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LOGARITHMIC IMPROVEMENT OF REGULARITY CRITERIA FOR THE
NAVIER-STOKES EQUATIONS IN TERMS OF PRESSURE

CHUONG V. TRAN, XINWEI YU

Abstract. In this article we prove a logarithmic improvement of regularity criteria in the mul-
tiplier spaces for the Cauchy problem of the incompressible Navier-Stokes equations in terms of
pressure. This improves the main result in [S. Benbernou, A note on the regularity criterion
in terms of pressure for the Navier-Stokes equations, Applied Mathematics Letters 22 (2009)
1438–1443].

1. Introduction

At the center stage of mathematical fluid mechanics are the incompressible Navier-Stokes equa-
tions

ut + u · ∇u = −∇p + ν△u, (x, t) ∈ Ω× (0,∞) (1)
div u = 0, (x, t) ∈ Ω× (0,∞) (2)

u(x, 0) = u0(x), x ∈ Ω (3)

with appropriate boundary conditions. Here Ω ⊆ Rd is a domain with certain regularity, u : Ω 7→ Rd

is the velocity field, p : Ω 7→ R is the pressure, and ν > 0 is the (dimensionless) viscosity. The
system (1)–(3) on one hand describes the motion of viscous Newtonian fluids, while on the other
hand serve as the starting point of mathematical modeling of many other types of fluids, such as
non-Newtonian fluids, magnetic fluids, electric fluids, and ferro-fluids. In this article we focus on
the Cauchy problem of (1)–(3), where Ω = Rd.

As (1)–(3) serve as the foundation of the modern quantitative theory of incompressible fluids,
it is important to have complete mathematical understanding of these equations. However the
achievement of this goal is still out of the question. In particular, there is still no satisfactory
answer to the question of well-posedness of the Cauchy problem of (1)–(3).

The first systematic study of this well-posedness problem (for the case d = 3) was carried out
by Jean Leray in [19], where it is shown that for arbitrary T ∈ (0,∞] there is at least one function
u(x, t) satisfying the following:

i. u ∈ L∞(0, T ; L2(Rd)) ∩ L2(0, T ; H1(Rd));
ii. u satisfies (1) and (2) in the sense of distributions;
iii. u takes the initial value in the L2 sense: limtց0 ‖u(·, t)− u0(·)‖L2 = 0;
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iv. u satisfies the energy inequality

‖u(·, t)‖2L2 + 2ν

∫ t

0

‖∇u(·, τ)‖2L2dτ 6 ‖u0‖2L2 (4)

for all 0 6 t 6 T .
Such a function u(x, t) is called a Leray-Hopf weak solution for (1)–(3) in Rd × [0, T ).

It is easy to show that if a Leray-Hopf weak solution is smooth, then it satisfies (1)–(3) in
the classical sense. On could further show that such a smooth Leray-Hopf solution must be the
unique solution to (1)–(3). Therefore the well-posedness problem would be settled if all Leray-Hopf
solutions could be shown to be smooth. However such an general result has not been established
up to now. On the other hand, various additional assumptions guaranteeing the smoothness of
Leray-Hopf solutions have been discovered. For example, it has been shown that if a Leray-Hopf
solution u(x, t) further satisfies

u ∈ Lr(0, T ; Ls(Rd)) with
2
r

+
d

s
6 1, d < s 6 ∞, (5)

then u(x, t) is smooth and is thus a classical solution, see e.g. [8], [20], [22]. The borderline case
u ∈ L∞(0, T ; L3) is much more complicated and requires a totally different approach. It was settled
much later by Escauriaza, Seregin, and Sverak in [7]. Many generalizations and refinements of (5)
have been proved, see e.g. [3], [5], [9], [25], [26], [27].

If we formally take divergence of (1) we obtain the following relation between u and p:

−△p = div(div(u⊗ u)) (6)

where u⊗ u is a d× d matrix with i-j entry uiuj . Thus intuitively we have p ∼ u2. Transforming
(5) via this relation, we expect that

p ∈ Lr(0, T ; Ls(Rd)) with
2
r

+
d

s
6 2,

d

2
< s 6 ∞ (7)

should guarantee the smoothness of u. This is indeed the case and was confirmed in [2], [4].
Many efforts have been made to refine (7), see e.g. [1], [6], [10], [14], [15], [17], [23], [24]. It is

worth mentioning that the relation (6) has also played crucial roles in the proofs of other regularity
criteria not of the Prodi-Serrin type. For example, in [21] it is used to show that Leray-Hopf weak
solutions are regular as long as either |u|2 + 2p is bounded above or p is bounded below. Among
generalizations of (7), in [1] it is shown that u is smooth as long as p ∈ L2/(2−r)(0, T ; Ẋr(Rd)d) for
0 < r 6 1 where Ẋr(Rd) is the multiplier space. Multiplier spaces are defined for 0 6 r < d/2 and
functions f ∈ L2

loc(Rd) through the norm

‖f‖Ẋr
:= sup

‖g‖Ḣr 61

‖fg‖L2 < ∞, (8)

where Ḣr(Rd) is the completion of the spaceD(Rd) with respect to the norm ‖u‖Ḣr = ‖(−△)r/2u‖L2,
see e.g. [12] for properties of such spaces. Among its properties we would emphasize the following
two.

• Ld/r ⊂ Ẋr for 0 6 r < d/2,
• This inclusion is strict. For example by the Hardy inequality for fractional Laplacians (see

e.g. [11], [16]) we have |x|−r ∈ Ẋr(Rd).
Thus the above criterion refines (7).

In this article we will present the following logarithmic improvement of this criterion.
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Theorem 1. Let u0 ∈ L2(Rd)∩Lq(Rd) for some q > d, and ∇·u0 = 0. Let u(t, x) be a Leray-Hopf
solution of NSE in [0, T ). If the pressure p satisfies

∫ T

0

‖p‖2/(2−r)

Ẋr

log(e + ‖p‖W m,∞)
dt < ∞ (9)

for some m ∈ N ∪ {0} and r ∈ (0, 1], then u(t, x) is smooth up to T and could be extended beyond
T .

2. Proof of Theorem

Without loss of generality, we take ν = 1 in (1) to simplify the presentation. We apply the
following result from [13], [18] to guarantee short-time smoothness of the solution and thus relieving
us from worrying about the legitimacy of the various integral and differential manipulations below.

Theorem 2. Let u0 ∈ Ls(Rd), s > d. Then there exists T > 0 and a unique classical solution
u ∈ BC(0, T ; Ls(Rd)). Moreover, let (0, T∗) be the maximal interval such that the solution u stays
in C(0; T∗; Ls(Rd)), s > d. Then for any t ∈ (0, T∗),

‖u(·, t)‖Ls > C

(T∗ − t)
s−3
2s

(10)

where the constant C is independent of T∗ and s.

We also recall that (6) implies

p =
d∑

i,j=1

RiRj(uiuj) (11)

where Rj , j = 1, . . . , d are the Riesz transforms. As a consequence of the standard theory of singular
integrals, the following holds: For any s ∈ (1,∞) and m ∈ N, α ∈ (0, 1),

‖p‖Ls 6 C‖u‖2L2s, ‖p‖Cm,α 6 C max
i,j=1,2,...,d

‖uiuj‖Cm,α (12)

where the constant C depends on s, m, α but not on p or u.

Proof(of Theorem 1).
Assume the contrary. Let T ∗ 6 T be the first “blow-up” time. By Theorem 2 we must have

lim suptրT∗ ‖u(·, t)‖Ls = ∞ for all s > d. In the following we will prove in two steps that under
such assumption ‖u(·, t)‖Hk stays bounded up to T ∗ for k > d

2 + m, thus reaching contradiction
as Hk →֒ Ls. Note that again by Theorem 2 we can assume u to be smooth in (0, T ∗) and freely
manipulate all functions in integration and differentiation.

(1) Ls estimate. Pick any s > max{4, d}. We multiply (1) by |u|s−2u· and integrate in Rd to
obtain

‖u‖s−1
Ls

d
dt
‖u‖Ls = −

∫Rd

|u|s−2u · ∇pdx +
∫Rd

|u|s−2u · △udx

=
∫Rd

pu · ∇(|u|s−2)dx +
∫Rd

|u|s−2u · △udx

= (s− 2)
∫Rd

p|u|s−2(û · ∇|u|)dx +
∫Rd

|u|s−2u · △udx. (13)

where û := u
|u| (if u = 0, just define û = 0 too).
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Recalling the identity

u · △u = ∇ · (|u|∇|u|)− |∇u|2, (14)

we easily derive
∫Rd

|u|s−2u · △udx = −4(s− 2)
s2

‖∇|u|s/2‖2L2 − ‖|∇u||u|s/2−1‖2L2, (15)

and reach the following estimate
d
dt
‖u‖s

Ls + ‖|∇u||u|s/2−1‖2L2 + ‖∇|u|s/2‖2L2 .
∫Rd

p|u|s−2(û · ∇|u|)dx. (16)

From here on we will use A . B to denote A 6 cB for some constant c whose value does
not depend on u.

Since ∣∣∣∣
∫Rd

p|u|s−2(û · ∇|u|)dx

∣∣∣∣ 6
∫Rd

(
|p||u| s−2

2

) ∣∣∣|u| s−2
2 ∇|u|

∣∣∣dx, (17)

application of Young’s inequality turns (16) into
d
dt
‖u‖s

Ls + ‖|∇u||u|s/2−1‖2L2 + ‖∇|u|s/2‖2L2 .
∫Rd

|p|2|u|s−2dx. (18)

Now let w := |u|s/2. From (18) it follows that

d
dt
‖u‖s

Ls +
4 + s2

s2
‖∇w‖2L2 .

∫Rd

|p|2|w|2(1−2/s)dx. (19)

We have ∫Rd

|p|2|w|2(1−2/s)dx 6 ‖pw‖L2‖p‖Ls/2‖w1−4/s‖L2s/(s−4)

6 ‖p‖Ẋr
‖w‖Ḣr‖u‖2Ls‖w‖1−4/s

L2

= ‖p‖Ẋr
‖w‖Ḣr‖w‖L2

6 ‖p‖Ẋr
‖w‖(2−r)

L2 ‖w‖r
Ḣ1

6 C‖p‖2/(2−r)

Ẋr
‖w‖2L2 +

1
2
‖w‖2

Ḣ1 (20)

where we have applied Holder’s inequality and the definition of Ẋr norm (8).
From (20) we conclude

d
dt
‖u‖Ls . ‖p‖

2
2−r

Ẋr
‖u‖Ls =

‖p‖2/(2−r)

Ẋr

log(e + ‖p‖W m,∞)
log(e + ‖p‖W m,∞)‖u‖Ls . (21)

Now take k > d
2 +m. By Sobolev embedding theorems we have ‖u‖Cm,α . ‖u‖Hk for some

α > 0. Application of (12) now gives

‖p‖W m,∞ 6 ‖p‖Cm,α . max
i,j=1,2,...,d

‖uiuj‖Cm,α . ‖u‖2Cm,α . ‖u‖2Hk . (22)

Consequently (21) yields

d
dt
‖u‖Ls .

‖p‖2/(2−r)

Ẋr

log(e + ‖p‖W m,∞)
log(e + ‖u‖Hk)‖u‖Ls. (23)
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Let ǫ > 0 be small and T ∗ − ǫ < t < T ∗. Integrating (23) from T ∗ − ǫ to t we see that

‖u‖Ls(t) 6 ‖u0‖Ls exp






∫ T∗

T∗−ǫ

‖p‖2/(2−r)

Ẋr

log(e + ‖p‖W m,∞)
dt


 max

[0,T ]
log(e + ‖u‖Hk)


 . (24)

Thanks to the integrability assumption (9), for any δ > 0, we can take ǫ > 0 small enough
to have

‖u(t)‖Lp 6 C(ǫ)(e + max
t′∈[T∗−ǫ,T1)

‖u(t′)‖Hk)δ (25)

for all T1 ∈ (T ∗ − ǫ, T ∗) and t ∈ [T ∗ − ǫ, T1). Note that by our assumption C(ǫ) −→ ∞ as
δ ց 0. In the following we will see that it is possible to take a fixed positive value of δ and
thus exclude this possibility.

(2) Hk estimate. Fix a natural number k > d
2 + m. Let Λ := (−△)1/2. We multiply (1) by

Λ2ku and integrate:

d
dt

1
2
‖u‖2

Ḣk + ‖u‖2
Ḣk+1 .

∣∣∣∣
∫Rd

u · ∇u · Λ2kudx

∣∣∣∣

=
∣∣∣∣
∫Rd

Λk−1∇ · (u ⊗ u) · (Λk+1u)dx

∣∣∣∣
6 C‖u‖L∞‖u‖Ḣk‖u‖Ḣk+1

= C‖u‖L∞‖u‖α
Ḣk‖u‖1−α

Ḣk
‖u‖Ḣk+1. (26)

Here we have used the calculus inequality ‖Dm(uv)‖L2 . ‖u‖L∞‖Dmv‖L2+‖v‖L∞‖Dmu‖L2.
The parameter α ∈ [0, 1] will be determined in a short while.

Now we interpolate
‖u‖L∞ . ‖u‖θ

Ls‖Λk+1u‖1−θ
L2 , (27)

‖u‖Ḣk . ‖u‖µ
Ls‖Λk+1u‖1−µ

L2 (28)

where θ := k+1−d/2
k+1−d/2+d/s , µ := 1

k+1−d/2+d/s . Application of (27) and (28) to (26) ( (28) to
‖u‖α

Ḣk only) yields

‖u‖L∞‖u‖Ḣk‖u‖Ḣk+1 . ‖u‖γ
Ls‖u‖1−α

Ḣk
‖u‖[1−θ+α(1−µ)]+1

Ḣk+1 (29)

where γ is some positive number which is finite for all values of α.
As d < s we observe that θ + µ > 1. Thus there is α ∈ (0, 1) such that

1− α + [1− θ + α(1 − µ)] + 1 = 2 + (1− θ − αµ) < 2. (30)

Take this α in (26). We obtain
∣∣∣∣
∫

u · ∇u · Λ2ku

∣∣∣∣ . ‖u‖γ
Ls‖u‖κ

Ḣk‖u‖κ′

Ḣk+1 . ‖u‖2γ/(2−κ′)
Ls ‖u‖2κ/(2−κ′)

Ḣk
+

1
2
‖u‖2

Ḣk+1 (31)

We set δ0 :=
(
2− 2κ

2−κ′

)
. As κ + κ′ < 2, δ0 > 0. Fix ǫ0 > 0 such that (25) holds for

(
2γ

2−κ′

)−1
δ0
2 and ǫ0. Then we have

d
dt
‖u(t)‖2

Ḣk 6 C(ǫ0)(e + max
t′∈[T∗−ǫ0,T1)

‖u(t′)‖Ḣk)δ0/2‖u(t)‖2−δ0

Ḣk
(32)



6 CHUONG V. TRAN, XINWEI YU

for all t ∈ [T ∗ − ǫ0, T1). Integrating from T ∗ − ǫ0 to t ∈ (T ∗ − ǫ0, T1), we arrive

(e + ‖u(t)‖Ḣk)2 6 C1(ǫ0) + C(ǫ0)ǫ0(e + max
t′∈[T∗−ǫ0,T1)

‖u(t′)‖Ḣk)2−
δ0
2 (33)

and consequently

(e + max
t′∈[T∗−ǫ0,T1)

‖u(t′)‖Ḣk)δ0/2 6 C2(ǫ0) < ∞. (34)

As both C2(ǫ0) and δ0 are independent of T1, setting T1 ր T ∗ we have

max
t′∈[T∗−ǫ0,T∗)

‖u(t′)‖Ḣk < ∞ (35)

which contradicts the assumption that T ∗ is a blow-up time.

Remark 1. It is clear that we can replace ‖p‖W m,∞ by ‖u‖W m,∞.
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