the usual suspects. Cell 108, 489–500.

Sexton, T., Schober, H., Fraser, P., and Gasser, S.M. (2007). Gene regulation

through nuclear organization. Nat. Struct. Mol. Biol. 14, 1049–1055.

Shintomi, K., and Hirano, T. (2011). The relative ratio of condensin I to II deter-

mines chromosome shapes. Genes Dev. 25, 1464–1469.

Stinchcomb, D.T., Shaw, J.E., Carr, S.H., and Hirsh, D. (1985). Extrachromo-

somal DNA transformation of Caenorhabditis elegans. Mol. Cell. Biol. 5,

3484–3496.

Strick, T.R., Kawaguchi, T., and Hirano, T. (2004). Real-time detection of sin-

gle-molecule DNA compaction by condensin I. Curr. Biol. 14, 874–880.

Strukov, Y.G., and Belmont, A.S. (2009). Mitotic chromosome structure: repro-

ducibility of folding and symmetry between sister chromatids. Biophys. J. 96,

1617–1628.

Towbin, B.D., Meister, P., Pike, B.L., andGasser, S.M. (2010). Repetitive trans-

genes in C. elegans accumulate heterochromatic marks and are sequestered

at the nuclear envelope in a copy-number- and lamin-dependent manner. Cold

Spring Harb. Symp. Quant. Biol. 75, 555–565.

Tsai, C.J., Mets, D.G., Albrecht, M.R., Nix, P., Chan, A., andMeyer, B.J. (2008).

Meiotic crossover number and distribution are regulated by a dosage compen-

sation protein that resembles a condensin subunit. Genes Dev. 22, 194–211.

Wallrath, L.L., and Elgin, S.C. (1995). Position effect variegation in Drosophila

is associated with an altered chromatin structure. Genes Dev. 9, 1263–1277.

Woodcock, C.L., and Dimitrov, S. (2001). Higher-order structure of chromatin

and chromosomes. Curr. Opin. Genet. Dev. 11, 130–135.

Cell Reports 18, 1791–1803, February 14, 2017 1803

http://refhub.elsevier.com/S2211-1247(17)30098-0/sref20
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref20
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref20
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref21
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref21
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref22
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref22
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref22
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref23
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref23
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref23
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref24
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref24
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref24
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref25
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref25
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref25
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref26
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref26
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref26
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref26
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref27
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref27
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref27
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref28
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref28
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref28
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref28
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref29
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref29
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref29
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref30
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref30
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref30
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref30
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref31
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref31
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref31
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref32
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref32
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref33
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref33
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref33
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref34
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref34
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref35
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref35
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref35
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref35
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref36
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref36
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref36
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref37
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref37
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref37
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref38
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref38
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref39
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref39
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref39
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref39
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref40
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref40
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref40
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref41
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref41
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref42
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref42
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref43
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref43
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref44
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref44
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref44
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref45
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref45
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref46
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref46
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref46
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref47
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref47
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref47
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref47
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref48
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref48
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref48
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref49
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref49
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref50
http://refhub.elsevier.com/S2211-1247(17)30098-0/sref50

	Quantitative FLIM-FRET Microscopy to Monitor Nanoscale Chromatin Compaction In Vivo Reveals Structural Roles of Condensin C ...
	Introduction
	Results
	Nanoscale Chromatin Compaction Monitored by FLIM-FRET in Living C. elegans
	Spatial Organization of Chromatin Compaction Levels in Pachytene Cells
	The HP1 Homolog HPL-2 Is Essential for Heterochromatin Compaction
	MET-2 Histone Methyltransferase Controls Heterochromatin Compaction
	Condensin Complexes Are Essential for the Nanoscale Compaction of Heterochromatin

	Discussion
	Experimental Procedures
	Worm Strains and Culture Conditions
	Worm Live-Imaging Preparation
	FLIM-FRET Acquisitions
	FLIM-FRET Analysis

	Supplemental Information
	Author Contributions
	Acknowledgments
	References


