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Fock-space projection operators for semi-inclusive final states
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We present explicit expressions for Fock-space projection operators that corre-

spond to realistic final states in scattering experiments. Our operators automati-

cally sum over unobserved quanta and account for non-emission into sub-regions of

momentum space.

INTRODUCTION

When calculating matrix elements for scattering processes, it is necessary to sum over

all final states that contribute to an observable, which often necessitates summing over

unmeasured quanta. The classic example is the computation of the cross-section for

e+e− → hadrons, in which infra-red singularities cancel between the virtual gluon correc-

tions and corresponding zero-energy real gluon emissions by the Kinoshita-Lee-Nauenberg

theorem [1, 2] (see also Refs. [3, 4]). However, it may not be necessary to sum over unob-

served emissions if one instead computes probabilities directly [5].

Generally, the probability (P) that a system, described by some density operator ρ, will

register an outcome, described by some effect operator E, is

P = Tr(Eρ) . (1)

Furthermore, if the measurement is performed at time tf and the system is known to be

described at time ti by the density operator ρi then, in the Interaction Picture,

ρf = Ufi ρi U
†
fi , (2)

http://arxiv.org/abs/1702.04131v1
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where

Ufi = Texp

(

1
i

∫ tf

ti

dt Hint(t)

)

(3)

is the unitary time-evolution operator and Hint is the interaction Hamiltonian. If the mea-

surement corresponds to a pure state |f〉〈f | and the initial state is also a pure state |i〉〈i|,

we obtain the usual squared matrix element

P = | 〈f |Ufi |i〉 |
2 . (4)

In what follows, we will present explicit expressions for possible effect operators, E,

corresponding to general semi-inclusive measurements. Our operators will be projection

operators in Fock space and they all have the feature that they automatically sum over

unobserved quanta. They should be useful in calculations that aim to compute

P = 〈i| (U †
fi E Ufi) |i〉 (5)

directly, perhaps making use of the results in Ref. [5].

PROJECTION OPERATORS IN FOCK SPACE: BOSONIC CASE

It is a well known result in quantum optics that the vacuum projection operator can be

written as the exponential of the photon number operator (see e.g., Refs. [6–8]):

E
(0)
R3 ≡ I +

∞
∑

j=1

(−1)j

j!
:
(

NR3

)j
:

= : e−N
R3 :

= |0〉 〈0| , (6)

where the number operator

NR ≡
∑

λ

∫

R

d3k

(2π)32E
a†λ(k)aλ(k) (7)

counts the number of quanta in a region R of momentum space, i.e.

NR |k1 . . .kN 〉 = n |k1 . . .kN〉 , where n =

N
∑

a=1

1R(ka) (8)

and 1A(x) denotes the indicator function of set A, which is 1 if x ∈ A and 0 otherwise.

The colons indicate normal ordering. The sum is over all physical polarizations, λ, if the
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projection is to be independent of polarization, or it could be over some subset of all al-

lowed polarizations. Moreover, the region of momentum space need not be common to all

polarizations, i.e. R → Rλ. For ease of notation, we suppress the polarization indices that

are needed to fully specify Fock states.

More generally, E
(0)
R is the projection operator corresponding to zero quanta in R, i.e.

E
(0)
R |k1 . . .kN〉 =











|k1 . . .kN 〉 if zero quanta in R ,

0 otherwise .
(9)

The proof of this result, and of those that follow, is contained in the appendix.

These non-emission operators are specific cases of a more general projection operator:

E
{ja}
{Ra⊆R} ≡ :

[

∏

a

1

ja!

(

NRa

)ja

]

e−NR : . (10)

This operator projects onto the subspace of states in which exactly
∑

a ja quanta have

momenta in R, distributed so that exactly ja quanta have momenta in each disjoint subset

Ra ⊆ R. There is no restriction on quanta lying outside of R. The special case of

E
(j)
R ≡ :

1

j!

(

NR

)j
e−NR : (11)

projects onto exactly j particles inR and resembles the operator form of the photon counting

distribution in quantum optics (see e.g., Ref. [9]).

To illustrate Eq. (10), we might consider the simple case where one quantum has mo-

mentum in the range k → k + d3k and there are no other quanta anywhere, i.e. R = R
3.

In this case, the projection operator is

E
(1)

R1⊂R3 = : NR1
e−N

R3 : =
d3k

(2π)32E
: a†(k)a(k) |0〉 〈0| : =

d3k

(2π)32E
|k〉 〈k| . (12)

With ja = 1 ∀ a, Eq. (10) could be employed in situations where the observable final state

has the form of n particles with given momenta ka → ka+d3ka, accompanied by any number

of undetectable particles below a given energy and/or transverse momentum threshold.

Since these projection operators share a common eigenbasis — the Fock basis — they

mutually commute and can be combined straightforwardly. For example, E
(j)
R1

E
(k)
R2

projects

onto states with exactly j quanta in R1 and exactly k quanta in R2, regardless of whether

R1 and R2 are disjoint.
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We may now construct a projection operator dER,vn(V ) for an n-particle final state

satisfying a constraint of the form V ≤ vn(k1, . . . ,kn) ≤ V + dV , which is symmetric

under interchange of any two momenta, and inclusive of particles outside region R. In the

low-density regime in which Fock state occupation numbers rarely exceed unity, this is

dER,vn

dV
=

[

n
∏

i=1

∫

R

d3ki

(2π)32Ei

]

1

n!
δ(vn({ki})− V ) :

[

n
∏

i=1

a†(ki)a(ki)

]

e−NR : . (13)

Where a single choice of particle number n is not appropriate, we may bring the particle

number into the constraint function v
(

{ki};n
)

= vn(k1, . . . ,kn) ∀ n, and define

dER,v

dV
=

∑

n

dER,vn

dV
. (14)

PROJECTION OPERATORS IN FOCK SPACE: FERMIONIC CASE

The projection operators for fermions are analogous to the bosonic case. We may regard

the sum over λ in Eq. (7) to be inclusive of particle (b†s(k)bs(k)), anti-particle (d†s(k)ds(k))

and spin states (indexed by s), i.e. NR → NR + N̄R̄, where

NR =
∑

s

∫

R

d3k

(2π)32E
b†s(k)bs(k) , N̄R̄ =

∑

s

∫

R̄

d3k

(2π)32E
d†s(k)ds(k) . (15)

As was true of the polarization sum, the regions R and R̄ need not be common to all spin

projections, i.e. R → Rs and R̄ → R̄s. The anti-commutativity of the fermion creation and

annihilation operators is accounted for in the definition of normal ordering:

: b†s(k)bs(k) : = + b†s(k)bs(k) , : bs(k)b
†
s(k) : = − b†s(k)bs(k) , (16)

with analogous expressions holding for the anti-fermion operators d†s(k) and ds(k).

For a general product of j operators, we find

:

j
∏

a=1

b†sa(ka)bsa(ka) : = (−1)j(j−1)/2

j
∏

a=1

b†sa(ka)

j
∏

b=1

bsb(kb) . (17)

The normal ordering has given rise to an overall factor of (−1)j(j−1)/2. However, after acting

on a given state with the annihilation operators, the order of the creation operators is

reversed relative to the original state. Using anti-commutation to recover the original order,

we pick up an additional factor of (−1)j(j−1)/2, with the result that there is no overall sign



5

relative to the bosonic case. We can account for this directly at the level of Eq. (17) by

re-ordering the creation operators, picking up the same additional factor of (−1)j(j−1)/2:

:

j
∏

a=1

b†sa(ka)bsa(ka) : =
1
∏

a= j

b†sa(ka)

j
∏

b=1

bsb(kb) . (18)

The behaviour of the normal-ordered products of fermion number operators is therefore

identical to that of the normal-ordered boson number operators described previously. This

can also be understood by virtue of the fact that fermionic number operators are commutative

not anti-commutative.

As an example, the operator projecting onto the subspace of states in which there are

exactly j fermions (of any spin) and zero anti-fermions in R is

E
(j,0)
R ≡ :

1

j!
(NR)

je−NR−N̄R : = :
1

j!
(NR)

je−NR : ⊗ : e−N̄R : . (19)

In all cases, the projection operators of a given degree of freedom are built from the

corresponding number operator. The results presented here may therefore be generalized

readily to include additional gauge structure, multiple flavours or higher-spin representa-

tions. Since the number operators of different degrees of freedom mutually commute — for

fermions as well as bosons — their projection operators may be combined straightforwardly

by tensor multiplication. One can then imagine constructing semi-inclusive projection oper-

ators of any complexity by combining those of different species across various disjoint and/or

overlapping regions of momentum space.

CONCLUSIONS

These projection operators have the interesting property that sums over unobserved emis-

sions are implicit. This may have a significant impact upon the way in which we deal with

infra-red divergences in gauge theories. However, in order to take full advantage of this

property, we must compute probabilities directly, bypassing amplitude-level calculations al-

together. Were we to revert to the latter, we would need to break these projection operators

apart again, reintroducing the explicit sums over unobserved emissions that we intend to

avoid. It remains, therefore, to develop technology that simplifies and makes tractable the

explicit calculation of these probabilities, perhaps building on the results of Ref. [5] and the

earlier ideas of Ref. [10] by exploiting the connection to the path-integral approach of the

in-in (or closed-time-path) formalism.
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APPENDIX: PROOFS OF RESULTS QUOTED IN THE MAIN TEXT

It is useful to be able to compute the eigenvalues of normal-ordered products of num-

ber operators. The eigenvalue equations themselves have identical forms for bosonic and

fermionic number operators, and we will suppress all but the momentum dependence of

states for conciseness. The first non-trivial example is

: NR1
NR2

: |k1 . . .kN〉 = (n1n2 − n12) |k1 . . .kN〉 , (20)

where ni counts the number of quanta lying in Ri and n12 counts the number of quanta

lying in the overlapping region R1 ∩R2. Similarly,

: NR1
NR2

NR3
: |k1 . . .kN〉 = (n1n2n3 − n12n3 − n13n2 − n23n1 + 2n123) |k1 . . .kN〉 . (21)

These are the simplest examples of the more general formula:

: NR1
NR2

· · ·NRp
: |k1 . . .kN〉 =

[

p
∏

r=1

nr

][

1 +
∑

i<j

(−1)nij

ninj

+
∑

i<j<k

(−1)(−2)nijk

ninjnk
+

∑

i<j<k<l

(−1)(−2)(−3)nijkl

ninjnknl
+ . . .

+
∑

i<j,i<k<l

(−1)nij(−1)nkl

ninjnknl
+

∑

i<j,k<l<m

(−1)(−2)nijk(−1)nlm

ninjnknlnm
+ . . .

+
(−1)p−1(p− 1)!n12...p

n1n2 . . . np

]

|k1 . . .kN 〉 , (22)

in which a sum is listed for every integer partition of p.

The eigenvalue of this normal ordered product of number operators counts the total

number of ways to select p quanta from the set specified by the state |k1 . . .kN〉 such that

one quantum is in each of the regions, Ri. If the regions are nested, such thatR1 ⊆ R2 ⊆ . . .,

Eq. (22) reduces to

:

p
∏

i=1

(NRi
) : |k1 . . .kN〉 =

[

p
∏

i=1

(

ni − (i−1)
)

]

|k1 . . .kN〉 , (23)

and, if all the Ri are identical, this becomes

: (NR)
p : |k1 . . .kN〉 =











n!

(n− p)!
|k1 . . .kN〉 if n ≥ p ,

0 otherwise .

(24)
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We now consider more than one sequence of nested regions, in the case that the regions

in different sequences are disjoint. If we have j1 copies of region R1, j2 copies of region R2

and so on, with Ri ∩ Rj = ∅ ∀ i 6= j, then

:
∏

a

(NRa
)ja : |k1 . . .kN 〉 =















[

∏

a

na!

(na − ja)!

]

|k1 . . .kN 〉 if na ≥ ja ∀ a ,

0 otherwise .

(25)

The product form of the eigenvalues is a consequence of the fact that the operator factorizes

into mutually commuting operators of the form given in Eq. (24).

Now we consider a set of disjoint regions within a superset. Let us augment the case of

the previous paragraph with k copies of a region R ⊃ Ri. After selecting ja particles from

each disjoint region Ra, the number of particles remaining in R is nx ≡ n −
∑

a ja. The

number of ways of selecting these k particles is then nx!/(nx − k)!, and

:

[

∏

a

(NRa
)ja

]

(NR)
k : |k1 . . .kN〉 =























nx!

(nx − k)!

[

∏

a

na!

(na − ja)!

]

|k1 . . .kN〉
if na ≥ ja ∀ a

and nx ≥ k ,

0 otherwise .

(26)

These results for the action of normal ordered products of the number operator are the key

to proving the results quoted in the main text.

Specifically, using Eq. (24), we can go ahead and prove Eq. (9):

E
(0)
R |k1 . . .kN 〉 =

n
∑

p=0

(−1)p n!

p!(n− p)!
|k1 . . .kN〉

= lim
x→−1

(1 + x)n |k1 . . .kN〉

=











|k1 . . .kN〉 if n = 0 ,

0 otherwise .
(27)

A proof of Eq. (10), using Eq. (26) with nx ≡ n−
∑

a ja, runs as follows:

E
{ja}
{Ra⊆R} |k1 . . .kN 〉 =

∞
∑

k=0

(−1)k

k!
:

[

∏

a

1

ja!
(NRa

)ja

]

(NR)
k : |k1 . . .kN〉

=

nx
∑

k=0

(−1)k

k!

nx!

(nx − k)!

[

∏

a

na!

ja!(na − ja)!

]

|k1 . . .kN 〉 , (28)
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provided na ≥ ja ∀a and zero otherwise. The eigenvalue may be written

[

∏

a

(

na

ja

)

]

nx
∑

k=0

(

nx

k

)

(−1)k =

[

∏

a

(

na

ja

)

]

lim
x→−1

(1 + x)nx , (29)

which vanishes unless nx = 0. Since n ≥
∑

a na ≥
∑

a ja = n− nx, this implies na = ja ∀ a.

Hence,

E
{ja}
{Ra⊆R} |k1 . . .kN 〉 =











|k1 . . .kN〉 if na = ja ∀ a and n =
∑

a ja ,

0 otherwise .
(30)
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