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Abstract. We consider the one parameter family α 7→ Tα (α ∈ [0, 1)) of Pomeau-
Manneville type interval maps Tα(x) = x(1 + 2αxα) for x ∈ [0, 1/2) and Tα(x) = 2x− 1
for x ∈ [1/2, 1], with the associated absolutely continuous invariant probability measure
µα. For α ∈ (0, 1), Sarig and Gouëzel proved that the system mixes only polynomially
with rate n1−1/α (in particular, there is no spectral gap). We show that for any ψ ∈ Lq,
the map α →

∫ 1

0
ψ dµα is differentiable on [0, 1 − 1/q), and we give a (linear response)

formula for the value of the derivative. This is the first time that a linear response formula
for the SRB measure is obtained in the setting of slowly mixing dynamics. Our argument
shows how cone techniques can be used in this context. For α ≥ 1/2 we need the n−1/α

decorrelation obtained by Gouëzel under additional conditions.

1. Introduction

Given a family of dynamical systems Tα on a Riemann manifold, depending smoothly
on a real parameter α, and admitting (at least for some large subset of parameters) an
ergodic physical (e.g. absolutely continuous, or SRB) invariant measure µα, it is natural
to ask how smooth is the dependence of µα on the parameter α. In particular, one would
like to know whether α 7→ µα is differentiable and, if possible, compute a formula for the
derivative, depending on µα, Tα, and vα = ∂αTα.

This theme of linear response was explored in a few pioneering papers [Ru1, KKPW, Ru]
in the setting of smooth hyperbolic dynamics (Anosov or Axiom A), and then further
developed, following the influence of ideas of David Ruelle. In the smooth hyperbolic case,
the SRB measure µα corresponds to the fixed point of a transfer operator Lα enjoying a
spectral gap on a suitable Banach space. In particular, this fixed point is a simple isolated
eigenvalue in the spectrum of Lα, and linear response can be viewed as an instance of
perturbation theory for simple eigenvalues. This is evident in the linear response formulas,
which all involve some avatar of the resolvent (id − Lα)−1 =

∑
k Lkα applied to a suitable

vector Yα, depending on the derivative of µα and on vα.
It was soon realised that existence of a spectral gap is not sufficient to guarantee linear

response when bifurcations are present (see e.g. [Ma, B1, BS]). In the other direction,
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[BT] and T. Persson for a conversation on Lq. She is much indebted to S. Gouëzel for pointing out Theorem
2.4.14 in [Goth], which allowed us to extend our results to α ∈ [1/2, 1).
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neither the spectral gap nor structural stability is necessary for linear response, as was
shown by Dolgopyat [Do] who obtained a linear response formula for some rapidly mixing
systems (which were not all exponentially mixing or structurally stable).

The intuition that a key sufficient condition is convergence of the sum
∑

k Lkα(Yα) was
confirmed by [HM, Remark 2.4]. This is of course related to a summable decay of correlations.
However, decay of correlation usually only holds for observables with a suitable modulus of
continuity, which Yα, being a derivative, does not always enjoy. We confirm this intuition
by studying a toy-model, of Pomeau-Manneville type: 1 For α ∈ [0, 1), we consider the
maps (as in [LSV]) Tα : [0, 1]→ [0, 1]:

Tα(x) =

{
x(1 + 2αxα) , x ∈ [0, 1/2)

2x− 1 , x ∈ [1/2, 1] .

(Of course, T0 is just the angle-doubling map T0(x) = 2x modulo 1.) It is well-known
that each such Tα admits a unique absolutely continuous invariant probability measure
µα = ρα dx. (Clearly, ρ0(x) ≡ 1.) Statistical stability (continuity) of µα when α changes
is proved in [FT]. The absolutely continuous invariant probability measure µα = ραdx
is mixing for all α ∈ [0, 1). For α = 0 the mixing rate for Lipschitz observables, say, is
exponential (decaying like 1/2k). For α ∈ (0, 1) the mixing rate is only polynomial with
rate n1−1/α [Go, Sa]. (In fact, Gouëzel obtains a faster rate n−1/α for

∫
(ψ ◦ Tnα )φdµα, if ψ

is bounded, φ is Lipschitz and vanishes in a neighbourhood of zero, and
∫
φdµα = 0, and

this property is crucial below when α ≥ 1/2.) In particular, for any α ∈ (0, 1), the density
ρα cannot be the fixed point of a transfer operator with a spectral gap on a Banach space
containing all C∞ functions. However, we are able to prove (Theorem 2.1) that for any
q ∈ [1,∞] and any ψ ∈ Lq, the map α 7→

∫
ψ dµα is continuously differentiable on [0, 1−1/q),

and we give two expressions ((2.6), with a resolvent, (2.7), of susceptibility function type)
for the linear response formula, with Yα = (XαNα(ρα))′, where Xα = vα ◦ (Tα|−1

[0,1/2)) and
Nα corresponds to the first branch of the transfer operator Lα. This is the first time that
a linear response formula is achieved for a slowly mixing dynamics. The fact that linear
response holds for any bounded ψ is relevant since nonsmooth observables appear naturally.
For example, if A is smooth and Θ is a Heaviside function, the expectation value of Θ(A(x))
gives the fraction of the total measure where A has positive value, and more generally such
discontinuous observables have probabilistic and physical interpretations, with the work of
Lucarini et al. [Lu1, Lu2] showing how the theory of extremes for dynamical systems (in
particular regarding climate change) can be cast in this framework.

Our proof is based on the cone techniques from [LSV], and hinges on the new observation
that the factor Xα, respectively X ′α, compensates the singularity at zero of ρ′α, respectively
ρα. Indeed, the compensation is drastic enough so that the n−1/α decorrelation results of
Gouëzel [Go, Goth] can be used. It would apply e.g. to the more general one-dimensional
maps with finitely many neutral points described in [LSV, Section 5]. Since our goal is to

1See Remark 2.2 for one possible generalisation.
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describe a new mechanism (demonstrating in particular how invariant cone techniques 2 can
be implemented) for linear response in the presence of neutral fixed points in the simplest
setting, we leave such generalisations to further works.

We end this introduction with comments about bifurcations and the singularities of ρα.
By [Th1, Theorem 1], for any α ∈ (0, 1), there exists 0 < c1 < c2 so that 3

(1.1) c1x
−α ≤ ρα(x) ≤ c2x

−α .

It is easy to see (e.g. via symbolic dynamics) that the maps {Tα | α ∈ [0, 1)} belong to
the same topological class, so that bifurcations do not occur. However the conjugacy hα
between T0 and Tα is not differentiable. Indeed, if it were, then we would have T ′α(0) = T ′0(0)
at the fixed point 0, but this is impossible 4 since T ′0(0) = 2, while T ′α(0) = 1 for α > 0.
More generally, take arbitrary α 6= β. The conjugacy hβ,α between Tα and Tβ maps the
invariant density ρα to ρβ . Therefore hβ,α cannot be differentiable, since otherwise it would
contradict (1.1).

Another lesson of recent research [Ru2, Ru3, B3, B2, CD] on linear response is that
understanding the singularities of the SRB measure is essential. In our application, the
density ρα is smooth on (0, 1]. The only “critical point” of Tα is the neutral fixed point at
0, so that the “postcritical orbit” is reduced to a single point. By (1.1), the singularity type
of ρα at 0 is x−α. So, heuristically, for a bounded observable ψ, the contribution of the
origin to ∂α

∫
ψdµα should be

∫
x−α log x · ψ(x) dx, which is indeed well defined.5 Indeed,

this heuristic remark sheds some light on the otherwise mysterious singularity cancellation
Xαρ

′
α ∼ log x ∼ X ′αρα. Our approach should extend to give higher order derivatives of

α→ µα (using invariant cones with more derivatives).

After the first version of this paper (in which our result was restricted to α ∈ [0, 1/2)
and L∞ observables) was posted on the arXiv, Korepanov [Ko] obtained linear response
(without the formula) for all α ∈ (0, 1) and Lq observables (for q > (1− α)−1). His method
of proof (using inducing) is different from ours.

2. Linear response formula for Pomeau–Manneville maps

2.1. Statement of the main result. We consider the transfer operator Lα defined, e.g.
on L∞(dx), by (note that inf T ′α ≥ 1 so absolute values are not needed)

Lαϕ(x) =
∑

Tα(y)=x

ϕ(y)

T ′α(y)
.

2Bomfim et al. [BCV] use invariant cones to obtain differentiability of some equilibrium measures
(enjoying a spectral gap) of Pomeau–Manneville maps. Their results do not apply to the SRB measure, and
thus do not include linear response in the sense of the present work.

3The upper bound also follows from [LSV, Lemma 2.3].
4Also, there are many periodic points x0 for T0 such that if p is the period then (T p0 )

′(x0) = 2p, but
(T pα)

′(hα(x0)) 6= 2p.
5While this paper was being finished, it was pointed out to us by I. Melbourne that this heuristic

argument can be made rigorous for the special family of maps studied by Thaler in [Th2, Section 2], where
the invariant density takes an explicit form.
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(For functions depending both on α and x we denote by ′ the derivative w.r.t. x and ∂α the
derivative w.r.t. α.)

We introduce some notation in order to state our main result. Let fα : [0, 1/2]→ [0, 1]
and gα : [0, 1]→ [0, 1/2] be defined by

(2.1) fα(x) = x(1 + 2αxα) , gα(y) = f−1
α (y) .

Note that g0(y) = y/2, while for α > 0 we have

(2.2) |gα(y)− y(1− 2αyα)| ≤ C(y1+2α) ,∀y ∈ [0, 1] .

For 0 ≤ x ≤ 1/2 and 0 ≤ β ≤ 1, we have vβ(x) := ∂βTβ(x) = 2βx1+β log(2x). Therefore,
for 0 ≤ x ≤ 1 and 0 ≤ β ≤ 1,

(2.3) Xβ := vβ ◦ gβ = 2βg1+β
β log(2gβ) , |Xβ(x)| ≤ cx1+β(| log x|+ 1) ,

and

(2.4) X ′β = 2βg′βg
β
β [(1 + β) log(2gβ) + 1] , |X ′β(x)| ≤ cxβ(| log x|+ 1) ,

and, finally,

X ′′β = 2βgβ−1
β

[
g′′βgβ

(
(1 + β) log(2gβ) + 1

)
+ (g′β)2((β + β2) log(2gβ) + 1 + 2β)

]
,(2.5)

|X ′′β(x)| ≤ cxβ−1(| log x|+ 1) .

(The properties of Xβ and its derivatives above are at the heart of the mechanism of the
proofs.) Since Tα(x) is independent from α if x > 1/2, to state our main result, we need
the transfer operator associated to the first branch of Tα by

Nαϕ(x) = g′α(x) · ϕ(gα(x)) .

Theorem 2.1 (Linear response formula). Let α ∈ (0, 1). Then for any q > (1− α)−1 and
any ψ ∈ Lq(dx)

(2.6) lim
ε→0

ε−1

(∫ 1

0
ψ dµα −

∫ 1

0
ψ dµα+ε

)
= −

∫ 1

0
ψ(id− Lα)−1

[
(XαNα(ρα))′

]
dx .

(In particular the right-hand side of (2.6) is well-defined.) In addition, the right-hand side
of (2.6) can be written as the following absolutely convergent sum

−
∑
k≥0

∫ 1

0
ψLkα

[
(XαNα(ρα))′

]
dx = −

∑
k≥0

∫ 1

0
(ψ ◦ T kα)(XαNα(ρα))′dx .

The result also holds for α = 0, taking the limit as ε ↓ 0 in (2.6). For p ∈ [1,∞), the map
α 7→ ∂αρα ∈ Lp(dx) is continuous on [0, 1/p).

Integration by parts allows us to rewrite the convergent sum as

(2.7) −
∑
k≥0

∫ 1

0
(ψ ◦ T kα)(XαNα(ρα))′dx =

∑
k≥0

∫ 1

0
(ψ ◦ T kα)′XαNα(ρα)dx .

We conjecture that the above results also hold for α < 0 in some parameter range, but the
proof will require modifications.
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Remark 2.2. It seems our proof also applies to the one-parameter family

Gt(x) =

{
(1 + t)x+ (1− t)2tx1+t , x ∈ [0, 1/2) ,

2x− 1 , x ∈ [1/2, 1] ,
t ∈ [0, ε] .

Remark 2.3. For the sake of comparison with previous works (e.g. [B3]), we can consider a
one-parameter family Fβ obtained by perturbations in the image, i.e. so that vβ = ∂βFβ =
Xβ ◦ Fβ for some Xβ. This can be achieved by perturbing the first branch (x < 1/2) in
order to have Tβ = Fβ and requiring the second branch (x ≥ 1/2) to move “sympathetically”
with the first one. More precisely, for fixed α, consider the one-parameter family Fβ,α which
satisfies

Fα,α(x) = Tα(x) ,∀x ∈ [0, 1] , Fβ,α(x) = Tβ(x) , ∀x ∈ [0, 1/2) ,

and, setting
Xβ(x) =: vβ ◦ gβ(x) = ∂βTβ ◦ gβ(x) ,∀x ∈ [0, 1] ,

so that
vβ,α := ∂βFβ,α = Xβ ◦ Fβ,α .

(For x ∈ [0, 1/2) this is automatic, and for x ∈ [1/2, 1] it can be obtained by solving the
ODE ∂βFβ,α = Xβ ◦Fβ,α with initial condition Fα,α(x) = 2x− 1 on [1/2, 1]. By the Picard-
Lindelöf theorem, this ODE has a unique solution since (β, y) 7→ Xβ(y) is continuous in β.)
If α is fixed, slightly abusing notation, we sometimes write Fβ, vβ, Xβ, and Lβ, instead of
Fβ,α, vβ,α, Xβ,α, and Lβ,α, when the meaning is clear. It is not difficult to prove that Fβ has
a unique absolutely continuous invariant measure µ̂β = ρ̂β dx satisfying the same properties
as µβ , and the proof of Theorem 2.1 shows that for any α ∈ (0, 1) and any ψ ∈ L∞(dx)

(2.8) lim
ε→0

ε−1

(∫ 1

0
ψ dµ̂α −

∫ 1

0
ψ dµ̂α+ε

)
= −

∫ 1

0
ψ(id− Lα)−1

[
(Xαρ̂α)′

]
dx .

The result also holds for α = 0, taking the limit as ε ↓ 0 in (2.8).
Just like (2.6), the expression (2.8) can be written as an absolutely convergent sum.

Integration by parts gives
∫

(ψ′ ◦ T kα) · (T kα)′(x)Xα(x)ρα(x) dx. This is just Ψ(1) where
Ψ(z) is the susceptibility function (see e.g. [B3]). It would be interesting to analyse the
singularity type of the susceptibility function at z = 1. (See [BMS] for the corresponding
analysis for piecewise expanding maps.)

2.2. Invariant cones. Before, proving the theorem, we introduce notations and state useful
results regarding cones adapted from [LSV].

As our proof requires higher derivatives we shall use the following fact:

Proposition 2.4 (Invariant cone in C2). For fixed b1 ≥ α + 1, b2 ≥ b1, b̄1 > 0, b̄2 > 0,
define the cone C2 to be the set of ϕ ∈ C2(0, 1] so that

ϕ(x) ≥ 0 ,
b̄1
x
ϕ(x) ≤ −ϕ′(x) ≤ b1

x
ϕ(x) , and

b̄2
x2
ϕ(x) ≤ ϕ′′(x) ≤ b2

x2
ϕ(x) , ∀x ∈ (0, 1] .
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Then there exists bmax < ∞ so that for any 0 ≤ α < 1 there exists α + 1 ≤ b′(α) < bmax
and b̄ > 1/bmax so that if b1 ≥ α+ 1, b2 ≥ b′(α), max{b̄1, b̄2} ≤ 1/b′(α) we have

(2.9) ϕ ∈ C2 =⇒ Lα(ϕ) ∈ C2 and Nα(ϕ) ∈ C2 .

The proof of Proposition 2.4 is given in Appendix A.
For ϕ ∈ L1(dx) we set m(ϕ) =

∫ 1
0 ϕ(x) dx. For a ≥ 1, we denote by C∗ = C∗(α, a) the

cone
(2.10)

C∗ :=

{
ϕ ∈ C1(0, 1] | 0 ≤ ϕ(x) ≤ 2aρα(x)m(ϕ) , −α+ 1

x
ϕ(x) ≤ ϕ′(x) ≤ 0 , ∀x ∈ (0, 1]

}
.

By [LSV, Lemma 2.2], we have 6

(2.11) Lα(C∗(α, a)) ⊂ C∗(α, a) , ∀a ≥ 2α(α+ 2) .

Note also that by definition (this will be used to show (2.17))

(2.12)
∫ 1/2

0
ϕdx ≥ 1

2
m(ϕ) , ∀ϕ ∈ C∗ .

Finally, for a ≥ 2α(α+ 2) and b1 ≥ α+ 1, we denote by C∗,1 = C∗,1(α, a, b1) the cone

(2.13) C∗,1 :=

{
ϕ ∈ C1(0, 1] | 0 ≤ ϕ(x) ≤ 2aρα(x)m(ϕ) , |ϕ′(x)| ≤ b1

x
ϕ(x) , ∀x ∈ (0, 1]

}
.

Note that (1.1) implies

(2.14) ϕ(x) ≤ 2ac2

xα
m(ϕ) , ∀ϕ ∈ C∗,1(α) , ∀x ∈ (0, 1] .

By definition, C∗,1 ⊂ L1(dx), and

(2.15) β ≥ α ≥ 0 =⇒ C∗,1(α, a, b1) ⊂ C∗,1
(
β,
c2

c1
a, b1

)
.

Also, the arguments of [LSV] give a′(α) so that

(2.16) ρα ∈ C∗(α) ∩ C∗,1(α) ∩ C2

if the parameters satisfy a ≥ a′(α), b1 ≥ α+ 1, and b2 > b′(α).

Remark 2.5 (Cones C∗ and C∗,1.). The definition of C∗,1 will make it easy to check that
−(Xαϕ)′+cϕ, for suitable ϕ ∈ C∗,1 and constant cϕ > 0, lies in a cone C∗,1 (possibly for larger
a and b1), via the Leibniz formula. In §2.3 this will be used to get bounds ϕ(x) ≤ Cx−α

and |ϕ′(x)| ≤ Cx−1−α, while in Appendix B these cones play a more important role. This
is why we use C∗,1 instead of the cone C∗ used in [LSV]. However, the condition that ϕ(x)
is decreasing will be used to get (2.17). (In [LSV] the condition that ϕ(x) be decreasing is
only used in [LSV, Lemma 2.1], which we do not need in view of Proposition 2.4 and (B.1).)

We will use the following result (see Appendix A for the proof):

6Noting that −α+1
x
ϕ(x) ≤ ϕ′(x) ≤ 0 if and only if ϕ is decreasing and xα+1ϕ is increasing.
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Proposition 2.6 (Invariance of the cone C∗,1). Fix α ∈ (0, 1), a ≥ 1, and b1 ≥ α+ 1. Then

Lα(C∗,1(α, a, b1)) ⊂ C∗,1(α, a, b1) ,

Nα

(
C∗,1(α, a, b1) ∩

{∫ 1/2

0
ϕdx ≥ 1

2
m(ϕ)

})
⊂ C∗,1(α, 2a, b1) .(2.17)

In addition, there exists C > 0, independent of α, a, and b1 so that we have for any ψ ∈ L∞
and ϕ ∈ C∗,1(α) + R with

∫
ϕdx = 0,

(2.18)
∣∣∣∣∫ 1

0
ψLk0(ϕ) dx

∣∣∣∣ ≤ Cab1

(1− α)(log k)k−2+1/α
‖ψ‖L∞‖ϕ‖1 , ∀k ≥ 1 .

Note that for fixed amax <∞ and bmax <∞, the expression (2.18) is controlled by

(2.19) sup
b1≤bmax, a≤amax

Cab1

(1− α)(log k)k−2+1/α
<∞ .

2.3. Proof of Theorem 2.1. We may now prove the theorem:

Proof of Theorem 2.1. Step 0: We show that the right-hand side of (2.6) is well-defined
for bounded ψ. First observe that integration by parts and Xα(0) = Xα(1) = 0 (because
vα(0) = 0 and vα(1/2) = 0) imply∫ 1

0
(XαNα(ρα))′ dx = 0 .

Then note that

(2.20) ‖(XαNα(ρα))′‖1 = ‖Xα(Nα(ρα))′ +X ′αNα(ρα)‖1 ≤ C
∫ 1

0
(| log x|+ 1) dx <∞ .

Indeed, this is easy for α = 0 since

(2.21) X0(x) =
x(log 2 + log(x/2))

2
, X ′0(x) =

1 + log 2 + log(x/2)

2
, ∀x ∈ [0, 1] .

Next, ρ0|[0,1] ≡ 1, with (N0ρ0)|[0,1] ≡ 1/2, so that for any x ∈ [0, 1],

(2.22) (X0N0(ρ0))′(x) =
X ′0(x)

2
=

1 + log 2 + log(x/2)

4
.

For α > 0, on the one hand, (1.1) and Proposition 2.4 imply that

|ρ′α(x)| ≤ ac2x
−1−α , Nα(ρα)(x) ≤ ρα(x) ≤ c2x

−α , |(Nα(ρα))′(x)| ≤ c2b1x
−1−α .

On the other hand, the dominant term of Xα(x) is a constant multiple of x1+α log x (see
(2.3)) while the dominant term of X ′α(x) is a constant multiple of xα log x (see (2.4) and
recall (2.2)). This establishes (2.20) for α > 0.

Next, write the right-hand side of (2.6) as∣∣∣∣∣∣
∞∑
j=0

∫ 1

0
ψ · Ljα[(XαNα(ρα))′] dx

∣∣∣∣∣∣ ≤
∞∑
j=0

∣∣∣∣∫ 1

0
ψ · Ljα[(XαNα(ρα))′] dx

∣∣∣∣ .(2.23)
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The function f = −(XαNα(ρα))′/ρα is Hölder, and it vanishes at zero, with
∫
fρα dx = 0.

In addition, for any ε ∈ (0, 1) we have C so that |f(x)| ≤ Cxα(1−ε/2). Since

1

α
(1 + α(1− ε/2))− 1 >

1

α
− ε ,

if ε > 0 is small enough then [Goth, Thm 2.4.14] applied 7 to f = −(XαNα(ρα))′/ρα gives
Kα > 0 so that the jth term in the right-hand side of (2.23) is bounded by

∞∑
j=0

∣∣∣∣∫ 1

0
(ψ ◦ T jα) · f dµα

∣∣∣∣ ≤ CKα‖ψ‖L∞
1

j(1/α)−ε .

Since we may take ε < (1/α)− 1, this is summable.
If α = 0, fixing β > 0, it is easy to see that there exists a constant CX > 0 so that

−(X ′0N0(ρ0))′ + CX belongs to C∗,1(β, a, b1), for suitable a and b1 (see (2.13)). We may
apply (2.18) from Proposition 2.6 to ϕ = −(X0N0(ρ0))′ ∈ C∗,1 + R in order to bound the
jth term in the right-hand side of (2.23).

Step 1: Let ψ be a bounded function so that
∫
ψdµα = 0. We first show that β 7→∫

ψρβ dx is Lipschitz at β = α. Applying the bound on [LSV, p. 680] to g = ψ and the
zero-average function f = ρα − 1 ∈ C∗,1 + R, we have, if α > 0,

(2.24)
∣∣∣∣∫ 1

0
ψ ◦ T kα dx

∣∣∣∣ =

∣∣∣∣∫ 1

0
ψLkα(ρα − 1) dx

∣∣∣∣ ≤ Cα‖ψ‖L∞ (log k)1/α

k−1+1/α
,

and, for any β > 0,

(2.25)
∣∣∣∣∫ 1

0
ψ ◦ T kβ dx−

∫ 1

0
ψ dµβ

∣∣∣∣ ≤ Cβ‖ψ‖L∞ (log k)1/β

k−1+1/β
.

If α = 0, then the spectral gap of L0 on C1 e.g. gives a constant C ≥ 1 so that

(2.26)
∣∣∣∣∫ 1

0
ψ ◦ T k0 dx

∣∣∣∣ ≤ C‖ψ‖L∞2−k .

Taking k large enough, depending on β and α, the three expressions (2.24)–(2.25)–(2.26)
are thus o(β − α). More precisely, fixing ξ > 0, there is C so that, for all

k > C(Cmax(α,β)(β − α)−(1+ξ))1/(−1+1/max(α,β))

we have

(2.27)
∣∣∣∣∫ 1

0
ψ ◦ T kα dx

∣∣∣∣+

∣∣∣∣∫ 1

0
ψ ◦ T kβ dx−

∫ 1

0
ψ dµβ

∣∣∣∣ ≤ C‖ψ‖L∞(β − α)1+ξ .

7This theorem is a strengthening of [Go, Prop. 6.11, Cor. 7.1].
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Letting 1 be the constant function ≡ 1, it thus suffices to bound

1

β − α

(∫ 1

0
ψ ◦ T kβ dx−

∫ 1

0
ψ ◦ T kα dx

)
=

1

β − α

∫ 1

0
ψ(Lkβ1− Lkα1) dx

=
k−1∑
j=0

∫ 1

0
ψLjβ

(
Lβ − Lα
β − α

(Lk−j−1
α (1))

)
dx ,(2.28)

uniformly in β → α. For this, we shall use below that for any ϕ ∈ C2(0, 1], any x 6= 0, and
any β 6= α,

(2.29)
Lβϕ(x)− Lαϕ(x)

β − α
= ∂αLαϕ(x) +

1

β − α

∫ β

α
∂2
γLγϕ(x)(γ − α) dγ .

It is easy to check (see the proof of [B3, Thm 2.2]) that we have

(2.30) ∂αgα(x) = −Xα(x)Nα(1/T ′α)(x) = − Xα(x)

T ′α(gα(x))2
,

and, more generally, for any ϕ ∈ C1(0, 1] and any x 6= 0, we have

(2.31) ∂αLα(ϕ)(x) = ∂αNα(ϕ)(x) =Mα(ϕ)(x) ,

where we set for x 6= 0

Mα(ϕ)(x) = −X ′αNα(ϕ)(x)−XαNα(ϕ′/T ′α)(x) +XαNα(ϕT ′′α/(T
′
α)2)(x)(2.32)

= −(Xα · Nα(ϕ))′(x).

Using (2.31) and (2.32) (twice), we also get, for x 6= 0 and ϕ ∈ C2(0, 1],

∂2
αLα(ϕ)(x) = −∂α

(
(XαNα(ϕ))′

)
(x)

= −
(
(∂αX

′
α)(Nα(ϕ))

)
(x)−

(
X ′α(∂αNα(ϕ))

)
(x)

−
(
∂αXα(Nα(ϕ))′

)
(x)−

(
Xα∂α(Nα(ϕ))′

)
(x)

= − ((∂αXα)(Nα(ϕ)))′ (x) +X ′α (XαNα(ϕ))′ (x) +Xα (XαNα(ϕ))′′ (x) .(2.33)

Returning to (2.28), we assume that β > α > 0. For k ≥ 1, we get, using (2.29)–(2.32),
k−1∑
j=0

∫ 1

0
ψLjβ

(
Lβ − Lα
β − α

(Lk−j−1
α (1))

)
dx = −

k−1∑
j=0

∫ 1

0
ψLjβ

([
XαNα(Lk−j−1

α (1))
]′)

dx

+

∫ β

α

γ − α
β − α

k−1∑
j=0

∫ 1

0
ψLjβ

[
∂2
γLγ(Lk−j−1

α (1))
]
dxdγ .(2.34)

Consider the first term in the right-hand side of (2.34). Observe that Lα1 ∈ C∗,1(α, a, b1)∩C2,
so that, recalling Proposition 2.4, we have that Lk−j−1

α (1) is in C∗,1(α) ∩ C2 and thus in
C∗,1(γ) ∩ C2 for any γ ≥ α up to increasing a uniformly in j and k > j − 1. Note that
|(Nα(Lk−j−1

α (1)))′(x)| ≤ b1c2x
−1−α. Proceeding as in Step 0 (using (2.11) to invoke (2.12)
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to get (2.17)), we obtain a constant C > 1 so that |[XαNα(Lk−j−1
α (1))]′(x)| ≤ C(| log x|+1)

for all 1 ≤ j ≤ k − 1 (in particular supk sup1≤j≤k−1 ‖[XαNα(Lk−j−1
α (1))]′‖1 <∞).

Next, if 0 < α < β < 1, by using [Goth, Thm 2.4.14] (as in Step 0), we get summability
of the first term of the expression in the right-hand side of (2.34) as k →∞:

(2.35)

∣∣∣∣∣∣
k−1∑
j=0

∫ 1

0
ψLjβ([XαNα(Lk−j−1

α (1))]′) dx

∣∣∣∣∣∣ ≤ Cβ‖ψ‖L∞
k−1∑
j=0

1

j(1/β)−ε .

Finally, we consider the second term of the right-hand side of (2.34). (This is where we
require the derivatives of order two in C2.) Applying (2.33) to ϕ = Lk−j−1

α (1) ∈ C2∩C∗,1(α),
and using Proposition 2.4, we see that for any α ≤ γ ≤ β,
(2.36) |[∂2

γLγ(Lk−j−1
α (1))](x)| ≤ C(| log x|+ 1)2 .

Indeed, recalling (2.3) and (2.30), first note that

|∂αXα(x)| ≤ cx1+α(| log x|+1)2 , |∂αX ′α| ≤ cxα(| log x|+1)2 , |∂αX ′′α| ≤ cxα−1(| log x|+1)2 .

In addition, for ϕ in C∗,1(α) ∩ C2, we have

|(Nα(ϕ))′′(x)| ≤ b2
x2
ρα(x)m(Nα(ϕ)) ≤ b2c2

x2+α
m(ϕ) , |(XαNα(ϕ))′′(x)| ≤ ĉ

x
.

Labelling the three terms from the right-hand side of (2.33) as I, II, and III, we expand
them via the Leibniz equality, obtaining seven functions:

I = −(∂αXα)′(Nαϕ) + ∂αXα(Nαϕ)′ , II = (X ′α)2Nα(ϕ) +X ′αXα(Nα(ϕ))′ ,

III = Xα[X ′′αNα(ϕ) + 2X ′α(Nα(ϕ))′ +Xα(Nα(ϕ))′′] .(2.37)

By the above, since ϕ = Lk−j−1
α (1) ∈ C2 ∩ C∗,1(α), we can bound |I| by

(cxα(| log x|+ 1)2)(cx−α) +

(
(cx1+α)(| log x|+ 1)2 b1

x

2ac2

xα
m(ϕ)

)
.

Similarly |II| ≤ (cxα(| log x|+ 1)(c(| log x|+ 1)) and |III| ≤ (cx1+α(| log x|+ 1))ĉx−1. This
proves (2.36).

Applying [Goth, Thm 2.4.14] once more (as in Step 0) we thus get the bound

(2.38)
‖ψ‖L∞
β − α

∫ β

α
(γ − α)Cβ

k−1∑
j=0

1

j(1/β)−ε ) dγ ≤ Cβ‖ψ‖L∞(β − α) .

If α ∈ (0, 1), the case β < α can be handled similarly, substituting∑
j

Ljβ(Lβ − Lα)Lk−j−1
α = −

∑
j

Ljα(Lα − Lβ)Lk−j−1
β

in (2.28), and replacing (2.29) by Lαϕ(x)−Lβϕ(x)
α−β = ∂βLβϕ(x) + 1

α−β
∫ α
β ∂

2
γLγϕ(x)(γ − β) dγ.

Finally, if α = 0, we use
∑

j L
j
β(Lβ−L0)Lk−j−1

0 = −
∑

j L
j
0(L0−Lβ)Lk−j−1

β , with (2.29),
and exploit (2.18) and (2.19).
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This proves that for ψ ∈ L∞ the map β 7→
∫
ψ(x)ρβ(x) dx is locally Lipschitz on [0, 1).

Step 2: Still assuming that ψ is bounded, we next prove that β 7→
∫
ψρβ dx is dif-

ferentiable at β = α ∈ [0, 1) and check that the derivative takes the announced value.
To prove differentiability, recalling (2.27) and setting k(β) = k(α, β, ξ) = C(Cβ(β −
α)−(1+ξ))1/(−1+1/max(α,β)), for some small ξ > 0, it suffices to check that
(2.39)
k(β)∑
j=0

∫ 1

0
ψLjβ([XαNα(Lk(β)−j

α (1))]′) dx+

∫ β

α

γ − α
β − α

k(β)−1∑
j=0

∫ 1

0
ψLjβ[∂2

γLγ(Lk(β)−j−1
α (1))] dxdγ ,

converges, when β → α > 0 or β ↓ α = 0, to

(2.40)
∞∑
j=0

∫ 1

0
ψLjα([XαNα(ρα)]′) dx =

∫ 1

0
ψ
∞∑
j=0

Ljα([XαNα(ρα)]′) dx .

By (2.38), the second term in (2.39) converges to zero as β → α. Next, for α ∈ [0, 1),
fixing η > 0 small, by Step 0 we may take K = Kη large enough so that the K-tail of (2.40)
is < η/4, while the K-tail of the first term of (2.39) is < η/4 uniformly in β. It thus suffices,
for every fixed 0 ≤ j ≤ K, to show that the following difference tends to zero as β → α > 0
or β ↓ 0:

(2.41)
∫ 1

0

[
(ψ ◦ T jβ)([XαNα(Lk(β)−j

α (1))]′)− (ψ ◦ T jα)([XαNα(ρα)]′)
]
dx .

So it is sufficient to show that there exists Nη ≥ 1 so that

(2.42) ‖[XαNα(Lkα(1))]′ − [XαNα(ρα)]′‖L1 <
η

2K
, ∀k ≥ Nη .

If α = 0, this is easy, since ρα = 1 so that the expression (2.42) vanishes trivially.
If α ∈ (0, 1), setting φk := Lkα(1), we note that the bound on [LSV, p. 680] applied to

g = 1 and f = 1− ρα implies ‖φk − ρα‖1 ≤ Cαk
1−1/α(log k)1/α. (This is not summable if

α ≥ 1/2, but it does tend to zero for all α ∈ (0, 1).) Therefore,

(2.43) ‖Nα(φk − ρα)‖1 ≤ Cα‖φk+1 − ρα‖1 ≤ Cα
(log k)1/α

k−1+1/α
.

Since X ′α ∈ L∞, it thus suffices to show that

‖Xα[Nα(Lkα(1))]′ −Xα[Nα(ρα)]′‖L1 <
η

2K
.

For this, first observe that Proposition 2.4 implies that there exists b1 so that, for ϕ = ρα
and ϕ = 1, ∣∣∣[NαLkα(ϕ)]′(x)

∣∣∣ ≤ b1
x
ϕ(x) ≤ b1ac2

x1+α
, ∀k ≥ 1 , ∀x ∈ (0, 1] .

Since |Xα(z)| ≤ cα|z1+α(log z + log 2)|, it follows that there exist C, Ĉ > 0 so that for any
x̄ ∈ (0, 1], all k ≥ 0, and, for ϕ = ρα and ϕ = 1,

(2.44)
∫ x̄

0
|Xα(z)(NαLkα(ϕ))′(z)| dz ≤ C

∫ x̄

0
(| log z|+ 1) dz ≤ Ĉx̄(| log x̄|+ 1) .
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We will choose x̄ to be small and then choose k large enough that the remaining integral is
small. We decompose the remaining integral, for ϕ = ρα and ϕ = 1, as∫ 1

x̄
Xα(z)(NαLkα(ϕ))′(z)dz =

∫ 1

x̄
Xα(z)(Lk+1

α (ϕ))′(z)dz+

∫ 1

x̄
Xα(z)

(Lkα(ϕ))′((z + 1)/2)

2
dz.

We focus on the first term above, the estimate for the second one being easier. We shall set
x̄ = x`, for suitable ` ≥ 1 to be determined below, where

(2.45) x` := (gα)`(1) ≤ 21/α2+1/α`−1/α

by [LSV, Lemma 3.2]. Next, for every 1 ≤ m ≤ k, setting ym(x`) = (gα)m(x`) = x`+m, and
φ = φk+1−m − ρα, we have∥∥χx>x` [Lmα (φ)]′

∥∥
1
≤
∥∥Lmα (χy>ym |φ′|/(Tmα )′)

∥∥
1

+
∥∥Lmα (χy>ym |φ||(Tmα )′′|/(Tmα )′)2)

∥∥
1

≤
∥∥χy>ym |φ′| · |(Tmα )′|−1

∥∥
1

+
∥∥∥χy>ym |φ| ∣∣(Tmα )′′

∣∣ ∣∣(Tmα )′
∣∣−2
∥∥∥

1
.

There exist λm = λm(x`) < 1 and Λm(x`) < ∞ (both depending on α) so that the first
term in the right-hand side is < λm‖χy>ym(`)|φ′|‖1 and the second term is ≤ Λm‖φ‖1. In
fact, we claim that there exists Cα > 0 so that for all `

λm(x`) ≤ Cα(1 +m/`)−1−1/α .

Indeed, recalling that fα = Tα|[0,1/2], we have λm(x`)
−1 = (fmα )′(y) for some y ≥ ym(x`),

and bounded distortion 8 of fmα on (ym, fα(ym)) = (ym, ym−1) gives

(2.46) λm(x`) ≤ C
fα(ym)− ym
fα(x`)− x`

= C
y1+α
m

x1+α
`

≤ Cα
1

(1 +m/`)1+1/α
,

where we used the upper bound ym(x`) = x`+m ≤ 21/α2+1/α(` + m)−1/α from (2.45) and
the lower bound from 9 [BT, p. 606] (replacing their x+ x1+α by our x+ 2αx1+α)

(2.47) x` ≥ c(2αα)−
1
α `−1/α .

Recalling that φ = φk+1−m − ρα, we get, if α ∈ (0, 1),

‖χx>x` [L
m
α (φ)]′‖1 ≤ λm(x`)‖χy>ym(|φ′k+1−m|+ |ρ′α|)‖1 + ΛmCα

(log(k + 1−m))1/α

(k + 1−m)1/α−1
.

Recall that |φ′`(x)| ≤ (a/x)φ` ≤ Cb1x
−α−1 so that ‖χy>ym |φ′`|‖1 ≤ Cy−αm and |ρ′α(x)| ≤

c2b1x
−α−1, giving the same asymptotics, and note that (2.47) gives

ym(x`) ≥ cα−
1
α (m+ `)−1/α

8See e.g. [LSV, (2) p. 678] for the bounded distortion property.
9Note that α+1 should read α− 1 in line 7 of the proof of [BT, Prop. 2, p 606], that +α(α+1)/(2un+1)

should be replaced by −α(α − 1)/(2un+1) in line 8, that + logn · α(α + 1)/2 should be replaced by
− log((1 + αn)/(1 + α)) · (α − 1)/2 on line 10, and that logn · α(α + 1)/(2n) should be replaced by
− log(1 + αn) · (α− 1)/(2n) in line 12.
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uniformly in k. Hence, using (2.47) for ym(`) = xm+`, we get

‖χy>ym(x`)(|φ
′
k+1−m|+ |ρ′α|)‖1 ≤ C

∫ 1

ym

y−1−α dy ≤ Cy−αm ≤ Cα(m+ `) .

Clearly, (2.46) implies

(2.48) Cα(m+ `)λm(x`) ≤ Cαα
m+ `

(1 +m/`)1+1/α
≤ Cαα

`

(1 +m/`)1/α
.

Choosing first ` ≥ 1 to make (2.44) small, then m ≥ ` to make (2.48) small, and finally
taking k ≥ m large enough (i.e., β close enough to α) so that

ΛmCα(log(k + 1−m))1/α(k + 1−m)1−1/α

is small, proves (2.42) in view of (2.43) and (2.44).
This proves the result for bounded ψ. If ‖ψ‖Lq = 1 for (1 − α)−1 < q < ∞, we

observe that Leb({ψ(x) > M}) ≤ M−q and define ψM (x) = min(M,ψ(x)), noting that
‖ψ−ψM‖L1 ≤M1−q and more generally ‖ψ−ψM‖Lr ≤M1−q/r for r > 1 close to 1. Since
| log(2x)| ∈ Lr/(r−1)(dx) for all r > 1, we can generalise Steps 0 and 1 to ψ ∈ Lq(dx) the
result by taking ε > 0 very small and r > 1 so that q > r(1− εα)/(1−α− εα) and choosing
η > 0 small enough so that 1

(q/r)−1 < η < 1
α − ε− 1, taking M(j) = jη, and decomposing

ψ = (ψ−ψM(j))+ψM(j) in the jth term of (2.23), (2.35), and (2.34). We get two series each
time. The first one is convergent because η((q/r)− 1) > 1 while the second one converges
because η + 1 < 1/α− ε. For Step 2, we take M(k) = kη for η ∈ (0, 1/α− 1) in (2.41).

Finally, the claim about continuity of the derivative follows from the linear response
formula and our control on the tails of the absolutely convergent series therein. �

Appendix A. Proof of Propositions 2.4 and 2.6

Proof of Proposition 2.4. The proof for the first derivative is similar to that of the proof of
[LSV, Lemma 2.3, Lemma 5.1]. We concentrate on the statement for Nα, the proof for Lα
follows easily since (Lα −Nα)(ϕ)(x) = ϕ((x+ 1)/2)/2. Let 0 ≤ α < 1. We have T ′α(x) =
1+2α(α+1)xα ≥ 1, T ′′α(x) = 2α(α+1)αxα−1 ≥ 0, and T ′′′α (x) = 2α(α+1)α(α−1)xα−2 ≤ 0.
Throughout this proof, we set (recall (2.1)) y = gα(x).

For ϕ as in the statement of the proposition, we have (both terms are positive)

−(Nαϕ)′(x) =
T ′′α(y)

(T ′α(y))3
ϕ(y)− 1

(T ′α(y))2
ϕ′(y)

≤
(

T ′′α(y)

(T ′α(y))2
+

b1
y(T ′α(y))

)
ϕ(y)

T ′α(y)

≤ b1
x

(Nαϕ)(x) sup
y∈[0,1/2]

[
Tα(y)

b1
·
(

T ′′α(y)

(T ′α(y))2
+

b1
yT ′α(y)

)]
.
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Let Ω1(y) be the term in square brackets, then we find if b1 ≥ 1 + α

Ω1(y) =
Tα(y)

b1yT ′α(y)

(
yT ′′α(y)

T ′α(y)
+ b1

)
≤ 1 + 2αyα

1 + 2α(1 + α)yα
·
(

1

b1

2α(α+ 1)αyα

1 + 2α(1 + α)yα
+ 1

)
=

(
1− 2ααyα

1 + 2α(1 + α)yα

)
·
(

1 +
1

b1

2α(α+ 1)αyα

1 + 2α(1 + α)yα

)
≤
(

1− 2ααyα

1 + 2α(1 + α)yα

)
·
(

1 +
2ααyα

1 + 2α(1 + α)yα

)
,(A.1)

which is ≤ 1 for all y ∈ [0, 1/2] (we used (α + 1)/b1 ≤ 1 in the last line). Note that
if α = 0 then Ω1(y) = 2

b1
b1
2 ≡ 1. To get the reverse inequality, observe that Ω1(y) =

Tα(y)
yT ′α(y)

( yT ′′α (y)

b̄1T ′α(y)
+ 1
)
≥ 1 if b̄1 > 0 is small enough (just revisit (A.1)).

Next, writing T instead of Tα for simplicity |(Nαϕ)′′(x)| is bounded by (all terms below
are nonnegative)

− 3
ϕ′(y)T ′′(y)

(T ′(y))4
− ϕ(y)T ′′′(y)

(T ′(y))4
+ 3

ϕ(y)(T ′′(y))2

(T ′(y))5
+

ϕ′′(y)

(T ′(y))3

≤ Nαϕ(x)

(
3

(
b1
y

)
T ′′(y)

(T ′(y))3
− T ′′′(y)

(T ′(y))3
+ 3

(T ′′(y))2

T ′(y))4
+

(
b2
y2

)
1

(T ′(y))2

)
≤ b2
x2
Nαϕ(x)

[
T (y)2

b2|T ′(y)|2

(
3

(
b1
y

)
2α(α+ 1)αyα−1

T ′(y)
+

2α(α+ 1)α|α− 1|yα−2

T ′(y)

+ 3
(2α(α+ 1)αyα−1)2

(T ′(y))2
+

(
b2
y2

))]
.

The term Ω2(y) in square brackets can be written

T (y)2

y2|T ′(y)|2

(
1 +

2ααyα

(1 + 2α(α+ 1)yα)

1

b2

[
3b1(α+ 1) + (1− α2) + 3

2α(α+ 1)2αyα

1 + 2α(α+ 1)yα

])
.

We can fix b2 > 3b1(1 + α) + 20 large enough so that Ω2(y) ≤ 1 for all y ∈ [0, 1/2] because(
T (y)

yT ′(y)

)2

=

(
1 + 2αyα

1 + 2α(α+ 1)yα

)2

=

(
1− 2ααyα

1 + 2α(α+ 1)yα

)2

.

(Note that if α = 0 then Ω2(y) ≡ 1.) For the reverse inequality, observe that

Ω2(y) :=

(
1− 2ααyα

1 + 2α(α+ 1)yα

)2

·
(

1 +
2ααyα

(1 + 2α(α+ 1)yα)

1

b̄2

[
3b̄1(α+ 1) + (1− α2) + 3

2α(α+ 1)2αyα

1 + 2α(α+ 1)yα

])
≥ 1 ,

if b̄1/b̄2 > 0 is large enough. �

Proof of Proposition 2.6. Note that m(ϕ) = m(Lα(ϕ)) and Lα(ρα) = ρα. Also, m(ϕ) ≤
2m(Nα(ϕ)) (using our assumption) and Nα(ρα) < ρα. By (A.1) we have Lα(C∗,1(α)) ⊂
C∗,1(α, a, b1) and Nα(C∗,1(α)) ⊂ C∗,1(α, 2a, b1).
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For the decay claim, use that C∗(0) ⊂ C∗(β) for any β ∈ (0, 1), and fix β = α. For ε > 0
we set 10 Aεϕ(x) = (2ε)−1

∫
y∈S1:|x−y|<ε ϕ(y) dy. Then, revisiting [LSV, Proposition 3.3] for

α = 0, we see that we can take nε there to be | log ε|/ log 2. Since [LSV, Lemma 3.1] implies
‖Lnε0 (id− Aε)(ϕ)‖1 ≤ 18ab1c2

β(1−β)‖ϕ‖1 if ϕ ∈ C∗,1(β, b1), and since C∗(α) is invariant under L0,
the first paragraph of the proof of [LSV, Thm 4.1], taking ε = n−1/α gives (2.18). (Note
that [LSV, Lemma 2.4] is not needed when invoking [LSV, Prop 3.3] in the proof of [LSV,
Thm 4.1] for T0, since we may obtain an easier lower bound.) �

Appendix B. A cone-only proof for α ∈ [0, 1/2) and ψ ∈ L∞

We show how to modify the proof of Theorem 2.1 to bypass the use of Gouëzel’s results
[Go, Goth] when α < 1/2 and ψ ∈ L∞ (exploiting only [LSV]).

We first note that in the setting of Proposition 2.6 there exists Cα = Cα(a, b1) > 0, with
supβ∈[α,(1+α)/2]Cβ(a, b1) <∞, so that for any ψ ∈ L∞ and ϕ ∈ C∗,1(α)+R with

∫
ϕdx = 0,

(B.1)
∫ 1

0
ψLkα(ϕ) dx ≤ Cα‖ψ‖L∞‖ϕ‖L1

(log k)1/α

k
1
α
−1

, ∀k ≥ 1 ,

Indeed, note that [LSV, Lemma 3.1] applies to C∗,1 instead of C∗, up to replacing 10a
there by 18ab1c2. (In the computation, just use that |ϕ(x) − ϕ(y)| ≤ supz∈[x,y] |ϕ′(z)|ε ≤
2ab1c2εx

−1−α, if |x−y| ≤ ε with x ≤ y. The original 10 in [LSV] is obtained as 4×2+2: the
definition of our cone C∗,1 incorporates an additional factor of 2, to make 4× 2× 2 + 2 = 18
as well as introducing extra factor of c2, as in (2.14), while the b1 appears since we use the
derivative of φ, as just noted. Finally, apply the argument 11 in the first paragraph of 12 the

proof of [LSV, Thm 4.1]. The proof gives Cα = 36ab1c2
α(1−α)2(2+1/α)( 1

α
−1)
( 1
α
−1

γ

)1/α

, for some
small γ > 0. In particular, Cα becomes very large as α→ 0. This ends the proof of (B.1).

We need to introduce the following cone:

C3 =

{
ϕ ∈ C3(0, 1] |ϕ ∈ C2 , |ϕ′′′(x)| ≤ b3

x3
ϕ(x) , ∀x ∈ (0, 1]

}
.

If b3 ≥ b1 is large enough then the invariance statements of Proposition 2.4 also hold for C3,
indeed, noting that T (iv)

α (x) = 2α(α+ 1)α(α− 1)(α− 2)xα−3 ≥ 0, we have

|(Nαϕ)′′′(x)| ≤ |ϕ
′′′(y)|
|T ′(y)|4

+ 6
|ϕ′′(y)T ′′(y)|
|T ′(y)|5

+ 4
|ϕ′(y)T ′′′(y)|
|T ′(y)|5

+ 15
|ϕ′(y)(T ′′(y))2|
|T ′(y)|6

+
|ϕ(y)T (iv)(y)|
|T ′(y)|5

+ 4
|ϕ(y)T ′′′(y)|
|T ′(y)|6

+ 6
|ϕ(y)T ′′(y)T ′′′(y)|

|T ′(y)|6
+ 15

|ϕ(y)(T ′′(y))3|
|T ′(y)|7

,

10Identifying [0, 1] with the circle S1.
11There is a typo there and one should take in fact ε = n−1/α(22+1/αγ−1( 1

α
− 1) logn)1/α.

12Just like for [LSV, Prop. 5.4].
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and this is bounded by

Nαϕ(x)

(
b3
y3

1

|T ′(y)|3
+

6b2
y2

1

|T ′(y)|4
+
b1
y

(
4
|T ′′′(y)|
|T ′(y)|4

+ 15
|(T ′′(y))2|
|T ′(y)|5

)
+
|T (iv)(y)|
|T ′(y)|4

+ 4
|T ′′′(y)|2

|T ′(y)|5
+ 6
|T ′′(y)T ′′′(y)|
|T ′(y)|5

+ 15
|(T ′′(y))3|
|T ′(y)|6

)
≤ b3
x3
Nαϕ(x)

[
T (y)3

|T ′(y)|3y3

(
1 +

6b2y

b3|T ′(y)|
+
b1y

2

b3

(
4
|T ′′′(y)|
|T ′(y)|

+ 15
|(T ′′(y))2|
|T ′(y)|2

)
+
y3

b3

(
|T (iv)(y)|
|T ′(y)|

+ 4
|T ′′′(y)|2

|T ′(y)|2
+ 6
|T ′′(y)T ′′′(y)|
|T ′(y)|2

+ 15
|(T ′′(y))3|
|T ′(y)|3

))]
.

The term Ω3(y) in square brackets is ≤ 1 for all y ∈ [0, 1/2] if b3 is large enough because(
T (y)

yT ′(y)

)3

=

(
1 + 2αyα

1 + 2α(α+ 1)yα

)3

=

(
1− 2ααyα

1 + 2α(α+ 1)yα

)3

.

It is easy to see that ρα ∈ C3, that Lα1 ∈ C∗,1(α, a, b1) ∩ C3, etc. In fact, each occurrence
of C2 in the proof of Theorem 2.1 can be replaced by C3.

We now go over the changes in the proof of Theorem 2.1. Consider first Step 0: If
α ∈ (0, 1/2) then, using (2.2), (2.3), (2.4), and (2.5), together with (2.12) and (2.17), and
the fact that |(Nα(ρα))′′| ≤ ac2b2x

−2−α, it is easy to see that there exists a > 0 and a
uniformly bounded constant CX > 0 so that −(X ′αNα(ρα))′ + CX belongs to C∗,1(α, a, b1),
up to increasing a and b1 (see (2.13)). Next (B.1) applied to the zero-average function
ϕ = −(XαNα(ρα))′ ∈ C∗,1 + R gives Cα > 0 so that the jth term in the right-hand side of
(2.23) is bounded by

Cαj
1−1/α(log j)1/α‖ψ‖L∞‖(XαNα(ρα))′‖1 .

Since α < 1/2, this is summable.
In Step 1, proceeding as in Step 0 in §2.3 (using (2.11) to invoke (2.12) in order to get

(2.17)), we find for any 1 ≤ j ≤ k − 1 a real constant Cj,k <∞ so that

(B.2) {±X ′αNα(Lk−j−1
α (1)) + Cj,k , Xα[Nα(Lk−j−1

α (1))]′} ⊂ C1,∗(α, 2a,B1) .

Indeed, to show (B.2), setting ϕ = Lk−j−1
α (1)) ∈ C∗, and noting that ϕ ≥ 0 and ϕ′ ≤ 0, so

that Nαϕ ≥ 0 and (Nαϕ)′ ≤ 0 so that Xα(Nαϕ)′ ≥ 0 it is enough to check that

|X ′′αNα(ϕ)|(x) + |X ′α(Nα(ϕ))′|(x) ≤ B1

2x
|X ′α(x)|Nα(ϕ)(x) ,

(which follows from −Nα(ϕ)′(x) ≤ b1Nα(ϕ)(x)/x and (2.4), (2.5)), and

|X ′α(Nα(ϕ))′ +Xα(Nα(ϕ))′′|(x) ≤ B1

2x
Xα(x)(Nα(ϕ))′(x) ,

(which follows from Nα(ϕ)′′(x) ≤ b2Nα(ϕ)(x)/x2 ≤ −b2Nα(ϕ)′(x)/(b̄1x) and (2.3), (2.4)).
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Next, if 0 < α < β < 1/2, by using C1,∗(α) ⊂ C1,∗(β) and (B.1), we get summability of
the first term of the expression in the right-hand side of (2.34) as k →∞:∣∣∣∣∣∣

k−1∑
j=0

∫ 1

0
ψLjβ([XαNα(Lk−j−1

α (1))]′) dx

∣∣∣∣∣∣ ≤ Cβ‖ψ‖L∞
k−1∑
j=0

(log j)1/β

j−1+1/β
.

When we consider the second term of the right-hand side of (2.34), we require the
derivatives of order three in C3. Applying (2.33) to ϕ = Lk−j−1

α (1) ∈ C3 ∩ C∗,1(α), and
using Proposition 2.4, we see that for any α ≤ γ ≤ β, up to taking larger a and b1
(uniformly in 1 ≤ j ≤ k − 1) the decomposition (2.37) of ∂2

γLγ(Lk−j−1
α (1)) gives seven

functions which, up to multiplying by −1 and adding a uniformly bounded constant, all
lie in C∗,1(α, a, b1) ⊂ C∗,1(β). We proceed as in the proof of (B.2), developing the Leibniz
inequality. We shall focus on the contribution of X2

α(Nα(ϕ))′′, leaving the other terms to
the reader. We need to check that

|2XαX
′
α(Nα(ϕ))′′ +X2

α(Nα(ϕ))′′′| ≤ B1

7x
|X2

α(Nα(ϕ))′′| .

The above bound follows from (Nα(ϕ))′′′(x) ≤ b3Nα(ϕ)(x)/x3 ≤ b3(Nα(ϕ))′′(x)/(b̄2x) and
(2.3), (2.4). Since we are in a cone, we may apply (B.1) once more, we thus get the bound

(B.3)
‖ψ‖L∞
β − α

∫ β

α
(γ − α)Cβ

k−1∑
j=0

(log j)1/β

j−1+1/β
dγ ≤ Cβ‖ψ‖L∞(β − α) .

Step 2 does not change, and the proof of Theorem 2.1 bypassing [Go, Goth] is complete.

References

[B1] V. Baladi,On the susceptibility function of piecewise expanding interval maps, Comm. Math. Phys.
275 (2007) 839–859.

[B2] V. Baladi, Linear response despite critical points, Nonlinearity 21 (2008) T81–T90.
[B3] V. Baladi, Linear response, or else, ICM Seoul 2014, Proceedings, Volume III, 525–545,

http://www.icm2014.org/en/vod/proceedings.
[BMS] V. Baladi, S. Marmi, and D. Sauzin Natural boundary for the susceptibility function of generic

piecewise expanding unimodal maps, Ergodic Theory Dynam. Systems 10 (2013) 1–24.
[BS] V. Baladi and D. Smania, Linear response formula for piecewise expanding unimodal maps, Non-

linearity 21 (2008) 677–711. (Corrigendum: Nonlinearity 25 (2012) 2203–2205).
[BCV] T. Bomfim, A. Castro, and P. Varandas, Differentiability of thermodynamical quantities in non-

uniformly expanding dynamics, arXiv:1205.5361, to appear Adv. Math.
[BT] H. Bruin and M. Todd, Equilibrium states for potentials with supφ − inf φ < htop(f), Comm.

Math. Phys. 283 (2008) 579–611.
[CD] F. Contreras and D. Dolgopyat, Regularity of absolutely continuous invariant measures for piece-

wise expanding unimodal maps, arXiv:1504.04214.
[Do] D. Dolgopyat, On differentiability of SRB states for partially hyperbolic systems, Invent. Math.

155 (2004) 389–449.
[FT] J.M. Freitas and M. Todd, Statistical stability of equilibrium states for interval maps, Nonlinearity

22 (2009) 259–281.
[Go] S. Gouëzel, Sharp polynomial estimates for the decay of correlations, Israel J. Math. 139 (2004)

29–65.



18 VIVIANE BALADI AND MIKE TODD

[Goth] S. Gouëzel, Vitesse de décorrélation et théorèmes limites pour les applications non uniformément
dilatantes, PhD thesis, Orsay, 2004.

[HM] M. Hairer and A.J. Majda, A simple framework to justify linear response theory, Nonlinearity 23
(2010) 909–922.

[KKPW] A. Katok, G. Knieper, M. Pollicott, and H. Weiss, Differentiability and analyticity of topological
entropy for Anosov and geodesic flows, Invent. Math. 98 (1989) 581–597.

[Ko] A. Korepanov, Linear response for intermittent maps with summable and non-summable decay of
correlations, arXiv:1508.06571.

[LSV] C. Liverani, B. Saussol, and S. Vaienti, A probabilistic approach to intermittency, Ergodic Theory
Dynam. Systems 19 (1999) 671–685.

[Lu1] V. Lucarini, D. Faranda, J. Wouters, and T. Kuna, Towards a general theory of extremes for
observables of chaotic dynamical systems, J. Stat. Phys. 154 (2014) 723–750.

[Lu2] V. Lucarini et al., Extremes and Recurrence in Dynamical Systems, John Wiley and Sons, 2015.
[Ma] M. Mazzolena, Dinamiche espansive unidimensionali: dipendenza della misura invariante da un

parametro, Master’s Thesis, Roma 2 (2007).
[Sa] O. Sarig, Subexponential decay of correlations, Invent. Math. 150 (2002) 629–653.
[Ru] D. Ruelle, Differentiation of SRB states, Comm. Math. Phys. 187 (1997) 227–241.
[Ru1] D. Ruelle, General linear response formula in statistical mechanics, and the fluctuation-dissipation

theorem far from equilibrium, Phys. Lett. A 245 (1998) 220–224.
[Ru2] D. Ruelle, Structure and f-dependence of the A.C.I.M. for a unimodal map f of Misiurewicz type,

Comm. Math. Phys., 287 (2009) 1039–1070.
[Ru3] D. Ruelle, A review of linear response theory for general differentiable dynamical systems, Nonlin-

earity 22 (2009) 855–870.
[Th1] M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed points,

Israel J. Math. 37 (1980) 303–314.
[Th2] M. Thaler, The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving

infinite measures, Studia Math. 143 (2000) 103–119.

D.M.A., UMR 8553, École Normale Supérieure, 75005 Paris, France
Current address: Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut de Mathématiques de

Jussieu-Paris Rive Gauche (IMJ-PRG), Analyse Algébrique, 4, Place Jussieu, 75005 Paris, France
E-mail address: viviane.baladi@imj-prg.fr

Mathematical Institute, University of St Andrews, North Haugh, St Andrews, KY16 9SS,
Scotland

E-mail address: m.todd@st-andrews.ac.uk


	1. Introduction
	2. Linear response formula for Pomeau–Manneville maps
	2.1. Statement of the main result
	2.2. Invariant cones
	2.3. Proof of Theorem   ??

	Appendix A. Proof of Propositions  ?? and  ??
	Appendix B. A cone-only proof for [0,1/2) and L
	References

