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ABSTRACT

The potential predictability of seasonal extreme precipitation accumulation (SEPA) acrossmainlandChina

is evaluated, based on daily precipitation observations during 1960–2013 at 675 stations. The potential pre-

dictability value (PPV) of SEPA is calculated for each station by decomposing the observed SEPA variance

into a part associated with stochastic daily rainfall variability and another part associated with longer-time-

scale climate processes. AMarkov chainmodel is constructed for each station and aMonteCarlo simulation is

applied to estimate the stochastic part of the variance. The results suggest that there are more potentially

predictable regions for summer than for the other seasons, especially over southern China, the Yangtze River

valley, the north China plain, and northwesternChina. There are also regions of large PPVs in southernChina

for autumn and winter and in northwestern China for spring. The SEPA series for the regions of large PPVs

are deemed not entirely stochastic, either with long-term trends (e.g., increasing trends in inland northwestern

China) or significant correlation with well-known large-scale climate processes (e.g., East Asian winter

monsoon for southernChina in winter andElNiño for theYangtzeRiver valley in summer). This fact not only

verifies the claim that the regions have potential predictability but also facilitates predictive studies of the

regional extreme precipitation associated with large-scale climate processes.

1. Introduction

Influenced by the East Asian monsoon together

with other climate factors, China experiences large

variability of precipitation, especially for the sum-

mer season. Subregional differences of variability of

seasonal precipitation are also notable because of

the complex geography and extensive range of the

country. Many weather systems can bring extreme

precipitation to China (Luo et al. 2016), including

tropical cyclones, surface fronts, vortex/shear lines,

and other small-scale synoptic systems. Disastrous

extreme precipitation events occasionally occur

across the country due to these stochastic weather

phenomena. However, the size of some events

has been of increasing concern in recent decades.

Examples include the extreme rains throughout al-

most the whole country during the summer of 1998

(Zong and Chen 2000) and the extreme snowfall/cold

rains in southern China in early spring of 2008

(Wang et al. 2008; Gao et al. 2008), which caused

huge economic losses and damages to human soci-

ety. Efforts have been made to uncover the intrinsic

characteristics of interannual variability in seasonal

precipitation, to ascribe regional precipitation variabil-

ity to large-scale factors (e.g., sea surface temperature

anomalies) that are potentially more predictable, and

to improve the seasonal precipitation prediction

skill of current models (Wang et al. 2005; Wu et al.

2009; Tian and Fan 2012; Deng et al. 2014;

Li et al. 2015).

However, it remains unclear how much seasonal

precipitation can be predicted, especially for the ex-

treme events. With regard to the disastrous events, it isCorresponding author e-mail: Zhongwei Yan, yzw@tea.ac.cn
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the extreme part of precipitation that matters more di-

rectly than seasonal total precipitation. Notably, there

have been studies showing that for some well-known

climatic teleconnections (e.g., more summer rainfall in

the Yangtze River valley in eastern China correspond-

ing to warmer sea surface temperature in the tropical

eastern Pacific or El Niño in the preceding winter), the

extreme rains play a key role while lighter rains do not

contribute to the teleconnections at all (Wang and Yan

2011). It is therefore implied that the extreme part of

seasonal precipitation could be more predictable for

particular regions, though the general prediction of

seasonal precipitation totals over the East Asian mon-

soon regions remains challenging.

The so-called potential predictability (PP) usually

denotes a specific signal-to-noise ratio of variability in

seasonal precipitation totals (Madden 1976; Leith 1978;

Trenberth 1984). It is thought that observed variability

in seasonal precipitation arises partly or totally from

high-frequency weather fluctuations (daily precipitation

processes), which are unpredictable beyond a few days.

Alternatively, variability may result from slowly

changing climate processes (e.g., El Niño–Southern
Oscillation, continental snow cover and sea ice distri-

butions, and land–atmosphere interaction), which are

potentially predictable at longer time scales (Lorenz

1973; Leith 1973; Madden 1976; Madden and Shea 1978;

Leith 1978; Somerville 1987; DelSole and Tippett 2007).

In past years, there have been a number of studies as-

sessing the PP of seasonal precipitation totals in China

(Wang et al. 1997; Liu et al. 2000; Ying et al. 2013).

There also have been a few studies about PP of seasonal

extreme precipitation but for other non-Chinese regions

(Becker et al. 2013; Anderson et al. 2015). It is beneficial

to have a general assessment of PP for extreme pre-

cipitation in mainland China.

The present work extends the PP analysis to sea-

sonal extreme precipitation accumulation (SEPA) over

mainland China for the first time. SEPA is defined as the

sum of all daily precipitation totals beyond the 95th

percentile (R95) in the season (referred to as R95pTOT).

This is one of the extreme precipitation indices recom-

mended by ETCCDI (Klein Tank et al. 2009; Zhang et al.

2011). This index represents the portion of seasonal ex-

treme precipitation that could possibly result in disastrous

events (e.g., urban waterlogging, landslide, and flooding).

This paper seeks to demonstrate the regions of signif-

icant PP of SEPA for different seasons by applying a

recently improved chain-dependent Markov process

with a variable order for each day of the year to sim-

ulate the weather noise (Gianotti et al. 2013, 2014;

Anderson et al. 2015). Furthermore, the present pa-

per’s aims are to explain possible sources of the

potential predictability of SEPA in the regions with

large PP values in order to further verify the potential

predictability in these regions. The data and methods

used are explained in section 2. The results are dem-

onstrated in section 3. Conclusions with discussion are

summarized in section 4.

2. Data and methods

a. Data

A set of daily precipitation data at 824 stations in

China was obtained from the Chinese Meteorological

Information Center. We select a subset of 675 stations

without missing data between 1 January 1960 and

31 December 2013. Most of the country is well covered

except for parts of the Tibetan Plateau and western

Inner Mongolia.

To calculate the SEPA for each day, we estimate for

each calendar day a base cumulative distribution func-

tion (CDF) by using all daily records of nonzero daily

precipitation amounts within a 91-day window (centered

around the given calendar day) during 1960–2013 and

then calculate the 95th percentile as a threshold to cal-

culate the daily SEPA. In cases without any daily pre-

cipitation records exceeding the threshold within the

season (a 91-day window), SEPA is defined as the

maximum daily precipitation amount during the 91-day

period for these years, in order to avoid a discontinuity

of the time series. For convenience, the SEPA series for

each station starts from 1 March 1960 to 28 February

2013 (omitting 29 February for leap years), thus being

53 years in length.

The 3-month running mean of sea surface tempera-

ture anomaly (SSTA) for theNiño-3.4 region is obtained
from the NOAA/Climate Prediction Center and an El

Niño (La Niña) event is defined by a minimum of five

consecutive overlapping seasons with SSTA above 0.58C
(below 20.58C). An East Asian winter monsoon

(EAWM) index defined by Wang and Chen (2014) is

also used in the subsequent analysis.

b. Methods

To determine the bounds of variability generated by

stochastic short-term processes in the SEPA series, we

apply a recently improved method (Gianotti et al. 2013,

2014; Anderson et al. 2015) by using a stationary sto-

chastic process to model the occurrence and intensity of

daily precipitation events. In this method, a chain-

dependent Markov process is used to simulate the

occurrence process. For the present study, such stocha-

stic processes should ideally describe the statistical

characteristics of stochastic short-term daily weather

events, but cannot explain variability generated by
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longer-time-scale climate processes. For each station, we

build a model of daily varying order but interannually

stationary Markov chain with all parameters estimated

from the historical records to simulate the occurrence of

daily precipitation events. Specifically, in this model, ev-

ery day of the year possesses an order between 0 and 3

selected by the corrected Akaike information criterion

(AICc; Hurvich and Tsai 1989). To guarantee a robust

estimate of a day’s parameters (order and the corre-

sponding transition probabilities) in the chain, the

historical data within a certain number of neighboring

days (between 5 and 91 days also determined via AICc)

are selected as samples for that day.

In this stationary stochastic model, the occurrence

process is accompanied with an intensity process also

representing the variability attributed to high-frequency

weather noise in precipitation intensity. Previous studies

have reported that the precipitation intensity on a day

might have some correlation with the precipitation oc-

currence or intensity on the previous days (Wilks 1999).

Having assessed this in the study region of mainland

China, we construct an intensity process model with a

continuous parametric density function conditioned on

the previous m days’ precipitation states. Here, the

number of previous days m is selected from 0 to 3 via

AICc. The probability density function (PDF) of nonzero

precipitation intensity was supposed to follow a mixed

gamma distribution. This PDF was selected after com-

paring with several other PDFs used in previous studies

(e.g., gamma, exponential, and mixed exponential; Wilks

1999; Anderson et al. 2015), with regard to their ability to

represent the tail of the distribution of daily precipitation

amounts. The mixed gamma takes the form as follows:
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where x represents the amount of daily precipitation,

0, a, 1 and a1, b1, a2, b2 . 0. The five parameters of

the mixed gamma distribution function for each day are

estimated from samples constructed by pooling the data

within a 91-day window centered on that day to enhance

the robustness of estimates. The choice of a 91-day window

is beneficial, especially for arid regions where precipitation

days are very few.

With the occurrence model and intensity model both

built, the daily-varying-order, yearly stationary stochastic

weather model is complete. For each station, we use this

model to produce 1000 Monte Carlo simulations for

53 years, the same length as the historical series. Based on

the observed records and the 1000 simulations, the po-

tential predictability for a certain day is defined as

PP(d)5
s2
obs(d)2s2

sim(d)

s2
obs(d)

,

where PP is the estimated potential predictability value

(PPV), d is the day of year,s2
obs is the observed variance of

R95pTOT for the day, and s2
sim

is the mean simulated

variance (averaged from the 1000 simulated variances). By

definition, the potential predictability can be seen as the

fraction of variance produced by low-frequency processes.

To test the statistical significance of any potential pre-

dictability, we need to estimate the CDF of PP under the

null hypothesis that there is no potential predictability.

This is accomplished by defining simulated PP as follows:

PP
sim

(n,d)5
s2
sim(n, d)2s2

sim(d)

s2
sim(n,d)

, n5 1,:::, 1000,

where s2
sim(n, d) is the variance in the nth run. Since

every run of the stochastic model is under the condition

of no potential predictability, PPsim(n, d) defined above

can be seen as a sample under the null hypothesis.

Hence, the 1000 samples allow an estimate of the CDF

of PP to be made under the null hypothesis. If the ob-

served PP is larger than the criterion given the signifi-

cance level of 0.1, the null hypothesis is rejected, that is,

there is significant potential predictability for the day.

As an example, Fig. 1 illustrates the annual cycle of

PPV with the corresponding confidence interval at one

station (Fig. 1). In Fig. 1, the shaded area represents the

likely range of the stochastic-weather-induced variabil-

ity. The wide range of the confidence interval indicates

large uncertainty resulting from weather noise. How-

ever, the PPV for this station is well above the stochastic

range throughout the summer, indicating significant PP

for summer at this station. In the case where the PPV is

smaller than the mean simulated PPV (e.g., at the end of

February and the beginning of March for this station), a

negative PPV is obtained. The interpretation of a neg-

ative PPV will be discussed in the last section. As the

present paper focuses on the cases of extra variability

beyondweather noise, the occasional negative PP values

will be omitted in the subsequent analysis.

Although the PPV for any given day of the year can be

calculated, the present paper mainly discusses the re-

sults corresponding to the traditional four seasons, that

is, those around the 46th day (15 April) in the annual

cycle for spring, the 137th day (15 July) for summer, the

229th day (15 October) for autumn, and the 321st day

(15 January) for winter. The time of the maximum PPV

during the year is also analyzed for each station and
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categorized into one of the four traditional seasons. To

facilitate identifying the large-scale patterns of high/low

PPVs, we interpolate the station results onto 0.18 3 0.18
grids by using Kernel density estimation.

3. Results

a. Potential predictability of SEPA

In general, small PPVs prevail throughout the country

for all seasons (Fig. 2), implying that it is difficult to

predict the extreme part of seasonal precipitation.

However, all stations with statistically significant PPVs

have a PPV larger than 0.3, and there are a few subregions

with large PPVs for a season. Summer shows most sub-

regionswith largePPVs among the four seasons, as shown in

JJA in Fig. 2. The regions of statistically significant PP for

summer extend quite broadly, including a large part of

northern China (from Xinjiang to northeastern China), the

middle to lower reaches of the Yangtze River and Huai

River, the north China plain, and southern China. There are

several large areas with little PP, including southwestern

China and the Gulf of Bohai, while statistically insignificant

PPVs also scatter elsewhere.

For autumn, the predictable areas diminish obvi-

ously (Fig. 2, SON). There is a widespread zone with

little PP extending from the eastern Tibetan Plateau

FIG. 2. Distribution of PP in SEPA (R95pTOT) for the four seasons.

FIG. 1. The PP of SEPA (R95pTOT) on each day of the year for Shaoyang station (Hunan

Province).
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to northeastern China. There are several relatively

large regions with PPV $ 0.3, including western

Xinjiang, southern Shaanxi, parts of Hunan and

Jiangxi, and southern Guangdong.

For winter, the area with little PP further expands to

cover most of China (Fig. 2, DJF). In contrast, the pre-

dictable area in southern China is enlarged. Large PPVs

also exist in the extreme northwest of China, around the

northern Junggar basin.

For spring, the highest PPVs are found over western

Xinjiang, Ningxia, and the north China plain. Statisti-

cally significant PPVs also exist around Hainan Island

and coastal southern China (Fig. 2, MAM).

To help summarize the results of Fig. 2, we calculate

the maximum PPV during the year for each station and

see in which season it occurs (Fig. 3). From the map of

themaximumPPV time, we can see that some stations in

the eastern Tibetan Plateau, the Gulf of Bohai, and

Shandong Peninsula have no PP for SEPA throughout

the year. Large areas in central and northern China

have a maximum PP in summer, especially including the

middle to lower reaches of the Yangtze River, eastern

Sichuan basin, and northeastern China. The regions with

the maximum PP time in autumn are mainly located in

southern China andmiddle Xinjiang. Northern Xinjiang

and Guangdong are the only two regions with their

maximum PP time in winter. The southern part of the

north China plain and some small parts in northern

China show the maximum PP in spring.

b. Sources of potential predictability

The regions with a number of stations where the

variability of SEPA is beyond simulated weather noise

should experience some nonstationary processes. Such

nonstationary processes possibly result either from some

long-term internal climate dynamics or external forcings

for the regions, which renders the SEPA potentially

predictable and could be regarded as the sources of PP.

Four specific regions (as marked in Fig. 2) are selected

to investigate possible causes of the large PPVs. To see

whether there are some common sources of potential

predictability in the aggregated stations with high PPVs

and to dampen the noise from individual station series,

we calculate regional-meanR95pTOT series by using all

stations with PPV $ 0.3 within the selected region.

Three of the selected regions show statistically sig-

nificant trends, including Xinjiang for summer (region 1

in Fig. 2), northern Xinjiang for winter (region 3 in

Fig. 2), and the middle to lower reaches of the Yangtze

River for summer (region 2 in Fig. 2). The increasing

rates of the three regional R95pTOT series are 0.193,

0.209, and 1.187mmyr21 (Fig. 4) and the coefficients

of determination are 20.2%, 16.3%, and 9.1%, re-

spectively. Considering the averaged PP over these

three regions are 0.5 (Xinjiang for summer), 0.53

(northern Xinjiang for winter), and 0.45 (the middle to

lower reaches of the Yangtze River for summer), the

contributions of the linear trend to the potential pre-

dictability are 40%, 30%, and 20%, respectively (Table

1). Although these cannot account for all the potential

predictability for the regions, the long-term trend is

indeed an obvious source for nonstationarity of a time

series, and there is usually a driving process behind it

(e.g., global warming and transition from one to an-

other phase of some large-scale climate oscillation).

For Xinjiang in northwestern China, previous studies

FIG. 3. Spatial distribution of max PP time (into the four seasons).
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have shown that, during the past half century, in-

creasing atmospheric water vapor mainly comes from

the North Atlantic and the Arctic Ocean for summer

and from the Caspian Sea and the Mediterranean for

winter (Dai et al. 2007). A major increase of the water

vapor in Xinjiang happened in the middle of the 1980s.

This regional wetting trend has been ascribed to the

effect of significant climate warming in middle and high

latitudes during the same period (Dai et al. 2007; Sun

and Ao 2013). Such a wetting trend supports the in-

creasing trend in the extreme part of precipitation,

contributing to some PP of SEPA (R95pTOT) over the

region. For the Yangtze River region, there also have

been many studies showing that both the summer total

precipitation and extreme precipitation have been in-

creasing during the last few decades (Su et al. 2006;

Wang and Zhou 2005).

Besides the long-term trends, there should be more

sources of potential predictability for the regional SEPA

in association with large-scale climate processes. The

winter SEPA of southern China (region 4 in Fig. 2)

serves as an example. It is noted that most of the stations

in this region consistently observe higher values of

SEPA in some years and much less in some other years.

Averaging of all correlation coefficients between each

individual series and the regional average, we get amean

correlation of 0.81, indicating strongly consistent varia-

tions in the SEPA series (Fig. 5a). This is an indicator of

the existence of some large-scale climate variations. The

correlation analysis between SEPA and some large-

scale climate processes discovered that the EAWM has

significant connection with the winter regional SEPA

over southern China (Fig. 5b), and the regression result

shows that EAWM accounts for 14% of the regional

SEPA interannual variability and 35.9% of the regional-

mean PP (Table 1). Therefore, it is reasonable to regard

FIG. 4. Three regional R95pTOT series with high PPVs partly due to a statistically significant

increasing trend.

TABLE 1. Regression between regional SEPA and some sources

of PP (e.g., long-term trends and EAWM). The numbers after

‘‘SEPA’’ in the first column represent the marked four regions in

Fig. 2. The coefficient of determination for the regression is given

by R2, representing how much variability the regression can ac-

count from the total variability. The ratio of R2 to the regional-

mean PP represents the portion of PP the regression could

account for.

Regression form R2
P value

(F test)

Regional

mean PP Ratio (R2/PP)

SEPA(1)–year 0.20 0.0006 0.50 40%

SEPA(2)–year 0.09 0.03 0.45 20%

SEPA(3)–year 0.16 0.003 0.53 30%

SEPA(4)–EAWM 0.14 0.005 0.39 36%
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EAWM as a source of potential predictability in ex-

treme precipitation over this region for winter.

As for the middle to lower reaches of the Yangtze

River (region 2 in Fig. 2) for summer, the observed trend

during the past half century is a possible cause, but sea-

sonal rainfall observations have also been shown to be

associated with some long-term climate processes such as

ENSO, the Pacific decadal oscillation (PDO), the sub-

tropical northwestern Pacific high (SNPH), and the East

Asian summer monsoon (EASM; Gong and Ho 2002;

Zhu and Yang 2003; Wu et al. 2009; Zong et al. 2010;

Wang and Yan 2011). It is difficult to determine a steady

and simple relationship between the regional summer

SEPA and any one of these large-scale factors, because

the variability of SEPA arises from the combination of

effects of these processes. In spite of this, the influence of

some climate processes on the regional summer SEPA

series can still be identified. In particular, it is notable that

5 out of 7 years with the detrended regional SEPA ex-

ceeding one standard deviation s were summers follow-

ing El Niño events. This indicates El Niño as a possible

factor for this region that leads to more extreme rains in

summer (Fig. 6). Some studies also found that the EASM

has a negative correlation with extreme precipitation in

this region (Wang and Yan 2011). It is clear that pre-

cipitation over this region is not determined by only a

single large-scale climate factor but depends on in-

teractions among several climate processes. These pro-

cesses make it complicated to predict the seasonal

precipitation for this region, even with considerable PP.

For the other regions with large PPVs (e.g., western

Xinjiang in spring and northeastern China in summer),

the regional R95pTOT series also demonstrates some

nonrandomness that might arise from consistent varia-

tions of SEPA formost of the stations in the region. Such

consistent behavior is beyond the variations from stochas-

tic weather processes, and the spatial agreement implies it

must be related to some longer-term climate processes.

In contrast, the stations within regions of insignificant

PPVs do not show such characteristics. The seasonal

R95pTOT series in those regions can be regarded

mainly as stochastic weather noise. For example, for

the eastern edge of Tibetan Plateau for summer, many

stations are found to have statistically insignificant

PPVs while the R95pTOT series at each station is

found to be barely above the noise level. For these

regions, most of the stations do not show consistent

variations in SEPA for any years. As a result of this, the

regional-mean R95pTOT series is also identified as

noise, that is, hardly predictable.

4. Summary and discussion

In this paper, the PP of seasonal extreme precipitation

accumulation over mainland China is evaluated. We

constructed stationary stochastic weather models based

on instrumental station records and estimate the vari-

ance of SEPA associated with stochastic short-term daily

weather fluctuations by using Monte Carlo simulations

for each station and day of the year. The PPV is defined as

FIG. 5. Correlation between winter SEPA over southern China and the winter monsoon index.
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the fraction of the observed variance after removing the

stochastic part. Based on the PPVs at all stations over

mainland China, the distribution of PP for seasonal pre-

cipitation extremes can be visualized for each day of the

year. Focusing on PP for the conventional four seasons,

we found typical regions with high PPVs and the analysis

of the SEPA time series for each station verified the ex-

istence of potential predictability in stations within the

typical regions. Main conclusions are as follows.

1) Overall, for summer, western Xinjiang, the middle to

lower reaches of the Yangtze and Huai Rivers, the

Sichuan basin, northeastern China, and southern China

are the regions with consistently large PPVs $0.3 at

most stations. For autumn, the predictable regions

greatly reduce, with only small regions in Xinjiang

and the middle and south of China having PPV $ 0.3.

For winter, a large part of southern China and northern

Xinjiang exhibit high PPVs. For spring, there are few

predictable regions, except for western Xinjiang. Most

regions have their maximum PP time in summer,

especially for central and northern China.

2) The regional SEPA (or R95pTOT) series for the

typical regions with high PPVs do show some types of

nonstationarity or nonrandomness, which verifies

our claim of potential predictability there. A com-

mon feature of the R95pTOT series for these regions

is that many stations have PPVs$0.3 within a region

showing consistent variations in SEPA, resulting in

some years with consistently more (or less) SEPA

throughout the region. The middle to lower reaches

of the Yangtze River and Xinjiang for summer and

northern Xinjiang for winter exhibited statistically

significant long-term increasing trends in SEPA

during the past half century. The regional winter

R95pTOT series over southern China showed statis-

tically significant correlation with the EAWM index,

suggesting a strong influence of the EAWMon SEPA

in this region. The regional summer SEPA in the

middle to lower reaches of the Yangtze River was

large inmost of the summers following ElNiño. All of

these examples imply that some large-scale climate

processes drive the regional extreme precipitation

beyond the local weather noise, thus rendering the

regional SEPA potentially predictable. In contrast,

the regions with no PP should be influenced more by

stationary stochastic weather noise.

It is noteworthy that there have been few studies

about the potential predictability in seasonal extreme

precipitation over the East Asian monsoon region. The

present paper provides the first attempt to evaluate the

PP of SEPA in China. Note that a PPV of 0.3 means that

30% of the total variance results from potentially pre-

dictable signals while 70% should be from noise. Except

for the typical regions outlined in our study, most of

China exhibited PPVs smaller than 0.3 in general, which

means that weather noise is dominant in the SEPA

variability in general. This poses a serious challenge for

prediction of SEPA for the regions.

Caveats for understanding the present results also

arise from the imperfect models. For instance, the 95th

FIG. 6. Detrended regional SEPA over the middle to lower reaches of the Yangtze River

for summer.
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percentile of daily precipitation tends to be overestimated

at some stations for the dry season (e.g., winter) by the

model, which should influence the subsequent PP analysis.

We have checked that the number of wet days for each

station is well simulated for all seasons by the model. This

implies that the occurrence process model is sufficiently

good and the biased 95th percentiles of daily precipitation

are likely caused by the intensity process simulation. In

fact, the observed distribution of daily precipitation totals

for the dry season usually contains a considerable number

of light rain days and several heavy rain days, but few

moderate rain days. As a result of this, the empirical 95th

percentile tends to be smaller than that of a fitted theo-

retical distribution. Unfortunately, there is not a perfect

model that fits daily precipitation well for all seasons and

stations across a large region such as China.

A remaining problem is about the emergence of the

negative PP. There are 13% of the stations showing

negative PP and with poorly fitted R95 by the model,

mostly for winter. The failure of the model to represent

the observed distribution of daily precipitation for the

dry season is a likely cause. For those where the model

reproduces R95 well but also shows a negative PP (1%),

an alternative explanation is that some long-term cli-

mate processes suppress the weather-induced stochastic

variability.

Another shortcoming of the currentmethod is that the

stationary stochastic weather model does not describe

any spatial dependence of weather variability among the

stations. A more perfect model with improvements to-

ward this shortcoming helps to obtain more reliable

assessments of the potential predictability.

Nevertheless, it is interesting to note that a large part

of China shows some consistent PP for summer SEPA,

which, in association with the EASM, has long been a

target of research in the field of climatology. In contrast,

the predictive skill of current predictive models for

seasonal precipitation totals remains low for this region

(Wang et al. 2009, 2015). This implies considerable po-

tential for the improvement of current predictive

models. To realize this, it is beneficial to further study

the underlying large-scale climate processes and the

relevant mechanisms leading to extreme precipitation in

the region. Knowing the possible sources of potential

predictability for typical regions should help to facilitate

development of relevant modeling studies and pre-

dictive methods.
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