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Abstract. Let λ = (λ1, λ2, . . .) be a partition of n, a sequence of positive

integers in non-increasing order with sum n. Let Ω := {1, . . . , n}. An ordered
partition P = (A1, A2, . . .) of Ω has type λ if |Ai| = λi.

Following Martin and Sagan, we say that G is λ-transitive if, for any two
ordered partitions P = (A1, A2, . . .) and Q = (B1, B2, . . .) of Ω of type λ,

there exists g ∈ G with Aig = Bi for all i. A group G is said to be λ-

homogeneous if, given two ordered partitions P and Q as above, inducing the
sets P ′ = {A1, A2, . . .} and Q′ = {B1, B2, . . .}, there exists g ∈ G such that

P ′g = Q′. Clearly a λ-transitive group is λ-homogeneous.

The first goal of this paper is to classify the λ-homogeneous groups (Theo-
rems 1.1 and 1.2). The second goal is to apply this classification to a problem

in semigroup theory.
Let Tn and Sn denote the transformation monoid and the symmetric group

on Ω, respectively. Fix a group H 6 Sn. Given a non-invertible transforma-

tion a ∈ Tn \ Sn and a group G 6 Sn, we say that (a,G) is an H-pair if the
semigroups generated by {a} ∪ H and {a} ∪ G contain the same non-units,

that is, 〈a,G〉 \G = 〈a,H〉 \H. Using the classification of the λ-homogeneous

groups we classify all the Sn-pairs (Theorem 1.8). For a multitude of trans-
formation semigroups this theorem immediately implies a description of their

automorphisms, congruences, generators and other relevant properties (Theo-

rem 8.5).
This topic involves both group theory and semigroup theory; we have at-

tempted to include enough exposition to make the paper self-contained for

researchers in both areas.
The paper finishes with a number of open problems on permutation and

linear groups.
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2 JORGE ANDRÉ, JOÃO ARAÚJO, AND PETER J. CAMERON

1. Introduction

For notation and basic results on group theory we refer the reader to [17, 21];
for semigroup theory we refer the reader to [28]. A permutation group G on Ω :=
{1, . . . , n} (a subgroup of Sn) is said to be t-transitive if it acts transitively on the
set of t-tuples of distinct elements of Ω, and is t-homogeneous if it acts transitively
on the set of t-element subsets of {1, . . . , n}. Clearly a t-transitive group is t-
homogeneous. Livingstone and Wagner [38] showed that the converse is true if
5 ≤ t ≤ n/2; the t-homogeneous, but not t-transitive groups for t = 2, 3, 4 were
determined by Kantor [29, 30].

Martin and Sagan [40] defined the notion of λ-transitivity of a permutation
group, as a generalization of t-transitivity, where λ is a partition of n (the de-
gree of the permutation group). In the case where λ = (n − t, 1, 1, . . . , 1), λ-
transitivity is just t-transitivity. There is a weakening of this notion, here called
λ-homogeneity; this notion is natural in permutation groups and also in trans-
formation semigroups. Our first goal is to investigate the relationship between
λ-transitivity and λ-homogeneity.

Let λ = (λ1, λ2, . . .) be a partition of n, a sequence of positive integers in non-
increasing order with sum n. Now let G be a permutation group on Ω, where
|Ω| = n. An ordered partition P = (A1, A2, . . .) of Ω has type λ if |Ai| = λi.

Following Martin and Sagan, we say that G is λ-transitive if, for any two par-
titions P = (A1, A2, . . .) and Q = (B1, B2, . . .) of Ω of type λ, there exists g ∈ G
with Aig = Bi for all i. A group G is said to be λ-homogeneous if, given two
ordered partitions P and Q as above, inducing the sets P ′ = {A1, A2, . . .} and
Q′ = {B1, B2, . . .}, there exists g ∈ G such that P ′g = Q′. Clearly a λ-transitive
group is λ-homogeneous.

Our motivating question is whether the analogue of the Livingstone–Wagner
theorem holds for partition homogeneity and transitivity. Indeed, we see that a
group of degree n which is t-homogeneous but not t-transitive is λ-homogeneous
but not λ-transitive, where λ is the partition (n− t, 1, 1, . . . , 1) (with t ones).

We now introduce the three main results proved in this paper: Theorems 1.1
and 1.2 on permutation groups, and Theorem 1.8 on transformation semigroups.

Our first main theorem characterizes the λ-homogeneous groups. The partition
λ = (1, 1, . . . , 1) is excluded since every permutation group is λ-homogeneous but
only the symmetric group is λ-transitive.

Theorem 1.1. Let λ be a partition of n (other than (1, 1, , . . . , 1)). Let G be a
λ-homogeneous subgroup of Sn. If G is not λ-transitive, then one of the following
holds:

(1) G is intransitive, and either
(a) λ = (k, k, . . . , k) (t parts, with tk = n), G fixes a point and acts as
Sn−1 or An−1 on the remaining points; or

(b) λ = (k, k) with k = 3 or 5, and G fixes a point and acts as AGL(1, 5)
(n = 6) or PGL(2, 8) or PΓL(2, 8) (n = 10) on the remaining 5 or 9
points.

(2) G is transitive and one of the following occurs:
(a) λ = (n− t, 1, 1, . . . , 1), and G is t-homogeneous but not t-transitive;
(b) n = 6, λ = (3, 3), G = PSL(2, 5);
(c) λ = (3, 2, 1, . . . , 1), G is the Mathiu group Mn (n = 12 or n = 24);
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(d) λ = (2, 2, 1, . . . , 1), and either G is the Mathieu group Mn (n =
11, 12, 23, 24) or G = PΓL(2, 8) (n = 9).

The exceptional groups listed in (1)(b) and (2)(b) of the previous theorem all
have two orbits on k-subsets of {1, . . . , n}, when (k, n) is either (3, 6) or (5, 10); the
sets in one orbit are the complements of those in the other.

The previous result classifies λ-homogeneous groups modulo a classification of
λ-transitive groups. Our next result is the classification of λ-transitive groups. In
order to state the theorem, we need some preliminaries.

Clearly Sn is λ-transitive for every partition λ of n, and An is λ-transitive for
every partition except λ = (1, 1, . . . , ). So we may exclude these two groups.

If G is λ-transitive, and t is any integer with 0 < t < n which is a sum of some
of the parts of λ, then G is t-homogeneous. In particular, if G is λ-transitive with
λ 6= (n), then G is transitive.

We say that the pair (G,λ) is standard if

• G is t-homogeneous, with t < n/2;
• λ = (n− t, k1, . . . , kr−1);
• the stabiliser of a t-set in G acts (k1, . . . , kr−1)-transitively on it.

It is clear that, if (G,λ) is standard, then G is λ-transitive. Conversely, if the
largest part of λ is n− t, with t < n/2, and G is λ-transitive, then G is standard.
(For with this assumption, λ has only one part of size n− t; so G must act (n− t)-
homogeneously, hence t-homogeneously, and the third hypothesis then implies λ-
transitivity.) Later (in Subsection 4.4) we will prove that if G is λ-transitive then
the largest part of λ is n − t, with t ≤ n/2. Therefore we have our second main
result.

Theorem 1.2. Let λ 6= (n) be a partition of n, and G ≤ Sn, with G 6= An,Sn.
Then G is λ-transitive if and only if (G,λ) is standard.

Therefore, to check whether a given group G is λ-transitive, we only have to check
that G is t-homogeneous (where the largest part of λ is n−t) and that the stabiliser
of a t-set is λ′-transitive, where λ′ = (k1, . . . , kr−1), when λ = (n− t, k1, . . . , kr−1).

To inspect the groups and partitions regarding standardness we consider two
cases: first the t-transitive groups and then the t-homogeneous, but not t-transitive
groups.

If G is t-transitive, the stabiliser of a t-set induces St on it and so is λ′-transitive
for any partition λ′ of t.

If G is t-homogeneous but not t-transitive, we only have to look at Kantor’s list
(given later) of such groups for t = 2, 3, 4, and in each case figure out what is the
group induced on a t-set by its setwise stabiliser (here called H), and check for
which partitions λ′ this group acts λ′-transitively. Observe that the group H is
well-defined since all t-sets are equivalent under the action of the group G.

Now, if t = 2 then G ≤ AΣL(1, q) and H is the trivial group (so that λ′ has to
be (2)). For t = 3, H is the cyclic group of order 3 (so that λ′ can be either (3) or
(2, 1)), except when G is AGL(2, 8) or AΓL(2, 32) in which cases H is trivial (so λ′

can only be (3)). Finally, if t = 4, then H is the alternating group on 4 points for
PΓL(2, 8) (so λ′ is (4), (3, 1), (2, 2) or (2, 1, 1)), and the Klein group in the other
two cases (so only (4) and (3, 1) are possible).

To summarize, if G is λ-transitive, H denotes the group induced on a t-set by
its stabiliser, and V4 is the Klein group, we have the following:
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• t = 2, G ≤ AΣL(1, q), H = {1}: λ = (n− 2, 2);
• t = 3, G ≤ PΣL(2, q), H = A3: λ = (n− 3, 3) or (n− 3, 2, 1);
• t = 3, G = AGL(1, 8) or AΓL(1, 32), H = {1}: λ = (n− 3, 3);
• t = 3, G = AΓL(2, 8), H = A3: λ = (n− 3, 3) or (n− 3, 2, 1);
• t = 4, G = PGL(2, 8) or PΓL(2, 32), H = V4: λ = (n− 4, 4) or (n− 4, 3, 1);
• t = 4, G = PΓL(2, 8), H = A4: λ is any partition with largest part n − 4

except (n− 4, 1, 1, 1, 1).

The classification of λ-homogeneous groups is a very natural problem in group
theory, and it is quite a mystery why it took so long for this idea to appear in the
literature, after the introduction of λ-transitive groups by Martin and Sagan in [40].
However, the purpose of the present paper is not just to generalize λ-transitivity,
but to study a very natural problem in semigroup theory that we now explain.

Let Tn denote the monoid consisting of mappings from Ω to Ω. The monoid Tn is
usually called the full transformation semigroup. In order to provide the framework
for our third main result, we quote now a series of results from the literature.

In [35], Levi and McFadden proved the following result.

Theorem 1.3. ([35]) Let a ∈ Tn \ Sn. Then

(1) 〈g−1ag | g ∈ Sn〉 is idempotent generated;
(2) 〈g−1ag | g ∈ Sn〉 is regular.

Using a beautiful argument, McAlister [41] proved that the semigroups 〈g−1ag |
g ∈ Sn〉 and 〈a,Sn〉 \Sn (for a ∈ Tn \Sn) have exactly the same set of idempotents;
therefore, as 〈g−1ag | g ∈ Sn〉 is idempotent generated, it follows that

〈g−1ag | g ∈ Sn〉 = 〈a,Sn〉 \ Sn.(1)

In another direction, Levi [33] proved that, for every a ∈ Tn \ Sn, we have

〈g−1ag | g ∈ Sn〉 = 〈g−1ag | g ∈ An〉.(2)

The two next theorems appear in [14] and generalize Theorem 1.3.

Theorem 1.4. ([14]) If n > 1 and G is a subgroup of Sn, then the following are
equivalent:

(1) The semigroup 〈g−1ag | g ∈ G 〉 is idempotent generated for all a ∈ Tn \Sn.
(2) One of the following is valid for G and n:

(a) n = 5 and G is AGL(1, 5);
(b) n = 6 and G is PSL(2, 5) or PGL(2, 5);
(c) G is An or Sn.

Theorem 1.5. ([14]) If n > 1 and G is a subgroup of Sn, then the following are
equivalent:

(1) The semigroup 〈 g−1ag | g ∈ G 〉 is regular for all a ∈ Tn \ Sn.
(2) One of the following is valid for G and n:

(a) n = 5 and G is C5, D5, or AGL(1, 5);
(b) n = 6 and G is PSL(2, 5) or PGL(2, 5);
(c) n = 7 and G is AGL(1, 7);
(d) n = 8 and G is PGL(2, 7);
(e) n = 9 and G is PSL(2, 8) or PΓL(2, 8);
(f) G is An or Sn.
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The groups G 6 Sn possessing the property exhibited by Sn in (1) above are
classified in [8] as follows.

Theorem 1.6. ([8]) If n > 1 and G is a subgroup of Sn, then the following are
equivalent:

(1) for all a ∈ Tn \ Sn we have

〈g−1ag | g ∈ G〉 = 〈a,G〉 \G;

(2) one of the following is valid for G and n:
(a) n = 5 and G is AGL(1, 5);
(b) n = 6 and G is PSL(2, 5) or PGL(2, 5);
(c) n = 9 and G is PSL(2, 8) or PΓL(2, 8);
(d) G is {1}, An or Sn.

Within the boundaries of this study on how the properties of the group shape
the structure of the semigroup, and also along the lines for future investigations
suggested by Levi, McAlister and McFadden in [36], the ultimate goal is to classify
all the pairs (a,G) (where a is a singular map and G is a group of permutations)
such that the semigroup 〈a,G〉 \G has a given property P . As particular instances
of this general problem we have the following list (in what follows, a will be always
a transformation in Tn \ Sn and G will be a subgroup of Sn):

(1) Classify the pairs (a,G) such that the semigroup 〈a,G〉 \G is regular.
(2) Classify the pairs (a,G) such that the semigroup 〈a,G〉 \G is generated by

its idempotents.
(3) Classify the pairs (a,G) such that 〈a,G〉 \G = 〈g−1ag | g ∈ G〉.

In [5] some progress has been made on this direction and the results therein will
certainly be crucial ingredients in the solution of the ultimate goal. In this setting
we introduce the following key concept for our purposes.

Definition 1.7. Let H 6 Sn be a permutation group. A pair (a,G), where G 6 Sn
and a ∈ Tn \ Sn, such that 〈a,G〉 \G = 〈a,H〉 \H, is said to be an H-pair.

As the semigroups 〈a,Sn〉 \ Sn have been intensively studied under the name of
Sn-normal semigroups (see [35], the references therein and also the papers that cite
this one), it is natural to ask for a classification of the Sn-pairs.

By (2) above we already know that (a,An) is an Sn-pair, for every a ∈ Tn \ Sn;
and in [41] it is proved that if e2 = e ∈ Tn and |Ωe| = n − 1, then (e,G) is an
Sn-pair if and only if G is 2-homogeneous.

Our third main result generalizes these two results. Using the results about
λ-homogeneous groups, we provide the full classification of the Sn-pairs (Theorem
1.8). Therefore we provide one instance of the ultimate goal: we classify all pairs
(a,G) that generate a semigroup with a given property P (where the property P
is in this case ‘(a,G) generates the semigroup 〈a,Sn〉 \ Sn’). This classification
immediately implies a large number of results about semigroups. In fact, since
almost everything is known about the semigroups 〈g−1ag | g ∈ Sn〉, the classifica-
tion of the Sn-pairs implies that almost everything is known about the semigroups
〈g−1ag | g ∈ G〉, for each Sn-pair (a,G) (see Section 8 for a sample of what we
already know about these semigroups). Regarding semigroups, our main result is
the following.
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Theorem 1.8. Consider the pair (a,G), where a is a rank r transformation with
kernel partition of type λ, and G 6 Sn. Then (a,G) is an Sn-pair if and only if
one of the following holds:

(1) G is Sn or An;
(2) r = 1 and G is transitive;
(3) r > n/2, λ = (n− r + 1, 1, . . . , 1), and G is (n− r)-homogeneous;
(4) r = n− 2, λ = (2, 2, 1, . . . , 1), and G is 4-transitive;
(5) r = n− 3, λ = (3, 2, 1, . . . , 1), and G is 5-transitive;
(6) λ = (n − t, k1, . . . , kr−1) with t < n/2, G is t-homogeneous, and (G,λ) is

standard (as defined before Theorem 1.2);
(7) finally we have a number of exceptional groups of low degree:

(a) n = 5, G is AGL(1, 5) and λ 6= (2, 2, 1);
(b) n = 6, G is PSL(2, 5) and λ 6∈ {(3, 2, 1), (3, 1, 1, 1), (3, 2, 2), (2, 2, 1, 1)};
(c) n = 6, G is PGL(2, 5) and λ 6∈ {(2, 2, 1, 1), (2, 2, 2)};
(d) n = 9, G is PΓL(2, 8) and either λ1 ≥ 5 or λ2 = 1 or λ = (2, 2, 1, 1, 1, 1, 1).
(e) n = 9, G is PGL(2, 8) and λ satisfies either λ1 ≥ 5 or λ2 = 1 with the

exception of (5, 2, 2) and (5, 2, 1, 1).

We now outline the content of the paper.
In Section 2 we recall some well known results on homogeneity and transitivity.

In Section 3 we generalize the well known correspondence between orbitals and
orbits of a point stabilizer. We also give some character theory that is necessary
later. Section 4 is devoted to the proof of Theorem 1.2. A characterization of
the Sn-pairs is proved in Section 5. Finally, Theorem 1.8 is proved in Section 6.
The paper concludes with some remarks on pairs (a,G) with a a permutation and
〈a,G〉 = Sn (Section 7), with an illustration of the results on semigroups that
immediately follow from the classification of the Sn-pairs (Section 8), and with
several open problems in Section 9.

It is worth pointing out that in [7] a similar study is carried out, but for semi-
groups 〈G, a〉, where the size of Ωa is close to |Ω|.

2. Homogeneity and transitivity

We recall here the “classical” results on homogeneity and transitivity, since we
will make frequent use of them. Let G be a subgroup of Sn. Note that, if λ =
(n− t, 1, . . . , 1) and µ = (n− t, t) then

• G is t-homogeneous if and only if it is λ-homogeneous, and t-transitive if
and only if it is λ-transitive;
• G is t-homogeneous if and only if it is µ-transitive (and this is equivalent

to µ-homogeneity if n 6= 2t).

In particular, t-homogeneity and (n − t)-homogeneity are equivalent; so, for the
purposes of classification, we may assume that t ≤ n/2.

A permutation group G of degree n is set-transitive if it is t-homogeneous for all
t with 1 ≤ t ≤ n− 1. The problem of the classification of set-transitive groups was
first posed by von Neumann and Morgenstern [43] in the context of fair n-player
games, and was solved by Beaumont and Petersen [16]: apart from the symmetric
and alternating groups there are just four set-transitive groups, namely

• n = 5, G = AGL(1, 5);
• n = 6, G = PGL(2, 5);
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• n = 9, G = PGL(2, 8) or PΓL(2, 8).

Note that, if G is set-transitive of odd degree 2k − 1, and we adjoin a new point
fixed by G, we obtain a (k, k)-transitive group. Three of the examples in Theorem
1.1 arise in this way.

Now t-homogeneity is equivalent to (n− t)-homogeneity, so we may assume that
t ≤ n/2. Theorem 1 of Livingstone and Wagner [38] shows that G is then (t− 1)-
homogeneous. Hence, if G is not set-transitive, then there is a unique integer
t < n/2 (with possibly t = 0) such that G is s-homogeneous if and only if either
s ≤ t or s ≥ n− t. We say that such a group is exactly t-homogeneous.

Theorem 2(a) of Livingstone and Wagner [38] shows that a t-homogeneous group
for t ≤ n/2 is (t−1)-transitive. Therefore, it is immediate to see that a permutation
group G 6 Sn falls into one of the following classes:

(1) G is set-transitive, or
(2) G is exactly t-homogeneous, for some t 6 n/2; in such case:

(a) either G is t-transitive, but not (t+ 1)-homogeneous; or
(b) G is t-homogeneous, but not t-transitive.

Now the classification of t-homogeneous groups can be summarized as follows:

• if 5 ≤ t ≤ n/2 and G is t-homogeneous, then G is t-transitive (Theorem
2(b) of Livingstone and Wagner [38]);

• if G is 2-homogeneous but not 2-transitive, then G ≤ AΓL(1, q), where q is
a prime power congruent to 3 (mod 4) (Kantor [30]);

• if G is 3-homogeneous but not 3-transitive, then either G ≤ PΓL(2, q),
where q is a prime power congruent to 3 (mod 4), or G = AGL(1, 8),
AΓL(1, 8) or AΓL(1, 32), with n = 8, 8, 32 respectively (Kantor [30]);

• if G is 4-homogeneous but not 4-transitive, then G = PGL(2, 8), PΓL(2, 8)
or PΓL(2, 32), with n = 9, 9, 33 respectively (Kantor [29]);

• using the Classification of Finite Simple Groups, all the t-transitive groups
for t ≥ 2 have been determined; lists are available in [17, 21]. In particular,
the only 6-transitive groups are the symmetric and alternating groups, and
the only 4- or 5-transitive groups are these and the Mathieu groups M11,
M12, M23 and M24.

3. Preliminaries

The aim of this section is to prove a result that generalizes the well known
correspondence between orbitals and orbits of a point stabilizer. We also give a
character-theoretic interpretation. This well known material is included here for
completeness.

Lemma 3.1. Let A and B be two sets and let G be a group acting transitively on
both A and B. Given a ∈ A, denote by G(a) the stabilizer of a in G.

Then there is a natural bijection between the orbits of G on A×B and the orbits
in the action of G(a) on B. In particular, the numbers of orbits are equal.

Proof Let O be an orbit of G on A × B. For each a ∈ A, let O(a) denote the
set {b ∈ B : (a, b) ∈ O}.

We claim that O(a) is an orbit of G(a). For, if b1, b2 ∈ O(a), then there exists
g ∈ G with (a, b1)g = (a, b2); then ag = a (so g ∈ G(a)) and b1g = b2. Conversely,
if g ∈ G(a) and b1g = b2, then (a, b1)g = (a, b2).
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Every G(a)-orbit in B arises in this way: for, if ∆ is such an orbit, b ∈ ∆, and
O is the G-orbit containing (a, b), then ∆ = O(a). This completes the proof. �

One way of looking into this result is shown in the figure below. Represent
(a, b) ∈ A×B by a→ b, and put a square around b and b′ in case (a, b) and (a, b′)
are in the same orbit under G; then, locally, that is representing only the arrows
rooted on a, we get figure 1.

a

��

//

BB

��

oo

\\

b1

b2

b3

b4

b5

b6

Figure 1. A local graph of the action of G on A×B

The fact that the local graph rooted on a has two orbits, means that the whole
action of G on A×B has two orbits. (Observe that the whole graph is obtained by
translations of this picture under G and hence the number of orbits is not going to
change.) Looking at the picture is self-evident that (a, b2) is in the orbit of (a, b1)
(under G) if and only if b2 is in the orbit of b1 under G(a). Thus the rectangles
identify both the orbits under G and under G(a).

We can also use character theory to look at this result. The orbit-counting
lemma (OCL for short), which states that the number of orbits of a finite group
G on a finite set A is equal to the average number of fixed points of elements of
the group, has a character-theoretic interpretation. The permutation character πA
is the function on G giving the numbers of fixed points of elements. OCL asserts
that the number of orbits of G on A is equal to the inner product 〈πA, 1G〉G of πA
with the principal character 1G of G; in other words, the multiplicity of 1G as a
constituent of πA.

We remark (this will be needed later) that the number of orbits of G on A×B
is equal to the inner product of the permutation characters of G on the sets A and
B. For the permutation character on A×B is πAπB , and so

# G-orbits in A×B = 〈πAπB , 1G〉G (OCL)

= 〈πA, πB〉G (πB is real).

Note also that the proposition can be interpreted in terms of Frobenius reciprocity.
For the transitivity of G on A means that πA = 1G(a)|G (the character of G induced
from the principal character of G(a)); so we have

# G(a)-orbits in B = 〈πB |G(a), 1G(a)〉G(a) (OCL)

= 〈πB , 1G(a)|G〉G (Frobenius reciprocity)

= 〈πB , πA〉G.
Corollary 3.2. Suppose that the group G acts transitively on two sets A and B.
Then the stabilizer of a point in A is transitive on B if and only if the stabilizer of
a point in B is transitive on A.
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Proof Both conditions are equivalent to transitivity of G on A×B, on applying
Lemma 3.1 twice. �

This has a number of consequences which are relevant to our investigation, for
example the following.

Corollary 3.3. Let G 6 Sn be a 2-homogeneous group such that its set-stabilizer
of a 2-set is transitive on the remaining points. Then the stabilizer of a point p is
transitive on the 2-sets not containing p.

4. Partition-homogeneous groups

In this section we prove Theorem 1.1, the classification of λ-homogeneous groups
which are not λ-transitive, and conclude with some remarks about the classification
of λ-transitive groups.

Until the end of the section, λ denotes a partition of n which is not (n) or
(1, 1, . . . , 1), and G a subgroup of Sn which is λ-homogeneous.

4.1. Intransitive groups. Suppose that G is λ-homogeneous but intransitive.
Then G has at least two different orbits, and hence one of them must have at
most n/2 elements. Therefore G fixes a set of size at most n/2. Let T be the
largest set fixed by G, and such that |T | = t 6 n/2. So the stabiliser of T in Sn is
λ-homogeneous (because the λ-homogeneous group G is contained in that stabilizer,
and any over-group of a λ-homogeneous group is λ-homogeneous). Therefore the
stabiliser S of a partition of shape λ is t-homogeneous (by Corollary 3.2). The sta-
biliser of a partition is (by definition) imprimitive. Now suppose, by contradiction,
that t > 2; then, as S is t-homogeneous, by Theorem 1 of Livingstone and Wagner
[38], it follows that S is 2-homogeneous, and hence primitive. So necessarily t = 1.
By choice of t, we see that G is transitive on the remaining points.

In this case, the partition λ must be uniform (all parts have the same size); for,
if not, then two set partitions in which the fixed point lies in parts of different sizes
could not be equivalent under G. We will return to this case later.

4.2. Uniform partitions. The aim of this subsection is to prove the following
theorem.

Theorem 4.1. Let λ be a uniform partition of n other than (1, 1, . . . , 1), and let
G be a λ-homogeneous group. Then one of the following holds:

(1) G is λ-transitive;
(2) n = 6, λ = (3, 3) and either G is PSL(2, 5), or G = AGL(1, 5) (fixing a

point);
(3) n = 10, λ = (5, 5) and G is PSL(2, 8) or PΓL(2, 8) (in both cases fixing a

point);
(4) G fixes a point and acts as the alternating or the symmetric group on the

remaining points.

The proof of this theorem will be carried out in a number of paragraphs. As said
above, λ denotes a uniform partition, say λ = (k, k, . . . , k) (t parts), with n = tk,
and t, k > 1.

The groups of degree at most 4
By direct inspection of the groups of degree up to 4 we see that the only λ-

homogeneous groups (when λ is uniform) are Sn and An.
Transitivity



10 JORGE ANDRÉ, JOÃO ARAÚJO, AND PETER J. CAMERON

The aim of this paragraph is to prove that either G is transitive or it fixes one
point z and is 2-homogeneous on Ω \ {z}.

We saw above that, if G is intransitive, then it fixes a point z and is transitive
on the remaining points. Each partition has a unique part containing z, of the form
{z}∪L, where |L| = k−1. So G must be (k−1)-homogeneous on Ω\{z}. If k > 2,
then it follows that G is 2-homogeneous on Ω \ {z}.

In the case k = 2, we need a little more. We can assume that t > 2, since
the groups of degree 4 are treated above. The stabiliser of a 2-set {z, x} is µ-
homogeneous on the remaining points, where µ has t − 1 parts of size 2. If this
stabiliser H is not transitive, then (by the preceding argument) it fixes a point x′;
so {x, x′} is a block of imprimitivity for G acting on Ω\{z}. But this is impossible,
since 2 does not divide n − 1 = 2t − 1. So the stabiliser of x is transitive on the
remaining points, and G is 2-transitive on Ω \ {z}.

Hence, under the conditions of Theorem 4.1, either G is transitive, or it fixes one
point z and is 2-homogeneous on Ω \ {z}.

2-homogeneity Next we show that, if G is transitive, then it is 2-homogeneous.
This involves a little character theory, similar to (but much simpler than) that
used by Livingstone and Wagner [38] and Martin and Sagan [40]; see the comments
before Corollary 3.2.

Consider the action of the symmetric group on Ω, the set of 2-subsets of Ω, and
the set of partitions of Ω of type (k, k, . . . , k). It is well known that the permutation
characters in the first two of these actions have the form χ0 +χ1 and χ0 +χ1 +χ2,
where χ0 is the principal character, and χ1 and χ2 are the irreducibles corresponding
to the partitions (n− 1, 1) and (n− 2, 2) respectively. The stabiliser of a partition
is transitive on points and has two orbits on 2-sets, so the permutation character
π of the action on partitions contains χ0 and χ2 (but not χ1).

On restriction to G, the character π contains the principal character with multi-
plicity 1 (since G is transitive on the set of partitions). So the principal character
is not contained in χ2|G. Also it is not contained in χ1|G, since G is assumed
transitive. So G is transitive in its action on 2-sets, that is, 2-homogeneous.

Completion of the proof of Theorem 4.1 To complete the proof we make
use of three facts. The first two are versions of Bertrand’s postulate, which are
far from the strongest form known; an accessible proof of what we need can be
found on Robin Chapman’s homepage [20]. The third is a theorem of Jordan (see
Wielandt [46], Theorem 13.9).

(1) If n ≥ 8, then there is a prime p satisfying n/2 < p ≤ n− 3.
(2) If n ≥ 16, then there is a prime p satisfying n/2 < p ≤ n− 4.
(3) IfG is a primitive permutation group of degree n containing a p-cycle, where

p is a prime satisfying p ≤ n − 3, then G is the symmetric or alternating
group.

The number of partitions of {1, 2, . . . , n} of type (k, k, . . . , k), with n = tk, is
equal to n!

(k!)t t! , which is divisible by a prime p satisfying the conditions of (1)

above, provided that n ≥ 8. So |G| is divisible by p, and G contains an element of
order p, necessarily a p-cycle (as p > n

2 ).
Suppose first that G is transitive and n > 8. Then it is 2-homogeneous, and

hence primitive, and so by Jordan’s theorem it is symmetric or alternating.
For 4 < n < 8, G transitive, and λ uniform, the only possible degree is n = 6 (as

the other numbers in this range are primes). Therefore the only possible groups
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are PSL(2, 5) and PGL(2, 5). The latter is 3-homogeneous and hence λ-transitive
for λ = (3, 3). The former is 2-homogeneous and this yields the exception G =
PSL(2, 5), for λ = (3, 3).

If G is intransitive, then it fixes a point and is 2-homogeneous (and so primitive)
on the remaining n− 1 points; so, if n ≥ 16, we conclude that G is the symmetric
or alternating group on the moved points.

To finish the proof of the theorem we only need to inspect the intransitive groups
of degree n for n ≤ 16. If such a group G is λ-homogeneous for λ = (k, k, . . . , k)
(t parts), then the number n!

(k!)t t! of set partitions of shape λ must divide |G|.
Moreover, by the results in Section 2, we know that a 2-homogeneous group is
either 2-transitive or primitive of odd order. A quick check of the primitive groups
using GAP [23] shows that the three groups of the theorem are the only possibilities.
The theorem is proved.

Note that, in cases (2)–(4) of the theorem, the partition is λ = (k, k) with
n = 2k, and so λ-homogeneity is equivalent to (k − 1)-homogeneity, that is, to
set-transitivity, on the non-fixed points.

4.3. The non-uniform case. In this subsection we will prove Theorem 1.1 for
non-uniform partitions. From Subsection 4.1 we know that if G is λ-homogeneous
and intransitive, then λ is uniform; therefore, a λ-homogeneous group, for a non-
uniform λ, must be transitive. In fact more can be said; and, in particular, there
are no imprimitive λ-transitive groups (for non trivial λ).

Lemma 4.2. Let λ be a non-uniform partition of n, and let G be a λ-homogeneous
but not λ-transitive group. Then G is 2-homogeneous, and hence primitive.

Proof Let λ′ be the partition obtained from λ by summing all the occurrences
of each number. Then G is λ′-transitive, from which it follows that, if r is the sum
of any subset of the parts of λ, then G is r-homogeneous. If there is such an r
with 1 < r < n − 1, then G is 2-homogeneous, as required; so suppose not. Then
λ′ = (n− 1, 1), so that λ = (k, . . . , k, 1) (with t parts equal to k, with tk = n− 1).
As G is not λ-transitive, it follows that λ 6= (n− 1, 1), so 1 < k, t < n− 1.

Now G(x), the stabiliser in G of a point x, is (k, . . . , k)-homogeneous on the
remaining points. If it is transitive, then G is 2-transitive. Otherwise it fixes a
point z and is 2-homogeneous (and hence primitive) on the points different from
x and z. Now {x, z} is a block of imprimitivity for G; the primitivity of G(x)
implies that there are only two blocks, so n = 4, which is impossible. The lemma
follows. �

Now we prove Theorem 1.1 (for non-uniform partitions). LetG be λ-homogeneous,
where λ has rk parts equal to k, for k = 1, 2, . . .. Then the order of G is divisible
by the number n!∏

k(k!)rk rk! of unordered set partitions of shape λ.

Suppose that n ≥ 8. By Bertrand’s Postulate, there is a prime p satisfying
n/2 < p ≤ n − 3. If p | |G|, then by Jordan’s Theorem, G is symmetric or
alternating, and so is λ-transitive. So we may assume that p - |G|, whence also
p does not divide the number of set partitions. This implies that either k ≥ p or
rk ≥ p for some k. Since krk ≤ n and p > n/2, we have either k ≥ p, rk = 1, or
k = 1, rk ≥ p; in other words, either λ has a unique part of size at least p, or it has
at least p parts equal to 1.

Denote by t the number such that, in the above, either k = n− t or rk = n− t.
Without loss of generality, t 6= 1. (If t = 1 then λ is either (1, . . . , 1), which we
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explicitly excluded, or (n − 1, 1), ruled out above.) Then G is t-homogeneous, so
t ≤ 5. The group H induced on a t-set by its setwise stabiliser is λ′-transitive,
where λ′ is obtained from λ by removing either the part n− t or the n− t parts 1.

Suppose first that λ has n − t parts equal to 1. Then λ′ has no part equal to
1; so λ′ = (3, 2) or (2, 2). In the first case, G is 5-homogeneous, so is M12 or M24;
in the second case, G is 4-homogeneous, and H is (2, 2)-homogeneous or (2, 1, 1)-
homogeneous, so has order divisible by 3; thus G is Mn (for n = 11, 12, 23, 24) or
PΓL(2, 8). All these groups occur in the statement of the theorem.

Now suppose that λ has a part equal to n− t. Then G is t-homogeneous but not
t-transitive, so t ≤ 4; and H is λ′-homogeneous but not λ′-transitive. In the case
λ′ = (1, . . . , 1), any t-homogeneous but not t-transitive group can occur. Otherwise,
since the parts of λ′ cannot all be distinct, we have λ′ = (2, 2) or (2, 1, 1). These
cases occur only for the group G = PΓL(2, 8), which is λ-transitive.

Finally, the cases where n ≤ 7 are easily checked by hand or using GAP.
The proof of Theorem 1.1 is finished.

4.4. λ-transitive groups. In this section we prove Theorem 1.2. So G is a sub-
group of Sn, not Sn or An, which is λ-transitive, where λ 6= (n).

As observed before the theorem, it is clear that, if (G,λ) is standard, then G is
λ-transitive; and conversely, if the largest part of λ is n − t, with t ≤ n/2, and G
is λ-transitive, then G is standard. Therefore the only thing still required to prove
Theorem 1.2 is that, if G is λ-transitive, then the largest part of λ must be greater
than n/2.

Again, if n ≥ 8, there is a prime p satisfying n/2 < p ≤ n−3. If p | |G|, then G is
symmetric or alternating, contradicting our assumptions; we may assume that this
is not the case. So p does not divide the number of ordered set partitions of type
λ, which is n!/ (

∏
i ki!), where λ = (k1, k2, . . .). So k1 ≥ p > n/2. Our comments

above show that the pair (G,λ) is standard in this case.
Finally, the groups of degree at most 7 are easily handled directly.

5. A characterization of the Sn-pairs

The goal of this section is to provide a characterization of the Sn-pairs, that is,
the pairs (a,G), where a ∈ Tn \G and G 6 Sn, such that

〈a,G〉 \G = 〈a,Sn〉 \ Sn.
We start by introducing some notation and terminology. Recall that Ω =

{1, . . . , n}. The rank of a map a ∈ Tn is the size of its image: rank(a) = |Ωa|;
the kernel of a ∈ Tn, denoted ker(a), is the partition of Ω induced by the equiv-
alence relation {(x, y) ∈ Ω × Ω | xa = ya}. The kernel type of a is the tuple
(|A1|, . . . , |Ak|), where the sets Ai belong to the kernel of a and for i 6 j we have
|Ai| > |Aj |.

Lemma 5.1. Consider an Sn-pair (a,G), with G 6 Sn and a ∈ Tn such that ker(a)
has type λ. Then

(1) G is rank(a)-homogeneous;
(2) G is λ-homogenous.

Proof Let a ∈ Tn\Sn. For every A ⊆ Ω of size |Ωa|, there exists g ∈ Sn such that
Ωag = A and hence there exists b ∈ 〈a,Sn〉 \Sn (namely b = ag) such that Ωb = A.
Therefore, as (a,G) is an Sn-pair, it follows that for every A ⊆ Ω of size |Ωa|, there
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exist g1, . . . , gk ∈ G such that Ωg1ag2a . . . agk = A. As Ωg1ag2a . . . a ⊆ Ωa (and
|Ωg1ag2a . . . a| = |A| = |Ωa| and we are working with finite sets) it follows that
Ωg1ag2a . . . a = Ωa. Thus gk ∈ G maps Ωa onto A. It is proved that G must be
|Ωa|-homogeneous.

Similarly, let P = (A1, . . . , Am) be the kernel of a. Then given any partition π of
Ω with the same kernel type of a, there exists g ∈ Sn such that Pg = π. Therefore,
as (a,G) is an Sn-pair, for every partition π of Ω, of the same type as P , there exist
g1, . . . , gk ∈ G such that ker(g1ag2a . . . agk) = π. Using an argument similar to the
one used above one can see that Pg−1

1 = π. �

These two necessary conditions turn out to be sufficient as well.

Lemma 5.2. Let a ∈ Tn such that rank(a) = k (with k < n) and kernel type λ. Let
G 6 Sn be a k-homogeneous and λ-homogenous group. Then (a,G) is an Sn-pair.

Proof Let Σa = 〈Sn, a〉 \ Sn and Γa = 〈G, a〉 \ G. Since Γa ⊆ Σa, we only
need to prove the converse. Observe that by Theorems 1.4 and 1.6 the semigroup
Σa is idempotent generated. In addition, it is obvious that Σa is generated by the
elements {gah | g, h ∈ Sn}. As every element in this set has the same rank as a, it
follows that the semigroup Σa is generated by its idempotents of the largest rank
(those idempotents with the same rank as a). Hence, to prove the desired inclusion
we only need to prove that all the idempotents of Σa of the same rank as a are
contained in Γa.

Observe that given any pair (ρ, S), where ρ is a partition of Ω and S is a section
(or transversal, or cross-section) for ρ, there exists one and only one idempotent
e such that ker(e) = ρ and Ωe = S. Therefore, if e2 = e ∈ Σa, with rank(e) =
rank(a), this means that e = g1ag2 . . . gk−1agk (gi ∈ Sn); this implies that ker(e) ⊇
ker(g1a) and Ωe ⊆ Ωagk. As rank(e) = rank(a) it follows that equalities hold so
that ker(e) = ker(g1a) and Ωe = Ωagk. Using the well known fact that ker(ga) =
ker(a)g−1, we derive the following characterization of the idempotents possessing
the same rank as a: e2 = e ∈ Σa, with rank(a) = rank(e), if and only if there
exist g, h ∈ Sn such that ker(e) = ker(a)g, Ωe = Ωah, and Ωah is a section for
ker(a)g. Fix g, h ∈ Sn such that Ωah is a section for ker(a)g. To prove the theorem
we only need to prove that if e is the unique idempotent associated to the pair
(ker(a)g,Ωah), then e ∈ Γa.

At this point a further simplification is possible. In fact, if it can be proved
that there exists b ∈ Γa such that ker(b) = ker(a)g and Ωb = Ωah, then any
power of b also belongs to Γa (since b ∈ Γa and Γa is a semigroup). As the
image of b is a section for its kernel (as we are assuming that Ωb = Ωah is a
section for ker(b) = ker(a)g), it follows that rank(bk) = rank(b), for all natural
k, and hence —by the result in [28, pp. 9-11]—there exists a natural number
(usually denoted by ω) such that bω is an idempotent with kernel equal to ker(b)
and with image equal to Ωb. Therefore, to prove that the unique idempotent e
such that ker(e) = ker(a)g and Ωe = Ωah belongs to Γa, it is sufficient to prove
that there exists b ∈ Γa such that ker(b) = ker(a)g and Ωb = Ωah. But now the
conclusion follows immediately. Since G is |Ωa|-homogeneous, there exists h′ ∈ G
such that Ωah′ = Ωah; similarly, as G is λ-homogenous, there exists g′ ∈ G such
that ker(a)g′ = ker(a)g. As (g′)−1ah′ ∈ Γa it follows that b = (g′)−1ah′ has the
desired properties: ker(b) = ker(a)g′ = ker(a)g and Ωb = Ωah′ = Ωah. �
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The two previous lemmas yield the following result which is the main theorem
in this section.

Theorem 5.3. Let a ∈ Tn such that rank(a) = k and ker(a) has type λ. Then
(a,G), with G 6 Sn, is an Sn-pair if and only if G satisfies the following two
properties:

(1) G is k-homogeneous; and
(2) G is λ-homogenous.

6. The classification of the Sn-pairs

The aim of this section is to prove the classification theorem of the Sn-pairs
(Theorem 1.8).

That (a,Sn) is an Sn-pair for every non-invertible transformation is trivial. That
(a,An) is also an Sn-pair for every non-invertible transformation was proved by Levi
[33]. It is very easy to see that, for a constant map a, (a,G) is an Sn-pair if and
only if G is transitive.

Suppose that a ∈ Tn \ Sn, with rank(a) = r > 1 and kernel partition of type λ,
and that (a,G) is an Sn-pair. Then G is r-homogeneous and λ-homogeneous by
Theorem 5.3. In particular, G is transitive. We have to look at the groups in the
first two theorems.

Suppose G is r-homogeneous and λ-homogeneous, but not λ-transitive; then G
satisfies one of the conditions of Theorem 1.1 (2). Suppose that case (2)(a) occurs,
that is, λ = (n − t, 1, . . . , 1). As λ is the kernel type of a rank r map, this means
that n − t = n − r + 1, that is, t = r − 1. Since, by Theorem 1.1 (2), G is t-
homogeneous, but not t-transitive, it follows that G is (r − 1)-homogeneous, but
not (r − 1)-transitive. However, G is r-homogeneous; thus r > n/2.

The groups in cases (2)(b)–(d) of Theorem 1.1 are listed in the conclusion of
Theorem 1.8.

Suppose now that G is λ-transitive, so that (G,λ) is standard. This gives con-
clusion (6) of the theorem.

The small groups (the set-transitive groups together with PSL(2, 5)) occur under
conclusion (7).

7. Permutations

In the non invertible case it does not make sense to ask for the transformations
a ∈ Tn such that 〈a,G〉 = 〈a,Sn〉 since this implies G = Sn. Therefore we had to
search for the pairs (a,G) such that 〈a,G〉 \G = 〈a,Sn〉 \ Sn.

Regarding permutations a ∈ Sn, it does not make sense to ask for the groups G
such that 〈a,G〉 \G = 〈a,Sn〉 \ Sn since this happens if and only if a ∈ G. In the
permutations setting the analogue of the non invertible problem is to ask for pairs
(a,G) with 〈a,G〉 = 〈a,Sn〉 = Sn. A great deal is known about this problem.

If G is the trivial group, then there is no such permutation a, provided n > 2,
since the symmetric group requires at least two generators. However, a theorem of
 Luczak and Pyber [39] shows that, if G is transitive, then almost all a ∈ Sn satisfy
〈a,G〉 = Sn or An (in the sense that the proportion of a satisfying this tends to
1 as n −→ ∞). Of course, if 〈a,G〉 = An, then a is an even permutation and G
contains only even permutations.
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It is interesting to note that this theorem, together with a theorem of Häggkvist
and Janssen [25], answers a question about quasigroups: it shows that almost all
quasigroups of order n have the property that the right multiplication group is Sn.

There is an extensive literature about the problem in the case where G is a cyclic
group, which we do not survey here.

8. Consequences of the classification of the Sn-pairs

As observed above much is known on the Sn-normal semigroups and hence the
characterization of the Sn-pairs gives for free a large number of results. The aim
of this section is to have a glance on those consequences. We start with a number
of easy observations.

We recall the following result [45].

Theorem 8.1. Let a ∈ Tn \ Sn. Then

〈a,Sn〉 \ Sn = {b ∈ Tn | (∃g ∈ Sn) ker(a)g ⊆ ker(b)}.

As we have the classification of Sn-pairs, now we would like to investigate what
happens with sets A ⊆ Tn \ Sn. It would be good to have a result of the form
〈A,G〉\G = 〈A,Sn〉\Sn if and only if (a,G) is an Sn-pair, for all a ∈ A. However this
is not true. The smallest example, by Theorem 1.8, is provided by G := AGL(1, 5)
of degree 5, and A = {a, b}, where a and b are the following transformations:

a =

(
{1, 2} {3} {4} {5}

1 3 4 5

)

b =

(
{1, 2} {3, 4} {5}

1 3 5

)
.

Since (a,G) is an Sn-pair, it follows from Theorem 8.1 that 〈a,G〉 \G = Tn \ Sn
and hence contains b; thus 〈A,G〉 \ G = 〈a,G〉 \ G = 〈a,Sn〉 \ Sn. But (b,G), by
Theorem 1.8, is not an Sn-pair.

The following result shows that regarding Sn-pairness only the top elements
matter.

Lemma 8.2. Let a ∈ Tn \ Sn and G ≤ Sn. The following are equivalent:

(1) 〈a,G〉 \G = 〈a,Sn〉 \ Sn;
(2) {b ∈ 〈a,G〉 | rank(b) = rank(a)} = {b ∈ 〈a,Sn〉 | rank(b) = rank(a)}.

Proof The forward direction is obvious. Regarding the converse, observe that,
for any group H, the semigroup 〈a,H〉\H is generated by the set {hag | g, h ∈ H},
and this set is contained in {b ∈ 〈a,H〉 | rank(b) = rank(a)}. Therefore,

〈a,H〉 \H = 〈{b ∈ 〈a,H〉 | rank(b) = rank(a)}〉.

Thus

〈a,G〉 \G = 〈{b ∈ 〈a,G〉 | rank(b) = rank(a)}〉
= 〈{b ∈ 〈a,Sn〉 | rank(b) = rank(a)}〉
= 〈a,Sn〉 \ Sn.

The result follows. �
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A set A ⊆ Tn \ Sn is said to be independent if for every a, b ∈ A (a 6= b) we
have a 6∈ 〈b,Sn〉. Since, given any A ⊆ Tn \ Sn, we can pick the maximal elements
(under set inclusion) of {〈a,Sn〉 \ Sn | a ∈ A}, then every set A ⊆ Tn \ Sn contains
(at least) one independent subset. This set is not unique just because we can have
a, b ∈ A such that 〈a,Sn〉 \ Sn = 〈b,Sn〉 \ Sn. Theorem 8.1 immediately provides a
characterization of independent sets.

Lemma 8.3. Let A ⊆ Tn \ Sn be a set. The following are equivalent:

(1) A is independent;
(2) for all different a, b ∈ A there is no g ∈ Sn such that ker(a)g ⊆ ker(b).

The following theorem shows the nice behavior of the idea of Sn-pairs when
extended to pairs (A,G), for an independent set A.

Theorem 8.4. Let A ⊆ Tn \ Sn be an independent set and let G ≤ Sn. The
following are equivalent:

(1) 〈A,G〉 \G = 〈A,Sn〉 \ Sn;
(2) (a,G) is an Sn-pair, for all a ∈ A.

Proof We start by proving the theorem in the forward direction. Let a ∈ A. If
a ∈ 〈A \ {a}, G〉, then a = g1a1 . . . akgk+1 (with ai ∈ A \ {a}, gi ∈ G). This implies
that ker(a) ⊇ ker(a1)g−1

1 . Thus, by Theorem 8.1, a ∈ 〈a1,Sn〉, a contradiction
since A is independent.

Conversely, it is clear that 〈A,G〉 \ G ⊆ 〈A,Sn〉 \ Sn. So let x ∈ 〈A,Sn〉 \ Sn.
Then x = g1a1g2 . . ., with a1 ∈ A, gi ∈ Sn. Thus ker(x) ⊇ ker(a1)g−1

1 and hence,
by Theorem 8.1, we have

x ∈ 〈a1,Sn〉 \ Sn = 〈a1, G〉 \G ⊆ 〈A,G〉 \G.

�
The next result provides the announced sample of important results that have

been proved by various authors throughout the past decades.

Theorem 8.5. Let (a,G) be an Sn-pair and let S = 〈a,G〉 \G. Then

(1) S = {b ∈ Tn | (∃g ∈ Sn) ker(a)g ⊆ ker(b)};
(2) S is regular, that is, for all a ∈ S there exists b ∈ S such that a = aba;
(3) S is generated by its idempotents;
(4) S and 〈g−1ag | g ∈ G〉 have the same idempotents;
(5) S = 〈g−1ag | g ∈ G〉;
(6) G synchronizes a (that is G and a generate a constant transformation) and

hence (as G is transitive) S contains all the constants;
(7) since S contains all the constants, the automorphisms of S coincide with

the elements of the normalizer of S in Sn,

Aut(S) = NSn(S).

(8) in fact we also have Aut(S) ∼= Sn;
(9) all the congruences (equivalence relations on S compatible with its multi-

plication) of S are described;
(10) if e2 = e ∈ S, r := rank(e), then

{f ∈ S | ker(f) = ker(e) and Ωf = Ωe} ∼= Sr.
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(11) regarding principal ideals and Green’s relations, for all a, b ∈ S, we have

aS = bS ⇔ ker(a) = ker(b)

Sa = Sb ⇔ Ωa = Ωb

SaS = SbS ⇔ rank(a) = rank(b)

Proof Equality (1) was proved by Symons in [45]. Claims (2), (3) and (5) were
proved by Levi and McFadden in [35]. Claim (4) was proved by McAlister in [41],
and (together with (3)) it also implies (5).

It is well known that every 2-homogeneous group is synchronizing; since Sn is
2-homogeneous claim (6) follows.

Claim (7) belongs to the folklore, probably was first observed by Schreier [44];
see also [12] and [13]. Claim (8) was proved by Symons in [45], but is also an easy
consequence from (7). In [34] Levi described all the congruences of an Sn-normal
semigroup and hence described the congruences in S. Thus (9).

Statement (10) belongs to the folklore (see Theorem 5.1.4 of [22]). The results
about principal ideals (11) were proved by Levi and McFadden in [35].

�

9. Problems

We start with a problem about permutations.

Problem 1. Let H 6 Sn be a 2-transitive group. Classify the pairs (a,G), where
a ∈ Sn and G 6 Sn, such that 〈a,G〉 = H.

The main questions answered in this paper admit linear analogues.

Problem 2. Let V be a finite dimension vector space. A pair (a,G), where a is a
singular endomorphism of V and G 6 Aut(V ), is said to be an Aut(V )-pair if

〈a,G〉 \G = 〈a,Aut(V )〉 \Aut(V ).

Classify the Aut(V )-pairs.

To handle this problem it is useful to keep in mind the following results. Kan-
tor [31] proved that if a subgroup of PΓL(d, q) acts transitively on k-dimensional
subspaces, then it acts transitively on l-dimensional subspaces for all l ≤ k such
that k + l ≤ n; in [32], he showed that subgroups transitive on 2-dimensional sub-
spaces are 2-transitive on the 1-dimensional subspaces with the single exception of
a subgroup of PGL(5, 2) of order 31 · 5; and, with the third author [18], he showed
that such groups must contain PSL(d, q) with the single exception of the alternating
group A7 inside PGL(4, 2) ∼= A8. Also Hering [26, 27] and Liebeck [37] classified
the subgroups of PGL(d, p) which are transitive on 1-spaces.

For definitions and basic results on independence algebras we refer the reader to
[1, 4, 10, 11, 19, 24].

Problem 3. Let A be a finite dimensional independence algebra. A pair (a,G),
where a is a singular endomorphism of A and G 6 Aut(A), is said to be an Aut(A)-
pair if

〈a,G〉 \G = 〈a,Aut(A)〉 \Aut(A).

Classify the Aut(A)-pairs.
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This paper was prompted by the fact that the structure of the semigroups
〈a,Sn〉 \Sn is well studied and known, as illustrated by Theorem 8.5. Therefore we
propose the following problems.

Problem 4. Let G 6 Sn be a 2-transitive group. (The list of those groups is
available in [17, 21].) For every a ∈ Tn describe the structure of

〈a,G〉 \G.

In particular (where G is a 2-transitive group and a ∈ Tn):

(1) classify all the pairs (a,G) such that 〈a,G〉 is a regular semigroup (that is,
for all x ∈ 〈a,G〉 there exists y ∈ 〈a,G〉 such that x = xyx);

(2) classify all the pairs (a,G) such that 〈a,G〉 \G is generated by its idempo-
tents;

(3) classify all the pairs (a,G) such that 〈a,G〉 \G = 〈g−1ag | g ∈ G〉;
(4) prove results analogous to those in Theorem 8.5.

Problem 5. For each 2-transitive group G classify the G-pairs, that is, the pairs
(a,H) such that H 6 Sn, a ∈ Tn and 〈a,G〉 \G = 〈a,H〉 \H.

Problem 6. Solve the analogues of the two previous problems for semigroups of
linear transformations.

This paper deals with the general problem of showing how the group of units
of a semigroup shapes its structure. Regarding this general problem we recall here
a number of very important and challenging problems (some of them related to
automata theory).

Problem 7. (1) Let G be a Suzuki group Sz(q). Is it true that in the orbit of
every 3-set contained in Ω there exists a section for every 3-partition of Ω?
The answer to this question is necessary to decide if G together with any
rank 3 map generates a regular semigroup (see [5]).

(2) Classify the groups G such that in the orbit of any 4-subset there exists a
section for every 4-partition (both of Ω), when PSL(2, q) ≤ G ≤ PΓL(2, q),
with either q prime (except PSL(2, q) for q ≡ 1 (mod 4)), or q = 2p for p
prime. (See also [5]).

(3) Classify the primitive groups G 6 Sn such that there exists a partition P
of Ω and a set S ⊆ Ω such that Sg is a section for P , for all g ∈ G (see
[2, 3, 6, 9, 15, 42]).

(4) Is there any primitive group G 6 Sn and a non invertible transformation
a ∈ Tn \ Sn such that the kernel type of a is non-uniform, but such that
〈a,G〉 does not generate a constant? (See [2].)

(5) The diameter of a finite group is the maximum diameter of the group’s
Cayley graphs. Classify the primitive groups with diameter at most n and
that do not satisfy property (3).
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