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Abstract 

The interferon (IFN) response is a crucial component of cellular innate 

immunity, vital for controlling virus infections. Dysregulation of the IFN response 

however can lead to serious medical conditions including autoimmune 

disorders. Modulators of IFN induction and signalling could be used to treat 

these diseases and as tools to further understand the IFN response and viral 

infections. We have developed cell-based assays to identify modulators of IFN 

induction and signalling, based on A549 cell lines where a GFP gene is under 

the control of the IFN-β promoter (A549/pr(IFN-β).GFP) and the ISRE 

containing MxA promoter (A549/pr(ISRE).GFP) respectively. The assays were 

optimized, miniaturized and validated as suitable for HTS by achieving Z’ Factor 

scores >0.6. A diversity screen of 15,667 compounds using the IFN induction 

reporter assay identified 2 hit compounds (StA-IFN-1 and StA-IFN-4) that were 

validated as specifically inhibiting IFNβ induction. Characterisation of these 

molecules demonstrated that StA-IFN-4 potently acts at, or upstream, of IRF3 

phosphorylation. We successfully expanded this HTS platform to target viral 

interferon antagonists acting upon IFN-signalling. An additional assay was 

developed where the A549/pr(ISRE).GFP.RBV-P reporter cell line constitutively 

expresses the Rabies virus phosphoprotein. A compound inhibiting viral protein 

function will restore GFP expression. The assay was successfully optimized for 

HTS and used in an in-house screen. We further expanded this assay by 

placing the expression of RBV-P under the control of an inducible promoter. 

This demonstrates a convenient approach for assay development and 

potentiates the targeting of a variety of viral IFN antagonists for the identification 

of compounds with the potential to develop a novel class of antiviral drugs. 

  



	
  

	
   iii 

Declarations 

I, Zoe Olivia Gage, hereby certify that this thesis (which is approximately 

42,000 words) has been written by me, that it is the record of work carried out 

by me, and that it has not been submitted in any previous application for a 

higher degree. I was admitted as a research student in September 2012 as a 

candidate for the degree of Doctor of Philosophy (PhD) in Molecular 

Virology; the higher study for which this is a record and was carried out at the 

University of St. Andrews between 2012 and 2016. 

 

Date …….................... Signature of candidate ………........................... 

  



	
  

	
   iv 

We hereby certify that the candidate has fulfilled the conditions of the 

Resolution and Regulations appropriate for the degree of Doctor of Philosophy 

at the University of St. Andrews, and that the candidate is qualified to submit 

this thesis in application for that degree. 

 

Date …….................... Signature of supervisor ………........................... 

Dr. C.S. Adamson 
Date …….................... Signature of supervisor ………........................... 

Prof. R.E. Randall 
In submitting this thesis to the University of St Andrews I understand that 

I am giving permission for it to be made available for use in accordance with the 

regulations of the University Library for the time being in force, subject to any 

copyright vested in the work not being affected thereby.  I also understand that 

the title and the abstract will be published, and that a copy of the work may be 

made and supplied to any bona fide library or research worker, that my thesis 

will be electronically accessible for personal or research use unless exempt by 

award of an embargo as requested below, and that the library has the right to 

migrate my thesis into new electronic forms as required to ensure continued 

access to the thesis.  

The following is an agreed request by candidate and the supervisors 

regarding the electronic publication of this thesis: Access to printed copy and 
electronic publication of thesis through the University of St Andrews. 
 

Date …….................... Signature of candidate ………........................... 

Z.O. Gage 
Date …….................... Signature of supervisor ………........................... 

Dr. C.S. Adamson 
Date …….................... Signature of supervisor ………........................... 

Prof. R.E. Randall 
  



	
  

	
   v 

Acknowledgments 

 There are so many people that have been instrumental in this. Firstly, I 

owe a lot to my supervisors, Cathy and Rick. Thank you for all the support, 

advice and discussion over the last 4 years. Rick, it’s still all your fault, but I am 

so very grateful. Although it hasn’t always been easy, I hope it’s been worth it in 

the end. Secondly, I would like to thank everyone at the DDU who helped me 

with the assay development and screening. I’d especially like to thank David, 

Lorna, Manu, Scott and James… I’m sorry about the purple sinks!  

 Every member of the Adamson and Randall labs, past and present, you 

are extraordinary people. I’m lucky to have had the opportunity to work with 

you. Friends, colleagues, fellow PhD students, it’s been fun. Our lunchtime 

giggles and your friendship has got me through. 

 

 To my husband, Oli, I wouldn’t have made it without your unwavering 

support and understanding. Thank you for all of it. Aunty Jen, a pillar of strength 

and support, thank you. I did it!  

 

Ma, this is for you. You made it happen. You are my inspiration. You 

believed in me. Always. “Thank you” just doesn’t come close. 

  



	
  

	
   vi 

Table of Contents 

Abstract ..................................................................................................................... ii 

Declarations ............................................................................................................. iii 

Acknowledgments .................................................................................................... v 

List of Figures .......................................................................................................... xi 

List of Tables .......................................................................................................... xiv 

Abbreviations .......................................................................................................... xv 

1. Introduction .................................................................................................... 1 

1.1 The interferon system ........................................................................................ 1 

1.1.1 Type I IFN induction ....................................................................................... 3 

1.1.2 Type I IFN signalling .................................................................................... 10 

1.1.3 The cellular impact of type I IFNs ................................................................ 14 

1.1.4 Diseases associated with dysregulation of the IFN system ......................... 15 

1.2 Modulating the IFN response .......................................................................... 18 

1.2.1 Chemical modulation of the IFN response ................................................... 18 

1.2.2 Viral antagonism of the IFN response ......................................................... 21 

1.3 Drug discovery .................................................................................................. 29 

1.3.1 The process of drug discovery ..................................................................... 30 

1.3.2 Approaches to drug discovery ..................................................................... 31 

1.3.3 High-throughput screening (HTS) ................................................................ 32 

1.3.4 Cell-based assays in HTS ........................................................................... 38 

1.4 Research aims & objectives ............................................................................ 43 

2. Materials and Methods ................................................................................ 44 

2.1 Cell-lines, viruses, interferon and antibodies ................................................ 44 

2.1.1 Mammalian cell-lines ................................................................................... 44 

2.1.2 Viruses and interferon .................................................................................. 45 



	
  

	
   vii 

2.1.3 Antibodies .................................................................................................... 46 

2.2 Cloning .............................................................................................................. 47 

2.2.1 Polymerase chain reaction (PCR) ............................................................... 47 

2.2.2 DNA gel electrophoresis and extraction ...................................................... 49 

2.2.3 Sub-cloning into pJet shuttle vector ............................................................. 50 

2.2.4 Sub-cloning into lentiviral transfer vector ..................................................... 51 

2.2.5 Genomic DNA Extraction ............................................................................. 52 

2.3 Cell culture ........................................................................................................ 53 

2.3.1 Cell maintenance ......................................................................................... 53 

2.3.2 Cryopreservation & resuscitation of cells ..................................................... 53 

2.3.3 Growth of virus stocks ................................................................................. 54 

2.3.4 Stable cell-line production ............................................................................ 54 

2.3.5 Fluorescent activated cells sorting (FACS) .................................................. 56 

2.3.6 IFNβ induction assay ................................................................................... 57 

2.3.7 IFN signalling assay ..................................................................................... 58 

2.4 High-throughput screening ............................................................................. 60 

2.4.1 Screening compounds and inhibitors ........................................................... 60 

2.4.2 Diversity and dose response screening at the Drug Discovery Unit (DDU) 

University of Dundee ............................................................................................ 62 

2.4.3 In-house HTS using the Maybridge library .................................................. 64 

2.5 Protein expression and modification analysis .............................................. 65 

2.5.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) ............................... 65 

2.5.2 Western blotting and immunostaining of membranes .................................. 67 

2.6 Off-target effects of hit compounds ................................................................ 68 

2.6.1 Cell-viability assay ....................................................................................... 68 

2.6.2 Cellular and viral protein synthesis analysis ................................................ 68 



	
  

	
   viii 

2.7 Analysis of IFNβ  and MxA gene expression .................................................. 69 

2.7.1 RNA extraction ............................................................................................. 69 

2.7.2 Complementary DNA synthesis ................................................................... 70 

2.7.3 Quantitative PCR ......................................................................................... 71 

2.8 Immunofluorescent microscopy ..................................................................... 74 

2.8.1 IRF-3 localisation analysis ........................................................................... 75 

2.8.2 Sendai virus infection analysis ..................................................................... 75 

2.9 Plaque assays ................................................................................................... 76 

3. Development of a cell-based assay to identify modulators of the type I 

IFN response .................................................................................................... 77 

3.1 Introduction ....................................................................................................... 77 

3.2 Results ............................................................................................................... 78 

3.2.1 IFN induction assay development ................................................................ 78 

3.2.2 IFN signalling assay development ............................................................... 84 

3.2.3 Final assay parameters ............................................................................... 93 

3.3 Summary ........................................................................................................... 95 

4. High-throughput screening to identify novel modulators of the IFN 

response ........................................................................................................... 97 

4.1 Introduction ....................................................................................................... 97 

4.2 Results ............................................................................................................... 99 

4.2.1 Diversity HTS to identify compounds that modulate the IFN induction 

pathway ................................................................................................................ 99 

4.2.2 Dose response screening of putative hit compounds that modulate the IFN 

induction pathway ............................................................................................... 103 

4.2.3 Validation of novel hit compounds that inhibit the IFN induction pathway . 111 

4.3 Summary ......................................................................................................... 119 



	
  

	
   ix 

5. Characterization of novel compounds that inhibit the IFN induction 

pathway .......................................................................................................... 122 

5.1 Introduction ..................................................................................................... 122 

5.2 Results ............................................................................................................. 123 

5.2.1 Mode of action studies ............................................................................... 123 

5.2.2 Structure-activity relationships (SAR) ........................................................ 129 

5.2.3 Inhibition of IFN induction and the growth of an IFN sensitive virus .......... 134 

5.3 Summary ......................................................................................................... 137 

6. An assay to screen for novel antiviral compounds ................................ 140 

6.1 Introduction ..................................................................................................... 140 

6.2 Results ............................................................................................................. 141 

6.2.1 Assay validation ......................................................................................... 141 

6.2.2 In-house HTS ............................................................................................. 142 

6.2.3 Dose response screening of putative hit compounds ................................ 147 

6.2.4 An inducible expression assay .................................................................. 149 

6.3 Summary ......................................................................................................... 159 

7. Discussion .................................................................................................. 160 

7.1 Target deconvolution ..................................................................................... 160 

7.1.1 StA-IFN-4 ................................................................................................... 161 

7.1.2 StA-IFN-1 ................................................................................................... 163 

7.1.3 Further approaches to target deconvolution. ............................................. 165 

7.2 Applications of IFN induction inhibitors ...................................................... 171 

7.3 Design and optimization of cell-based assays for HTS .............................. 174 

7.3.1 Phenotypic assays ..................................................................................... 174 

7.3.2 Targeted cell-based assays ....................................................................... 177 

7.4 Concluding remarks ....................................................................................... 180 



	
  

	
   x 

References ..................................................................................................... 181 

Appendices .................................................................................................... 199 

Appendix 1: qPCR data output using MxA and β -Actin primers ..................... 199 

Appendix 2: Published manuscript ..................................................................... 200 

 

  



	
  

	
   xi 

List of Figures 

1.1 TLR3- and RLR-dependent -nduction of IFNβ gene expression  4 

1.2 TLR7/9-dependent induction of IFNβ by ssRNA and DNA  7 

1.3 STING-dependent induction of IFNβ by Cytoplasmic DNA  9 

1.4 The IFNβ promoter enhanceosome      10 

1.5 ISRE and GAS associated ISG induction by type I and type II IFN 12 

1.6 Viral strategies to evade the IFN response    22 

1.7 The development of a clinically approved drug    29 

1.8 The workflow involved in early stage drug discovery   33 

2.1 Data output of qPCR reactions using IFNβ standard template DNA 73 

3.1 A cell-based assay to monitor the IFN induction pathway  79 

3.2 Optimization of the IFN induction reporter assay    81 

3.3 Inhibition of IFNβ promoter driven GFP expression by chemical 

antagonists         84 

3.4 A cell-based assay to monitor the IFN signaling pathway  85 

3.5 Optimization of the A549/pr(ISRE).GFP reporter cell line through multiple 

lentivirus transductions and FACS      88 

3.6 Optimization of the IFN signaling assay     91 

3.7 Inhibition of ISRE driven GFP expression by chemical antagonists 93 

4.1 Single point diversity HTS to identify compounds that modulate the IFN 

induction pathway        100 

4.2 Percentage inhibition in GFP expression of compounds tested in an HTS 

to identify modulators the IFN induction pathway    102 



	
  

	
   xii 

4.3 Secondary dose-response screening using the IFN induction and IFN 

signalling reporter assays       105 

4.4 pIC50 and pEC50 values generated through secondary dose-response 

screening using the IFN induction and signalling reporter assays 109 

4.5 Potency and specificity of confirmed hit compounds in the IFN induction 

and signalling reporter assays      113 

4.6 Elimination of off-target effects associated with hit compounds StA-IFN-1 

and StA-IFN-4 impacting cell viability     115 

4.7 Elimination of off-target effects associated with hit compounds StA-IFN-1 

and StA-IFN-4 impacting SeV      117 

4.8 Hit compounds StA-IFN-1 and StA-IFN-4 effect on IFNβ and MxA 

transcript levels        119 

5.1 Effect of StA-IFN-1 and StA-IFN-4 on nuclear translocation of IRF3 125 

5.2 Effect of StA-IFN-1 and StA-IFN-4 on phosphorylation of IRF3  127 

5.3 Effect of hit compounds on TLR3 induced kinase activity  129 

5.4 Investigating StA-IFN-1 structure-activity relationships   131 

5.5 Investigating StA-IFN-4 structure-activity relationships   133 

5.6 Effect of hit compounds on the replication of an IFN sensitive virus 135 

5.7 Stability of hit compound activity      137 

6.1 IFN signaling pathway inhibition by Rabies virus P protein  142 

6.2 Performance of a single point HTS to identify compounds that modulate 

RBV-P protein function       144 

6.3 Data output from a single point HTS to identify compounds that modulate 

RBV-P protein function       146 



	
  

	
   xiii 

6.4 Dose-response screening of putative hit compounds using A549 cells and 

the A549 pr.(ISRE).GFP.RBV-P reporter assay    148 

6.5 An IFN signaling reporter assay to incorporate the inducible expression of 

the Rabies virus phosphoprotein      150 

6.6 Confirmation of RBV-P gene integration into chromosomal DNA 151 

6.7 Assessing the functionality and expression of Rabies virus phosphoprotein 

in an inducible reporter assay      154 

6.8 Optimization of viral IFN antagonist expression through FACS  156 

6.9 Optimization of viral IFN antagonist expression through repeated lentivirus 

transduction         158 

7.1 TL3- and RIG-I-dependent activation of IRF3    162 

7.2 Schematic representation of two approaches to target deconvolution 168 

 

 

  



	
  

	
   xiv 

List of Tables 

2.1 Antibodies used in western blotting and immunofluorescence  46 

2.2 Antibodies used in TLR3 dependent kinase activity experiment  47 

2.3 Regents used in a typical PCR reaction     48 

2.4 Cycling conditions of a typical PCR reaction    48 

2.5 Sources of DNA used in PCR reactions     48 

2.6 Primers used in PCR, qPCR and sequencing reactions   49 

2.7 Hit compounds and those with closely related structures  62 

2.8 Components of hand-cast SDS-PAGE gels    66 

2.9 Components of a typical qPCR reaction     74 

2.10 Cycling conditions of a typical qPCR reaction    74 

3.1 Performance of the IFN induction and signaling assays compared to pre-

set QC standards        95 

4.1 Conversion table of the µM and corresponding negative log molar 

concentration         98 

4.2 Diversity screen statistics of the IFN induction assay   101 

4.3 Screen statistics of the 3 dose-response screens    107 

4.4 pIC50 values of 6 confirmed hit compounds    111 

4.5 Dose response curve parameters of repurchased hit compounds 113 

6.1 Diversity screen statistics of the RBV-P IFN signalling assay  145 

 

  



	
  

	
   xv 

Abbreviations 

% Percent(age) 

2'5' OAS Oligoadenylate synthase 

293T Human embryonic kidney cells 

A549 Human adenocarcinomic alveolar epithelial cells  

AAF IFNα activation factor 

AB AlamarBlue 

ADMET Absorption, distribution, metabolism, elimination and toxicity 

AMD Actinomycin D 

AP-1 Activating protein-1  

BunV Bunyamwera virus 

BunVΔNSs Recombinant Bunyamwera virus lacking NSs 

CARD Caspase activation and recruitment domain 

CBP Crebb binding protein 

cDNA Complimentary DNA 

CDSs Cytosolic DNA sensors  

cGAS cGAMP synthase  

CHX Cycloheximide 

Ct Cycle threshold 

CV Coefficient of variation 

DAPI 4',6-diamidino-2-phenylindole 

DC Dendritic cell 

DENV Dengue virus 

DMEM Dulbecco’s modified eagle’s medium 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 



	
  

	
   xvi 

Dox Doxycycline 

ds double-stranded 

EBOV Ebola virus 

EC50 Effective concentration 50 

EDTA Ethylenediaminetetraacetic acid 

eIF Eukaryotic initiation factor 

EtOH Ethanol 

FACS Fluorescent activated cell sorting 

FBDD Fragment-based drug discovery 

FBS Foetal bovine serum 

FCS Foetal calf serum 

FITC Fluorescein isothiocyanate 

GAS Gamma-activation sequence 

GFP Green fluorescent protein 

HACAT Human keratinocyte cell line 

HAV Hepatitis A virus 

HBV Hepatitis B virus 

HCMV Human cytomegalovirus 

HCS High-content screen(ing) 

HCV Hepatitis C virus 

HEK Human embryonic kidney 

HIV Human immunideficiency virus 

HRP Horseradish peroxidase 

HSV Herpes simplex virus 

HTS High-throughput screen(ing) 

IAV Influenza A virus 

IC50 Inhibitory concentration 50 



	
  

	
   xvii 

IF Immunofluorescence 

IFI16 IFNγ-inducible protein 16  

IFN Interferon 

IFNAR Interferon α receptor 

IKK IκB kinase 

IKKε/β Inhibitor of NF-kB subunit ε/β 

IP Immunoprecipitation 

IRAK Interleukin 1 Receptor Associated Kinase 

IRF Interferon regulatory factor 

ISG Interferon stimulated gene 

ISGF Interferon stimulated gene factor 

ISRE Interferon stimulated response element 

IκB Inhibitor of κB 

Jak Janus kinase 

KSHV Kaposi's sarcoma-associated herpesvirus  

LB Lysogeny broth 

LPS Lipopolysaccharide 

MAV Marburg virus 

MAVS Mitochondrial antiviral signalling protein 

MDA5 Melanoma differentiation-associated protein 5 

MeV Measles virus 

ml Mililitre 

mM Millimolar 

MPNs Myeloproliferative neoplasms  

mRNA Messenger RNA 

MW Molecular weight 



	
  

	
   xviii 

MxA Myxovirus resistence 1 

NEMO NF-kB essential modifier 

NES Nuclear export signal 

NF-kB Nuclear factor k-light-chain-enhancer of activated B cells 

NiV Nipah virus 

NK Natural killer 

NLS Nuclear localisation signal 

nM Nanomolar 

NME New molecular entity 

NP Nucleoprotein 

PACT PKR activator 

PAMP Pathogen associated molecular pattern 

PBS Phosphate buffered saline 

PCD Programmed cell death 

PCR Polymerase chain reaction 

PRDs Positive regulatory domains 

PI3K Phosphoinositide 3-kinase  

pIC50 Log molar of IC50 

PIV Parainfluenza virus  

PKC δ protein kinase C δ 

PKR Protein kinase R 

PML Promyelocytic leukemia protein  

PP1 Protein phosphatase 1 

PRR Pattern recognition receptor 

QC Quality control 

qPCR Quantitative PCR 

RBV Rabies virus 



	
  

	
   xix 

RBV-P Rabies virus phosphoprotein 

RFU Raw fluorescent units 

RIG-I Retinoic acid-inducible gene I  

RIP-1 Receptor-interacting protein 1 

RLR RIG-I-like receptor 

RNA Ribonucleic acid 

RO5 Rule of 5 

RSV Respiratory syncytial virus 

RT Room temperature 

Rux Ruxolitinib 

S/B Signal-to-background ratio 

SAR Structure-activity relationship 

SBDD Structure-based drug design 

SDS-PAGE SDS-polyacrylamide gel electrophoresis 

SeV Sendai virus 

SH2 Src homology 2 

ss single-stranded 

STAT Signal transducer and activator of transcription 

STING Stimulator of IFN Genes  

TAB TAK binding protein 

TAK-1 Transforming growth factor β-activated kinase 1 

TANK TRAF family member-associated NF-kB activator 

TaV Thosea asigna virus 

TBK1 TANK-binding kinase 1 

TLR Toll-like receptor 

TR Texas red 

TRAF Tumour necrosis factor receptor-associated factor 



	
  

	
   xx 

TRIF 
Toll-like interleukin-1 resistance domain containing adaptor-inducing 

IFNβ 

TRIM25 Tripartite motif-containing protein 25 

uHTS Ultra high-throughput screen(ing) 

UPS Ubiquitin proteosome system 

v/v volume to volume 

VDC V-degredation complex 

Vero African green monkey kidney epithelial cells  

w/v weight to volume 

WB Western blot 

µg Microgram 

µL Microlitre 

µM Micromolar 

 

 



	
  

 1 

1. Introduction 

1.1 The interferon system 

The immune system is as ancient as the evolution of bacterial defence 

against bacteriophages and is implicated in inflammatory processes from tissue 

damage repair to protection from, and removal of potentially damaging foreign 

invaders (Kotwal et al., 2012). The interferon (IFN) response is an arm of the 

innate immune system that responds to infective challenge upon a cell, more 

frequently but not exclusively to viruses. Other functions of the IFN response 

include the regulation of cancer cell growth (Caraglia et al., 2013), suppression 

of inflammation (Gonzalez-Navajas et al., 2012) and involvement in 

macrophage differentiation (Hertzog, 2012). Infective challenge is detected by 

pattern recognition receptors (PRRs) present within a cell, which sense 

pathogen associated molecular patterns (PAMPs) (Kumar et al., 2011). These 

PAMPs can take many forms, from bacterial lipopolysaccharide (LPS) to nucleic 

acids and proteins (Yamamoto et al., 2002, Iwasaki, 2012). This crucial non-

discriminatory mechanism of cellular defense is also necessary to abrogate any 

further damage to the cell and its neighbours. Additionally, its activation is a 

necessary step in the induction of the adaptive immune response, which 

instigates more tailored, longer lasting effects (Takeuchi and Akira, 2010). 

IFN was first discovered in 1957 by Lindenmann and Isaacs, and is so 

named for its ability to ‘interfere’ with the course of a viral infection (Isaacs and 

Lindenmann, 1957). Interferons now encompass a group of cytokines that are 

germ line encoded, have far-reaching pleiotropic actions and have been 
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extensively reviewed (Randall and Goodbourn, 2008, Hoffmann et al., 2015, 

Ivashkiv and Donlin, 2014). Since the seminal discovery of IFNs, much work 

has focused on furthering our collective knowledge of the function of these 

chemical messengers and their mechanisms of action. There are numerous 

types of interferon, varying in their receptors and stimuli. The shared goal 

however is the cellular protection from invading pathogens. Type I IFNs 

encompass a group of 18 functional genes, including IFNα with 14 isoforms, β, 

of which there is a single isoform and others including ε, κ and ω (Gonzalez-

Navajas et al., 2012, Ivashkiv and Donlin, 2014). They are ubiquitously 

expressed cytokines and are produced by all nucleated cells. Type II IFN (IFNγ) 

is produced by Natural killer (NK) and T cells and shares many similarities with 

type I IFNs in their mechanism of induction, although they are not produced as 

a direct result in viral infection (Schroder et al., 2004). Type III interferons 

known as IFNλ are more prominently expressed in epithelial cells (Koyama et 

al., 2008, Sommereyns et al., 2008). Although the induction of type III IFNs 

following viral challenge shares many similarities with the regulatory pathways 

of type I IFNs (Onoguchi et al., 2007), they are expressed in response to 

persistent, low-level or repeated infection (Wack et al., 2015, Lazear et al., 

2015). Intriguingly, the more recently discovered IFNλ4 appears to be 

associated with poor clearance of Hepatitis C virus (Prokunina-Olsson et al., 

2013, Hamming et al., 2013). 

IFN production results in increased expression of hundreds of IFN 

stimulated genes (ISGs), including Trim 5α, Myxovirus resistence (Mx) 

GTPases, eukaryotic initiation factor 2α (eIF2α) and oligoadenylate synthase 
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(2’5’ OAS), many of which have direct antiviral actions and potentiate other 

cellular processes such as the induction of apoptosis, triggering dendritic cell 

(DC) maturation, and instigation of other aspects of the innate immune system 

such as the recruitment of NK cells (Baranek et al., 2012). IFNs are ultimately 

responsible for cellular resistance to infection, inducing an antiviral state of 

protection in neighbouring cells in response to, and for the prevention of, further 

spread. Furthermore, they are crucial for the activation and functionality of the 

adaptive immune system (Le Bon and Tough, 2002, Barra et al., 2010). 

1.1.1 Type I IFN induction 

The initial step in the complex IFN induction cascade is the detection of 

foreign material. Although as previously mentioned this stimulus can be LPS, 

for clarity here, the focus will be the detection of nucleic acids with regard to 

viral infection. In this case, the cell recognises self, from non-self using PRRs. 

Membrane bound Toll-like receptors (TLRs) embedded in cell and endosomal 

membranes detect extracellular foreign nucleic acids, whereas cytoplasmic 

PAMPs are recognized by Retinoic acid-inducible gene I (RIG-I) -like receptors 

(RLRs) (Broz and Monack, 2013). The induction of type I IFNs (IFNα/β) through 

TLR- and RLR-dependent signalling will be described below (Figure 1.1). 
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Figure 1.1: TLR3- and RLR-dependent induction of IFNβ  gene expression. 
In response to extracellular and endosomal dsRNA TLR3 recruits TRIF, whereas cytosolic 
dsRNA stimulates RLRs (MDA5, RIG-I), which activate VISA (MAVS/Cardif/IPS-1). Here the 
pathways converge culminating in IRF3 and NF-κB translocation to the nucleus. Binding to their 
respective PRDs in the IFNβ promoter instigates transcription. (Modified from Goodbourn and 
Randall, 2009)  
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1.1.1.1 TLR-dependent IFN induction 

TLRs are membrane bound receptors present in two main cellular 

locations; the membranes of immune cells and endosomes (Takeda and Akira, 

2004). TLRs 3, 7 and 9 are found in endosomal membranes and recognise 

double stranded (ds) RNA, single stranded (ss) RNA and unmethylated DNA 

respectively (Akira, 2011). TLR3-dependent IFN induction will be the primary 

focus here, as this study is concerned with IFN induction by dsRNA. The 

recognition of extracellular, endosomal and phagosomal dsRNA by TLR3 

results in its dimerization and tyrosine phosphorylation (Sarkar et al., 2004). 

This leads to the recruitment of Toll-like Interleukin-1 resistance domain-

containing adaptor inducing IFN-β (TRIF) and phosphoinositide 3-kinase (PI3K) 

(Yamamoto et al., 2003), which in turn causes the activation of the IFN 

regulatory factor 3 (IRF3) and nuclear factor κ-light-chain-enhancer of activated 

B cells (NF-κB) branches of the IFN induction pathway (Oshiumi et al., 2003). 

The IRF3 branch of IFN induction is instigated by the recruitment of the 

E3 ubiquitin ligase Tumour necrosis factor receptor-associated factor (TRAF) 3 

by TRIF upon TLR3 activation (Paz et al., 2011). TRAF3 associates with TRAF 

family member-associated NF-κB activator (TANK), which unites with TANK-

binding kinase 1 (TBK-I) (Goubau et al., 2013). TBK-1 and inhibitor of NF-κB 

subunit ε (IKKε) cause the phosphorylation of IRF3, resulting in its dimerization 

and subsequent nuclear translocation in association with Crebb-binding protein 

(CBP)/p300 (Goubau et al., 2013, Perry et al., 2005). Nuclear IRF3 then 

associates with positive regulatory domains (PRDs) present in the IFNβ 

promoter (Panne et al., 2007) 
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The NF-κB branch is also initiated by TRIF, which engages TRAF6 and 

receptor-interacting protein-1 (RIP-I), which are both lysine-63 ubiquitinated 

(Hoesel and Schmid, 2013). The ubiquitination of RIP-I leads to NF-κB essential 

modifier (NEMO) association (Wu et al., 2006). The ubiquitination of both RIP-I 

and NEMO is sensed by the molecular chaperones TAK-binding protein (TAB) 2 

and TAB3 (Kanayama et al., 2004), which instigate the association of 

transforming growth factor β-activated kinase-1 (TAK-I) (Deng et al., 2000). This 

forms the essential complex known as IκB kinase (IKK) (Wu et al., 2006). The 

TAK-I component of IKK causes the phosphorylation of IKKβ at serine 177 and 

181 (Israel, 2010), leading to the ubiquitination and subsequent proteasomal 

degradation of inhibitor of κB (IκB), the suppressor of NF-κB (Li et al., 2000). 

This results in the release of NF-κB, exposing the nuclear localisation signal 

(NLS) present in its P65 (RelA) subunit (Zandi et al., 1997, Hoesel and Schmid, 

2013). Nuclear NF-κB then associates with PRDs present in the IFNβ promoter 

(Panne et al., 2007). 

The detection of endosomal ssRNA and DNA by TLR7 and TLR9 

respectively results in the activation of a similar yet distinct signalling pathway to 

TLR3-dependent IFN induction (Figure 1.2) (Heil et al., 2004, Tabeta et al., 

2004). TLR7 and TLR9 activation recruits the adaptor MyD88 as opposed to 

TRIF, and results in the enrolment of TRAF6, IRAK-1 and IRAK-4 (Reviewed by 

Takeuchi and Akira, 2010, Berke et al., 2013, Kawai and Akira, 2011). TRAF6 

activation results in the release and nuclear localisation of NF-κB through RIP-I 

and TAK-1 signalling as discussed above (Hoesel and Schmid, 2013, Li et al., 

2000). The transcription factor IRF7 is recruited in place of IRF3, and is brought 
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about by the phosphorylation of IRF7 by IRAK-1, a process that is independent 

of TBK-1 and IKKε (Huye et al., 2007). This results in the nuclear translocation 

of IRF7 and as with IRF3, association with the PRDs, subsequently inducing 

IFNα/β transcription. 

 

Figure 1.2: TLR7/9-dependent induction of IFNβ  by ssRNA and DNA 
TLR7 and 9 activation by endosomal ssRNA and DNA respectively initiates the TRAF3 and 
TRAF6-dependent signalling pathways through the adaptor molecule MyD88 (Randall and 
Goodbourn, 2008). 
 

1.1.1.2 RLR-dependent IFN induction 

Foreign nucleic acids that are cytosolic are sensed by helicases. Present 

in three main types, they are classed as the RLRs (Wu and Hur, 2015). RIG-I 

and MDA5 are RNA sensing molecules, which both associate with caspase 

activation and recruitment domains (CARDs) (Goubau et al., 2013). The final 

RLR, LGP2, appears to have a regulatory function, as it is lacking the CARD 
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domain required for IFN induction (Satoh et al., 2010). The subtle difference 

between the two IFN-inducing RLRs is the type of nucleic acids they sense. 

While RIG-I senses short, blunt RNA with a 5ʹ′ triphosphate, MDA5 is thought to 

sense long dsRNA (>2000 nt) although there remains some debate over this 

(da Conceicao et al., 2013, Kato et al., 2006, Baum et al., 2010). An additional 

structure, a 5ʹ′ triphosphate panhandle nucleic acid motif was also discovered to 

activate RIG-I (Schlee et al., 2009). Upon stimulation by nucleic acids, PP1α 

and PP1γ dephosphorylate RIG-I and MDA5 (Wies et al., 2013). Subsequently, 

their CARDs are exposed through conformational change and stimulate 

mitochondrial antiviral signalling protein (MAVS) (also known as VISA, Cardif 

and IPS-I) (Kawai et al., 2005). Upon the enrolment of MAVS, RLR-dependent 

induction follows the same signalling pathway as TLR3-dependent IFNα/β 

induction (Figure 1.1). 

1.1.1.3 STING-dependent IFN induction 

As cytosolic DNA is highly unusual in mammalian cells, detection 

independently of TLRs can also induce IFNα/β production (Ishii et al., 2006). 

Cyclic monophosphates are sensed by cGAMP synthase (cGAS) (Sun et al., 

2013, Burdette et al., 2011), whereas DNA in DCs is sensed by the helicase 

DDX41 (Zhang et al., 2011), and in monocytes and some fibroblasts is detected 

by IFNγ-inducible protein 16 (IFI16) (Unterholzner et al., 2010). In all cases, 

these cytosolic DNA sensors (CDSs) initiate IFNα/β production through IRF3- 

and TBK1-dependent pathways (Figure 1.3) (Tanaka and Chen, 2012). The 

adaptor molecule Stimulator of IFN Genes (STING) is located on the surface of 
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the endoplasmic reticulum, and is essential for cytoplasmic DNA-mediated 

IFNα/β induction (Ishikawa and Barber, 2008, Ishikawa et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 1.3: STING-dependent induction of IFNβ  by Cytoplasmic DNA 
Cytoplasmic DNA is detected by CDSs, which recruit the adaptor molecule STING, instigating 
the TBK-1 and IRF3-dependent type I IFN induction pathway (Adapted from the InvivoGen 
Insight newsletter, 2012 [http://www.invivogen.com]) 
 

Innate immune responses vary based on the characteristics of both the 

stimulus and the cell that detects the microbe. However, the pathways converge 

on a consensus set of signal transductions resulting in the activation of type I 

IFN responses and other proinflammatory cytokines facilitated by the induction 

of common signalling proteins including NF-κB and CBP (Schroder and 

Tschopp, 2010). 
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1.1.1.4 IFNβ promoter enhanceosome assembly 

Regardless of the stimulus for type I IFN induction, it is heavily reliant on 

various transcription factors such as IRF3 and NF-κB associating with the 

relevant cis regulatory elements, the PRDs (Yang et al., 2004). TLR- and RLR-

dependent signalling cascades result in the nuclear translocation of activated 

transcription factors such as IRF3 and NF-κB. Their association with PRDs 

present in the IFNα/β promoter is a synergistic process resulting in the 

formation of the IFNβ enhanceosome (Figure 1.4), potentiating transcriptional 

activation (Randall and Goodbourn, 2008, Maniatis et al., 1998). To initiate the 

transcription of IFNα/β, either IRF3 associates with PRD I or IRF7 with PRD III, 

whereas NF-κB interacts with PRD II (Panne et al., 2007). To complete 

enhanceosome assembly, activating protein-1 (AP-1) heterodimers composed 

of ATF-2C and c-Jun associate with PRD IV (Matsumoto and Seya, 2008). 

 

 

 

 

 

Figure 1.4: The IFNβ  promoter enhanceosome. 
The association of activated transcription factors with the PRDs present in the IFNβ promoter 
occurs in a cooperative manner. IRF subunits bind at PRDI and PRDIII, NF-κB (p50 & RelA) at 
PRDII and AP-1 (ATF-2 & c-Jun) at PRDIV, leading to transcriptional activation (Modified from 
Falvo et al., 2000). 
 

1.1.2 Type I IFN signalling 

Following the induction of type I IFN gene expression and its secretion 

from the cell, it attaches to specific membrane receptors on the cell surface 
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(Kim et al., 1997). All type I IFNs associate with the same IFN α/β receptor 

(IFNAR), minimally composed of two subunits, IFNAR-1 and IFNAR-2 (Figure 

1.5) (Platanias, 2005). Prior to activation by IFN binding, the cytoplasmic tails of 

these membrane-spanning receptors associate with members of a tyrosine 

kinase family, Janus kinases (Jak) (Ivashkiv and Donlin, 2014). IFNAR-1 is 

bound to Tyk2 and IFNAR-2 to Jak1 (Kim et al., 1997). In addition to Jak1, 

IFNAR2 is bound by STAT1, which itself is weakly associated with STAT2 

(Precious et al., 2005, Tang et al., 2007). The STAT1-IFNAR-2 association prior 

to IFN binding appears to occur only when STAT2 is present (Stancato et al., 

1996, Li et al., 1996). Upon IFNα/β binding to the receptor subunits, ligand-

induced dimerization of IFNAR-1 and -2 results in alterations in conformation 

and Janus kinase activation, where Jak1 phosphorylates Tyk2, which in turn 

phosphorylates Jak1 (Gauzzi et al., 1996). The now activate Tyk2 

phosphorylates IFNAR1 at tyrosine 466, which creates a docking site for the 

SH2 domain of STAT2 (Stark et al., 1998, Yan et al., 1996). This facilitates a 

more robust association with STAT2 and subsequently, Tyk2 phosphorylates 

STAT2 at tyrosine 690, disabling its constitutive overriding nuclear export (Stark 

et al., 1998, Frahm et al., 2006). Concurrently, Jak1 phosphorylates STAT1 at 

tyrosine 701, resulting in its dissociation from IFNAR, and the formation of a 

stable heterodimer (Stark et al., 1998, Reich and Liu, 2006). NLS generation 

through SH2 domain interactions potentiates its transport to the nucleus, where 

it remains until it is dephosphorylated (Banninger and Reich, 2004). As a 

consequence of tyrosine phosphorylation, Interferon-stimulated gene factor 3 

(ISGF-3) is formed with the purpose of transcriptional activation of ISGs. This 
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heterotrimeric complex is composed of the phosphorylated STAT1 and STAT2 

proteins, and an additional transcription factor, Interferon Regulatory Factor 9 

(IRF-9) (Yan et al., 1996, Stark et al., 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: ISRE and GAS associated ISG induction by type I and type II IFN. 
Although similar, the cascades triggered by type I and type II IFNS are distinct in the expression 
profiles they induce. Furthermore, it can be seen that cross-activation can occur due to STAT1 
being a common component of all both signalling pathways. (Platanias, 2005) 
 

An additional consequence of IFN binding is the IFNAR-2 induced 

activation of CBP/p300, which associates with both STAT2 and protein kinase C 

δ (PKC δ) (Uddin et al., 2002). CBP acetylates the ISGF-3 complex, creating a 

stable binding site for IRF9, which itself is then acetylated, a step crucial to 

ISGF-3-DNA binding (Tang et al., 2007). PKC δ phosphorylates STAT1 at 
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serine 727, promoting more efficient binding of ISGF-3 to the transcriptional 

apparatus upon nuclear translocation (Bonjardim et al., 2009). Recently 

phosphorylation of S287 in STAT2 was also found to have a regulatory role in 

IFNα/β signalling (Steen et al., 2013). Once in the nucleus, ISGF-3 binds with a 

high degree of specificity to the Interferon stimulated response element (ISRE) 

present in the promoter of ISGs through recognition of DNA sequences 

(Schoggins and Rice, 2011). 

Type II interferons (IFNγ) have distinct receptors whose subunits are 

similarly termed IFNGR-1 and IFNGR-2, although in this case they are weakly 

associated with one another prior to IFN stimulation (Figure 1.5). Here, IFNGR-

1 is associated with Jak1 and IFNGR-2 with Jak2 (Bach et al., 1997, Chen et 

al., 2004). Upon IFNγ binding, the two receptors are brought closer together, 

leading to the activation of Jak2, causing the trans-phosphorylation of Jak1 

(Darnell, 1997). The activated kinases then phosphorylate a tyrosine rich region 

between amino acids 440 and 444 in IFNGR1, which creates binding sites for 

two STAT1 molecules, potentiating their interaction via SH2 domains (Varinou 

et al., 2003). Further phosphorylation of the STAT1 molecules at tyrosine 701 

and serine 727 completes activation, resulting in their dissociation from the 

receptor complex. Dimerization of the STAT1 molecules occurs through 

detection of tyrosine phosphates in the SH2 domains leading to the subsequent 

nuclear translocation of the complex (Boehm et al., 1997). STAT1 homodimers 

bind to a distinct sequence in the promoter of ISGs known as Gamma-activation 

sequence (GAS), which results in their transcriptional induction (Decker et al., 

1991b, Lew et al., 1991). This is separate from the ISRE of ISG promoters and 
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occurs in an IRF-9-independent manner (Takaoka and Yanai, 2006). The 

binding of the STAT1 homodimer and transcriptional activation of ISGs without 

the involvement of IRF-9 can also occur through IFNα/β signalling, which is 

known as the AAF complex (Decker et al., 1991a). Additionally, STAT1 and 

STAT2 can be phosphorylated as a result of both IFNα/β and IFNγ receptor 

binding, leading to “cross-activation”, and represents a certain level of 

convergence of the pathways (Li et al., 1996). STAT1 however is a crucial 

component of both IFNα/β and IFNγ signalling cascades, rendering each type of 

IFN inactive without its presence (Patel et al., 2012). 

1.1.3 The cellular impact of type I IFNs 

The consequences of IFN induction are far reaching and have been 

reviewed extensively (Randall and Goodbourn, 2008, Darnell, 1997, Platanias, 

2005, Takaoka and Yanai, 2006). Several hundred genes are categorised as 

ISGs, and to some extent the IFN response can be tailored, as a cell utilizes 

different sets of ISGs in order to control different viral infections (Bonjardim et 

al., 2009). Some ISGs are enzymes and are synthesised in their inactive form, 

requiring activation to instigate their anti-viral actions. GTPases known as Mx 

are induced by IFN signalling and have been shown to restrict the ability of viral 

components to move within a cell through nucleocapsid recognition (Haller and 

Kochs, 2011). Protein kinase R (PKR) is activated by association with its co-

factors, dsRNA and PKR activator (PACT), leading to the phosphorylation of 

eIF2α (Nakayama et al., 2010, Li et al., 2006). The phosphorylation of eIF2α 

inhibits its action, thus leading to the cessation of translation (Deng et al., 

2004). ISG56 has also been implicated in selectively inhibiting the translation of 
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parainfluenza virus 5 (PIV5) mRNA (Andrejeva et al., 2013). Another enzyme 

that has dsRNA as a co-factor, is 2ʹ′5ʹ′ OAS (Silverman, 2007). Here however, 

the activated enzyme catalyses the oligomerisation of ATP through an unusual 

2ʹ′5ʹ′ phosphodiester bond. The oligoadenylates that result from this catalysis 

cause the activation of RNase L, which digests cellular and viral RNAs and has 

been postulated to lead to amplification of the IFN response through further 

activation of RLRs such as RIG-I and MDA5 (Malathi et al., 2007). Other 

implications of ISRE and GAS stimulation include the induction of a pro-

apoptotic state through the activation of numerous factors including 

procaspases (Maher et al., 2007, Dai and Krantz, 1999, Chin et al., 1997). Cell 

cycle arrest has also been observed through cytostasis at the G1/S interface. 

This has been comprehensively reviewed, and results in the inhibition of E2F 

specific expression, which includes genes crucial to S-phase (Ferrantini et al., 

2007, Ferrantini et al., 2008, Dimova and Dyson, 2005, Asefa et al., 2004). 

The plethora of cellular process affected by type I IFN signalling range 

from the actions of direct antiviral proteins to the limiting of translation and even 

cell cycle arrest. It is therefore not surprising that dysfunction is associated with 

the development of a wide range of diseases. Some of the pathologies 

associated with dysfunctional IFN responses will be discussed below. 

1.1.4 Diseases associated with dysregulation of the IFN system 

As with any biological process, there lies the potential for dysfunction 

within the IFN response. Although a multifactorial disease, it is believed that the 

Systemic Lupus Erythematosus (SLE) phenotype is exacerbated by chronic 

activation of the type I IFN response (Buers et al., 2016, Van Eyck et al., 2015, 
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Oliveira et al., 2015). Additionally, an increasing number of interferonopathies 

have been identified such as STING-associated vasculopathy with onset in 

infancy (SAVI) (Liu et al., 2014) and Aicardi-Goutières syndrome (AGS) (Ahn 

and Barber, 2014, Orcesi et al., 2009, Crow et al., 2006), where gain-of-function 

mutations in STING and MDA5 respectively result in aberrant activation and 

increased levels of type I IFN production (Liu et al., 2014, Oda et al., 2014). 

Although also caused by mutations in the gene encoding MDA5 (Rutsch et al., 

2015), it was recently reported that mutations in the RIG-I encoding DDX58 

gene are responsible for atypical Singleton-Merten syndrome (SMS) (Jang et 

al., 2015). The root of such dysfunction in AGS and SMS is the location of the 

genetic mutations that cause the disease. Both diseases arise from mutations 

located in the helicase domains of the associated RLRs, which are usually 

responsible for RNA binding during activation (Kato and Fujita, 2015, Wu and 

Hur, 2015). AGS is a genetically heterogeneous disorder however as loss-of-

function mutations in enzymes responsible for DNA and RNA editing have also 

been shown to cause the same phenotype (Orcesi et al., 2009, Crow et al., 

2006, Crow, 2015, Rice et al., 2013). As well as RLR-induced dysfunction, 

aberrant signalling in haematopoietic immune cells such as macrophages and T 

cells through TLR3 and TLR4, and subsequently TRIF and TRAM has recently 

been identified as having a causal role in the development of atherosclerosis 

(Lundberg et al., 2013). 

In addition to autoimmune diseases, there is a strongly accepted causal 

link between dysfunctional type I IFN responses and cancer, including tumour 

development (Hosui et al., 2012). For example, phosphorylation events during 
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the activation of NF-κB resulting in atypical and aberrant activity have been 

implicated in solid tumour formation and inflammatory disease (Reviewed by 

Viatour et al., 2005). More specifically, IKKβ has been identified as a link 

between inflammatory responses and tumour formation in myeloid cells using a 

mouse model (Greten et al., 2004). 

Although generally beneficial to the host during acute viral infection, type 

I IFN signalling during persistent infection, e.g. HIV and HCV, can have 

deleterious consequences (Wilson and Brooks, 2013). Due to the importance of 

type I IFN signalling in the recruitment of the adaptive immune response, it is 

increasingly thought of as the root cause of immunosuppression, where chronic 

activation can lead to atypical B and T cell activity and a reduced capacity to 

fight secondary infections (Snell and Brooks, 2015). In addition to 

immunosuppression and secondary infection, it has been shown that HIV 

patients undergoing treatment have heightened susceptibility to diseases linked 

to aberrant immune signalling including the aforementioned atherosclerosis 

(Subramanian et al., 2012, Cha et al., 2014). 

Therefore, it is clear that although a crucial aspect of cellular protection 

against infection, tight regulation of type I IFN induction and signalling is 

necessary to prevent the development of potentially devastating diseases. 
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1.2 Modulating the IFN response 

 As a result of the far-reaching impact of the IFN response on cellular 

physiology, both in terms of viral infection and disease states, the ability to 

modulate the signalling pathways would be advantageous. Antagonism and 

activation of the response holds potential not only for clinical therapeutic 

intervention, but also as a tool to aid research into the IFN induction and 

signalling pathways. Additionally, the potency of the response has caused 

viruses to evolve mechanisms to circumvent both IFN induction and signalling. 

Chemical modification of the IFN response, and the mechanisms by which 

viruses circumvent its actions will be discussed below. 

1.2.1 Chemical modulation of the IFN response 

The interferon response is one of the most heavily studied signalling 

cascades in biology due to its broad ranging effects on cellular activity. As a 

result, it is viewed as an ideal target for the development of treatments for many 

diseases and infections (Theofilopoulos et al., 2005). Molecules that upregulate 

the IFN response for example, could be beneficial as antivirals. In the treatment 

of microbial infections a motive behind targeting a host pathway is the high level 

of drug resistance that can develop quickly when the target is the infecting 

organism. For example, in influenza virus treatment, some of the most 

commonly used drugs target the viral M2 ion channel. However, due to rapidly 

increasing levels of resistance, their use is no longer recommended (Lee and 

Yen, 2012, Jacob et al., 2016). Many current treatments place selective 

pressure directly onto the invading pathogen, increasing the likelyhood of 

resistance developing. Targeting a cellular pathway in the host circumvents this, 
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as it is less likely that the organism will evolve an escape mechanism, or in the 

least, it will occur more slowly (Lee and Yen, 2012). To this end, compounds 

that act as agonists to activate the IFN response could be used as broad-

spectrum antivirals and as supportive therapy for immunocompromised 

patients. 

Conversely, compounds that antagonize the IFN response are beneficial 

for the treatment of inflammatory and autoimmune disorders. A number of such 

molecules have been identified. Inhibitors of type I IFN induction such as TPCA-

1, which inhibits IKKβ in the NF-κB pathway, have the potential for use in the 

treatment of autoimmune diseases such as arthritis (Podolin et al., 2005). It was 

found recently that sodium-potassium ATPase cardiac glycosides, commonly 

used in the treatment of congestive heart failure and arrhythmia, are potent 

inhibitors of IFNβ induction. Bufalin was identified in a cell-based assay to test 

478 compounds for their ability to block the induction of type I IFN. The 

luciferase-based assay highlighted Bufalin as a potent inhibitor that decreased 

the expression of IFNβ by 90% with an IC50 of 43 nM (Ye et al., 2011). 

Molecules targeting type I IFN signalling are also available. The JAK1/2 inhibitor 

Ruxolitinib (Rux) for example, currently approved for the treatment of 

myeloproliferative neoplasms (MPNs), is also in phase II clinical trials to assess 

its use to treat psoriasis and a variety of cancers (Verstovsek et al., 2010, 

Quintas-Cardama et al., 2010, O'Shea et al., 2015). 

Cancerous cells have vastly increased expression of NF-κB, a common 

and crucial component of the IFN response (Hasselbalch, 2012). The result of 

such aberrant over expression of this factor leads to increased and sustained 
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oxidative stress placed on cells. Recent research has found that histone 

deacetylase inhibitors, small molecule drugs widely used in the treatment of 

epilepsy and mood disorders, can have a highly beneficial application to cancer 

treatment (Bridle et al., 2013). This class of enzyme inhibitors has been shown 

to inhibit the transcriptional activation of genes that are typically activated upon 

infection and IFN treatment, resulting in the prevention of autoimmune 

responses. 

Outwith the clinic, inhibitors of both type I IFN induction and signalling 

have been used to facilitate the growth of IFN sensitive viruses. Inhibition of IFN 

induction and signalling in this manner could be utilized in the production of live-

attenuated viral vaccines and the growth of oncolytic viruses (Stewart et al., 

2014, Jackson et al., 2016). Furthermore, their application to basic research 

could potentiate further study of these complex signalling cascades. For 

example, through the use of BX795, a TBK1 and IKKε inhibitor, it was 

demonstrated that serine 172 of TBK1 has a regulatory role in a feedback loop 

controlling its activation (Clark et al., 2009). 

Due to the vast number of effector molecules involved in type I IFN 

induction and signalling, there is potential for novel target identification. 

Additionally, drug discovery could identify molecules that inhibit the IFN 

response, and may also unearth compounds that activate naturally occurring 

host proteins that have inhibitory functions, thus reducing the potential for drug 

associated side effects (Zhang et al., 2004). The complexity of these pathways 

suggests a vast number of yet undiscovered novel targets for the development 

of drugs. There are still many unknowns in the collective knowledge of the 
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molecular mechanisms behind the IFN response, and having the ability to 

transiently or reversibly inhibit the action of an effector molecule could be a 

powerful tool in the researcher’s arsenal. 

1.2.2 Viral antagonism of the IFN response 

The IFN response places a large selective pressure on the ability of a 

virus to replicate and propagate an infection. As a result, nearly every virus has 

evolved at least one mechanism to circumvent the IFN response, highlighting 

the importance and potency of the system (Chen et al., 2010). A plethora of 

viral evasion strategies have evolved as a result of the inherently diverse nature 

of viruses. These will be discussed further, and as the ability of the Rabies virus 

to subvert IFN signalling is of particular importance to this study, it will be 

addressed independently. 

1.2.2.1 The myriad of viral evasion stratagies 

As IFN can elicit autocrine and paracrine actions, the ability of a virus to 

inhibit just one aspect of the IFN response, i.e. either IFN induction or IFN 

signalling, may not be sufficient to facilitate efficient viral replication and spread. 

Subsequently, most viruses have evolved mechanisms to antagonise both 

pathways of the IFN system. The often-multifunctional proteins that viruses 

encode to achieve this are termed IFN antagonists and collectively target every 

aspect of the IFN response (Figure 1.6). Viral antagonism of the IFN system 

can be broadly categorized as acting to (i) conceal PAMPs to prevent activation 

of IFN induction, (ii) inhibit host gene expression and (iii) alter or degrade 

signalling molecules (Reviewed by Ito et al., 2016). The concealment of PAMPs 

is a virus-targeted mechanism of evasion, whereas others that interfere with 



	
  

 22 

gene expression and the signalling molecules of the cascades are directed 

against the host. Host-targeted evasion is achieved through 3 main 

mechanisms; (i) direct cleavage of effector molecules by viral proteases, (ii) 

sequestering and relocalisation of effector molecules, and (iii) recruitment of the 

cellular ubiquitin proteasome system (UPS) (Nag and Finley, 2012, Reviewed 

by Hoffmann et al., 2015). 

 

 
Figure 1.6: Viral strategies to evade the IFN response  
Viruses have evolved a plethora of mechanisms to evade every step of the IFN induction and 
IFN signalling pathways, some of which are shown above. (Adapted from McInerney and 
Karlsson Hedestam, 2009) 
 
 
 Viruses have developed many strategies to avoid PAMP detection by 

cellular PRRs. For example, Herpes Simplex virus (HSV) and Influenza A 

viruses (IAV) replicate in the nucleus (Melroe et al., 2004, Weber et al., 2015), 

whereas Dengue virus (DENV) has adapted to replicate in the folds of the 
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endoplasmic reticulum in order to screen their genomes from cytoplasmic 

PRRS (Uchida et al., 2014). Some RNA viruses modify the 5’triphosphate of 

their genome to avoid RIG-I detection. Bunyaviruses (BunV) and Bornaviruses 

for example encode phosphatases that remove two phosphates, leaving an 

undetected 5’monophosphate (Wang et al., 2011b, Habjan et al., 2008), while 

others degrade excess cytoplasmic nucleic acids, such as Human 

Immunodeficiency virus (HIV), which utilises the cellular exonuclease TREX1 

(Yan et al., 2010). Another mechanism to avoid detection by PRRs is to 

disguise the viral genome by ecapsidation in viral proteins such as IAV NS1, 

Ebola virus (EBOV) VP35 and Marburg virus (MAV) VP35 (Hatada and Fukuda, 

1992, Ramanan et al., 2012, Cárdenas et al., 2006). Interestingly, Respiratory 

syncytial virus (RSV) hijacks the cellular protein La to conceal its RNA (Bitko et 

al., 2008). 

Inhibiting the activation of RLR and adaptor molecules such as MAVS is 

also an effective approach to subvert IFN induction. Where some viruses 

directly degrade the PRR through UPS recruitment, such as the NS1 and NS2 

proteins of RSV, others prevent its activation (Goswami et al., 2013). IAV NS1 

for example binds TRIM25, preventing its oligomerization and subsequently 

inhibiting its ability to activate RIG-I through lysine-63 ubiquitination (Gack et al., 

2009). Other viruses simply encode their own deubiquitinating enzymes, such 

as the Foot and mouth disease virus LPro and Kaposi’s sarcoma-associated 

herpesvirus (KSHV) ORF64, which remove the lysine-63-linked ubiquitin from 

PRRs and subsequently inactivate them (Wang et al., 2011a, Inn et al., 2011). 

The ATPase activity of RIG-I is stimulated by PKR and PACT, however the NS1 
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protein of IAV and VP35 of EBOV target the latter to inhibit activation 

(Tawaratsumida et al., 2014, Luthra et al., 2013). The activation of RIG-I and 

MDA5 is also reliant on the dephosphorylation of their CARDs by PP1α and 

PP1γ, a step that is inhibited by Measles virus (MeV) V protein, which has a 

PP1 binding motif to bind and sequester these effector molecules (Davis et al., 

2014). While the inhibition of an RLR such as RIG-I is an effective tactic in 

subverting IFN induction, inhibition of the downstream adaptor molecule MAVS, 

preventing induction from both MDA5 and RIG-I may be a more efficient tactic. 

For example, the 3CPro of Hepatitis A virus (HAV) and NS3-4A of HCV directly 

cleave MAVS, whereas HBV, which does not encode a protease, utilises 

protein X to instigate the UPS mediated degradation of MAVS (Yang et al., 

2007, Li et al., 2005, Wei et al., 2010). Interestingly, MAVS function is also 

impeded by IAV, where the polymerase subunit PB1-F2 causes disruption of 

the mitochondrial membrane, thus inhibiting MAVS activity (Yoshizumi et al., 

2014).  

 Invading viruses frequently target and inhibit downstream signalling in 

the IFN induction pathway. As one of the crucial effector molecules is IRF3 it is 

the focus of many evasion mechanisms. For example, KSHV encoded latency-

associated nuclear antigen impedes IRF3 association with the IFNβ promoter 

by competing for binding (Cloutier and Flamand, 2010). Human 

cytomegalovirus (HCMV) has multiple mechanisms to subvert IRF3-dependent 

signalling using the virally encoded pp65, which has been reported to decrease 

the phosphorylation IRF3 and also prevent its nuclear translocation (Abate et 

al., 2004), a tactic also employed by the ICP0 protein of HCV (Melroe et al., 
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2004). Simple binding and sequestration of cellular proteins is however just as 

effective at circumventing IFN induction. For example, Paramyxoviruses encode 

a multifunctional V protein, which, as well as directly binding to MDA5 to prevent 

its activation, also sequesters IRF3 (Irie et al., 2012). Additionally, some V 

proteins act as a decoy substrate for cellular TBK1 and IKKε and also cause the 

polyubiquitination of these signalling components (Lu et al., 2008). 

 Viruses also circumvent the IFN response by thwarting IFN signalling 

and the action of ISGs. Again, UPS and the subsequent proteasomal 

degradation of signalling effectors is a tactic employed by many viruses, 

including DENV, where NS5 causes the polyubiquitination and subsequent 

elimination of STAT2 (Morrison et al., 2013). The V protein of rubulaviruses in 

the paramyxoviridae family forms a V-degredation complex (VDC) with an E3 

ubiquitin ligase, STAT1 and STAT2 (Ulane and Horvath, 2002). Interestingly, 

although both STATs are required for VDC assembly, only one will ultimately be 

degraded. For example, the VDC formed during PIV5 infection results in STAT1 

degradation, whereas the VDC of PIV2 causes the elimination of STAT2 

(Didcock et al., 1999, Parisien et al., 2001). The V protein of other 

paramyxoviruses such as Nipah virus (NiV) and the C protein of PIV1 sequester 

STAT molecules, although by slightly different mechanisms. Where NiV V 

relocalises unphosphorylated, nuclear STAT1 to the cytoplasm, PIV1 C results 

in the perinuclear aggregation of STAT1 to inhibit its phosphorylation 

(Schomacker et al., 2012, Rodriguez et al., 2002). Interestingly, Sendai virus 

(SeV), another respirovirus of paramyxoviridae appears to have a less specific 

mechanism for STAT inhibition. Although SeV C inhibits the tyrosine 
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phosphorylation of both STAT1 and STAT2 and the serine phosphorylation of 

STAT1, it has also been shown to impede the deactivation of STAT1 through 

disruption of dephosphorylation (Komatsu et al., 2002). The SeV C protein may 

therefore act through a general mechanism of dysregulating phosphorylation 

events. It has been shown that inhibition of the IFN signalling pathway also 

occurs through prevention of its activation. The phosphorylation of STATs is 

crucial to successful IFN signalling. The V protein of MeV blocks the nuclear 

translocation of STATs, but also binds to Jak1 impeding its ability to 

phosphorylate STATs and therefore blocks IFN signalling (Caignard et al., 

2007, Caignard et al., 2009). Similarly, the E6 protein of human papilloma virus 

binds to Tyk2, resulting in a decrease in the phosphorylation of both STAT1 and 

STAT2 (Li et al., 1999). 

1.2.2.2 Rabies and IFN antagonism 

 Rabies virus (RBV) of the lyssavirus genus in the Rhabdoviridae family is 

of particular interest to this study and is of significant global importance. 

Causing in excess of 55,000 human deaths annually, it is classified by the 

World Health Organisation as a neglected zoonotic disease (WHO, 2013, Wilde 

et al., 2016). To circumvent the induction of type I IFN, the N, L and P proteins 

encoded by the negative sense ssRNA genome encase the RNA to conceal it 

from detection by RIG-I (Tian et al., 2016). Additionally, residues 176 to 186 of 

RBV P have been shown to be crucial for the inhibition of IRF3 phosphorylation 

(Rieder et al., 2011). A recent report has demonstrated that the C-terminus of P 

from street strains of RBV inhibits the action of IKKε (Masatani et al., 2016). 

Interestingly, the inhibition of IKKε was not observed in any lab-adapted strains 
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tested. Clearly, the actions of RBV P are effective at inhibiting IFN induction. 

However, the pleiotropic nature of P is better demonstrated through its ability to 

subvert IFN signalling. RBV P only binds to STAT molecules that are tyrosine 

phosphorylated, presumably as it is more important to inhibit an active molecule 

as opposed to its inactive, repressed counterpart (Brzozka et al., 2006). Where 

the N-terminus of full length P (P1) is important for its role in genome 

replication, the C-terminus is crucial for STAT interactions (de Almeida Ribeiro 

et al., 2009, Ito et al., 2016). Additionally, the action of the C-terminus of P 

binding to STAT molecules appears to be conserved among lyssaviruses and is 

crucial for the lethality of RBV infection (Wiltzer et al., 2012, Wiltzer et al., 

2014). N-terminal truncations give rise to 4 other isoforms of P (P2-P5) that 

appear to have distinct roles (Marschalek et al., 2012). For example, P1 and P2 

have an NES which, when bound to phosphorylated STATs, results in their 

nuclear exclusion (Ito et al., 2010, Ito et al., 2016). Furthermore, monomeric P3 

was reported to be nuclear and prevent the function of ISGF3 by preventing 

STATs binding to ISG promoters (Moseley et al., 2007a, Vidy et al., 2007). 

Interestingly, dimeric P3 was shown to prevent the nuclear import of STATs 

through association with microtubules (Moseley et al., 2007b). P1 and P3 have 

also been implicated in the subversion of ISG function by interacting with 

promyelocytic leukemia protein (PML), some isoforms of which have antiviral 

activity (Blondel et al., 2002). 

 It is clear that viruses have evolved a myriad of mechanisms that potently 

inhibit every aspect of the IFN response. Where DNA viruses generally have 

the genome capacity to encode numerous viral IFN antagonists, the limited 
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genomes of RNA viruses has resulted in the production of highly multifunctional 

proteins. This is exemplified through the pleiotropic NS1 protein of IAV, which 

has a plethora of mechanisms by which it subverts both IFN induction and IFN 

signalling. Due to the extent to which IFN antagonists facilitate virus replication, 

they provide an attractive target for clinical intervention. Recombinant viruses 

lacking a functional IFN antagonist could be used as an effective live-attenuated 

vaccine (Wressnigg et al., 2009). Conversely viral PAMPS, or synthetic 

versions, could make potent adjuvants in vaccine preparations (Hoffmann et al., 

2015, Dalpke et al., 2002, Stahl-Hennig et al., 2009). On the other hand, 

compounds that modulate the function of viral IFN antagonists in the course of 

an infection could be developed into a novel class of antiviral drugs (Basu et al., 

2009, Versteeg and García-Sastre, 2010). Furthermore, due to the high degree 

of similarity between the antagonists encoded by viruses of the same family and 

genus, active compounds could have a relatively broad spectrum of activity. 
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1.3 Drug discovery 

 The ever-increasing need for new drugs to treat the multitude of human 

diseases and infections in the clinic has placed enormous pressure on the 

pharmaceutical industry and academic research alike. To develop successful 

candidate drugs, a lengthy and iterative process of drug discovery followed by 

clinical trials is necessary to ensure the efficacy and safety of new therapeutics 

(Figure 1.7) (Hughes et al., 2011). Regardless of the approach used in different 

drug discovery programs, they all follow common themes and have shared 

goals. The overarching aim of all early stage drug discovery campaigns is to 

identify lead compounds that can be developed into candidate drugs to address 

unmet clinical need (Drewry and Macarron, 2010). The pre-clinical stages of the 

drug discovery process and the different approaches utilized will be discussed 

below. The use of high-throughput screening (HTS) and cell-based assays will 

be specifically addressed. 

 
Figure 1.7: The development of a clinically approved drug. 
From the inception of target identification, often from a basic research setting, to the approval of 
a new drug and its availability in the clinic is a lengthy, multistep process involving lead 
discovery, preclinical and clinical development (Hughes et al., 2011). 
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1.3.1 The process of drug discovery 

 The starting point of any drug discovery program is target identification. 

In many cases this is a specific protein, but a target can be any biological entity, 

including genes and RNA (Hughes et al., 2011). Additionally, a phenotypic 

screen can target a whole cellular pathway or process where many potential 

points of intervention may exist (An and Tolliday, 2010). Regardless of the type 

of target identified, they must meet certain criteria. Primarily, the target must be 

directly linked to a disease state, where it can be demonstrated that activation 

or inhibition of its activity will restore functionality and result in a reduction of 

disease-associated symptoms (Hughes et al., 2011). As a direct result of the 

advances in proteomics, genomics and sequencing, most especially with the 

completion of the human genome project in 2003, the number of potential 

targets has dramatically increased (Anderson, 2003). Additionally, the mining of 

biomedical data and direct sequencing of clinical samples has significantly 

increased the collective knowledge of disease-specific targets (Yap et al., 2016, 

Yang et al., 2009). It is estimated that biological space comprises approximately 

30,000 disease-modifying genes, although only 10% of these may be disease 

causing (Overington et al., 2006). There is a great need for the identification of 

novel drug targets however, as all small molecule drugs currently available are 

directed against just 200 distinct protein targets (Bauer et al., 2010). 

 Following the identification of a target, a suitable assay must be 

developed in which the effect of test compounds can be assessed. This assay 

is then used to test different compounds to potentiate lead discovery. A lead is 

defined as a compound that displays the desired level of activity against a 
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specified target (Verlinde and Hol, 1994). Once identified, the lead molecule is 

validated for its potency, specificity and physiological relevance to the target 

(Clemons et al., 2014). As a result of the validation process, lead compounds 

are then chemically optimized, usually to produce a lead series, which provides 

pre-clinical drug candidates, termed new molecular entities (NMEs) (Hughes et 

al., 2011). 

1.3.2 Approaches to drug discovery 

 Historically, lead identification in the 1970’s relied heavily on observation. 

The activity of natural products for example, the side effects of currently 

available medicines, and even research presented at conferences (Kubinyi, 

1995). As a result of advances in structural biology however, this dependence 

on “empirically-based” drug discovery began to decline and structure-based 

drug design (SBDD) emerged (Lipinski et al., 2001). The synthesis and testing 

of compounds on a larger scale was potentiated by developments in both 

combinatorial chemistry and automated robotics platforms (Baum, 1994, Patel 

and Gordon, 1996, Domanico, 1994), and the advent of high-throughput 

screening (HTS) made it possible to screen thousands of compounds in a 

reduced time (Hughes et al., 2011). As target knowledge has increased 

exponentially and NME output from the pharmaceutical industry has not 

followed suit, drug discovery programs are increasingly looking backward to 

historically successful in vivo phenotypic assays in search of innovative 

solutions to increase the productivity of lead discovery. Continued technological 

advances have lead to the development of many different types of HTS, from 

typical biochemical assays to more elaborate whole organism screens and ultra 
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high-throughput screens (uHTS) (Croston, 2002, Zlitni et al., 2009, Zon and 

Peterson, 2005).  

1.3.3 High-throughput screening (HTS)  

 The first article to mention HTS was available on Pubmed in 1991, and it 

took a further 6 years for 10 HTS papers to be published in the same year 

(Macarron et al., 2011). Following target identification, it takes on average 11 to 

13.5 years to develop a clinically approved drug at an estimated cost of $1.5 

billion (Paul et al., 2010). Currently, there are few HTS derived NMEs in late 

stage drug development and clinical trials. This is seen by many as a result of 

the poorly constructed early compound libraries, which largely comprised non-

drug-like molecules with little structural diversity, and were developed with little 

consideration for a compound’s suitability for drug discovery (Bansal and 

Barnes, 2008, Dandapani and Marcaurelle, 2010). The primary purpose of HTS 

is to identify chemical starting points as quickly and efficiently as possible. 
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Figure 1.8: The workflow involved in early stage drug discovery.  
Following validation of a target for drug discovery, compound screening programs including 
HTS aim to identify and optimize potent lead compounds, which are then analysed in secondary 
assays. Following successful characterisation, lead compounds are tested to assess safety and 
efficacy. If a compound successfully passes all these stages, it is deemed a preclinical 
candidate (Hughes et al., 2011). 
 

Significant advances in the synthesis and testing of many thousands of 

compounds paved the way for HTS. Additionally, Lipinski observed that 

increased absorption and permeation of a compound was potentiated when a 

molecule has the following characteristics. (i) ≤ 5 hydrogen bond donors, (ii) ≤ 

10 hydrogen bond acceptors, (iii) a molecular weight (MW) ≤ 500 and (iv), a 

CLogP ≤ 5, which is the logarithm of its partition coefficient, and is used as a 

measure of hydrophilicity (Lipinski et al., 2001). Following Lipinski’s seminal 

publication and the founding of the “Rule of 5” (RO5), the make-up of screening 

libraries began to change, and compound collections were more thoughtfully 

developed (Lipinski, 2004). The continued evolution of screening libraries has 

placed increased emphasis on the use of small, simple molecules. This 

preference is due to the lead optimization process, which inevitably results in an 
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increase in MW and can result in issues with safety and tolerability in later 

stages of the drug development (Perola, 2010). As a result of the increased 

consideration of a compound’s characteristics, two screening strategies have 

developed; (i) fragment-based screening and (ii) diversity screening. 

Fragment-based drug discovery (FBDD) is based on the principle that 

small fragment molecules, although only binding weakly, can have “high quality 

interactions” with the target and so provide a solid basis from which to develop 

potent drugs (Scott et al., 2012). It is believed that hits with weak but 

appropriate binding kinetics are favourable to potent but flawed larger 

compounds. Additionally, classical HTS compound libraries require constant 

upkeep and funding to maintain their quality and diversity. As chemical space in 

the RO5 range (MW≤500) is estimated to be 1060 molecules (Barker et al., 

2013), and there is predicted to be only 107 fragment molecules that are RO3 

compliant (comprising ≤11 atoms) (Fink and Reymond, 2007), FBDD 

immediately increases the range of chemical space that can be covered. FBDD 

relies heavily on molecules binding with high enough affinity to be detected, 

usually between 0.1 and 10 µM (Scott et al., 2012). As a result, screening is 

usually carried out at higher concentrations and requires very sensitive 

detection techniques (Law et al., 2009). As with SBDD, a strong collaboration 

between structural biology and synthetic chemistry is necessary, as is high 

quality 3D data. The fragment approach has proved to be a fruitful one, with the 

development of Zelboraf in 2011 (Murray et al., 2012). This enzyme inhibitor is 

used for the treatment of late-stage melanoma, and was the first FDA approved 

drug born from FBDD (Bollag et al., 2010). In contrast to FBDD, diversity 
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screening is based on classical HTS library composition that obeys Lipinski’s 

RO5, although the focus here is maximization of the range of chemical space 

covered. Libraries are typically composed of a wide variety of chemical 

structures, with little similarity between compounds (Valler and Green, 2000). 

As with SBDD, traditional biochemical HTS begins with a process of 

target identification and assay development. Typically, biochemical HTS assays 

simply test the affinity of a test compounds for the target. Following on from this 

and similarly to SBDD, the iterative process of lead optimization is pursued. In 

contrast to SBDD however, and as HTS can identify chemically distinct hits, 

there is potential for the development of multiple lead series. Furthermore, the 

starting point of biochemical HTS does not require any structural data pertaining 

to the target. Other approaches to HTS include focused, or knowledge-based 

screening, an extension of which has been the development of virtual 

screening. When there is substantial knowledge about a target, including its 

binding site and mode of action, there is the potential to use smaller compound 

collections, comprising molecules likely to have activity (Boppana et al., 2009). 

Knowledge-based screening has potentiated the development of virtual HTS 

(McInnes, 2007). Here, computerised compound sets are screened against a 

target using structure-based approaches that rely on the target structure, or 

ligand-based strategies where the chemistry of molecules known to bind the 

target is exploited (Lavecchia and Di Giovanni, 2013, Nagamani et al., 2011). 

To potentiate HTS, the assay in question must meet certain criteria 

before screening can take place. This process of assay development considers 

the quality of the assay in terms of reproducibility and pharmacological 
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relevance (Zhang et al., 2012). The signal window, typically calculated as 

signal-to-background ratio (S/B), which considers the high and low signal, and 

the levels of variation observed, are used to assess assay quality (Zhang, 

1999). The Z’ factor is now a widely used statistic throughout the screening 

community as it assesses both the signal window of an assay (minimum and 

maximum means) and the variation seen within these populations, expressed 

as the standard deviation (StDev) (Zhang, 1999). The Z’ factor has become the 

gold standard parameter used to gauge the suitability of an assay for HTS. An 

assay achieving a Z’ factor of ≥ 0.5 is deemed an excellent assay, whereas if 

the Z’ factor is between 0 and 0.5, it is viewed as marginal, and although could 

be used in HTS, further assay optimization and development is recommended 

(Clemons et al., 2014). Additionally, assay cost is a crucial aspect of assay 

development, which aims to minimize reagent usage, usually leading to assay 

miniaturization to reduce reagent volumes. 

Regardless of assay format, lead identification (screening) follows 

successful assay development, where primary screening of thousands to 

millions of compounds aims to identify putative hit compounds. Assays targeted 

to antagonist identification are associated with higher initial hit rates as they 

usually detect a decrease in signal, which can also result from compounds that 

interfere with signal generation. A crucial process following primary screening is 

hit triage, which aims to eliminate putative hit compounds that are likely to be 

false positives. Remaining hits are then grouped based on structural similarities 

and secondary assays are carried out the further analyse activity and potency. 

The secondary assay stage of early drug discovery aims to test the potency of 
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lead compound(s) in cell-based assays to demonstrate their activity outwith 

engineered proteins and also identify any structure-activity relationships (SAR). 

Lead optimization, similar to the cyclic process of synthesis, testing and 

structural alteration utilized in SBDD and FBDD, ultimately aims to increase 

specificity and potency. This crucial process is time consuming and associated 

with high failure rates. From a primary HTS testing 200,000 to 1 million 

compounds, hundreds will be taken forward to the hit-to-lead and lead 

optimization phase, which may result in only 1 or 2 clinical candidates (Hughes 

et al., 2011). 

Although the biochemical assays discussed above have been successful 

in generating new NMEs, output has been lower than expected. Lead-to-clinic 

has low numbers and is associated with high attrition rates. This may be for 

numerous reasons. Primarily, the activity of leads identified in traditional 

biochemical assays may not translate to the cellular environment used during 

pre-clinical testing (Clemons et al., 2014). Secondly, biochemical assays may 

not be the best option for targets that are outwith the norm of enzymes and 

receptors due to novel binding kinetics (Swinney, 2006). Historically, many 

successful drug discovery programs were less “target centric” and leads were 

often identified though phenotypic and in vivo assays (Kola and Landis, 2004). 

Furthermore, there was often no knowledge of the specific target or mechanism 

of action. As a result, screening centres and the pharmaceutical industry are 

increasingly looking to use cell-based assays with increased physiological 

relevance. 



	
  

 38 

1.3.4 Cell-based assays in HTS 

Biochemical assays used during primary screening simply assess the 

binding of a compound to a specific target. As a result of this, secondary assays 

used during hit validation are often associated with high attrition rates, by which 

time considerable time and money have been invested in the project. To 

overcome this, cell-based and phenotypic assays are increasingly used in early 

stage drug discovery as they not only illustrate the activity of a given compound, 

but also provide preliminary data regarding the ADMET (absorption, distribution, 

metabolism, elimination and toxicity) characteristics of the molecules (Zang et 

al., 2012). Additionally, cell-based assays have the capacity to identify both 

agonists and antagonists in a single screening campaign (Kunapuli et al., 2006, 

Guo et al., 2014). 

Previously published research has provided proof of principle for using 

both a fluorescent cell-based assay and HTS for the identification of novel 

modulators of the IFN response (Enomoto et al., 2000, Guo et al., 2014). For 

example, a red fluorescent protein under the control of the ISRE promoter has 

been used in an HTS to identify immunostimulatory RNA (Nguyen et al., 2009). 

To date, most screens have been luciferase-based assays and utilise relatively 

small compound sets (Chen et al., 2008, Charlaftis et al., 2012, Ye et al., 2011, 

Patel et al., 2012, Zhu et al., 2010). Recently, cell-based HTS was used to 

discover agonists of the IFN response, with a view to developing broad-

spectrum antivirals targeting infections to which there is high level of resistance 

to pre-existing therapies, or no current treatment options (Patel et al., 2012, 

Bedard et al., 2012, Martínez-Gil et al., 2012) 
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To design a cell-based assay for use in HTS, there are a number of 

criteria that need to be considered. Firstly, the target needs to be identified. In a 

cell-based phenotypic assay, this does not need to be a specific protein, but 

can be a signalling pathway as a whole. Secondly, the most appropriate cell 

system needs to be established. Although all cells are amenable to HTS, each 

have pros and cons associated with their use. Immortalized cell lines are simple 

to culture, reproducible and relatively cheap. However, the increased number of 

mutations necessary to render them immortal may alter their biological 

processes beyond physiological relevance (Ebert and Svendsen, 2010, Sharma 

et al., 2010). Primary cell lines and stem cells both produce physiologically 

relevant responses, although they have a limited culture life, and are difficult to 

handle (Ebert and Svendsen, 2010, Zang et al., 2012). Embryonic stem cells 

have an increased capacity for growth and differentiation, although their use is 

associated with moral issues. Chemically induced, pluripotent stem cells 

overcome these issues as they are artificially derived and can also be sourced 

directly from patients with a specific disease (Zang et al., 2012). Additionally, 

whole organism screens using parasites, zebra fish and even plants have been 

carried out (Zon and Peterson, 2005, Baragana et al., 2015, Agee and Carter, 

2009). 

Once an appropriate cell system has been chosen, the assay format 

needs to be addressed. The signal to be detected can range from a functional 

readout such as activation of secondary messengers and fluctuations in 

membrane potential, to phenotypic screens that assess cytokine production and 

cell migration (Zheng et al., 2013, Eggert et al., 2004, Yarrow et al., 2005, Kariv 
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et al., 1999, Chambers et al., 2003). Reporter genes including luciferase, β-

galactosidase, and fluorophores such as green fluorescent protein (GFP) are 

also widely used (Zhang et al., 2012, Beck et al., 2005, Li et al., 2007). The final 

consideration for assay design is the detection method that will be used. 

Although somewhat linked to the format of the assay in terms of signal for 

functional assays, fluorescent-based phenotypic assays can be monitored by 

either uniform well measurements using plate readers or high content screening 

(HCS), where high quality, confocal-level microscopy is used to analyse 

individual cells (Gribbon and Sewing, 2003, Nichols, 2006).  

As with other assays used in HTS, a stringent program of assay 

development and miniaturization is necessary. Although less simple to 

miniaturize compared to biochemical assays, cell-based, fluorescent end point 

assays are amenable to miniaturization as the signal window is not significantly 

affected (Kowski and Wu, 2000, Rudiger et al., 2001). The behaviour of the cell 

line and the assay are assessed at every step of assay development, where 

well-to-well, plate-to-plate, day-to-day and batch-to-batch reproducibility is 

closely monitored. This is achieved by the analysis of screening statistics such 

as the aforementioned S/B ratio, the percentage coefficient of variation (%CV) 

and the Z’ factor (Sittampalam et al., 1997, Zhang, 1999). As cells respond 

rapidly to environmental changes, their sensitivity to the compound solvent, and 

fluctuations in temperature and humidity need to be considered (Zhang et al., 

2012). 

 Following assay development, a pilot screen should be carried out, 

usually of 2,000 to 10,000 compounds to assess the behaviour of the finalized 
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assay (Voter et al., 2016, Clemons et al., 2014). Additionally, the inclusion of a 

reference molecule here is advantageous, although not always possible, 

especially for novel targets (Lu et al., 2015). Hit identification following primary 

HTS is based on the statistical analysis of the results. A predefined signal 

threshold, be it the top 1% of activity, or a fixed percentage minimum allows for 

hit triage, where increased stringency will decrease the number of putative hits, 

but potentially increases the number of false negatives (Malo et al., 2006). It is 

noteworthy that in cell-based HTS assays, off target effects can produce the 

same result as a hit. Additionally, in a phenotypic assay, the same phenotype 

can be achieved through compounds acting at different intervention points 

(Clemons et al., 2014). Putative leads resulting from hit identification are then 

subjected to secondary assays and counter screens designed to assess the 

specificity and potency of their activity. Following this, compounds are deemed 

confirmed hits, and enter the optimization pipeline. This usually involves 

compound set enrichment, where different compounds with chemotypes of high 

similarity to the hits are tested (Varin et al., 2011, Napolitano et al., 2016). 

Confirmed hits with novel structural properties and RO5 compliance are 

favourable as they are less likely to have off-target effects (Lipinski et al., 2001). 

Due to the inherent nature of cells to vary in their responses, hits can give rise 

to ambiguous results in different secondary assays (Burdine and Kodadek, 

2004). 

 Due to the high attrition rates associated with lead optimization following 

biochemical HTS and SBDD, pharmaceutical companies have been searching 

for assays that have built-in hit triage, an unbiased lead identification process, 
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and that give an indication of the biological responses to compounds. Cell-

based assays to provide an answer to this problem, and pharmaceutical 

companies appear to agree, as in 2006, cell-based assays constituted 53% of 

all HTS campaigns (Fox et al., 2006). It is important to note however, that in 

drug discovery there are no short cuts. Although cell-based assays allow for 

earlier focus on lead series that are likely to be successful, a lengthy process of 

lead optimization and preclinical testing will always be involved, regardless of 

the initial approach. 
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1.4 Research aims & objectives 

 The primary aim of this study was the development of a cell-based 

fluorescent assay to identify novel, small molecule modulators of the IFN 

response. Compounds that antagonize the IFN response have potential uses (i) 

as candidate drugs for the treatment of diseases associated with IFN 

dysfunction, (ii) in the production of live-attenuated viral vaccines and oncolytic 

viruses, and (iii) as tools to facilitate basic research. Conversely, compounds 

that agonize and therefore enhance IFN induction could be developed into 

therapeutics to boost the innate immune response in immunocompromised 

patients or for the indirect treatment of viral infections. 

The main aims of this study were as follows: 

• Develop a phenotypic assay to identify modulators of the IFN response 

• Optimize and miniaturize the assay to an automated 384-well format 

• Validate the suitability of the assay for use in an HTS campaign  

• Carry out a diversity screen against 15,667 small molecules at the Drug 

Discovery Unit, University of Dundee 

• Validate any hit compounds identified during screening and confirm their 

specificity 

• Characterize the compounds with preliminary research into the cellular 

target and the mode of action of confirmed hits  

• Expand the assay to enable the identification of molecules that modulate 

the function of the Rabies virus IFN antagonist (RBV-P) and 

subsequently carry out an in-house HTS.  
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2. Materials and Methods 

2.1 Cell-lines, viruses, interferon and antibodies 

2.1.1 Mammalian cell-lines 

 The mammalian cell-lines used in this study were Human embryonic 

kidney cells (293T) (Provided by Prof. Richard Iggo, University of Bordeaux), 

Human adenocarcinomic alveolar epithelial cells (A549) (ECACC 86012804) 

and African green monkey kidney epithelial cells (Vero) (ECACC 84113001). 

The human keratinocyte cell line, HACAT was utilized in the kinase activity 

assay carried out by Jordan Taylor at the University of Dundee. 

In addition to the cell-lines detailed above, the following A549 derivatives were 

used. 

• A549/pr(IFNβ).GFP: A549 cells with an enhanced green fluorescent 

protein (eGFP) gene under the control of the IFNβ promoter (Chen et al., 

2010). 

• A549/pr(ISRE).GFP: A549 cells with an eGFP gene under the control of 

the MxA promoter, which contains multiple Interferon stimulated 

response elements (ISRE) (Stewart et al., 2014). 

• A549/pr.(ISRE).GFP.RBV-P: A549/pr(ISRE).GFP cells that stably 

express N-terminally V5-tagged P protein of Rabies virus (RBV) 

(generated by Dr. Andri Vasou). 

• A549/pr(ISRE).GFP.TetOne-Puro-RBV-P: A549/pr(ISRE).GFP cells that 

express RBV P with an N-terminal V5-tag when induced with doxycycline 

(Dox) treatment. 
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2.1.2 Viruses and interferon 

 Cantell, a strain of Sendai virus (SeV) rich in defective interfering 

particles (DIs) (clarified allantoic fluid at 4000 HA units/ml, Charles River 

Laboratories) was used to stimulate the IFN induction pathway. Unless 

otherwise stated, SeV was used at a concentration of 40 HA units/ml. A 

recombinant Bunyamwera virus lacking the NSs gene (BunVΔNSs), rendering it 

IFN sensitive, was also used in this work (Stewart et al., 2014) (Provided by 

Prof. Richard Elliot, University of Glasgow). Purified IFNα (Roferon) (NHS, UK) 

was used to stimulate the IFN signalling pathway, and unless otherwise stated, 

used at a final concentration of 104 units/ml. 
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2.1.3 Antibodies 

 For the purposes of immunostaining western blot (WB) membranes and 

cell monolayers for immunofluorescent microscopy (IF), the primary and 

secondary-conjugated antibodies used are detailed below (Table 2.1). 

 
Table 2.1: Antibodies used in western blotting and immunofluorescence 

Target 
Raised in Source 

WB 
Dilution 

IF 
Dilution 

Primary Antibodies 

β-Actin Mouse Sigma-Aldrich 1:10,000 - 

SeV Rabbit Prof. Steve Goodbourn - 1:500 

IRF-3 Rabbit Santa Cruz - 1:200 

pIRF-3 (Ser 396) Rabbit Cell Signalling 1:1000 - 

pSTAT1 (Tyr 701) Goat Santa Cruz 1:150 - 

MxA Rabbit Santa Cruz 1:750 - 

GFP Mouse Roche 1:1000 - 

V5 Mouse Prof. Richard Randall - 1:400 

V5 Rabbit AbD Serotec 1:1000 - 

Secondary Antibodies 

α-Rabbit IRDye680 Goat Li-Cor 1:10,000 - 

α-Mouse IRDye800 Goat Li-Cor 1:10,000 - 

α-Goat HRP1 Donkey Santa Cruz 1:2000 - 

α-Rabbit FITC2 Goat Sigma-Aldrich - 1:200 

α-Rabbit TR3 Donkey Abcam - 1:200 

α-Mouse TR3 Goat AbD Serotec - 1:200 
1 Horseradish Peroxidase (HRP) 
2 Fluorescein isothiocyanate (FITC) 
3 Texas Red (TR) 
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The details of the antibodies used in the TLR3 experiment conducted by Jordan 

Taylor at the University of Dundee are detailed below. 

Table 2.2: Antibodies used in TLR3 dependent kinase activity experiment; conducted at the 
University of Dundee 

Target Raised in Source 

pTBK1 (Ser 172) 

Rabbit 
Cell Signalling 

TBK1 

pIKKε (Ser 172) 

pIRF3 (Ser 396) 

GAPDH 

α-Rabbit HRP Goat 

 

2.2 Cloning 

2.2.1 Polymerase chain reaction (PCR) 

 For purposes of gene amplification for sub-cloning into plasmids, all 

PCR reactions were performed using high-fidelity Pfu polymerase (Promega). A 

typical reaction contained the components detailed in Table 2.3 in a total 

volume of 50 µL. The 10× stock Pfu buffer with MgSO4 (200 mM Tris-HCl (pH 

8.8), 100 mM (NH4)2SO4, 100 mM KCl, 1 mg/ml BSA, 1% (v/v) Triton X-100, 20 

mM MgSO4) was used. Details of the primers used throughout this work are 

given in Table 2.6. A thermocycler with heated lid (Biometra®, T-Personal) was 

used to carry out all PCR reactions, using the cycling conditions shown in Table 

2.4. 
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Table 2.3: Regents used in a typical PCR reaction 

Component 
Stock 

Concentration 
Final 

Concentration 

Pfu Polymerase 2.5 u/µL 0.05 u/µL 

Pfu buffer 10× 1× 

dNTPs 10 mM 0.4 mM 

Forward primer 100 µM 0.2 µM 

Reverse primer 100 µM 0.2 µM 

DMSO 100% (v/v) 4% (v/v) 

Template DNA 100-500 ng/µL 50 ng 

Water - - 

 

 

Table 2.4: Cycling conditions of a typical PCR reaction 

Step 
Temperature 

(°C) 
Time 

(Seconds) 
Cycles 

Polymerase activation 95 180 1 

Denaturation 95 30 

30 Annealing 55 30 

Extension 
72 120 /kb 

72 600 1 

 

 
Table 2.5: Sources of DNA used in PCR reactions 

Gene Accession Source 

IFNβ EF064725.1 Prof. R Randall 

MxA AK225885.1 Dr D Jackson 

β-Actin NC_000007.14 Amplified from A549 cDNA 

RBV-P ADJ29909.1 Dr A Vasou 
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Table 2.6: Primers used in PCR, qPCR and sequencing reactions 

Name Use Sequence 

IFNb qPCR Forward 
nt 41-62 

qPCR 
PCR 

GCTTCTCCACTACAGCTCTTTC 

IFNb qPCR Reverse 
nt 134-155 

qPCR 
PCR 

CAGTATTCAAGCCTCCCATTCA 

MxA  qPCR Forward 
nt 570-590 

qPCR 
PCR 

GCCTGCTGACATTGGGTATAA 

MxA  qPCR Reverse 
nt 910-931 

qPCR 
PCR 

CCCTGAAATATGGGTGGTTCTC 

Actin qPCR Forward 
nt 257-276 

qPCR 
PCR 

GGCACCACACCTTCTACAAT 

Actin qPCR Reverse 
nt 679-640 

qPCR 
PCR 

CCTTAATGTCACGCACGATTTC 

5' EcoRI-V5 (RBV-P) PCR GCGCGAATTCATGGGAAAGCCGATCCCAAACC 

3' BamH1-RBV-P PCR GCGCGGATCCTCAGCAGCTGGTGTATCTGTTCAGG 

pJet 1.2 Forward Seq1 CGACTCACTATAGGGAGAGCGGC 

pJet 1.2 Reverse Seq1 AAGAACATCGATTTTCCATGGCAG 

RBV-P nt510-527 Seq1 GGCCAGAATGGTGGCCCA 

pLVX-TetOne 
Forward 

Seq1 ATGTAAACCAGGGCGCCTAT 

pLVX-TetOne 
Reverse 

Seq1 CCTCCTGTCTTAGGTTAGTG 

1 Sequencing reactions (Seq) 

 

2.2.2 DNA gel electrophoresis and extraction 

 To analyse to results of PCR and restriction enzyme digest, DNA was 

separated by agarose gel electrophoresis. PCR reaction samples were mixed 

with the appropriate volume of 10× loading buffer (Bioline) and run on a 1 or 2% 

(w/v) agarose gel (Sigma-Aldrich) in TBE buffer (100 mM Tris base, 100 mM 

Boric acid, 2.5 mM EDTA) containing ethidium bromide (1 µg/ml) (Invitrogen). 
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Samples were loaded into the gel with a molecular weight marker (Bioline, 100 

bp & 1kb) and run in TBE at 90 volts until bands were appropriately resolved. 

Bands of interest were excised from the gel and DNA purified using the 

QIAquick gel extraction kit (Qiagen) following manufacturer’s instructions, with 

the exception of purified DNA elution, where nuclease-free water was used as 

opposed to EB buffer. 

2.2.3 Sub-cloning into pJet shuttle vector 

 To facilitate sequencing and down-stream subcloning of amplified DNA 

fragments, PCR products were cloned into an intermediate vector. Purified PCR 

products were ligated into pJet1.2 (ThermoFischer). This CloneJet system 

allows for the direct ligation of blunt-ended PCR products into the pJet plasmid. 

One microliter of purified PCR product was incubated with 10 µL of 2× Buffer, 1 

µL of pJet1.2 vector and 7 µL of nuclease-free water, and 1µL of T4 DNA ligase 

(5 units) at room temperature (RT) for 5 minutes. For bacterial transformation, 

the ligation reaction was then incubated, on ice, with 50 µL of chemically 

competent DH5α E. coli cells (provided by Dr D Jackson) for 15 minutes. The 

transformation mix was heat-shocked at 42°C for 45 seconds, followed by a 

period of recovery through incubation at 37°C for 30 minutes. The transformed 

DH5α cells were plated onto Lysogeny broth (LB) agar plates containing 

ampicillin (100 µg/ml), inverted and incubated at 37°C for 18 hours. 

Transformed colonies from the agar plates were inoculated into 4 ml of LB 

supplemented with 100 µg/ml ampicillin and incubated at 37°C in an orbital 

shaker (280 rpm) for 18 hours. Plasmid DNA was then extracted from the 
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cultures using QIAprep spin miniprep kit (Qiagen). Miniprep plasmid DNA was 

screened for the cloned insert using diagnostic restriction digest as per 

manufacturer’s instructions (Promega). Briefly, plasmid DNA (3 µL), BglII 

restriction enzyme (5 units), 10× restriction digest buffer D (2 µL) and acetylated 

BSA (2 µg) were incubated at 37°C for 2 hours, followed by DNA gel 

electrophoresis. Gels were visualised under UV light, and plasmid DNA 

displaying the correct banding pattern was sequenced by DNA Sequencing & 

Services (MRCPPU, College of Life Sciences, University of Dundee, 

www.dnaseq.co.uk) using Applied Biosystems Big-Dye Ver 3.1 chemistry on an 

Applied Biosystems model 3730 automated capillary DNA sequencer. 

2.2.4 Sub-cloning into lentiviral transfer vector 

 For construction of the lentiviral vector containing RBV-P, sequence 

verified pJet1.2 vectors and the pLVX-TetOne-Puro destination vector 

(Clontech) were digested with BamHI and EcoRI restriction enzymes 

(Promega). The digested vector was also dephosphorylated using calf intestinal 

alkaline phosphatase (New England Biolabs) to prevent re-ligation of the 

digested vector. Digestion reactions were separated by DNA gel electrophoresis 

followed by DNA extraction of the vector and insert as detailed above (2.2.2). 

Purified insert DNA (5µL) was incubated with 10 µL of 2× Buffer, 1 µL of pLVX-

TetOne-Puro vector and 3 µL of nuclease-free water, and 1µL of T4 DNA ligase 

(5 units) at RT for 5 minutes. For bacterial transformation, the ligation reaction 

was then incubated, on ice, with 50 µL of chemically competent DH10b E. coli 

cells (Provided by Dr M Nevels) for 15 minutes. The transformation mix was 

heat-shocked at 42°C for 45 seconds, followed by a period of recovery through 
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incubation at 30°C for 1 hour. The transformed DH10b cells were plated onto 

LB agar plates containing ampicillin (100 µg/ml), inverted and incubated at 30°C 

for 24 hours. Transformed colonies from the agar plates were inoculated into 4 

ml of LB supplemented with 100 µg/ml ampicillin and incubated at 30°C in an 

orbital shaker (280 rpm) for 24 hours. Plasmid DNA was then extracted from the 

cultures using QIAprep spin miniprep kit (Qiagen). Miniprep plasmid DNA was 

screened for the cloned insert using diagnostic restriction digest as detailed in 

section 2.2.3. where BglII restriction enzyme was substituted by BamHI and 

EcoRI. Following DNA gel electrophoresis, gels were visualised under UV light, 

and plasmid DNA displaying the correct banding pattern was sequenced by 

DNA Sequencing & Services. Upon verification that the recombinant pLVX-

TetOne-Puro vector sequences were correct, miniprep DNA was transformed 

into DH10b E.coli cells, inoculated into 100 ml of LB supplemented with 100 

µg/ml ampicillin and incubated at 30°C in an orbital shaker for 24 hours. To 

achieve higher DNA yield to facilitate transfection for lentivirus production, 

plasmid DNA was extracted from the 100 ml cultures using Qiagen Plasmid 

Maxi Kit as per manufacturer’s instructions with the following alterations; (i) 

following isopropanol addition to precipitate eluted DNA; the reaction was 

incubated at -20°C for 1 hour, (ii) the wash step with ethanol addition to the 

pelleted DNA was carried out twice and (iii) following air-drying of the pellet, 

DNA was dissolved in nuclease-free water. 

2.2.5 Genomic DNA Extraction 

 To verify the successful integration of the transfer vector cassette into the 

host cell chromosome following lentivirus transduction of cells, genomic DNA 
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was extracted. The DNA was then analysed by PCR using primers specific to 

RBV-P (Table 2.6) followed by DNA gel electrophoresis. Genomic DNA 

extraction was achieved using Blood and Cell Culture DNA Kit (Qiagen) and the 

Qiagen Genomic tip 20/G following manufacturer’s instructions with the 

following alteration. Once air-drying of the pellet was complete, DNA was 

dissolved in nuclease-free water. 

 

2.3 Cell culture 

2.3.1 Cell maintenance 

All the cell lines used in this study were maintained as monolayers in 

tissue culture flasks (25, 75, 175 or 225 cm2) in high glucose Dulbecco’s 

modified eagle’s medium (DMEM) supplemented with 10% (v/v) Foetal bovine 

serum (FBS), 30 µg/ml penicillin and 50 µg/ml streptomycin (Pen-strep). Cells 

were incubated at 37°C with 5% CO2. When confluency reached approximately 

90%, cells were passaged with Trypsin-ethylenediaminetetraacetic acid 

(EDTA). For seeding of cells that would later be treated with IFNα, dissociation 

was achieved with 0.48 mM EDTA in phosphate-buffered saline (PBS) to avoid 

trypsin-mediated cleavage of the IFNα/β receptor. 

2.3.2 Cryopreservation & resuscitation of cells 

 Stable cell lines produced by lentivirus transduction were stored as 

stocks in liquid nitrogen. Cell monolayers were maintained as detailed above. 

Once 90% confluency was achieved, cells were trypsinised and centrifuged at 

1200 xg for 5 minutes. The cell pellet was resuspended in cryo-media (60% 
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(v/v) DMEM, 30% (v/v) FBS, 10% (v/v) DMSO) to achieve a concentration of 

1×106 cells/ml. Cells were frozen in 1 ml aliquots at -80°C and transferred to 

liquid nitrogen for long-term storage. To resuscitate cells that had been in liquid 

nitrogen storage, the 1 ml vial was thawed at 37°C and centrifuged at 1200 xg 

for 5 minutes. The resultant cell pellet was resuspended in DMEM 

supplemented with 10% (v/v) FBS and Pen-strep, split 80/20 into two, 25 cm2 

tissue culture flasks and incubated at 37°C with 5% CO2. Where selection was 

required, puromycin (2 µg/ml) was added to culture medium when monolayers 

reached 60% confluency or at first passage. 

2.3.3 Growth of virus stocks 

BunVΔNSs stocks were propagated in T75 cm2 tissue culture flasks 

containing Vero cells at 95% confluency. Cells were infected with virus and 

incubated for 3 days in DMEM supplemented with 2% (v/v) FBS and L-

glutamine (2 mM). Supernatant was collected and centrifuged at 1200 xg for 5 

minutes. BunVΔNSs stocks were stored as 1 ml aliquots at -80°C. 

2.3.4 Stable cell-line production 

 To modify the A549/pr(ISRE).GFP reporter cell line to express RBV-P by 

doxycycline induction, 2nd generation lentivirus technology was used. 

Lentiviruses are produced in 293T cells following transfection with 3 plasmids. 

These plasmids being (i) a transfer vector containing the integration cassette, 

which comprises a puromycin N-acetyl-transferase (PAC) gene, and so gives 

resistance to puromycin, and the gene of interest flanked by long terminal 

repeats, which facilitate integration into the host cell chromosome, (ii) a 



	
  

 55 

packaging plasmid encoding Gag, Pol and Rev, and (iii) an envelope plasmid 

encoding the G glycoprotein of vesicular stomatis virus (VSV) (Zufferey et al., 

1997, Naldini et al., 1996). 

2.3.4.1 Lentivirus production 

 293T cells were seeded in T75 tissue culture flasks at 70 to 90% 

confluency for transfection. Using the 3 vector system for lentivirus production, 

10µg of pLVX-TetOne-Puro-V5-RBV-P, 6 µg of pCMVR 8.91 packaging plasmid 

and 6 µg pVSV-G envelope plasmid were added to 1.5 ml of Optimem 

(Invitrogen) and incubated at room temperature for 5 minutes. Separately, 60 µl 

of Lipofectamine 2000 (Invitrogen) was added to 1.5 ml of Optimem. The 

plasmid and Lipofectamine mixes were then combined, and incubated at RT for 

a further 30 minutes to allow DNA containing liposomes to form. Culture 

medium was removed, and the plasmid-Lipofectamine-Optimem solution added 

drop-wise to the 293T cells, which are incubated at 37°C with 5% CO2. Five 

hours post-transfection, 8 ml of antibiotic free DMEM supplemented with 10% 

(v/v) FBS was added. After a 48 hour incubation at 37°C with 5% CO2, lentivirus 

containing media was collected and centrifuged at 3000 ×g for 10 minutes. The 

medium was then filtered through a 0.45 µm syringe filter and divided into 1 ml 

aliquots for storage at -70°C. 

2.3.4.2 Transduction of A549/pr(ISRE).GFP cells 

 A549/pr(ISRE).GFP reporter cells were transduced with lentivirus at 50% 

confluency in T25 tissue culture flasks. Lentivirus preparations were thawed at 

37°C and added to 1 ml of DMEM (serum and antibiotic free) supplemented 
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with polybrene (Sigma), to aid infection, at a final concentration of 8 µg/ml. The 

lentivirus-DMEM-polybrene mix was added to cell monolayers. Flasks were 

then centrifuged at 1000 ×g for 30 minutes and incubated at 37°C with 5% CO2 

for 2.5 hours. Two ml of DMEM supplemented with 10% (v/v) FBS was then 

added to the flasks, which were incubated as above for a further 48 hours. 

Where repeated rounds of lentiviral transduction were required, following 

centrifugation for 30 minutes, cells were incubated for 1 hour. Following 

incubation, the lentivirus containing media was removed, and freshly prepared 

lentivirus-DMEM-polybrene mix applied to the cells as above. This was 

repeated as many times as required. Two ml of DMEM containing 10% (v/v) 

FBS was then added and the cells incubated for 48 hours as above. 

2.3.4.3 Antibiotic selection of transduced cells 

 Following lentivirus transduction, antibiotic selection was used to isolate 

cells that had successfully integrated the transfer vector cassette into the host 

cell chromosome. Puromycin (Sigma) was added to cell culture medium at a 

final concentration of 2 µg/ml. 

2.3.5 Fluorescent activated cells sorting (FACS) 

Following multiple rounds of lentivirus transduction, the 

A549/pr(ISRE).GFP cell line required optimization. The expression of GFP was 

not consistent throughout the population and so was heterogeneous. Therefore, 

the cells were sorted on the basis of GFP expression to produce more 

homogenous expression. Fiona Rossi, of the Centre for Inflammation Research, 

The Queen’s Medical Research Institute in Edinburgh carried this out. 
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The A549/pr(ISRE).GFP cell-lines adapted to include the Dox inducible 

expression of RBV-P required further optimization. To facilitate this optimization, 

FACS was employed to isolate cells expressing the lowest levels of GFP in the 

presence of antagonist. Cells were seeded into T25 tissue culture flasks at 

approximately 25% confluency in the presence or absence of Dox (1 µg/ml) 

(Sigma). Sixteen hours post-Dox treatment, cells were either treated with IFNα 

(104 units/ml) for 24 hours or left untreated. Cells were then trypsinized and 

centrifuged at 1200 xg for 5 minutes and the cell pellet resuspended in 2 ml of 

DMEM supplemented with 2% (v/v) FBS. For FACS analysis, cells were filtered 

into FACS tubes (Round bottom Falcon tubes with cell strainer cap) and 

analysed by flow cytometry in a FACSJazz cell sorter (BD Biosciences). All 

FACS sorting and initial analysis was completed by Dr. Elizabeth Randall. 

Briefly, the cell population to be sorted goes through a process of gating, where 

cell size (Forward Scatter (FSC)) and granularity (Side Scatter (SSC)) are 

assessed to eliminate cell debris, along with trigger pulse width, which removes 

cell doublets from the analysis. Single cells are then sorted on the basis of GFP 

fluorescence using laser excitation of 488 nm and identified by a 530/40 

bandpass filter. Sorted cells are then isolated into 12-well tissue culture dishes 

and maintained for further analysis. 

2.3.6 IFNβ induction assay 

 A549/pr(IFNβ).GFP reporter cells were maintained in tissue culture flasks 

and dissociated with Trypsin-EDTA. Cells were seeded at 9×104 cells/cm2 in 96 

or 384 well tissue culture plates (Corning) and incubated at 37°C with 5% CO2. 

Unless specified, twenty-four hours post seeding, cells were infected with SeV 
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in DMEM supplemented with 10% (v/v) FBS and incubated at 37°C with 5% 

CO2 for 18 hours, unless otherwise stated. Where necessary, prior to SeV 

infection, cells were treated with inhibitors at the indicated concentrations for 2 

hours at 37°C. Cells were fixed with 5% (v/v) formaldehyde at room 

temperature, washed and phosphate buffered saline (PBS) added to each well. 

Cells were then analysed for GFP expression on an Infinite M200 Pro (Tecan) 

or EnVision (Perkin Elmer) plate reader at excitation/emission 484/518 nm or 

485/535 nm respectively. Data was analysed by converting the signal in raw 

fluorescent units (RFU) to a signal-to-background (S/B) ratio of RFU of 

unactived cells and then calculating the mean (µ) and the standard deviation (σ) 

for a group of replicates. This was also used to calculate the Zʹ′ Factor, 

comparing the signal of activated (SeV infected) and unactivated (untreated) 

cells. The formula for this calculation is below (Zhang, 1999). S/B ratio was 

calculated by dividing the mean signal (RFU) of activated cells by that of 

unactivated cells. 

 

Zʹ′ Factor = 1 -  3 × (σActivated + σUnactivated) 

      µActivated - µUnactivated 

2.3.7 IFN signalling assay 

A549/pr(ISRE).GFP reporter cells were maintained in tissue culture 

flasks and dissociated with EDTA for seeding into 96 or 384 well tissue culture 

plates (Corning) at 9×104 cells/cm2, followed by incubation at 37°C with 5% 

CO2. To activate the IFN signalling pathway, cells were treated with 104 Uml-1 of 

IFN-α (Roferon, NHS) in DMEM supplemented with 10% (v/v) FBS 24 hours 
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post seeding. Where necessary, prior to INFα treatment, cells were treated with 

inhibitors at the indicated concentrations for 2 hours at 37°C. Following 

incubation at 37°C with 5% CO2 for 42 hours, unless otherwise specified, cells 

were fixed with 5% (v/v) Formaldehyde at room temperature, washed and PBS 

added to each well. Cellular GFP expression was then analysed as above 

(2.3.6) 

2.3.7.1 A549/pr(ISRE).GFP cells with constitutive antagonist expression 

 A derivative of the A549/pr(ISRE).GFP cell line, which constitutively 

expresses the P protein of Rabies virus (A549/pr(ISRE).GFP.RBV-P) was used 

for in-house HTS (2.4.2). A549/pr(ISRE).GFP.RBV-P cells were used in the IFN 

signalling assay as detailed above (2.3.7). Cells were analysed for GFP 

expression on an Infinite M200 Pro (Tecan) plate reader at excitation/emission 

484/518 nm. As the expression of RBV-P inhibits the IFN signalling assay, GFP 

fluorescence is minimal. Therefore, the S/B ratio and Z’ Factor cannot be used 

for quality control (QC) analysis. In this case, percentage coefficient of variation 

(CV %) was used to monitor fluctuations in the A549/pr(ISRE).GFP.RBV-P cell 

line. 

 
CV % = (σ/µ)*100 

2.3.7.2 A549/pr(ISRE).GFP cells with a doxycycline inducible expression 

system 

Derivatives of the A549/pr(ISRE).GFP cell line were developed, where 

the expression of the P protein of Rabies virus (A549/pr(ISRE).GFP.TetOne-

Puro.RBV-P) is induced with Dox treatment. These cell lines were used in the 
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IFN signalling assay above (2.3.7) with the following amendments. As the half-

life of Dox is 48 hours, it was supplemented into the growth medium and topped 

up every 36 hours. Where appropriate, cells were seeded in the presence of 

Dox, which was also added at the same time as IFNα treatment. Unless 

otherwise stated, Dox was used at a final concentration of 1 µg/ml. 

 

2.4 High-throughput screening 

 In this study, we embarked on 2 separate screening campaigns. The first 

utilized the IFNβ induction assay with the aim of identifying novel modulators 

the IFNβ induction pathway. In this screen we were primarily measuring a 

reduction in GFP expression, which would result from a test compound 

inhibiting the IFNβ induction pathway. The second screen, carried out in-house, 

utilized the IFN signalling assay and A549/pr(ISRE).GFP.RBV-P cells to identify 

novel modulators of RBV-P protein function. In this instance, if a test compound 

were to inhibit RBV-P function, GFP expression would be restored. 

2.4.1 Screening compounds and inhibitors 

IFN induction and signalling inhibitors BX-795, TPCA-1 and Ruxolitinib 

(Rux) (Selleck chemicals) were prepared in dimethyl sulfoxide (DMSO) as 10 

mM stock. CYT387 (Selleck chemicals) was prepared in DMSO as a 20 mM 

stock. Unless otherwise stated, the inhibitors were used at 2 µM. Actinomycin D 

(AMD) and Cycloheximide (CHX) (Sigma), inhibitors of transcription and 

translation respectively, were prepared as 10 mg/ml stocks in DMSO and 

ethanol respectively, and, unless otherwise stated, used at 40 µg/ml. 
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Compounds constituting the Small Diversity Set of the Drug Discovery Unit 

(DDU) at the University of Dundee were stored as 10 mM stocks in DMSO and 

unless otherwise stated, used at 30 µM. Compounds constituting the Maybridge 

screening collection were stored as 10 mM stocks in DMSO and unless 

otherwise stated, used at 11.42 µM. Hit compounds identified during HTS, 

which were named StA-IFN-1 to StA-IFN-5 and compounds with high similarity 

to StA-IFN-1 and StA-IFN-4, and 2 molecules that constitute each half of these 

hit molecules are detailed below (Table 2.7). Compounds were purchased, 

prepared as 10 mM stocks in DMSO and used at 10 µM, unless otherwise 

stated. All compounds were stored at -80°C. 
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Table 2.7: Hit compounds and those with closely related structures  

Name Chemical Name CAS Source 

StA-IFN-1 4-(1-Acetyl-1H-indol-3-yl)-5-methyl-
2,4-dihydro-3H-pyrazol-3-one 300839-31-0 Chembridge 

StA-IFN-2 
4-{[4-(Thieno[3,2-d]pyrimidin-4-yl)-

1,4-diazepan-1-
yl]methyl}benzonitrile 

930903-16-4 Enamine 

StA-IFN-4 
2-[(4,5-Dichloro-6-oxo-1(6H)-

pyridazinyl)methyl]-8-methyl-4H-
pyrido[1,2-a]pyrimidin-4-one 

876916-52-8 Enamine 

StA-IFN-5 6-Methyl-4-phenyl-N-(pyridin-4-
yl)quinazolin-2-amine 610279-43-1 Mcule 

StA-IFN-1-
82S 

3H-Pyrazol-3-one, 2,4-dihydro-4-
(1H-indol-3-yl)-5-methyl- 3133225-48-8 Chembridge 

StA-IFN-1-
SF 

3H-Pyrazol-3-one, 2,4-dihydro-5-
methyl- 108-26-9 Enamine 

StA-IFN-1-LF Ethanone, 1-(1H-indol-1-yl)- 576-15-8 ChemDiv 

StA-IFN-4-
85S 

3(2H) -Pyridazinone, 4,5-dichloro-2-
[(6-methylimidazo[1,2-a]pyridin-2-

yl)methyl]- 
852902-22-8 Enamine 

StA-IFN-4-
SF 

3(2H)-Pyridazinone, 4,5-dichloro-2-
methyl- 933-76-6 Enamine 

StA-IFN-4-LF 4H-Pyrido[1,2-a]pyrimidin-4-one, 
2,8-dimethyl- 30247-64-4 ChemDiv 

 

2.4.2 Diversity and dose response screening at the Drug Discovery Unit 

(DDU) University of Dundee 

A single-point diversity screen of 15,667 compounds was carried out at 

the University of Dundee using the IFNβ induction assay detailed above (2.3.6). 
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The DDU small diversity set was provided in 384-well Echo plates. 

A549/pr(IFN).GFP cells were seeded into clear-bottomed black 384-well plates 

Test compound, at a final concentration of 30 µM (125 nl), was added to 

A549/pr(IFN).GFP cells using an Echo 550 liquid handler (Labcyte). Two hours 

post-compound addition, cells were infected with SeV (40 HA units/ml) for 18 

hours. GFP expression was measured with an EnVision plate reader (Perkin 

Elmer) at excitation/emission 485/535 nm.  

To test the potency of putative hits from the small diversity library, each 

compound was tested in the IFNβ induction reporter assay with and without 

SeV infection, and the IFN signalling assay to generate standard ten-point dose 

response curves. This was achieved through two-fold serial dilutions of test 

compounds added to seeded A549/pr(IFN).GFP or A549/pr(ISRE).GFP cells 

using an Echo 550 and overlord3 robotics software. 

For all data analysis, the RFU of each well was measured, and 

normalised to a percentage effect (% effect) of the positive control, calculated 

as follows. 

 

% Effect = ((RFUUnactivated - RFUTest)/(RFUUnactivated – RFUActivated)) * 100 

 

ActivityBase XE (IDBS) was used for all data processing using % effect, with 

the utilisation of SARgen (IDBS) and Excel (Microsoft). For determination of 

potency, 4-parameter logistic fit (Minimum, maximum, hill slope and IC50) was 

used, being defined in reference to the negative log of the molar value at the 

point of inflection of a sigmoidal dose-response curve (pIC50). Additionally, all 
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assay plates were subject to QC analysis. The QC criteria for the acceptance of 

an assay plate is shown below: 

- S/B Ratio ≥2 

- CV % <8% 

- Z’ ≥0.5 

2.4.3 In-house HTS using the Maybridge library 

 A single-point primary screen of 16,000 compounds was carried out in-

house using the IFN signalling assay detailed above (2.3.7) with the 

A549/pr(ISRE).GFP.RBV-P reporter cell line. The Maybridge compound library, 

loaned by Prof Nicholas Westwood (University of St Andrews), was provided in 

50 384-well plates. Compounds were at a concentration of 10 mM dissolved in 

DMSO and contained in columns 3 to 22. The screen was conducted in 4 

batches; 2 batches of 12, and 2 batches of 13 plates. A549/pr(ISRE).GFP.RBV-

P (columns 1-22) and A549/pr(ISRE).GFP (columns 23 to 24) cells were 

seeded in 384-well clear-bottomed, black tissue culture plates (Greiner Bio-one) 

at 9×104 cells/cm2 and incubated at 37°C with 5% CO2. The following day, cells 

were treated with 11.42 µM of test compound using a MiniTrak V Multi Position 

Dispenser (Perkin Elmer), which replicates the compound plate in the assay 

plate, for 2 hours. To activate the IFN signalling pathway, IFN-α in DMEM 

supplemented with 10% (v/v) FBS was added to cells in columns 2 to 23 

followed by brief centrifugation at 1200 rpm for 1 minute. Following incubation 

at 37°C with 5% CO2 for 42 hours, cells were fixed with 5% (v/v) Formaldehyde 

at room temperature, washed and PBS added to each well. With the exception 

of test compound transfer, all liquid handling was carried out using a Matrix 
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WellMate microplate dispenser (Thermo Scientific). Cellular GFP expression 

was analysed on an Infinite M200 Pro (Tecan) plate reader at 

excitation/emission 484/518 nm. Additionally, all assay plates were subject to 

QC analysis by monitoring CV % of A549/pr(ISRE).GFP.RBV-P cells and S/B 

ratio, CV % and Z’ Factor of A549/pr(ISRE).GFP cells. All data analysis was 

conducted using Excel (Microsoft) and Prism6 (GraphPad) software. 

 

2.5 Protein expression and modification analysis  

 To facilitate analysis of protein expression and phosphorylation levels 

under different treatment conditions, whole cell lysates were separated by SDS-

polyacrylamide gel electrophoresis (SDS-PAGE) followed by transfer to 

membranes for western blotting. For different experiments, initial cell treatments 

post-seeding differ, however they converge on a standard set of techniques 

detailed below. 

2.5.1 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

 The procedures common to all experiments requiring SDS-PAGE are 

detailed here. A549 cells were seeded into 6-well plates at 4×104 cells/cm2. 

Where appropriate the following day, cells were treated with compound for 2 

hours. To activate the IFN induction pathway cells were infected with SeV. To 

induce the IFN signalling pathway, cells were treated with IFNα. Cells were 

lysed in disruption buffer (6M Urea, 4% (w/v) sodium dodceyl sulphate (SDS), 2 

M β-mercaptoethanol), and to ensure denaturation of proteins were pulse 

sonicated at 10 amplitude microns (23kHz) for 10 seconds and heated to 95°C 

for 5 minutes. Cell lysates were separated by SDS-PAGE. Ten percent (v/v) 
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acrylamide gels were hand-cast using 30% (w/v) Protogel, Stacking buffer and 

Resolving buffer (National Diagnostics), the components of the gels are detailed 

below (Table 2.8). Gels were run at 100 volts for approximately 2 hours in 1× 

TGS buffer (25 mM Tris, 192 mM Glycine, 0.1% (w/v) SDS, pH8.3). 

 
Table 2.8: Components of hand-cast SDS-PAGE gels 

Reagent 10 % (v/v) 
Resolving Gel 

4% (v/v) 
Stacking Gel 

30% (w/v) Acrylamide (ProtoGel) 8.3 ml 1.3 ml 

Resolving Gel Buffer 
(0.375 M Tris-HCl, 0.1% (w/v) SDS, pH 8.8) 

6.3 ml - 

Stacking buffer 
(0.125 M Tris-HCl, 0.1% (w/v) SDS, pH 6.8) 

- 2.5 ml 

10% (w/v) Ammonium persulfate (APS) 250 µl 100 µl 

TEMED (Tetramethylethylenediamine) 25 µl 10 µl 

Water 8.5 ml 6.1 ml 

Total Volume (for four gels) 25 ml 10 ml 

 

Cell treatment conditions varied depending on the aim of individual 

experiments. The specifics of these different experiments following cell seeding 

and leading up to cell lysate collection are detailed below. 

• Detection of phosphorylated IRF3 (pIRF3): Cells were treated with 

compound for 2 hours, followed by SeV infection for 3. 

• Detection of phosphorylated STAT1 (pSTAT1): Cells were treated with 

compound for 2 hours, followed by IFNα treatments for 15 minutes. 

• Validation of the A549/pr(ISRE).GFP.RBV-P cell line: 

A549/pr(ISRE).GFP and A549/pr(ISRE).GFP.RBV-P cells were treated 

with IFNα for 18 and 44 hours. 
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• Validation of RBV-P protein expression from the pLVX-TetOne-

Puro-RBV-P vector: 293T cells were transfected with plasmid DNA 

using the Lipofectamine transfection protocol detailed in section 2.3.3.1, 

followed by incubation with Dox for 16 hours. 

• Validating the functionality of RBV-P in the A549/pr(ISRE).GFP. 

TetOne-Puro-RBV-P cell line: A549/pr(ISRE).GFP and 

A549/pr(ISRE).GFP. TetOne-Puro-RBV-P cells were seeded in the 

presence or absence of Dox and treated with IFNα for 40 hours. 

2.5.2 Western blotting and immunostaining of membranes 

Following separation by SDS-PAGE, proteins were transferred to 

polyvinlidene difluoride (PVDF) membranes, activated in 100% (v/v) methanol 

(Thermo), using TransBlot Turbo semi-dry transfer system (Bio-Rad) in Towbin 

transfer buffer (25 mM Tris, 192 mM Glycine, 20% (v/v) methanol, pH8.3) at 1.3 

Amps, 25 volts for 20 minutes. Membranes were blocked in blocking buffer 

(PBS, 0.1% (v/v) tween-20 and 5% (w/v) skimmed dried milk powder) and 

incubated with primary antibody (Table 2.1) at room temperature for 1 hour or 

overnight at 4°C. Membranes were then washed in 0.1% (v/v) tween-20 (PBS) 

and incubated with secondary antibody conjugated to a fluorophore or HRP 

(Table 2.1). Membranes were washed as above and protein detection 

performed using an Odyssey CLx near-infrared scanner (Licor) for fluorescently 

tagged secondary antibodies or enhanced chemiluminescence (ECL) for HRP-

conjugated secondary antibodies.   
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2.6 Off-target effects of hit compounds 

 Following HTS and selection of hits to follow up, compounds were 

repurchased. We instigated a campaign of hit validation to confirm that the 

inhibition in GFP expression observed through screening was due to the action 

of a compound on the IFN induction pathway, and not through off-target, non-

specific effects. This was achieved through assessing cell viability, cellular 

protein synthesis and virus infection and replication in the presence of hit 

compound. 

2.6.1 Cell-viability assay 

 To assess the effect of compound on cell viability, the AlamarBlue (AB) 

reagent (Life Technologies) was used. A549 cells were seeded in 96-well plates 

and treated with a 10 point, 2-fold serial dilution of compound from 50 to 0.1 µM 

for 48 hours at 37°C with 5% CO2. AB reagent (Life technologies) was added to 

cells to a final concentration of 10% (v/v) and incubated in the dark for 4 hours. 

Fluorescence was measured on an Infinite M200 Pro (Tecan) plate reader at 

excitation/emission 545/590 nm. The percentage reduction in AB used to 

assess cell viability is calculated by using 0% reduced (DMEM+AB) and 100% 

reduced (cells+DMEM+AB) controls. 

2.6.2 Cellular and viral protein synthesis analysis 

 To assay cellular protein synthesis in the presence and absence of hit 

compounds, A549 cells were incubated with 10 µM of hit compound or the 

transcriptional inhibitor AMD for 24 and 48 hours. Cells were then metabolically 

labelled with L-[35S]Met/Cys pro-mix (500 Ci mmol-1, Perkin Elmer) for 1 hour. 
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After labelling, cells were lysed in disruption buffer containing 28 units/ml 

benzonase (Sigma) and proteins separated by SDS-PAGE (2.6.1). Gels were 

fixed, washed and imaged via coomassie brilliant blue stain. Bands were 

quantified using a FLA-5000 phosphoimager and Image Gauge software 

(FujiFilm). Down stream data analysis used Prism 6 (GraphPad) software. 

 To assess viral protein synthesis in the presence of hit compound, A549 

cells were incubated with 10 µM of hit compound for 2 hours, followed by SeV 

infection for 18 hours. Metabolic labelling and processing of whole cell lysates 

was carried out as detailed above. 

 

2.7 Analysis of IFNβ  and MxA gene expression 

 To establish the activity of hit compounds out-with the GPF based 

reporter assays, their effect on IFNβ and MxA gene expression was assessed. 

This was achieved through total RNA extraction of compound treated, SeV 

infected cells, followed by reverse transcription of messenger RNA (mRNA) and 

quantitative PCR (qPCR) of the resultant complementary DNA (cDNA). 

2.7.1 RNA extraction 

 A549 cells were seeding into 6-well plates at 3x105 cells/ml (2 ml/well) 

and incubated at 37°C with 5% CO2. The following day, confluent cell 

monolayers were treated with compound for 2 hours followed by either a 3-hour 

SeV infection or an 18-hour IFNα treatment. Total RNA was then extracted from 

the cells by standard Phenol-Chloroform extraction using TRIzol 

(ThermoFisher). Briefly, 1 ml of TRIzol reagent is added to each well to lyse the 
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cells. Cell lysates were collected and mixed with 200 µl of chloroform. To 

separate RNA, DNA and protein, the TRIZol-chloroform lysates were 

centrifuged at 12,000 ×g for 15 minutes at 4°C. The RNA-containing aqueous 

phase was then removed from the separated lysates. RNA was then mixed with 

1µl of GlycoBlue coprecipitant (ThermoFisher) and 500 µl of isopropanol (IPA) 

and incubated at -20°C for up to 1 hour to aid RNA precipitation. The RNA-IPA 

was then centrifuged at 12,000 ×g for 10 minutes at 4°C and the resultant RNA 

pellet washed twice in 1 ml of 75% (v/v) ethanol (EtOH). The EtOH supernatant 

was removed from the RNA pellet, which was then air-dried and dissolved in 

nuclease-free water overnight at 4°C. The RNA was then used directly in cDNA 

synthesis or stored at -70°C. 

2.7.2 Complementary DNA synthesis 

 Reverse transcription of purified RNA was completed using RevertAid 

First Strand cDNA Synthesis Kit (ThermoFisher), which utilizes a recombinant 

M-MuLV reverse transcriptase. Manufacturer’s instructions were followed and 

are outlined below. 

 Total RNA (3 µg) was added to 1.5 µl of Oligo d(T)18 primer (12.5µM) 

and nuclease-free water on ice and incubated at 65°C for 5 minutes. Once back 

on ice, 5× reaction buffer, RiboLock RNase inhibitor (20 units), and dNTPs (1 

mM of each) and RevertAid M-MuLV Reverse Transcriptase (200 units) were 

added to the reaction. Following an hour’s incubation at 42°C, the reaction was 

terminated by a 5-minute incubation at 70°C. Resultant cDNA was used directly 

in qPCR or stored at -70°C. 
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2.7.3 Quantitative PCR 

 Quantitative PCR is a highly sensitive technique that allows accurate 

determination of transcript levels within a given sample. In this study, qPCR was 

used to compare the levels of IFNβ mRNA in samples taken from cells treated 

with hit compounds and subsequently infected with SeV to activate the IFNβ 

induction pathway. MxA mRNA levels in samples from cells that had been 

treated with hit compound and subsequently incubated with IFNα to activate the 

IFN signalling pathway were also assessed. In this instance, absolute 

quantitation was used, as opposed to relative quantitation. To potentiate 

absolute quantitation, a DNA standard, of known concentration, matching the 

sequence to be amplified in the qPCR reaction is required. A 10-fold serial 

dilution of the standard allows the cycle threshold (Ct) values to be used to 

construct a standard curve, from which the quantity of DNA in the test samples 

can be calculated. The details of this process and the qPCR are given below. 

2.7.3.1 Standard curve generation 

 Plasmids containing gene fragments of IFNβ, MxA and β-Actin to be 

amplified in the qPCR reactions were used to create a standard curve of known 

concentration against Ct value using a 6-point 10-fold serial dilution of DNA 

from 1 ng to 0.01 pg. These reactions are carried out in the same 96-well plate 

as the corresponding test sample reactions, detailed below. The qPCR results 

for the IFNβ standard are shown in figure 2.1. In addition to the internal controls 

in the qPCR reaction detailed below, the standard curve also potentiates 

assessment of the efficiency of the reaction through the R2 value generated 

(Figure 2.1A). An example of the amplification plots generated for the DNA 
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standards is also shown (Figure 2.1B). The dissociation curve created during 

each reaction displays one clear peak (Figure 2.1C), suggesting high specificity 

of the primers and an absence of primer dimer formation. Standard and 

dissociation curves for the MxA and β-Actin primer sets are shown in Appendix 

1. 

2.7.3.2 qPCR of test samples 

Primers specific to IFNβ (nt 40-155), MxA (nt 570-931) and Actin (nt 257-

640) (Table 2.6) were used at 100 nM to assay cDNAs generated by reverse 

transcription (2.7.2) in qPCR reactions. In this study MESA Blue qPCR 

mastermIx (Eurogentec) containing SYBR Green I, an intercalating dye that 

fluoresces upon binding to DNA, and Rox, a reference dye that acts as an 

internal control to normalise any variations in mastermix concentration or 

reaction volume, were used. PCR reactions were set (Table 2.9) and were 

carried out in a Stratagene Mx3005P real-time PCR thermocycler using the 

specified cycling conditions (Table 2.10). Conversion of Ct value to DNA 

quantity (ng) was carried out by MxPro software (Stratagene). Further data 

analysis was carried out on Excel (Microsoft) and Prism6 (Graphpad). 
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Figure 2.1: Data output of qPCR reactions using IFNβ  standard template DNA. 
pJet1.2 IFNβ nt 40-155 was used to create a 6-point standard curve using a 10-fold serial 
dilution from 1 ng to 0.01 pg, giving an R2 value of 0.999 (A). The amplification plots for each of 
the 6 DNA concentrations show even spacing, with the highest DNA concentration 
corresponding to the lowest Ct value (B). The corresponding dissociation curve display a single 
clean peak with no indication of primer dimer formation (C). 
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Table 2.9: Components of a typical qPCR reaction 

Component 
Stock 

Concentration 
Final 

Concentration 

MESA Blue Mastermix 2× 1× 

Forward primer 100 µM 100 nM 

Reverse primer 100 µM 100 nM 

cDNA - 1 µl 

Nuclease-free Water   

 
Table 2.10: Cycling conditions of a typical qPCR reaction 

Step 
Temperature 

(°C) 
Time 

(Seconds) 
Function 

1 – Activation 
60 120 Activates Mastermix 

95 600 Activates polymerase 

2 – qPCR1 

95 15 Denatures 

50 60 Anneals 

72 60 Extends2 

3 – Dissociation 

curve 

95 60 Denatures 

50 30 Anneals 

95 30 Denatures3 

1 Step 2 repeated through 40 cycles 
2 Fluorescence read at the end of each extension step 
3 Fluorescence read at each degree between 50 and 95°C during ramp 

 

2.8 Immunofluorescent microscopy 

 Immunofluorescent microscopy was used to analyse the nuclear 

localisation of IRF3 during SeV infection, in the presence or absence of hit 

compounds. It was also used to assess the impact of hit compounds on SeV 

infection itself. A549 cells were grown on 10 mm coverslips (Scientific 

Laboratory Supplies) and treated with inhibitors for 2 hours at 37°C. Cells were 
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then infected with SeV and processed as detailed below for the two different 

experiments. Details of the antibodies used can be found in table 2.1. Images 

were collected on a Nikon Microphot-FXA microscope at ×40 magnification with 

Imsol imaging software and processed using ImageJ64 software. 

2.8.1 IRF-3 localisation analysis 

At 4 hours post infection, cells were fixed (5% (v/v) formaldehyde in PBS) 

for 15 minutes, permeabilised (0.5% (v/v) NP-40, 10% (w/v) sucrose) for 10 

minutes and washed (1% (v/v) FBS in PBS). Coverslips were incubated for 1 

hour with anti-IRF3 antibody, followed by Texas red-conjugated secondary 

antibody and DAPI (Sigma). For quantification of nuclear translocation, images 

were anonymized and Dr Andri Vasou counted cells displaying nuclear or 

diffuse cytoplasmic staining of IRF3. The number of cells showing IRF3 nuclear 

localisation was converted to a percentage of total cells counted for each 

image. 

2.8.2 Sendai virus infection analysis 

Two hours post-compound treatment, cells were infected with SeV for 18 

hours followed by fixation (5% (v/v) formaldehyde in PBS) for 15 minutes, 

permeabilisation (0.5% (v/v) NP-40, 10% (w/v) sucrose) for 10 minutes and 

washed (1% (v/v) FBS in PBS). Coverslips were incubated for 1 hour with anti-

SeV antibody, followed by FITC-conjugated secondary antibody. 
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2.9 Plaque assays 

 In order to assess the growth of an IFN sensitive virus in the presence of 

hit compounds, plaque assays were performed, which allow quantification of 

viral replication. A549 cells were seeded into 12-well plates at 2.5×105 cells/ml. 

The following day, confluent monolayers were treated with compound for 2 

hours where appropriate, and then infected with 100 µl of 10-6 BunVΔNSs in 

PBS supplemented with 2% (v/v) foetal calf serum (FCS). Following a 1 hour 

incubation at 37°C for adsorption, the inoculum was replaced with Avicel 

overlay (1× MEM, 1× GlutaMAX, 2% (v/v) newborn calf serum (NCS), 0.4% 

(v/v) NaHCO3 and 0.6 % (w/v) Avicel), which, where appropriate also contained 

hit or control compound. Plaque assays were incubated for 3 days at 37°C with 

5% CO2 followed by fixation with 5% (v/v) formaldehyde in PBS for 1 hour at 

4°C. Cells monolayers were washed with water and plaques visualised by 

Coomassie Brilliant Blue stain (0.1% (w/v) Coomassie R250, 10% (v/v) Glacial 

acetic acid and 40% (v/v) Methanol). To facilitate quantification of plaque size, 

plates were scanned at 600 d.p.i. and images amplified to 400%. PixelStick 

(Plum Amazing) was used to measure plaque size. The plaque size in pixels 

was normalized to the DMSO + SeV control to illustrate fold-increase. 
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3. Development of a cell-based assay to identify 

modulators of the type I IFN response 

3.1 Introduction 

 Two GFP reporter cell lines, A549/pr(IFNβ).GFP and 

A549/pr(ISRE).GFP, previously generated in the lab provide a simple method to 

detect activation of the IFN response through fluorescence. These cells lines 

have previously been used to monitor the activity of known inhibitors of the IFN 

induction and signalling pathways (Stewart et al., 2014). We sought to 

demonstrate that these cell lines could be utilized in an automated HTS to 

identify novel compounds that modulate the IFN response. In order to execute a 

robust screen and have confidence in the results obtained, the assay in 

question requires optimization to (i) maximize the signal-to-background (S/B) 

ratio, (ii) minimize variation between replicates and (iii) minimize the timescale 

of the assay. In collaboration with the Drug Discovery Unit (DDU) at the 

University of Dundee, we instigated a campaign of assay development in which 

we sought to optimize every step in both the IFN induction assay, utilizing the 

A549/pr(IFNβ).GFP reporter cell line and the IFN signalling assay, utilizing the 

A549/pr(ISRE).GFP cell line. Following this period of optimization, both assays 

were validated for their ability to identify novel modulators of the IFN response 

by using compounds known to inhibit various components of the pathways. 

Following successful assay validation, the assays were miniaturized and 

automated to a 384-well HTS format to generate final assay parameters, which 
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illustrated that both GFP reporter assays had been successfully optimized for 

use in HTS. 

 

3.2 Results 

3.2.1 IFN induction assay development 

The IFN induction assay utilizes the A549/pr(IFNβ).GFP cell line, which 

has an eGFP gene under the control of the IFNβ promoter. When 

A549/pr(IFNβ).GFP cells are infected with a Sendai virus (SeV) stock rich in 

defective interfering (DI) particles to activate the IFN induction pathway, GFP is 

expressed (Figure 3.1A). Using a fluorescent plate reader, the signal expressed 

in raw fluorescent units (RFU), potentiates quantification of GFP fluorescence. 

By normalizing the RFU of activated cells to that of unactivated cells 

(background fluorescence), S/B ratio can be established (Figure 3.1B). A 

compound that enhances or inhibits the IFN induction pathway would result in 

increased or decreased GFP expression respectively. With the aim of 

developing a high-throughput automated assay to identify molecules that 

modulate IFNβ induction, we sought to optimize a cell-based assay using the 

A549/pr(IFNβ).GFP reporter cell line. To achieve this, we assessed the 

following parameters; (i) SeV inoculum concentration, (ii) SeV infection length, 

(iii) length of cell seeding prior to infection, (iv) length of formaldehyde fixation of 

cells following infection and (iv) seeding density of cells. As each parameter 

was optimized, it was taken forward for use in the next step of the optimization 

campaign. 
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Figure 3.1: A cell-based assay to monitor the IFN induction pathway 
The A549/pr(IFNβ).GFP cell line, with a GFP gene under the control of the IFNβ promoter 
proveds a straightforward method to monitor the IFN induction pathway. Upon infection of the 
A549/pr(IFNβ).GFP cell line with a DI rich stock of SeV, the IFN induction pathway is activated 
resulting in expression of GFP (A). This fluorescence provides a parameter by which the 
activation of the IFNβ promoter can be monitored and quantified using a fluorescent plate 
reader at excitation and emission wavelengths of 484 and 518 nm respectively (B). Data 
represents 3 independent repeats each conducted in quadruplicate (n=4) and error bars display 
standard deviation (StDeV). 
 

The initial step in the optimization process was to determine the optimal 

concentration of SeV for maximal activation of the IFNβ promoter and thus GFP 

expression, whilst minimizing reagent usage. To achieve this, 

A549/pr(IFNβ).GFP cells were infected with a 2-fold dilution series of virus for 

20 hours. Fluorescence was measured following formaldehyde fixation on a 

Tecan Infinate Pro plate reader at excitation/emission of 484/518nm. Maximal 

GFP expression was observed between 200 and 12.5 HA units/ml, after which 

S/B ratio begins to reduce in a dose-dependent manner (Figure 3.2A). As 

maximal GFP expression is required without wasting reagents, an SeV 

inoculum concentration of 40 HA units/ml was deemed to be the most 

appropriate for this assay; it is a convenient dilution to perform (1:100) and does 

not approach the stage at which S/B ratio begins to reduce. 

SeV is cytopathic in cell culture as it induces programmed cell death 

(PCD) (Garcin et al., 1998), resulting in high levels of apoptosis and monolayer 
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disruption during infection (Iseni et al., 2002). We therefore sought to ascertain 

the point at which GFP expression was optimal during infection. We assume 

that when S/B ratio is at its highest, the cell monolayer has undergone minimal 

disruption from the SeV infection and as such the maximum number of cells 

expressing GFP are present. A549/pr(IFNβ).GFP cells were infected with SeV, 

and following 8, 12, 16 and 19 hours of infection, cells were fixed and GFP 

expression measured. S/B ratio is significantly increased at 16 and 19 hours 

post-infection (p<0.0001) (Figure 3.2B). As an aim of this optimization was to 

minimize the timescale of the assay where possible, a 16-hour infection was 

deemed most appropriate as incubation with SeV for 3 hours longer did not 

significantly impact GFP expression. 

The length of time that cells are given to recover following trypsinisation 

prior to infection may also be a factor that impacts the level of SeV induced cell 

death. To investigate this, A549/pr(IFNβ).GFP cells were seeded and incubated 

for 18 and 24 hours. Cells were then infected with SeV for 16 hours, fixed and 

GFP fluorescence measured. From the levels of GFP expression observed, a 

24-hour incubation following cell seeding prior to infection was optimal (Figure 

3.2C). Although slight, a significant increase in S/B ratio is observed when 

compared with cells that were incubated for 16 hours before SeV addition 

(p<0.0002). By assessing the impact of SeV inoculum concentration, cell 

seeding length prior to infection and infection length itself, variability observed 

within the assay resulting from SeV induced cell death was reduced, whilst also 

optimizing S/B ratio. 
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Figure 3.2: Optimization of the IFN induction reporter assay. 
A549 reporter cells with a GFP gene under the control of the IFNβ promoter were used to 
optimize an assay for HTS. The level of eGFP reporter gene expression is presented as signal-
to-background ratio (S/B ratio). Optimization steps aimed to maximize S/B ratio and minimize 
the time-scale of the assay. SeV input was assessed in A549/pr(IFNβ).GFP reporter cells using 
a 2-fold dilution series of SeV and fluorescence was monitored (A). Length of SeV infection was 
assessed (B), as was the incubation period between cell seeding and infection (C). By fixing 
cells for various lengths of time 16 hours post-infection, the effect of formaldehyde fixation on 
GFP signal was assessed (D). Reporter cells were seeded at various cell densities and infected 
with SeV. Fluorescence was measured 18 hours post-infection (E). Data is representative of 
three independent experiments that were each conducted in quadruplicate (n=4) and error bars 
indicate StDev. Statistical significance was assessed using one-way ANOVA to compare the 
S/B ratios achieved under differing assay conditions (*** p<0.0001, ** p<0.0002).  
 

Additional factors unrelated to SeV infection may also impact the 

variability and S/B ratio observed in the IFN induction assay. Owing to the scale 

of HTS, batches of multiple 384-well plates will be processed at the same time. 

To ensure that the cells and virus infection are consistent, and that GFP 

expression is comparable between plates, fixation is necessary. Therefore, we 

aimed to assess the impact of formaldehyde fixation on GFP fluorescence. To 
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study this, A549/pr(IFNβ).GFP cells were seeded and infected with SeV. Cells 

were then fixed with a final concentration of 5% formaldehyde in PBS for 15, 30 

and 45 minutes. We observed that S/B ratio was significantly reduced following 

45 minutes of formaldehyde fixation (p<0.0001) (Figure 3.2D). Furthermore, an 

increase in variability was observed when cells were fixed for longer than 30 

minutes. As the assay development process aims to minimize the timescale 

and variability of the assay where possible, and no significant difference in S/B 

ratio is observed between formaldehyde incubations of 15 and 30 minutes, a 

fixation length of 15 minutes was considered optimal. 

In order for cells to respond to treatment with a physiologically 

representative response, they must be at a density at which they are functioning 

as normal. Furthermore, in a cell-based assay S/B ratio is inherently linked to 

the cell-number in each well. To assess how cell density may impact GFP 

expression in our assay, A549/pr(IFNβ).GFP cells were seeded at 3, 6 and 

9×104 cells/cm2 of cell growth area for 24 hours. Following SeV infection and 

formaldehyde fixation, GFP was measured to assess S/B ratio and associated 

variability between replicates. S/B ratio is not significantly increased when cell 

density doubles from 3×104 to 6×104 cells/cm2 (Figure 3.2E). However, when 

cells are seeded at a density of 9×104 cells/cm2 of growth area, a statistically 

significant increase in S/B ratio is observed (p<0.0001). Interestingly, variability 

also appears to increase slightly with each increase in cell density, although the 

increase in S/B ratio more than compensated for this. 

Owing to this campaign of assay development, the optimized assay 

resulted in a S/B ratio of 2.6±0.06 from cell seeding at 9×104 cells/cm2 of growth 
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area, 24 hours prior to infection with 40 HA units/ml of SeV for 16 hours 

followed by 15 minutes of formaldehyde fixation. As such, S/B ratio was 

successfully optimized whilst minimizing assay variability and timescale. 

In order to validate the IFN induction assay for use in HTS, we needed to 

verify its ability to identify novel inhibitors of the IFNβ induction pathway. To 

achieve this, chemical compounds reported to inhibit components of the IFN 

induction pathway were used in the IFN induction reporter assay. BX795, which 

inhibits TBK1 in the course of IRF3 activation (Clark et al., 2009), and TPCA-1, 

an IKKβ inhibitor acting during NF-κB activation (Podolin et al., 2005) were 

used. A549/pr(IFNβ).GFP cells were seeded into 96-well plates. Twenty-four 

hours post-seeding, cells were treated with a 2-fold serial dilution of either 

BX795, TPCA-1, or the equivalent volumes of DMSO for 2 hours followed by a 

SeV infection. Cells were fixed and GFP expression measured. Percentage 

inhibition in GFP expression was calculated by converting the RFU signal of 

DMSO treated cells that were unactivated (uninfected), with that of DMSO 

treated, activated (infected) cells to normalize to 100% and 0% inhibition 

respectively. The equation used to calculate percentage inhibition in GFP 

expression can be found in chapter 2 (2.4.1). A clear dose-dependent inhibition 

of GFP expression was observed in the presence of both inhibitors (Figure 3.3). 

BX-795 completely inhibited GFP expression at 25 µM with an IC50 of 5.2 µM, 

displaying a classic sigmoidal dose-response curve. TPCA-1 on the other hand 

achieved a lower maximum GFP inhibition of 72% at 25 µM, however it also has 

a lower IC50 of 3.1 µM.  
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Figure 3.3: Inhibition of IFNβ  promoter driven GFP expression by chemical antagonists. 
Small molecules BX795 and TPCA-1, reported to inhibit the TBK1 and IKKβ in the course of IFN 
induction were used to verify the A549/pr(IFNβ).GFP reporter assay. The IFN-induction pathway 
and hence GFP expression was activated by SeV infection. GFP expression in the presence of 
a 2-fold serial dilution of BX795 and TPCA-1 was measured 16 hours post-infection. Data 
represents 3 independent repeats each conducted in quadruplicate (n=4); error bars display 
StDev. 
 

The inhibition of GFP expression observed in activated 

A549/pr(IFNβ).GFP cells treated with BX795 and TPCA-1 validates this assay 

and provides proof-of-principle that it can used in HTS. Due to proof-of-principle 

confirmation and the encouraging results obtained through the assay 

development campaign, it was believed that an HTS to identify novel 

modulators of IFN induction would be successful. 

3.2.2 IFN signalling assay development 

The IFN signalling assay utilizes the A549/pr(ISRE).GFP cell line, which 

has an eGFP gene under the control of an MxA promoter, which contains 

ISREs. When A549/pr(ISRE).GFP cells are treated with purified IFNα, the IFN 

signalling pathway is activated, and results in GFP expression (Figure 3.4). 

However, the levels of GFP expressed in activated A549/pr(ISRE).GFP cells 
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appears more heterogeneous (Figure 3.4A) with a lower S/B ratio (Figure 3.4B) 

than that observed in the A549/pr(IFNβ).GFP cell line (Figure 3.1). To facilitate 

successful assay development and subsequent HTS of a cell-based assay, we 

required a S/B ratio of at least 2. Therefore, maximizing the S/B ratio in the 

A549/pr(ISRE).GFP cell line was necessary to render it more amenable to 

assay development and potentiate the use of the IFN signalling assay in HTS. 

 

 
Figure 3.4: A cell-based assay to monitor the IFN signaling pathway 
To monitor activation of IFN signalling, an A549 reporter cell line with an eGFP gene under the 
control of the ISRE containing MxA promoter had been previously generated. Upon treatment of 
the A549/pr(ISRE).GFP cell line with purified IFNα, the IFN signaling pathway is activated 
resulting in expression of GFP (A). This fluorescence provides a parameter by which the 
activation of the MxA promoter and thus ISG expression through IFN signaling can be 
monitored, and quantified using a fluorescent plate reader at excitation and emission 
wavelengths of 484 and 518 nm respectively (B). Data represents 3 independent repeats each 
conducted in quadruplicate (n=4) and error bars display StDeV. 
 

We sought to optimize GFP expression in the A549/pr(ISRE).GFP 

reporter cell line through multiple rounds of transduction with lentivirus 

containing the pr(ISRE).GFP integration cassette. Parental A549/pr(ISRE).GFP 

cells, generated previously to this study, had undergone a single round of 

lentivirus transduction followed by fluorescent activated cell sorting (FACS) to 

isolate cells expressing the highest levels of GFP following IFNα treatment. We 

theorized that multiple lentiviral transductions, increasing the number of 
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integration events with the pr(ISRE).GFP expression cassette would 

significantly increase GFP expression in A549/pr(ISRE).GFP cells without 

having a detrimental affect on the cells. This was achieved by transducing the 

parental A549/pr(ISRE).GFP cell line 3 times with lentivirus, followed by 

incubation for 72 hours to allow the cells to recover. The cells were then 

transduced a further 4 times to produce the A549/pr(ISRE).GFP.L8 cell line. 

GFP expression and intensity of fluorescence was increased dramatically 

between cells that have a single integration compared to those that have 8 

(Figure 3.5A). In an effort to produce a cell line that exhibits more homogenous 

expression of GFP with more consistent levels of fluorescence throughout the 

population, these cells were analysed by FACS. Fiona Rossi at The Queen’s 

Medical Research Institute, Edinburgh, carried out this work. The 

A549/pr(ISRE).GFP cells that had undergone a total of 8 lentiviral transductions 

were left untreated (unactivated) or treated with IFNα for 20 hours to activate 

the IFN signalling pathway (activated). From the population of cells activated 

with IFNα, those expressing the highest levels of GFP were isolated. The flow 

cytometry profiles of untreated and IFN-treated A549/pr(ISRE).GFP.L8 cells 

and the sorted cell population (A549/pr(ISRE).GFP.L8F) are shown (Figure 

3.5B). 

To assess the impact that repeated rounds of lentivirus transduction with 

the pr(ISRE).GFP integration cassette and FACS had in the context of the IFN 

signalling assay, A549/pr(ISRE).GFP, A549/pr(ISRE).GFP.L8 and 

A549/pr(ISRE).GFP.L8F cells were seeded into 96-well plates and left 

untreated or treated with IFNα. Following IFNα treatment to activate the IFN 
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signalling pathway, cells were fixed with 5% formaldehyde and GFP expression 

measured. Surprisingly, the level of GFP expression observed in 

A549/pr(ISRE).GFP.L8 cells was only slightly higher than that of the parental 

A549/pr(ISRE).GFP cell line. Following FACS however, a dramatic increase in 

S/B ratio was seen (Figure 3.5C). From the data presented here, we 

successfully increased GFP expression in the IFN signalling assay by repeated 

rounds of lentivirus transduction in the A549/pr(ISRE).GFP cell line. The S/B 

ratio was dramatically improved upon FACS to select against cells that, in the 

presence of IFNα, had low levels of GFP expression. Overall, this optimization 

process increased the S/B ratio from 1.5 to 2.3. For the remainder of this 

chapter, and all other chapters, the A549/pr(ISRE).GFP.L8F cell line was used. 

For simplicity, it will be referred to as A549/pr(ISRE).GFP. 
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Figure 3.5: Optimization of the A549/pr(ISRE).GFP reporter cell line through multiple 
lentivirus transductions and FACS 
To maximize the S/B ratio of GFP expression in A549/pr(ISRE).GFP reporter cells, repeated 
lentivirus transductions were performed, followed by cell sorting on the basis of GFP 
fluorescence. A549/pr(ISRE).GFP cells were transduced a further 7 times with lentivirus with an 
integration cassette containing the MxA promoter and GFP gene. (A) Parental 
A549/pr(ISRE).GFP (1) and multiply transduced (8) cells were treated with IFNα to activate the 
IFN signaling pathway, and visualized to assess GFP expression compared to untreated 
A549/pr(ISRE).GFP cells. (B) To establish the signal window of the IFN signaling assay when 
cells are activated and unactivated, A549/pr(ISRE).GFP cells that had undergone multiple 
transductions were analyzed for GFP expression following incubation with and without IFNα by 
flow cytometry. Cells were then subjected to FACS on the basis of GFP fluorescence. Activated 
cells expressing the highest levels of GFP were sorted and isolated (A549/pr(ISRE).GFP.L8F). 
(C) The GFP expression levels of sorted cells (A549/pr(ISRE).GFP.L8F) was compared to 
unsorted cells that had also undergone multiple lentivirus transductions 
(A549/pr(ISRE).GFP.L8) and the parental A549/pr(ISRE).GFP cell line following IFNα treatment 
was assessed. Data represents 3 independent repeats, each conducted in quadruplicate (n=4). 
Error bars display StDev. 
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To identify molecules that modulate IFN signalling, we sought to optimize 

a cell-based assay using the A549/pr(ISRE).GFP reporter cell line. To achieve 

this, we aimed to investigate the impact the following parameters; (i) 

concentration of IFNα treatment, (ii) use of dissociation reagent, and (iii) length 

of IFNα treatment. As each parameter was optimized, it was taken forward for 

use in the next step of the optimization process. The previously optimized 

parameters for cell density, seeding length and formaldehyde fixation gained 

from development of the IFN induction assay were also used here. 

The initial step in the optimization process was to determine the 

concentration of IFNα required for optimal activation of the IFN signalling 

pathway and thus GFP expression, whilst minimizing reagent usage. To 

achieve this, A549/pr(ISRE).GFP cells were treated with a 2-fold dilution series 

of IFNα. Fluorescence was measured following formaldehyde fixation on a 

Tecan Infinite Pro plate reader at excitation/emission of 484/518nm. Maximal 

GFP expression was observed between 40,000 and 20,000 units/ml, after 

which S/B ratio begins to decline in a dose-dependent manner (Figure 3.6A). As 

maximal GFP expression is required without wasting reagents, an IFNα 

concentration of 10,000 units/ml was deemed to be the most appropriate for the 

assay. Although maximal S/B ratio is no achieved at this concentration, 

variability is lower; it is a convenient dilution to perform (1:100) and does not 

approach the point at which S/B ratio dramatically decreases. 

To activate the IFN signalling pathway, IFNα binds to the IFNα/β 

receptor found on the surface of cells. Trypsin is routinely used in cell culture for 

passage and seeding of cells into multi-well plates. If trypsin cleaves the IFNα/β 
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receptor, the potential exists for a reduction in receptor numbers, which would 

have a negative impact on IFNα binding and thus activation of the IFN 

signalling pathway. The ExPASy website PeptideCutter 

(http://web.expasy.org/peptide_cutter/) predicts 54 trypsin cleavage sites in the 

IFNα/β receptor protein sequence (Accession: CAA42992.1). As such, this 

could impact the S/B ratio of the IFN signalling assay. To investigate this 

further, we made single cell suspensions of A549/pr(ISRE).GFP cells by 

treating cell monolayers with either trypsin-EDTA or EDTA alone and then 

compared their ability to respond to IFNα. Cells were left untreated or treated 

with IFNα for 24 hours. GFP expression was measured following formaldehyde 

fixation. The use of trypsin did not impact the background signal or variability of 

unactivated A549/pr(ISRE).GFP cells (Figure 3.6B). However, following 

treatment with IFNα, there was a significant increase in GFP expression in cells 

that had been seeded following EDTA treatment alone, compared to cells 

treated with trypsin-EDTA (p<0.0001). This suggests that trypsin does cleave 

the IFNα/β receptor, leading to a lower level of IFN signalling pathway activation 

in the presence of IFNα. 
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Figure 3.6: Optimization of the IFN signaling assay. 
A549 reporter cells with a GFP gene under the control of the ISG containing MxA promoter 
were used to optimize an assay for HTS in successive steps. The level of GFP reporter gene 
expression is presented as signal-to-background ratio (S/B ratio). Optimization steps aimed to 
maximize S/B ratio and minimize the time-scale of the assay. IFNα input was assessed in 
A549/pr(ISRE).GFP reporter cells using a 2-fold serial dilution of IFNα and fluorescence was 
monitored (A). The method of monolayer dissociation prior to cell seeding was assessed for its 
impact on GFP expression. A549/pr(ISRE).GFP reporter cells were dissociated with either 
trypsin or EDTA (0.48 mM) before seeding and IFNα treatment (B). The length of IFNα 
incubation was assessed (C). Data represents three independent experiments that were each 
conducted in triplicate (n=3) and error bars indicate StDev. Statistical significance was 
assessed using one-way ANOVA to compare the S/B ratios achieved under differing assay 
conditions (*** p<0.0001). 
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that results in optimal GFP expression. To achieve this, A549/pr(ISRE).GFP 

cells were treated with IFNα, and 24 and 48 hours post-IFNα treatment, GFP 

expression was measured. There was a dramatic increase in S/B ratio at 48 

hours post-treatment (Figure 3.6C). As the aim of this assay development was 

to maximize S/B ratio, a 48-hour IFNα incubation was deemed most appropriate 

as it increased GFP expression by 0.5-fold above that of a 24-hour treatment 

length. Owing to this process of development, the optimized assay included cell 

seeding at a density of 9×104 cells/cm2 following treatment with EDTA only, and 

treating cells with 10,000 units/ml of IFNα for 48 hours, and achieved a S/B 

ratio of 2.2. 

In order to validate the IFN signalling assay for use in HTS, we needed to 

verify that it could be used to identify novel inhibitors of the IFN signalling 

pathway. To achieve this, Ruxolitinib (Rux), and CYT387, which both inhibit 

JAK1/2 in the course of STAT activation (Quintas-Cardama et al., 2010, 

Pardanani et al., 2009) were tested in the IFN signalling assay. Twenty-four 

hours post-seeding, A549/pr(ISRE).GFP cells were treated with a 2-fold serial 

dilution of either Rux, CYT387, or the equivalent volumes of DMSO for 2 hours 

followed by IFNα treatment. The percentage inhibition in GFP expression was 

calculated as before (3.2.1). A clear dose-dependent inhibition of GFP 

expression was observed in the presence of both inhibitors (Figure 3.7). Both 

compounds completely inhibited GFP expression at 25 µM. Rux had an IC50 of 

0.53 µM and CYT387 had an IC50 of 2.03 µM. 

The inhibition in GFP expression seen in activated A549/pr(ISRE).GFP 

cells treated with Rux or CYT387 validated this assay and provides proof-of-
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principle that it can be used successfully in HTS to identify novel modulators of 

IFN signalling would be successful. 

 

 

 

 

 

 

 

 
Figure 3.7: Inhibition of ISRE driven GFP expression by chemical antagonists. 
Small molecules Ruxolitinib and CYT387 have been reported to inhibit the Jak1 component of 
the IFN-signaling pathway. The compounds were used to verify the A549/pr(ISRE).GFP 
reporter assay. The IFN-signaling pathway and hence eGFP expression was activated by IFNα 
treatment. GFP expression in the presence of Ruxolitinib and CYT387 at various concentrations 
was measured post-IFNα treatment. Data represents 3 independent repeats each conducted in 
quadruplicate (n=4); error bars display StDev. 
 
 

3.2.3 Final assay parameters 

 The assay development campaigns detailed above for both the IFN 

induction and the IFN signalling assays were carried out in St Andrews with the 

aim of subsequently using automated liquid handling at the DDU at the 

University of Dundee. For this, we needed to miniaturize the assays from a 96- 

to a 384-well plate format, which is more amenable to HTS as it reduces the 

necessary plate number by 75%. It also facilitates reduction of the assay 

volume from 120 µl to 60 µl, allowing for conservation of valuable reagents. To 

achieve this, both assays were assessed at the DDU after automating as much 

of the assay as possible. This included the use of an Echo 555 liquid handler, 
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which can accurately transfer as little as 2.5 nl of test compound. Cell seeding, 

addition of SeV and IFNα were carried out with a Matrix WellMate microplate 

dispenser. Initially, washing of fixed plates wasto be carried out using a BioTek 

ELx405 Select CW microplate washer. However, troubleshooting of inconsistent 

washing, revealed high levels of variability. Therefore, the wash step was the 

only high throughput aspect of the assays that was done manually. Following 

miniaturization and automation of the IFNβ induction and IFN signalling reporter 

assays at the DDU, their performance was compared to pre-set QC parameters 

set by the DDU (Table 3.1). Both assays performed well, with each assay 

parameter well within its associated QC limits. This provided confidence that we 

had successfully developed robust and reproducible assays as the S/B ratio 

was above 2.8 in both cases. A powerful statistic used to assess the overall 

performance of an assay, which gives an indication of its suitability to HTS is 

the Z’ factor (Zhang, 1999). This statistic takes into consideration both the 

signal window (S/B ratio) and the variability of the assay. As such, it provides a 

convenient statistic that describes the critical aspects of an assay’s behaviour. 

The closer the Z’ factor is to 1 (and above 0.5), the more robust and reliable an 

assay. In this case, a Z’ factor above 0.6 was achieved, indicating a high level 

of reproducibility and that both assays were robust. 
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Table 3.1: Performance of the IFN induction and signaling assays compared to pre-set 
QC standards. Following assay development, the reporter cell lines were optimized for HTS. 
The performance of the A549/pr(IFNβ).GFP IFN induction and A549/pr(ISRE).GFP IFN 
signalling assays following optimization to an automated 384-well format were compared to pre-
set quality control standards. 

 

QC 

Approval 

IFNβ  Induction 

Assay 

IFN Signalling 

Assay 

Z’ Factor > 0.5 0.67 ± 0.03 0.7 ± 0.05 

S/B ratio > 2 3.1 ± 0.53 2.8 ± 0.06 

Activated CV (%) < 8 6.7 ± 0.59 4.9 ± 0.93 

Unactivated CV (%) < 8 3.1 ± 0.53 2.5 ± 0.66 

 

3.3 Summary 

 Through extensive assay development, we successfully optimized two 

fluorescent cell-based assays for use in HTS. Furthermore, through the use of 

known chemical antagonists of IFN induction and signalling, these assays were 

validated for their suitability to identify novel modulators of the two pathways. 

Activation of the IFN induction pathway in the A549/pr(IFNβ).GFP assay is 

dependent upon SeV infection. Although the DI rich Cantell strain of SeV used 

in this study is a very potent inducer of IFN, its inherent properties such as PCD 

induction meant that close optimization was necessary. This was achieved 

through assessing general assay conditions such as seeding density, and 

closely monitoring the impact of SeV induced cell death by studying the effect of 

infection length and inoculum concentration. The IFN signalling assay, utilizing 

the A549/pr(ISRE).GFP reporter cell line required additional optimization prior to 

general assay development, to maximize the GFP signal window. This was 
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achieved by multiple lentivirus transductions of the parental cell line followed by 

FACS selection of the most responsive cells. This signal optimization, followed 

by subsequent assay development successfully maximized S/B ratio while 

minimizing variation. As a result of the optimization campaigns on both the IFN 

induction and IFN signalling assay, their behaviour was highly reproducible. 

Furthermore, the assays were validated for their ability to identify chemical 

modulators of the pathways, and successfully miniaturized to an automated 

384-well plate format amenable to HTS. 
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4. High-throughput screening to identify novel 

modulators of the IFN response 

4.1 Introduction 

 As a result of the successful assay development and validation carried 

out in St Andrews, and the subsequent miniaturization of the IFN induction and 

IFN signalling assays at the DDU, an HTS campaign was pursued. At this point 

either assay could be taken forward for HTS, and the IFN induction pathway 

was chosen. There are already many commercially available inhibitors of the 

IFN signalling pathway, and although commercial inhibitors of the IFN induction 

pathway are also available, they are mainly focused on inhibition of the kinases 

involved in IFN activation. Therefore, the potential exists to identify compounds 

that modulate novel targets. As such, we proposed that there was greater 

scope for discovery of novel modulators of IFN induction and so pursued a 

single-point diversity screen utilizing the IFN induction assay and 

A549/pr(IFNβ).GFP cell line. 

The small diversity set of the DDU compound library, consisting of 

15,667 small molecules, was used at an initial screening concentration of 30 

µM. Following successful primary screening, putative hit compounds were taken 

forward to dose-response screens. This screening aimed to determine the 

potency of a given hit compound. Dose-response screening utilized a 10-point 

2-fold serial dilution of compound, in this case from 50 µM to 0.1 µM, to 

construct a 4-parameter logistic fit using % inhibition in GFP expression. This 

facilitates determination of potency through the construction of a dose-response 
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curve by using minimum and maximum % inhibition in GFP expression, hill 

slope and XC50. Where the term XC50 is used, ‘X’ denotes a compound where 

activity is either antagonistic (inhibition, IC50) or agonistic (enhancement, EC50). 

During dose-response screening, XC50 values are routinely reported as pXC50, 

where the negative log of the molar concentration is used. As such, the higher 

pXC50 value, the lower the molar XC50 concentration. For reference, a 

conversion table is provided (Table 4.1). 

 

Table 4.1: Conversion table of the µM and corresponding negative log molar concentration 

µM Log(-M) 
50.0 4.3 
25.0 4.6 
12.5 4.9 
10.0 5.0 
6.3 5.2 
5.0 5.3 
3.1 5.5 
1.6 5.8 
0.8 6.1 
0.4 6.4 
0.2 6.7 
0.1 7.0 

0.05 7.3 
 

Three dose-response screens were carried out to investigate the activity 

of hit compounds in (i) inhibition of IFN induction, (ii) enhancement of IFN 

induction and (iii) assess their specificity. This screening aimed to determine the 

potency of putative hit compounds in the IFN induction assay, but also 

eradicate false positives by eliminating hits that fail to produce a curve from the 

parameters detailed above. This process is beneficial as it allows for timely 
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reduction in compound numbers, allowing further studies to focus on a smaller 

number of confirmed hits.  

 Following dose-response screening, a confirmed hit warranting further 

investigation was first analysed by liquid chromatography-mass spectrometry 

(LC-MS) to assess the purity and confirm the identity of the compound used in 

screening. Confirmed hit compounds that passed LC-MS were repurchased and 

investigated further through a campaign of hit validation, aiming to re-test the 

compound from a fresh stock to confirm its direct action on the IFN induction 

pathway and also eliminate false-positives acting through off-target effects. 

 

4.2 Results 

4.2.1 Diversity HTS to identify compounds that modulate the IFN induction 

pathway 

 The successful optimization and validation of the IFN induction assay 

detailed in chapter three provided confidence that a diversity screen to identify 

novel modulators of the IFN induction pathway could be successfully 

completed. As such, we embarked on a screening campaign using the Small 

Diversity Set (15,667 compounds) of the compound library at the DDU. This 

compound collection is composed of small molecules selected as appropriate 

starting points for drug discovery that all comply with Lipinski’s rule of 5 (Lipinski 

et al., 2001). For HTS, A549/pr(IFNβ).GFP cells were seeded into clear-

bottomed black 384-well plates laid out as shown (Figure 4.1A). Cells in 

columns 1 to 22 were treated with test compound. SeV infection of columns 1 to 

22 and column 24 followed. Column 24 was untreated but infected with SeV 
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(activated) provide a 0% inhibition control. Column 23 was left untreated and 

uninfected (unactivated) to provide a 100% inhibition control. GFP expression 

was measured using an Envision plate reader. Screening was carried out in 4 

batches of 12 384-well plates over the course of 2 weeks. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Single point diversity HTS to identify compounds that modulate the IFN 
induction pathway 
A single point diversity screen using the A549/pr(IFNβ).GFP reporter assay and the DDU small 
diversity set (n = 15,667 compounds) was performed at a compound concentration of 30 µM. 
(A) A schematic of 384-well plate layout; wells in columns 1-22 contain a single test compound 
and SeV infected cells, wells in column 23 contain uninfected cells that represent maximum 
eGFP inhibition (100%, Unactivated) and wells in column 24 contain untreated SeV infected 
cells that represent baseline eGFP inhibition (0%, Activated). (B) Plot of Z’ factor and S/B ratio 
for each assay plate in the primary screen. Dotted lines indicate QC approval limits for Z' factor 
(0.5) and S/B ratio (2). 
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Table 4.2: Screen statistics of the IFN induction assay, measured as Z’ factor, S/B ratio, and % 
co-efficient of variation (CV) and compared to DDU preset QC standards. 

 
QC 

Approval 
Diversity 
Screen 

Z’ Factor > 0.5 0.6 ± 0.1 

S/B > 2 1.6 ± 0.2 

Activated CV (%) < 8 4.4 ± 1.8 

Unactivated CV (%) < 8 2.4 ± 1.4 
 

The behaviour of the screen in terms of QC statistics was monitored 

between plates and between batches. The screen performed as expected with 

the exception of a dramatic drop in S/B ratio (Table 4.2). Assay development 

saw a consistent S/B ratio of 3.1±0.53, while this fell during primary screening to 

1.6±0.2. Although not inconsequential, the Z’ factor remained at 0.6 and % CV 

for both activated and unactivated cells was consistently below 4.5%. Although 

the unexpected drop in S/B ratio may call into question the validity of the 

screen, the consistency of the arguably more important Z’ factor suggests that 

the screen remained robust (Figure 4.1B). Percentage effect of GFP inhibition 

for each compound was calculated using fluorescence, in RFU, of uninfected 

cells to set the 100% maximum (Unactivated) and untreated, SeV infected cells 

to set the 0% baseline (Activated). Of the 15,667 compounds tested, 

percentage effect of inhibition in GFP expression produced a normal distribution 

of results, centred at 10 to 20% inhibition (Figure 4.2A). A compound resulting 

in less that -50% inhibition in GFP expression and being 2 standard deviations 

outside of the test well average for the plate was considered a putative 

enhancer of IFN induction (Figure 4.2B). Likewise, a compound achieving 50% 

or more inhibition in GFP expression and being 2 standard deviations away 
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from the test well average for the plate was considered a putative inhibitor of 

IFN induction (Figure 4.2C). 

 

 
Figure 4.2: Percentage inhibition in GFP expression of compounds tested in a single 
point diversity HTS to identify modulators the IFN induction pathway 
(A) Screen output is represented as % inhibition of eGFP expression and plotted as a frequency 
distribution of all compounds tested. (B) Compounds that inhibit GFP expression from -50 to -
150% were designated as potential enhancers of IFN induction and plotted as a frequency 
distribution. (C) Compounds that inhibit GFP expression by 50% or more were designated 
potential inhibitors of IFN induction and plotted as a frequency distribution. 
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legacy data at the DDU. This data is compiled from all screens carried out in the 

department. One such example of how this data was used can be seen in an 

historical screen carried out at the DDU investigating compound action on 

intracellular parasites. In the course of this screen, mammalian host cell number 

was monitored. As such, information regarding a compounds impact on cell 

number was available. If a putative hit compound from our screen had caused a 

reduction in cell number in the previous screen, it was likely to be toxic to the 

mammalian host cell and as such was eliminated from further analysis. This 

process of hit triage reduced our putative hit compound number to 245, 

composed of 200 inhibitors and 45 enhancers of GFP expression. Therefore, 

the primary screening campaign yielded an initial hit rate of 1.56%.  

 With the aim of identifying novel compounds that modulate the IFN 

induction pathway we utilized the A549/pr(IFNβ).GFP reporter cell line and 

successfully carried out an automated HTS campaign with 15,667 test 

compounds, which identified 245 putative hits. Although a drop in S/B ratio was 

observed, the Z’ factor remained comparable to that achieved during assay 

development, reinforcing the integrity of the primary screen, which had a 

respectable hit rate of 1.56%. 

4.2.2 Dose response screening of putative hit compounds that modulate 

the IFN induction pathway 

 In order to confirm the activity of putative hit compounds identified during 

primary diversity screening, we embarked on a campaign of dose-response 

screening. The purpose of dose-response screening is 2-fold in that it not only 

allows the establishment of potency of putative hit compounds, but can also 
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facilitate the identification of false-positive hits. In this case, there were 245 

putative hit compounds to test. Primary diversity screening sought to identify 

compounds that modulate the IFN induction pathway, which could therefore 

result in either inhibition or enhancement of GFP expression. In order to 

maximize the information gained from dose-response screening, we carried out 

3 separate screens. The classical IFN induction assay with SeV infection 

facilitated the study of inhibitors of IFN activation (i), while the IFN induction 

assay without SeV infection allowed for greater scrutiny of putative hits that may 

enhance pathway activation (ii), and to aid in the elimination of false positives, 

putative hit compounds were also subjected to a specificity screen (iii) in the 

IFN signalling assay utilizing the A549/pr(ISRE).GFP cell line. A compound that 

is active in both the IFN induction and signalling assays is either acting through 

non-specific, off-target means or could have dual activity. The plate layout used 

in all 3 of the screens is shown (Figure 4.3A), where columns 1 to 10 and 13 to 

22 contain a 10-point 2-fold serial dilution of test compound from 50 µM to 0.1 

µM. As with the primary screen, a 100% inhibition control of untreated, 

unactivated cells (in columns 11 and 23) and a 0% inhibition baseline control of 

untreated, activated cells (in columns 12 and 24) was included. 
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Figure 4.3: Secondary dose-response screening using the IFN induction and signalling 
reporter assays. 
Putative hit compounds were subjected to secondary screening in the A549/pr(IFNβ).GFP and 
A549/pr(ISRE).GFP reporter assays to generate 10-point dose-response curves for potency 
determination. (A) A schematic of 384-well plate layout; wells in columns 1-10 and 13-22 
contain a single test compound in a 2-fold dilution series from 50 to 0.1 µM and SeV infected or 
IFNα treated cells, wells in column 11 and 23 contain uninfected cells that represent maximum 
eGFP inhibition (100%, Unactivated) and wells in column 12 and 24 contain untreated SeV 
infected or IFNα treated cells that represent baseline eGFP inhibition (0%, Activated). (B-D) 
Plots of Z’ factor and S/B ratio for each assay plate in the 3 secondary dose-response screens. 
Dotted lines indicate QC approval limits for Z' factor and S/B. All 245 putative hit compounds 
were analyzed in the A549/pr(IFNβ).GFP reporter assay with (B) and without (C) SeV infection 
to confirm the activity of compounds that inhibited or enhanced GFP expression during primary 
screening respectively. To eliminate false positive hits, compounds were also tested in the 
A549/pr(ISRE).GFP reporter assay (D) where SeV infection is replaced by IFNα treatment.  
 

The IFN inhibitor dose-response screen followed the IFN induction assay 

protocol using the A549/pr.(IFNβ).GFP reporter cell line with SeV infection of 

wells containing test compound. The purpose of this was to further investigate 

compounds that resulted in a reduction in GFP expression in the primary 
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screen. The IFN inhibitor screen behaved exceptionally with clear restoration of 

the S/B ratio to above 3, and each plate passing both the S/B ratio and Z’ factor 

QC approval limits (Figure 4.3B). 

The IFN enhancer dose-response screen was used to further investigate 

putative hits that enhanced GFP expression. This assay utilized the 

A549/pr.(IFNβ).GFP reporter cell line following the same protocol as the IFN 

induction assay with one exception; wells containing test compound (columns 1 

to 10 and 13 to 22) were not infected with SeV. Here the 0% enhancement 

baseline control was untreated, uninfected (unactivated) cells in columns 11 

and 23 and the 100% enhancement control was untreated, infected (activated) 

cells in columns 12 and 24. As was observed in the IFN inhibitor dose-response 

screen, each plate passed both the S/B ratio and Z’ factor QC approval limits 

(Figure 4.3C). Although a slight drop in S/B ratio was seen in comparison, it 

remained above the QC approval limit of 2. 

To aid in the identification of any non-specific hits, a specificity screen 

utilizing the IFN signalling assay and A549/pr.(ISRE).GFP reporter cell line was 

carried out. Here, wells containing test compound were treated with IFNα. A 

putative hit compound that resulted in reduced GFP expression in this assay is 

likely to be activating through off-target actions. It is possible however that a 

compound with activity in both the IFN induction and IFN signalling assays is 

real, and as such, these dual inhibitors should not be disregarded completely. 

This screen followed the same plate layout as the IFN inhibitor dose-response 

screen, where SeV infection was substituted with IFNα treatment. The screen 

behaved as expected, where the S/B ratio averaged 2.2 and Z’ factor was 0.68. 
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Thus, it was a robust screen as each plate passed the S/B ratio and Z’ factor 

QC approval limits (Figure 4.3D). The dose-response screening performed to 

further investigate the 245 putative hit compounds behaved well, with each QC 

approval limit, including % CV being cleared (Table 4.3). 

 

Table 4.3: Screen statistics for the 3 dose-response screens performed, measured as robust Z’ 
factor, S/B ratio, and co-efficient of variation (CV) and compared to DDU preset QC limits. 

 

QC 

Approval 
IFN 

Inhibitor 
IFN 

Enhancer 
Specificity 

(ISRE) 

Z’ Factor > 0.5 0.8 ± 0.02 0.7 ± 0.05 0.7 ± 0.07 

S/B > 2 3.6 ± 0.1 2.2 ± 0.1 2.5 ± 0.1 

Activated CV (%) < 8 5.4 ± 0.9 4.0 ± 0.5 5.2 ± 1.8 

Unactivated CV (%) < 8 3.9 ± 0.8 4.0 ± 1.6 5.1 ± 0.8 

 

At this stage of the screening process, to be considered a confirmed hit, 

a compound’s activity must result in the production of a dose-response curve 

that allows pXC50 determination. As such, it must achieve clear maximum and 

minimum effects in the assay. The hill slope of a dose-response curve is an 

important indication of the potency of a molecule. A steeper hill slope (≥1) 

indicates that a compound has higher potency. Therefore, to designate a hit as 

confirmed, it must also produce an acceptable hill slope around 1. The 

determination of a compound’s pXC50 value potentiates efficient hit 

characterization, allowing the elimination of compounds that fail to produce a 

dose-response curve. A compound with a pXC50 value of 4.3, equivalent to 50 

µM, and the highest concentration tested, was designated as inactive and as 
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such, a false-positive. Any compound achieving a pXC50 of 5 or above (≤10 µM) 

was categorized as a confirmed hit warranting further study. Although a 

compound with a pXC50 value between 4.4 and 5 is not disregarded as inactive, 

it is deemed as less potent, and so further investigation may not be worthwhile. 

This procedure potentiates efficient triage of hit compounds, using rational 

parameters to reduce the number of compounds warranting further 

investigation. Analysis of the pIC50 values generated for each compound in the 

IFN inhibitor dose-response screen identified a 109 putative hits that failed to 

produce a dose-response curve, with a pIC50 of 4.3 (Figure 4.4A). From the 200 

potential inhibitors of IFN induction, 41 had a pIC50 of 5 or more. Therefore, the 

IFN inhibitor dose-response screen identified 20% as confirmed hits indicating 

good levels of potency. The IFN enhancer dose-response screen identified all 

but 3 compounds (242) as inactive, having pEC50 values of 4.3 (Figure 4.4B). 

The 3 compounds that successfully produced dose-response curves had a 

pEC50 value between 4.5 and 4.7, suggesting a lack of potency. The specificity 

screen, carried out to facilitate elimination of false-positive hits and identify any 

potential dual inhibitors of both pathways identified 83 putative hits with no 

activity (pIC50 values of 4.3) and 63 compounds with a pIC50 of 5 or more 

(Figure 4.4C). 
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Figure 4.4: pIC50 and pEC50 values generated through secondary dose-response 
screening using the IFN induction and signalling reporter assays. 
Potency determination of putative hit compounds derived from the dose-response curves 
generated in the A549/pr(IFNβ).GFP reporter assay with (A) and without (B) SeV infection to 
generate pIC50 and pEC50 values respectively, and the A549/pr(ISRE).GFP reporter assay (C) 
to give pIC50. Hits with a pXC50 of 4.3 (IC50 50 µM) were deemed inactive (dotted line) and hits 
with a pXC50 ≥ 5 (IC50 ≤10 µM) were deemed favorable (dashed line). pIC50 values derived from 
dose-response curves generated for each hit tested in the A549/pr(IFNβ).GFP with Sev 
infection and A549/pr(ISRE).GFP reporter assays were plotted against one another. Boxed hits 
represent confirmed hit compounds that specifically inhibit the IFN-induction pathway (dashed 
line) or those that show comparable activity in both the A549/pr(IFNβ).GFP and 
A549/pr(ISRE).GFP reporter assays (dotted line) and have a pIC50 ≥ 5 (IC50 ≤10 µM). Dose 
response curves, pIC50 values and statistics were generated using ActivityBase XE software. 
 

Taken alone, the information provided by the specificity screen is limited. 

The aim of this screen was to see whether putative hits inhibiting IFN induction 

were specific. Therefore, the pIC50 value generated for each compound in the 

IFN inhibitor dose-response screen was plotted against the corresponding value 

generated in the specificity screen (Figure 4.4D). This provides a 

straightforward method for identifying hits specific to the IFN induction pathway, 
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with pIC50 values above 5, but showed no activity in the IFN signalling pathway, 

achieving pIC50 values in the specificity screen of 4.3. Hits achieving very 

similar levels of inhibition in both assays could be false positives, or compounds 

that have dual activity in the both pathways, and so could warrant further 

investigation. 

As a result of the dose-response screening, 41 compounds were 

designated as confirmed hits, inhibiting IFN induction with pIC50 values of 5 or 

above. Of these 41 hits, 6 achieved pIC50 values in the specificity screen of less 

than 5. Therefore, dose-response screening focused further investigation of 41 

confirmed inhibitors of IFN induction down to 6, which are more likely to be real 

hits, specific to the pathway we are aiming to target. These confirmed hit 

compounds were designated StA-IFN-1, -2, -3, -4, -5, and -6, and their 

associated pIC50 values are shown (Table 4.4). In this case, dose-response 

screening was also an effective tool for eliminating hits that are unlikely to yield 

results further down the validation pipeline. The IFN enhancer dose-response 

screen identified 3 compounds with dose-dependent activity, although the levels 

of potency achieved were not convincing enough to warrant further 

investigation. Overall, the dose-response screening campaign was effective at 

focusing further investigative efforts on hit compounds with levels of potency 

and specificity amenable to future characterization and chemical optimization. 
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Table 4.4: pIC50 values of 6 confirmed hit compounds that specifically inhibit IFNβ promoter 
driven GFP expression, showing minimal to no activity in the A549/pr(ISRE).GFP reporter 
assay. 

 
StA-
IFN-1 

StA-
IFN-2 

StA-
IFN-3 

StA-
IFN-4 

StA-
IFN-5 

StA-
IFN-6 

A549/pr(IFNβ).GFP 5.5 5.6 5.8 5.0 5.0 5.3 

A549/pr(ISRE).GFP 4.3 - 4.3 4.4 4.3 4.7 

 

 

4.2.3 Validation of novel hit compounds that inhibit the IFN induction 

pathway 

 As a result of the dose-response campaign that followed the primary 

diversity screen, 6 compounds were identified as specifically inhibiting GFP 

expression in the IFN induction assay. To ensure that the molecules used 

during screening were correct, the purity and identity of the compounds 

required verification. Therefore, all 245 putative hit compounds were subjected 

to LC-MS at the DDU. Compounds StA-IFN-3 and StA-IFN-6 did not pass this 

stage of testing, as LC-MS of these molecules failed to produce a mass ion. 

Therefore, investigation of these compounds was not carried forward. 

To further scrutinize the 4 confirmed hit compounds that passed LC-MS, 

they were repurchased from commercial sources and their activity verified. This 

was achieved by re-testing the compounds in the IFN induction and IFN 

signalling reporter assays. Cells were treated with a 9-point, 2-fold serial dilution 

of compounds StA-IFN-1, StA-IFN-2, StA-IFN-4 or StA-IFN-5 or the equivalent 

volume of DMSO. Following pathway activation for the appropriate length of 

time, GFP expression was measured. The activity of StA-IFN-1 (Figure 4.5A) 

and StA-IFN-4 (Figure 4.5B) remained specific for the IFN induction pathway, 
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as they failed to produce an adequate dose-response curve in the IFN 

signalling assay. Conversely, StA-IFN-2 (Figure 4.5C) and StA-IFN-5 (Figure 

4.5D) did not exhibit specificity, where the dose-response curves observed in 

the IFN induction and IFN signalling assays are comparable. As a result, StA-

IFN-2 and StA-IFN-5 were not carried forward to further hit validation studies. 

StA-IFN-1 and StA-IFN-4 maintained their specific activity upon repurchase and 

re-testing, reinforcing the validity of these compounds as specifically inhibiting 

the IFN induction pathway. The activity of these compounds is broadly 

comparable to that of TPCA-1, a known inhibitor of IKKβ, bearing in mind that 

StA-IFN-1 and StA-IFN-4 are small druggable molecules, designed to be 

starting points for medicinal chemistry and optimization (Table 4.5). 
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Figure 4.5: Potency and specificity of confirmed hit compounds in the IFN induction and 
signalling reporter assays. 
Confirmed hit compounds were repurchased and tested in the A549/pr(IFNβ).GFP and 
A549/pr(ISRE).GFP reporter assays. Cells were treated with a 9-point, 2-fold serial dilution of 
StA-IFN-1 (A), StA-IFN-4 (B), StA-IFN-2 (C) and StA-IFN-5 (D) for 2 hours prior to stimulation of 
A549/pr(IFNβ).GFP and A549/pr(ISRE).GFP cells with SeV or IFNα respectively. Data 
represents 3 independent experiments, each conducted in triplicate (n=3); error bars show 
StDev. 
 
 
Table 4.5: Dose response curve parameters of repurchased hit compounds, StA-IFN-1 and 
StA-IFN-4, retested in the A549/pr(IFNβ).GFP reporter assay and compared to those of the 
IKKβ inhibitor, TPCA-1. 

 Max (%) Min (%) IC50 (µM) Hill Slope 

StA-IFN-1 61 -5 4.1 1.4 

StA-IFN-4 77 -5 6.7 1.5 

TPCA-1 88 -6 1.1 0.9 
 

 Up to this point, compound activity had been assessed using GFP 

expression as a marker of pathway activation. Furthermore, hit compounds had 
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been designated as specific through their lack of potency in the IFN signalling 

reporter assay. It was therefore necessary to verify that the activity of StA-IFN-1 

and StA-IFN-4 was not due to other potential off-target effects. Additionally, it 

was necessary to validate the hit compounds by assessing their effect on 

cellular markers for IFN induction.  

 To eradicate the possibility that StA-IFN-1 and StA-IFN-4 had off-target 

effects that would mimic IFN induction pathway inhibition, we aimed to analyse 

cellular processes in the presence and absence of hit compounds. To achieve 

this, we studied levels of protein synthesis in A549 cells treated with DMSO, the 

transcriptional inhibitor actinomycin D (AMD), StA-IFN-1 or StA-IFN-4. Cells 

were metabolically labelled with 35S cysteine/methionine mix to assess the 

levels of 35S incorporation (Figure 4.6A). As expected, quantification of band 

intensity clearly showed AMD inhibiting cellular protein synthesis (Figure 4.6B). 

However, no such reduction in the levels of 35S incorporation were observed 

following treatment with StA-IFN-1 or StA-IFN-4, suggesting they were not 

acting through inhibition of cellular protein synthesis. We also aimed to assess 

cell viability in the presence of these compounds. To achieve this, A549 cells 

were treated with DMSO, the translational inhibitor cycloheximide (CHX), StA-

IFN-1 or StA-IFN-4 and an AlamarBlue cell viability assay carried out. As 

expected, cells exhibit a dose-dependent reduction in viability following CHX 

treatment. In contrast to this, cells treated with StA-IFN-1 (Figure 4.6C) and 

StA-IFN-4 (Figure 4.6D) only exhibited a reduction in viability at the highest 

concentration tested (50µM). This further supported the theory that hit 
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compounds StA-IFN-1 and StA-IFN-4 do not elicit inhibitory effects on the IFN 

induction pathway through non-specific off-target effects. 

 

 
Figure 4.6: Elimination of off-target effects associated with hit compounds StA-IFN-1 and 
StA-IFN-4 impacting cell viability  
Cellular protein synthesis in the presence of StA-IFN-1 and StA-IFN-4 was assessed with the 
use of the transcriptional inhibitor AMD as a control. A549 cells were treated with compound for 
24 or 48 hours and labeled metabolically with [35S]Met/Cys promix. Whole cell lysates were 
visualized (A) by SDS-PAGE followed by coomassie brilliant blue stain and phosphoimage 
analysis to quantitate levels of global protein synthesis compared to the DMSO control (B). The 
effect of StA-IFN-1 (C) and StA-IFN-4 (D) on cell viability was assessed with an AlamarBlue 
Assay and the translational inhibitor CHX as a control. A549 cells were treated with compound 
for 48 hours prior to AlalmarBlue reagent addition and viability assessed by fluorescence. Data 
is representative of three independent experiments that were each conducted in quadruplicate 
(n = 4). Error bars indicate StDev. 
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this were the case, inhibition of SeV entry into the cells and subsequent 

reduction in cellular PAMPs would result in dose-dependent inhibition of the IFN 

induction pathway. To investigate this, immunofluorescence was carried out on 

compound treated, infected cells to detect viral proteins. No viral proteins were 

detected in mock-infected cells (Figure 4.7A). However, in cells treated with 

DMSO or either of the hit compounds, viral proteins were clearly seen. The 

staining of SeV proteins appeared comparable between the DMSO control and 

compound treated cells, suggesting that there was no impact on SeV entry into 

cells. This implied that StA-IFN-1 and StA-IFN-4 were not effecting SeV 

infection in the IFN induction assay. 
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Figure 4.7: Elimination of off-target effects associated with hit compounds StA-IFN-1 and 
StA-IFN-4 impacting SeV  
The effect of StA-IFN-1 and StA-IFN-4 on SeV infection and replication was assessed. A549 
cells were treated with compound and infected with SeV for eighteen hours. Cells were then 
fixed, permeabilized and probed with anti-SeV antibody followed by FITC-conjugated secondary 
antibody. Cells were visualized with a Nikon Microphot-FXA microscope at 40x magnification 
(A). A549 cells were treated with compound and infected with SeV. Eighteen hours post-
infection cells were labeled metabolically with [35S]Met/Cys promix. Whole cell lysates were 
visualized by SDS-PAGE and coomassie brilliant blue followed by phosphoimage analysis (B) 
to quantitate SeV nucleoprotein (NP) levels (C). NP band intensity was normalized to a host cell 
protein and quantified relative to the DMSO control, set at 100%. Data represents the mean of 
three independent experiments (n=3); error bars indicate StDev.  
 

To further investigate compound effect on viral replication, A549 cells 

were treated as above and metabolically labelled with 35S cysteine/methionine 

mix to assess the levels of 35S incorporation. SeV nucleoprotein (NP) was 

clearly visible (Figure 4.7B), and from the associated quantification (Figure 

7.7C), NP was undetectable in mock treated cells. However, it was easily 

quantified in DMSO treated, SeV infected cells. The same levels of SeV NP 
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difference was seen. Therefore, taking both the immunofluorescence images 

and the NP expression levels into consideration, it was clear that neither StA-

IFN-1 nor StA-IFN-4 target SeV. This gives further confidence that they act to 

inhibit the IFN induction pathway specifically. 

 To investigate cellular markers of IFN induction, the expression of IFNβ 

mRNA resulting from pathway activation was assessed by qRT-PCR. 

Quantitative RT-PCR using RNA extracted from cells treated with DMSO, 

TPCA-1, StA-IFN-1 or StA-IFN-4 and subsequently infected was used to 

monitor expression levels. As was expected, TPCA-1, the IKKβ inhibitor, 

significantly reduced the levels of IFNβ mRNA by 78% (p<0.005) (Figure 4.8A). 

StA-IFN-1 reduced IFNβ mRNA expression to a lesser extent, showing levels of 

45% compared to the DMSO, SeV control (p<0.005). Interestingly, in the 

presence of StA-IFN-4, greater inhibition of the induction pathway was 

observed, with only 13% of IFNβ mRNA expressed compared to SeV infection 

alone. The clear inhibition of IFNβ mRNA expression in the presence of StA-

IFN-1 and StA-IFN-4 further validated them as inhibitors of IFN induction, 

outwith the GFP reporter cells used thus far. 

In order to ensure pathway specificity, StA-IFN-1 and StA-IFN-4 were 

assessed for activity in the IFN signalling pathway. We utilized qRT-PCR to 

analyse MxA mRNA expression in cells treated with DMSO, the Jak inhibitor 

Rux, StA-IFN-1 or StA-IFN-4 and subsequently treated with IFNα to activate 

IFN signalling. Rux reduced MxA mRNA expression by almost 99% compared 

to IFNα treatment in the absence of inhibitors (p<0.0001) (Figure 4.8B). 

Conversely, StA-IFN-1 and StA-IFN-4 had no significant impact upon MxA 
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mRNA expression following IFN signalling pathway activation. Taken together, 

the data obtained from qRT-PCR provided further evidence that compounds 

StA-IFN-1 and StA-IFN-4 inhibit the induction of IFNβ, exhibiting pathway 

specificity, as they have no activity on the IFN signalling pathway. 

 

 
Figure 4.8: Hit compounds StA-IFN-1 and StA-IFN-4 effect on IFNβ and MxA transcript 
levels 
The effect of StA-IFN-1, StA-IFN-4 and known inhibitory compounds on IFNβ and MxA mRNA 
levels was assessed. A549 cells were treated with compound 2 hours prior to activation. Three 
hours post-SeV infection and 18 hours post-IFNα treatment, total cellular RNA was extracted 
and reverse transcribed. The resultant cDNA was used to qPCR amplify either IFNβ (A) or MxA 
(B) sequences using appropriate primers. Ct values were subjected to absolute quantitation 
using a 6-point standard curve with DNA of known concentration and converted into % cDNA of 
controls. Data represents the mean of three independent experiments, each conducted in 
triplicate (n=3); error bars indicate StDev. Statistical significance was assessed using One-way 
ANOVA to compare compound treatment with the DMSO + SeV control (*** = p<0.0001, 
*=p<0.005). 
 
 

4.3 Summary 

 Successful assay development to optimize and validate the IFN induction 

and IFN signalling assays facilitated an HTS campaign to identify novel 

modulators of IFN induction. A screening campaign was instigated, using the 

small diversity set at the DDU, comprising 15,667 small molecules. The 

diversity screen was carried out in an automated 384-well format utilizing the 

IFN induction reporter assay. Primary screening saw a dramatic drop in S/B 
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ratio to 1.6 compared to 3.1 following assay development. The Z’ factor was 

consistent however at 0.67, indicating that the screen remained robust. Of 

15,667 compounds screened, 245 were identified as putative hit molecules, 200 

showing inhibitory activity and 45 enhancing GFP expression, yielding a primary 

hit rate of 1.56%. To validate these hit compounds and determine their potency, 

we embarked on a campaign of dose-response screening. Using 2-fold serial 

dilutions of hit compounds, construction of 10-point dose-response curves 

facilitated XC50 determination.  

Three screens were performed. 

I. IFN inhibitor screen to further investigate putative hit compounds with 

inhibitory activity 

II. IFN enhancer screen using the IFN induction assay without SeV 

infection to study possible enhancers of IFN induction 

III. Specificity screen using the IFN signalling assay to identify 

compounds with dual activity or non-specific, off-target effects 

Of the 200 putative inhibitors of IFN induction, 6 showed activity specific 

to the IFN induction pathway, as they were shown to lack potency in the 

specificity screen. All but 3 of the potential enhancers of IFN induction were 

deemed inactive. Following LC-MS to confirm the identity and purity of the 

screening compounds, the remaining 4 most promising hits were repurchased 

for further testing. Two of these hit compounds, StA-IFN-2 and StA-IFN-5 failed 

to display specificity to the IFN induction pathway following retesting. StA-IFN-1 

and StA-IFN-4 however continued to exhibit activity specific to IFN induction. 

Additionally, we excluded the possibility that this inhibition was due to off-target 
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effects such as SeV inhibition or by compromising cell viability. Furthermore, we 

confirmed that StA-IFN-1 and StA-IFN-4 have direct activity on the inhibition of 

IFN induction as RT-qPCR saw a significant decrease in IFNβ mRNA 

expression in their presence. 
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5. Characterization of novel compounds that inhibit the 

IFN induction pathway 

5.1 Introduction 

 As a result of successful diversity screening, dose-response studies and 

hit validation, two compounds, StA-IFN-1 and StA-IFN-4, were identified as 

having specific activity to the inhibition of IFN induction. To further investigate 

the action of these compounds in the IFN induction pathway, we instigated 

studies to identify the cellular target of these compounds, assess any structure-

activity relationships regarding their activity and determine whether StA-IFN-1 

and StA-IFN-4 can increase the growth of IFN sensitive viruses. 

The activity of StA-IFN-1 and StA-IFN-4 in the IRF3 branch of the IFN 

induction pathway was investigated in a number of different ways: (i) 

Immunofluorescent microscopy was utilized to determine the levels of IRF3 

nuclear translocation in the presence and absence of the compounds. (ii) IRF3 

phosphorylation is critical for its activation and we therefore assessed the levels 

of phosphorylated IRF3 in the presence of hit compounds following SeV 

induced pathway activation. (iii) To further scrutinize the activity of the 

compounds in this pathway, which is heavily dependent on the activity of 

cellular kinases, StA-IFN-1 and StA-IFN-4 were tested for activity on kinases 

that act upstream of IRF3 phosphorylation. 

To characterize specific aspects of the structures of StA-IFN-1 and StA-

IFN-4 that may be important for their activity, we carried out an investigation into 
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any previous publications that may include these compounds, or substructures 

within the molecules. Web-based database searches suggested that the 

compound activity observed in our study was novel. Subsequently, we 

instigated studies using compounds with a high level of similarity to StA-IFN-1 

and StA-IFN-4 and components of the molecules that have structural identity to 

distinct portions of the original hit compounds. As we have previously shown 

that inhibitors of the IFN response can increase the growth of BunVΔNSs, an 

IFN sensitive virus (Stewart et al., 2014), we sought to assess the activity of 

StA-IFN-1 and StA-IFN-4 in the broader context of the IFN response. Effective 

replication of BunVΔNSs in the presence of StA-IFN-1 and StA-IFN-4 would 

suggest that these compounds are blocking the IFN response. 

 

5.2 Results 

5.2.1 Mode of action studies 

 As StA-IFN-1 and StA-IFN-4 were identified through phenotypic 

screening, the mechanism of action of these compounds remains unknown. We 

therefore sought to determine their cellular target(s). Firstly, we measured the 

impact of StA-IFN-1 and StA-IFN-4 on the nuclear translocation of activated 

IRF3, a crucial step in the induction of IFN. To achieve this, we used 

immunofluorescent microscopy to assess IRF3 localisation in SeV infected 

A549 cells incubated in the presence, or absence, of the compounds (Figure 

5.1A). In the absence of infection, IRF3 is primarily cytoplasmic. Following 

DMSO treatment and SeV infection however, 60% of the cells exhibited clear 

nuclear staining (Figure 5.1B). Strikingly, StA-IFN-4 caused a highly significant 
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inhibition of IRF3 translocation, approaching 100% (p<0.0001). As was 

expected, BX795, which inhibits TBK1 in the course of IRF3 activation, 

significantly reduced nuclear IRF3 to 20% (p<0.0001), although very high levels 

of variation were observed. StA-IFN-1 resulted in a significant (p<0.005) 20% 

reduction in nuclear translocation of IRF3 compared to the DMSO control. 

Although StA-IFN-1 caused a significant reduction in IRF3 translocation, the 

level of inhibition seen by StA-IFN-4 is far superior, even compared to that of 

BX795. 
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Figure 5.1: Effect of StA-IFN-1 and StA-IFN-4 on nuclear translocation of IRF3. 
The effect of StA-IFN-1, StA-IFN-4 and BX795 on the translocation of IRF3 following SeV 
infection. A549 cells were treated with compound for 2 hours, followed by infection with SeV for 
3 hours. Cells were fixed, permeabilized and incubated with anti-IRF3 antibody, followed by 
Texas red-conjugated secondary antibody. Cells were visualized with a Nikon Microphot-FXA 
microscope at 40x magnification (A). Images were annonymized and the number of cells 
displaying diffuse cytoplasmic and nuclear staining quantified by Dr Andri Vasou (B). Data is 
presented as percentage of cells displaying nuclear staining of IRF3 and is representative of 3 
individual repeats (n=3). Error bars display StDev and the statistical significance of cells 
exhibiting nuclear IRF3 following compound treatment compared to the DMSO + SeV control 
using one-way ANOVA (***=p<0.0001, *=p<0.005). 
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 The translocation of IRF3 is a consequence of its phosphorylation and 

subsequent homodimerization, which exposes a nuclear localization signal. A 

reduction in IRF3 phosphorylation would suggest the compounds are acting 

upstream in the pathway, where no decrease in levels of phosphorylated IRF3 

(pIRF3) would suggest compound activity is targeted to inhibit dimerization or 

nuclear translocation. Therefore we assessed the impact of StA-IFN-1 and StA-

IFN-4 on levels of pIRF3 following activation of the IFN induction pathway 

(Figure 5.2A). The most dramatic reduction was observed following treatment 

with StA-IFN-4, where the level of pIRF3 decreased by 92% (p<0.0001). BX795 

resulted in a 56% reduction in pIRF3 compared to the control, although again, 

high levels of variation were observed (Figure 5.2B). StA-IFN-1 results in a 

small yet significant decrease in IRF3 phosphorylation of 32% (p<0.005). It was 

necessary to ensure that the action of StA-IFN-1 and StA-IFN-4 upon pIRF3 

was not due to a global inhibition of phosphorylation. The phosphorylation of 

STAT1 is a crucial step in the IFN signalling pathway, distinct from 

phosphorylation events in the IFN induction pathway. Therefore, we 

investigated the impact of StA-IFN-1 and StA-IFN-4 on the levels of 

phosphorylated STAT1 (pSTAT1) (Figure 5.2C). As was expected, Rux, a 

Jak1/2 inhibitor, resulted in a dramatic 85% decrease in pSTAT1 (p<0.0001) 

(Figure 5.2D). Conversely, no such impact on the levels of pSTAT1 following 

StA-IFN-1 or StA-IFN-4 treatment was observed, suggesting that the hit 

compounds are not acting as general inhibitors of phosphorylation. 
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Figure 5.2: Effect of StA-IFN-1 and StA-IFN-4 on phosphorylation of IRF3. 
The effect of StA-IFN-1, StA-IFN-4 and BX795 on the phosphorylation of IRF3 following SeV 
infection. A549 cells were treated with compound for 2 hours, followed by infection with SeV to 
activate the IFNβ induction pathway for 3 hours. Whole cell lysates were subjected to SDS-
PAGE and western blot. Membranes were probed with anti-pIRF3 and anti-βActin antibodies 
followed by IRDye680 or IRDye800-conjugated secondary antibody respectively (A). Bands 
were visualized and quantified as % pIRF3 relative to actin (B). The effect of StA-IFN-1, StA-
IFN-4 and Rux on the phosphorylation of STAT1 following IFNα treatment was also assessed. 
A549 cells were treated with compound for 2 hours, followed by incubation with IFNα to activate 
the IFN signalling pathway for 15 minutes. Whole cell lysates were subjected to SDS-PAGE and 
western blot. Membranes were probed with anti-pSTAT1 or anti-βActin antibodies followed by 
HRP or IRDye800-conjugated secondary antibody respectively (C). Bands were visualized and 
quantified as % pSTAT1 relative to actin (D). Data representative of 3 individual repeats (n=3). 
Error bars display StDev and statistical significance of pIRF3 and pSTAT1 levels compared to 
the DMSO + SeV or IFNα control was determined by one-way ANOVA (***=p<0.0001, 
*=p<0.005). 
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experiments, it may have more potent activity elsewhere in the IFN induction 

pathway. 

IRF3 is activated by phosphorylated kinases, TBK1 and IKKε. In an effort 

to further scrutinize the activity of StA-IFN-1 and StA-IFN-4 in IRF3-dependent 

IFN induction, we instigated studies to assess their action on TBK1 and IKKε. 

Philip Cohen has a well-established assay to investigate compounds with 

inhibitory activity against kinases (Clark et al., 2009). Therefore, in collaboration 

with Philip Cohen, hit compounds StA-IFN-1 and StA-IFN-4, were studied for 

their ability to inhibit the phosphorylation of TBK1 (pTBK1) and IKKε (pIKKε) 

following TLR3 activation by Poly(I:C). In contrast to the results we obtained, 

where IFN was induced through SeV activated RIG-1 (Figure 5.2), no reduction 

in pIRF3 levels were observed in the presence of either StA-IFN-1 or StA-IFN-4 

(Figure 5.3). Indeed, here the data suggests that neither compound causes a 

reduction in the phosphorylation of IRF3, TBK1 or IKKε following TLR-induced 

activation. 
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Figure 5.3: Effect of hit compounds on TLR3 induced kinase activity 
The activity of StA-IFN-1 and StA-IFN-4 on TLR3 activation of the IFN induction pathway. 
HACAT cells were incubated with 10 µM of compound. Two hours post-compound treatment, 
cells were treated with 10 µg/ml of Poly(I:C) for 1 hour to activate TLR3. Whole cell lysates were 
subjected to SDS-PAGE and western blot. Membranes were probed with anti-pTBK1, anti-
TBK1, anti-pIKKε, anti-pIRF3 and anti-GAPDH antibodies followed by goat anti-rabbit HRP-
conjugated secondary antibody. Jordan Taylor carried out this work in the lab of Philip Cohen at 
the university of Dundee. 
 
 From this study, we have identified that StA-IFN-4 causes a significant 

reduction in the phosphorylation of IRF3 and its subsequent translocation to the 

nucleus following RIG-I mediated IFN induction by SeV infection. StA-IFN-1 on 

the other hand exhibited lower levels of activity that were less significant. 

However, no such reduction in pIRF3 was observed through TLR3 dependent 

IFN induction with Poly(I:C). The disparity in the levels of pIRF3 observed in 

experiments using different activators of IFN induction suggests that StA-IFN-1 

and StA-IFN-4 may be acting upstream of the TBK1/IKKε activation step, where 

induction of the pathway is distinct between different PAMPs. 

5.2.2 Structure-activity relationships (SAR) 

 To further characterize hit compounds StA-IFN-1 and StA-IFN-4, we 
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that are important for inhibition of IFN induction. We first endeavoured to 

identify if these molecules had previously been characterized. If they have 

shown activity in previous studies, we could gain an understanding of any 

structure-activity relationships relating to these compounds. To investigate this, 

the SciFinder database (American Chemical Society, scifinder.cas.org) was 

utilized. Searches based on the chemical structures of StA-IFN-1 and StA-IFN-4 

were carried out to identify any substructures within the compounds that have 

shown activity similar to that observed in our study. This investigation 

suggested that the compounds were novel as no previous compound 

characterization was identified. 

 StA-IFN-1 obeys Lipinski’s rule of 5 with a molecular weight of 255.3, 1 

hydrogen bond acceptor and 5 hydrogen bond donors. SciFinder database 

searches identified a compound with 82% similarity (StA-IFN-1-82S). StA-IFN-1 

(Figure 5.4A) has an acetyl group, whereas this is missing in StA-IFN-1-82S 

(Figure 5.4B). The chemical structure of StA-IFN-1 can be broadly divided into 

two smaller compounds, an acetyl indole group (StA-IFN-1-LF) (Figure 5.4C) 

and a pyrazolone (StA-IFN-1-SF) (Figure 5.4D). We sought to investigate the 

activity of StA-IFN-1-82S, StA-IFN-1-LF and StA-IFN-1-SF in relation to StA-

IFN-1. To achieve this, the compounds were used in the IFN induction reporter 

assay to assess inhibition of GFP expression. StA-IFN-1 had far superior 

activity, showing the highest levels of inhibition (38%) (Figure 5.4E). StA-IFN-1-

LF was the only other compound tested that exhibited activity, reducing GFP 

expression by 13%. Both StA-IFN-1-82S and StA-IFN-1-SF resulted in no 

inhibition of GFP expression, exhibiting the same trend as DMSO. Interestingly, 
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both StA-IFN-1 and StA-IFN-1-LF have the acetyl indole structure, suggesting 

that it may be important for inhibition of IFN induction. 

 

 
Figure 5.4: Investigating StA-IFN-1 structure-activity relationships 
The activity of compounds with structural similarity to StA-IFN-1 were analysed in the IFN 
induction reporter assay. The chemical structure of StA-IFN-1 (A), an 82% similar molecule 
(StA-IFN-1-82S) (B), and molecules representing large (StA-IFN-1-LF) (C) and small (StA-IFN-
1-SF) (D) fragments of the original compound are shown. A549/pr(IFNβ).GFP cells were treated 
with compounds 2 hours prior to infection with SeV. Eighteen hours post infection, cells were 
fixed and GFP expression analyzed (E). Data represents 2 independent replicates, each 
conducted in triplicate (n=6) where errors bars show StDev. 

 

 StA-IFN-4 obeys Lipinski’s rule of 5 with a molecular weight of 337.2, 6 

hydrogen bond acceptors and no hydrogen bond donors. SciFinder database 

searches identified a compound with 85% similarity (StA-IFN-4-85S). StA-IFN-4 

is composed of a pyridoprymindine and a dichloro pyridazinone (Figure 5.5A), 

whereas the pyridoprymidine is substituted for an imidazolprymindine in StA-

IFN-4-85S (Figure 5.5B). The chemical structure of StA-IFN-4 can be broadly 
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divided into two smaller compounds, the pyridoprymidine (StA-IFN-4-LF) 

(Figure 5.5C) and the dichloro pyridazinone (StA-IFN-4-SF) (Figure 5.5D). We 

sought to investigate the activity of StA-IFN-4-85S, StA-IFN-4-LF and StA-IFN-

4-SF in relation to StA-IFN-4. Initially, the compounds were used in the IFN 

induction reporter assay to monitor inhibition of GFP expression. StA-IFN-4 had 

the highest level of activity, resulting in over 60% inhibition (Figure 5.5E). StA-

IFN-4-85S exhibited a slight decrease in activity compared to the parental 

compound, although still achieved 40% inhibition in GFP expression. 

Surprisingly, the smallest molecule, StA-IFN-4-SF, also appeared to be active in 

inhibiting IFN induction, causing a 28% decrease in GFP expression. StA-IFN-

4-LF did not significantly inhibit GFP expression, exhibiting the same trend as 

DMSO. Interestingly, StA-IFN-4, StA-IFN-4-85S and StA-IFN-4-SF all have the 

same dichloro pyridazinone structure and although to varying degrees, all inhibit 

IFN induction. 

In order to further investigate the activity of the StA-IFN-4-like molecules 

independently of the GFP reporter assay, qRT-PCR was used to assess the 

level of IFNβ mRNA expression following compound treatment and activation of 

the IFN induction pathway. As expected, BX795, a TBK1 inhibitor, significantly 

reduced the levels of IFNβ mRNA present by 99% (p<0.0001) (Figure 5.5F). 

Treatment with StA-IFN-4 at 10 µM exhibited similar levels of IFNβ mRNA as 

shown previously (Figure 4.8A). Furthermore, when treated with 20 µM, 

inhibition is increased to 97% (p<0.0001). The 3 compounds with high levels of 

similarity to StA-IFN-4 showed significantly less inhibition at 10 µM compared to 

20 µM (Figure 5.5F). IFN-4-85S significantly decreased IFN induction, achieving 
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73% at 10 µM (p<0.001) and 52% at 20 µM (p<0.0001). In contrast to the 

results of the IFN induction reporter assay, both of the fragment compounds, 

StA-IFN-4-LF and StA-IFN-4-SF, achieved similar levels of IFNβ mRNA 

expression. However here, StA-IFN-4-LF yielded more significant decreases in 

IFNβ mRNA expression. 

 
Figure 5.5: Investigating StA-IFN-4 structure-activity relationships 
The activity of compounds with structural similarity to StA-IFN-4 was analysed. The chemical 
structures of StA-IFN-4 (A), a molecule with 85% similarity (StA-IFN-4-85S) (B), and molecules 
representing large (StA-IFN-4-LF) (C) and small (StA-IFN-4-SF) (D) fragments of the original 
compound are shown. A549/pr(IFNβ).GFP cells were treated with compound 2 hours prior to 
SeV infection. Eighteen hours post-infection GFP expression was analyzed (E). Compound 
effect on IFNβ mRNA levels was assessed. A549 cells were treated with compound for 2 hours. 
Three hours post infection, total cellular RNA was extracted and reverse transcribed. The 
resultant cDNA was used to qPCR amplify IFNβ sequences using appropriate primers. Ct 
values were subjected to absolute quantitation using a 6-point standard and converted into % 
cDNA of controls (F). Data represents 2 independent repeats, each conducted in triplicate 
(n=6). Errors bars show StDev. Statistical significance was assessed using One-way ANOVA to 
compare compound treatment with the DMSO + SeV control (*** = p<0.0001, **=p<0.001, 
*=p<0.005). 
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molecules with high levels of similarity to the parental compound, and 

compounds constituting distinct structures within StA-IFN-1 and StA-IFN-4, we 

have learnt that the acetyl indole of StA-IFN-1 (StA-IFN-1-LF) appears to be 

crucial for its activity. Conversely, the dichloro pyridazinone of StA-IFN-4 (StA-

IFN-4-SF) showed more activity in the inhibition of IFN induction in the GFP 

reporter assay. However, both StA-IFN-4-LF and StA-IFN-4-SF showed 

similarly low levels of inhibition in the RT-qPCR assay. 

5.2.3 Inhibition of IFN induction and the growth of an IFN sensitive virus 

 We have previously demonstrated that inhibitors of the IFN response can 

restore the replication of an IFN sensitive virus in A549 cells (Stewart et al., 

2014). BunVΔNSs is IFN sensitive and so replicates poorly in cell culture as a 

result of the deletion of NSs, the gene encoding its viral IFN antagonist. 

Therefore, we wanted to assess the growth of BunVΔNSs in the presence of 

StA-IFN-1 and StA-IFN-4. To achieve this, plaque assays were carried out on 

A549 cells treated with compound. As is clear, BunVΔNSs produces pinpoint 

plaques when inhibitory compounds are not present (Figure 5.6A). In 

agreement with previously published work (Stewart et al., 2014), the size of 

BunVΔNSs plaques is significantly increased by 6-fold in the presence of the 

Ikkβ inhibitor TPCA-1 (p<0.0001) (Figure 5.6B). Interestingly, StA-IFN-1 caused 

a 2-fold increase in plaque size (p<0.0005). However, StA-IFN-4 did not have a 

potent impact on plaque size, although a slight increase was observed (p<0.04). 
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Figure 5.6: Effect of hit compounds on the replication of an IFN sensitive virus 
The effect of StA-IFN-1 and StA-IFN-4 on the growth of an IFN sensitive virus, BunVΔNSs, was 
assessed. A549 cells were treated with compound and infected with BunVΔNSs for 1 hour. 
Plaque size was visualized by crystal violet staining 3 days post-infection (A). Plaque sizes 
were measured and are presented as fold increase above that of the DMSO-only control (B). 
Data represents 2 independent experiments (n≥53). Statistical significance was determined by 
one-way ANOVA where each condition was compared to the DMSO-only control (***=p<0.0001, 
**=p<0.0005, *=p<0.04). 
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does not differ between samples incubated in media alone or in the presence of 

cells, however the extent of GFP inhibition begins to decline 3-days post-

treatment (Figure 5.7A). In contrast to this, when StA-IFN-4 was incubated in 

the presence of cells, activity dropped dramatically after 24-hours, whereas in 

media alone, activity was retained (Figure 5.7B). To further investigate the 

reduction in StA-IFN-4 activity, media samples were also used to assess pIRF3 

levels (Figure 5.7C). Through quantification of band intensity, we observed that 

StA-IFN-4-mediated inhibition of pIRF3 dramatically decreased when incubated 

with A549 cells (Figure 5.7D). Conversely, it remained potent at inhibiting IRF3 

phosphorylation when incubated in media alone. This suggests that the 

compound is stable for up to 8 days in cell culture media. However, StA-IFN-4 

loses activity when A549 cells are present, suggesting that it is metabolised 

rapidly in cell culture. This indicates that the small plaque size observed in the 

presence of StA-IFN-4 is not necessarily due to lack of activity, but instead a 

result of compound instability in cell culture. StA-IFN-1 on the other retains 

activity for up to 4 days regardless of the presence of cells. 
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Figure 5.7: Stability of hit compound activity 
By incubating compounds in media alone or in the presence of A549 cells the stability of StA-
IFN-1 and StA-IFN-4 was assessed. Media samples were taken for up to 8 days. 
A549/pr(IFNβ).GFP cells were treated with the samples of StA-IFN-1 (A) or StA-IFN-4 (B) for 2 
hours, prior to infection with SeV. Eighteen hours post infection, cells were fixed and GFP 
expression analyzed. Data is representative of 2 independent experiments each conducted in 
triplicate (n=3). Error bars indicate StDev. Monitoring phosphorylation of IRF3 also assessed 
the activity of IFN-4. A549 cells were treated with compound samples for 2 hours, followed by 
infection with SeV to activate the IFNβ induction pathway for 3 hours. Whole cell lysates were 
subjected to SDS-PAGE and western blot (C). Membranes were probed with anti-pIRF3 and 
anti-βActin antibodies followed by IRDye680 or IRDye800-conjugated secondary antibody 
respectively. Bands were visualized and quantified as % pIRF3 relative to actin (D). Data is 
representative of 2 independent experiments. 
 
 

5.3 Summary 

 As a result of HTS and associated hit validation, two compounds, StA-

IFN-1 and StA-IFN-4 were identified as inhibitors of the IFN induction pathway. 

In order to further characterize the inhibitory activity of these compounds, we 

sought to determine their mechanism of action in the IFN induction pathway. 

Through assessment of nuclear translocation and phosphorylation of IRF3, we 

observed that StA-IFN-4 significantly reduced both of these events. Although 
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still significant, StA-IFN-1 exhibited much lower levels of activity. This 

suggested that StA-IFN-4 acts at, or upstream of IRF3 phosphorylation. The 

activity of these compounds appears to be specific to SeV-induced RIG-1 

activation of IFN induction however, as no inhibition in the phosphorylation of 

IRF3, TBK1 or IKKε was observed following TLR3-dependent, Poly(I:C) 

stimulation of the IFN induction pathway. 

To gain an insight into how the structures of StA-IFN-1 and StA-IFN-4 

impact their activity, we conducted preliminary structure-activity relationship 

studies. Compounds with a high degree of structural similarity to, or 

substructures from within, the parental compounds were tested in the IFN 

induction reporter assay. Here, we learnt that the acetyl indole of StA-IFN-1 was 

important for activity. This work also suggested that the dichloro pyridazinone of 

StA-IFN-4 was important for inhibition of the IFN induction pathway, although 

these results were not definitive. In order to assess the activity of the 

compounds in the context of the IFN response as a whole, we sought to 

determine if StA-IFN-1 and StA-IFN-4 increased the growth of an IFN sensitive 

virus. Plaque assays using the IFN sensitive BunVΔNSs were carried out. StA-

IFN-1 and StA-IFN-4 resulted in a small increase in BunVΔNSs plaque size. As 

the increase in plaque size resulting from StA-IFN-4 treatment was small, we 

postulated that compound degradation might be the cause. Indeed, by 

assessing compound stability in cell culture and media alone, we observed that 

StA-IFN-4 is rapidly metabolised by cells in culture, although it remains stable 

when incubated in media alone. From this work, we have successfully gained 

an insight into the cellular target of StA-IFN-4 in the IFN induction pathway, and 
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ascertained which aspects of both molecules may be more important for their 

inhibitory activity. Furthermore, we have successfully shown that these 

compounds can inhibit the cellular IFN response, resulting in slightly increased 

growth of an IFN sensitive virus. 
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6. An assay to screen for novel antiviral compounds 

6.1 Introduction 

 Due to the potency of the cellular IFN response, viruses have evolved 

strategies to circumvent its actions. One way in which viruses achieve this is 

through the expression of viral IFN antagonists, which are often multi-functional 

proteins. Owing to the importance of functional IFN antagonists to the 

establishment of a viral infection, they present an attractive target for antiviral 

drug discovery. A virus that does not have a functional IFN antagonist is 

severely restricted in its ability to replicate (Stewart et al., 2014). Therefore, a 

compound that renders the viral IFN antagonist non-functional will aid the 

cellular IFN response in controlling an infection and prevent virus spread. With 

the aim of identifying candidate molecules with antiviral activity, we postulated 

that the IFN signalling reporter assay presents a simple platform to facilitate this 

work. To this end, a derivative of the A549/pr(ISRE).GFP cell line was 

generated to constitutively express the phosphoprotein of Rabies virus (RBV-

P). Following validation of the A549/pr(ISRE).GFP.RBV-P cell line it was used 

in an in-house diversity HTS with the aim of identifying compounds that 

modulate RBV-P function, resulting in restoration of GFP expression. 

 As the A549/pr(ISRE).GFP.RBV-P cell line used in screening 

constitutively expresses RBV-P, the assay was complex, as it was necessary to 

include the parental A549/pr(ISRE).GFP cell line in assay plates. In an effort to 

streamline this assay and optimize it for use in future screening campaigns, we 

instigated a campaign of assay development in which RBV-P was under the 
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control of an inducible promoter. Following validation of the functionality of 

RBV-P under Dox inducible expression, we aimed to optimize the cell line using 

multiple rounds of lentivirus transduction and FACS. 

 

6.2 Results 

6.2.1 Assay validation 

The IFN antagonist of Rabies virus, RBV-P, blocks the IFN signalling 

pathway by sequestering STATs in the cytoplasm, thus preventing their nuclear 

accumulation. To target RBV-P, Dr Andri Vasou generated a derivative of the 

parental A549/pr(ISRE).GFP cell line that constitutively expresses RBV-P. To 

validate this cell line, we first compared GFP expression in the parental 

A549/pr(ISRE).GFP and A549/pr(ISRE).GFP-RBV-P cell lines in the IFN 

signalling reporter assay. A549/pr(ISRE).GFP.RBV-P cells do not respond to 

pathway activation. Regardless of IFNα concentration, GFP expression remains 

the same as untreated cells (Figure 6.1A). This suggests that the RBV-P 

expressed is functional and successfully blocks the IFN signalling pathway. To 

confirm this, the expression levels of the ISG, MxA, were assessed. 

A549/pr(ISRE).GFP cells stimulated with IFNα expressed high levels of GFP 

and MxA, indicating successful activation of the IFN signalling pathway (Figure 

6.1B). Where RBV-P is expressed, the expression of GFP and MxA remains 

undetectable, irrespective of IFNα treatment. This confirms that the expression 

of RBV-P results in functional protein that is effective at blocking the IFN 

signalling pathway. 
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Figure 6.1: IFN signaling pathway inhibition by Rabies virus P protein  
To assess the functionality of RBV-P, A549/pr.(ISRE).GFP and A549/pr.(ISRE).GFP.RBV-P cell 
lines were used in the IFN signalling reporter assay. (A) Cells were seeded and treated with a 
2-fold serial dilution of IFN-α (40,000 to 39 U/mL) for 18 and 44 hours. Cells were then fixed and 
fluorescence measured using the Tecan Infinate Pro plate reader. Data is representative of 2 
independent repeats, each conducted in quadruplicate (n=4). Error bars display StDev. (B) 
Cells were treated with or without IFNα for 18 and 44 hours. Total cell lysates were collected 
and subject to SDS-PAGE followed by western blot. Membranes were probed with primary anti-
bodies raised against MxA, GFP, V5 tag and β-Actin, followed by IRDye800 and IRDye680 
conjugated secondary antibodies. Data shown is representive of 2 independent repeats. 
 

6.2.2 In-house HTS 

Successful validation of the A549/pr(ISRE).GFP.RBV-P cell line 

demonstrated that is was suitable for use in an in-house HTS to identify small 

molecules that modulate the function of RBV-P. We embarked on a screening 

campaign using the Maybridge Screening Collection (16,000 compounds), 

comprising small molecules selected as appropriate starting points for drug 

discovery as they all comply with Lipinski’s rule of 5 (Lipinski et al., 2001). As 

A549/pr(ISRE).GFP.RBV-P cells display the same level of fluorescence 

irrespective of IFNα stimulation, the parental A549/pr(ISRE).GFP cell line was 

included in each assay plate as an internal control, allowing us to monitor GFP 

expression (Figure 6.2A). As such, A549/pr(ISRE).GFP cells in column 23, 

untreated and activated with IFNα provide a 100% restoration control. Column 
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24 was left untreated and unactivated to provide a 0% restoration control. This 

also allows for QC parameters to be determined for each assay plate, as if the 

A549/pr(ISRE).GFP cell line produces results that do not pass the QC criteria, 

the A549/pr(ISRE).GFP.RBV-P cells are also likely to fail. 

A549/pr(ISRE).GFP.RBV-P cells were seeded into columns 1 to 22 and 

A549/pr(ISRE).GFP cells into columns 23 and 24 in clear-bottomed black 384-

well plates. In column 1, A549/pr(ISRE).GFP.RBV-P cells were left untreated 

and unactivated, whereas in column 2, cells were untreated and activated with 

IFNα. This allowed us to monitor the behaviour of the A549/pr(ISRE).GFP.RBV-

P cell line in the absence of test compound. 
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Figure 6.2: Performance of a single point HTS to identify compounds that modulate RBV-
P protein function 
 A single point HTS using the A549/pr(ISRE).GFP and A549/pr(ISRE).GFP.RBV-P cell lines 
against the Mayrbidge compound library (n=16,000 compounds) at a concentration of 11.42 µM 
was performed. (A) A schematic of the 384-well plate layout used for screening; wells in 
columns 1-22 contain the A549/pr(ISRE).GFP.RBV-P cell line and 23-24 contain 
A549/pr(ISRE).GFP cells. Columns 3-22 were treated with a single test compound and IFNα, 
wells in columns 1 and 24 were untreated (Unactivated) and wells in columns 2 and 23 contain 
IFNα treated cells (Activated). (B) Plate metrics representing Z’ Factor and S/B ratio for 
A549/pr(ISRE).GFP cells, plotted for each plate of the HTS compared to preset quality control 
standards (dotted lines). 
 

The behaviour of the screen in terms of QC statistics was monitored both 

between plates and between batches. The screen was performed successfully, 

behaving as expected (Table 6.1). The consistency of the S/B ratio and Z’ factor 

of A549/pr(ISRE).GFP cells (Figure 6.2B), and the percentage CV of both cell 

lines demonstrate that the screen was robust. Therefore, fold increase in GFP 
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for each compound was calculated using fluorescence, in RFU of each test well 

normalized to that of activated A549/pr(ISRE).GFP.RBV-P cells. Fold change in 

GFP expression produced a very narrow normal distribution of results for the 

16,000 compounds tested, centred at 1 to 1.25-fold increase (Figure 6.3A). To 

verify the shape of the frequency distribution, a narrower range of fold change 

was also used (Figure 6.3B). A compound resulting in a fold increase in GFP 

expression that was 2 standard deviations away from the test well average for 

the plate resulted in it being considered a putative hit. From these initial 

selection criteria, 56 of the 16,000 compounds screened were considered 

putative hits yielding an initial hit rate of 0.35%. Unlike the IFN inhibitor 

screening campaign, the toxicity of a compound was less relevant, as a 

compound causing a restoration in GFP expression is unlikely to have toxic 

effects on the cells. 

 

Table 6.1: Primary screen statistics of the RBV-P IFN signalling assay represented as Z’ factor, 
S/B ratio and coefficient of variation (CV) compared to preset quality control standards. Screen 
statistics were generated using Microsoft Excel and the associated formulae. 

 

QC 

Approval 

Primary 

Screen 

A549/pr(ISRE).GFP 

Z’ Factor > 0.5 0.54 ± 0.06 

S/B > 2 2.04 ± 0.18 

Activated CV (%) < 8 6.85 ± 1.32 

Unactivated CV (%) < 8 1.74 ± 0.49 

A549/pr(ISRE).GFP. 

RBV-P 

Activated CV (%) < 8 2.28 ±0.97 

Unactivated CV (%) < 8 2.00 ± 0.73 
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Figure 6.3: Data output from a single point HTS to identify compounds that modulate 
RBV-P protein function 
Data obtained during the single point HTS was analyzed by comparing the fluorescence of 
A549/pr(ISRE).GFP.RBV-P cells to the parental A549/pr(ISRE).GFP cell line. Raw data (RFU) 
was converted to fold increase in GFP expression where IFNα treated (activated) 
A549/pr(ISRE).GFP.RBV-P cells set the background level (1). Screen output is plotted as a 
frequency distribution of the fold increase in GFP expression of all compounds tested 
(n=16,000) (A) and a smaller range of expression levels demonstrate the normal distribution of 
results (B). 
 

 With the aim of identifying novel compounds that modulate the function 

of RBV-P in the IFN signalling pathway we utilized the 

A549/pr(ISRE).GFP.RBV-P reporter cell line and successfully carried out an 

automated HTS against 16,000 test compounds, which identified 56 putative 
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hits. By utilizing the A549/pr(ISRE).GFP reporter cell line during screening, we 

were able to monitor GFP expression. The Z’ factor remained above 0.5 and a 

S/B ratio >2 was consistently observed, reinforcing the integrity of the primary 

screen. 

6.2.3 Dose response screening of putative hit compounds 

 In order to confirm the activity of putative hit compounds, determine their 

potency and identify any false-positive hits, we embarked on a campaign of 

dose-response screening. In this case, 56 putative hit compounds were tested 

using a 9-point 2-fold serial dilution of test compound from 25 µM to 0.1 µM. As 

compounds modulating RBV-P function would result in restoration of GFP 

expression, we needed to be aware that compounds with autofluorescent 

properties could be identified as hits. To identify false positives that exhibit 

autofluorescence, three dose-response screens were carried out. We tested 

each compound in the A549/pr(ISRE).GFP.RBV-P cell line (i) with and (ii) 

without IFNα treatment to activate the IFN signalling pathway and (iii) in A549 

cells lacking a GFP reporter gene. If a compound exhibits the same levels of 

fluorescence in the absence of IFNα to activate IFN signalling and in a cell line 

without a GFP gene, they are autofluorescent and therefore false positive hits. 

The 3 dose-response screens performed to further investigate the 56 

putative hit compounds behaved well, with each assay achieving a percentage 

CV well below that of the 8% approval limit (Figure 6.4A). Unfortunately, all 56 

putative hit compounds tested were either inactive or exhibited some degree of 

autofluorescence. As such, the compounds were categorized into 3 groups; 
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compounds displayed (i) high-level autofluorescence (Figure 6.4B), (ii) low-level 

autofluorescence (Figure 6.4C) or (iii) inactivity (Figure 6.4D).  

 

Figure 6.4: Dose-response screening of putative hit compounds using A549 cells and the 
A549 pr.(ISRE).GFP.RBV-P reporter assay 
Compounds showing activity during primary HTS screening were subjected to secondary 
screening to generate a 9-point dose response curve using a 2-fold serial dilution from 25 to 0.1 
µM in the A549/pr.(ISRE).GFP.RBV-P reporter cell-line with (+IFN) or without (-IFN) IFNα 
treatment and A549 cells lacking a GFP gene (A549). Between-plate screen statistics showing 
coefficient of variation (CV) of the 3 conditions used, compared to preset quality control 
standards (Dotted line) (A). Compounds were categorized as displaying high-level auto-
fluorescence (B), low-level auto-fluorescence (C) or as being inactive (D), where a 
representative example of each is shown. 
 

 With the aim of identifying compounds that modulate the antagonistic 

activity of RBV-P in the IFN signalling pathway, diversity HTS against 16,000 

compounds at 11.42 µM resulted in the identification of 56 putative hits. These 

compounds were taken forward to secondary dose-response screening to 
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determine potency. All 56 putative hit compounds displayed either no activity or 

autofluorescence, and as such were broadly characterized as being inactive, 

highly autofluorescent or exhibiting low-level autofluorescence. 

6.2.4 An inducible expression assay 

 A limitation of the HTS performed was the constitutive expression of 

RBV-P. As such, to ascertain the possible S/B ratio in this assay and the level 

of potential restoration in GFP expression a compound could achieve, it was 

necessary to include the parental A549/pr(ISRE).GFP cell line in screening. 

Therefore, we hypothesized that using an inducible expression system to 

express the IFN antagonist target would produce an assay requiring a single 

cell line that, under different treatment conditions, would provide all the 

necessary controls. Primarily, working with a single cell line would greatly 

simplify the assay, thus decreasing the potential for variation. Additionally, 

comparisons of signal and variation would have increased validity if all results 

were derived from the same cell line. Secondly, we theorized that the high 

levels of RBV-P expression in the constitutive cell line were saturating the IFN 

signalling pathway, decreasing the potential for hit identification. To this end, we 

aimed to develop an assay in which RBV-P was expressed under the control of 

an inducible promoter. This would enable maximum and minimum levels of GFP 

expression to be determined and allow greater control over the expression 

levels of RBV-P. Successful development of such an assay would provide 

proof-of-principle for its application to HTS. Further to this, we aimed to optimize 

the assay to maximize the signal window achieved when the IFN antagonist is 

or is not expressed. 
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6.2.4.1 Assay development 

 To generate a derivative of the parental A549/pr(ISRE).GFP cell line, 

which contained the RBV-P gene under the control of a Dox inducible promoter, 

we utilized the LVX-Tet-One transfer vector. The expression of V5-tagged RBV-

P from the newly constructed transfer vector was tested in transiently 

transfected 293T cells. RBV-P is clearly expressed in cells transfected with the 

transfer vector containing the gene and subsequently treated with Dox (Figure 

6.5). The pLVX-Tet-One vector tightly regulates expression from the inducible 

cassette, as no RBV-P is detected in transfected cells where Dox treatment was 

withheld. This provided confidence that the pLVX-Tet-One-RBV-P vector was 

functional. 

 

 

 

 

 

 

Figure 6.5: An IFN signaling reporter assay to incorporate the inducible expression of the 
Rabies virus phosphoprotein 
A transient transfection of the pLVX-Tet-One-RBV-P plasmid was performed in 293T cells 
followed by treatment of the cells with Dox. Total cell lysates were subjected to separation on 
SDS-PAGE gel followed by western blot. Membranes were probed for N-terminally V5 tagged P 
protien to ensure successful expression from the plasmid. 
 

 Following verification that the pLVX-Tet-One-RBV-P plasmid was 

functional and resulted in the expression of V5-tagged RBV-P, lentivirus stock 

produced with this transfer vector was used to transduce parental 

A549/pr(ISRE).GFP cells, producing the A549/pr(ISRE).GFP.Tet-One-RBV-P 
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cell line. To verify that the Tet-One-RBV-P cassette was integrated into the 

A549/pr(ISRE).GFP chromosome, we amplified the RBV-P sequence from 

genomic DNA (gDNA) extracted from A549/pr(ISRE).GFP.Tet-One-RBV-P cells 

and  used the pLVX-Tet-One-RBV-P plasmid as a control (Figure 6.6). The 

RBV-P sequence is not present in gDNA extracted from parental 

A549/pr(ISRE).GFP cells. This suggested that the V5-tagged RBV-P gene had 

been successfully integrated into the host cell chromosome. 

 

 

 

 

 

 

 

Figure 6.6: Confirmation of RBV-P gene integration into chromosomal DNA 
Following transduction of the target cells with lentivirus, genomic DNA was extracted and PCR 
amplified to confirm chromosomal integration of the Rabies P gene. Lanes contain the following; 
MM – Mastermix only, NTC – No template control (primers only), NPC – No primer control 
(template only), Template – parental lentiviral plasmid, ISRE – parental A549/pr(ISRE).GFP 
cells (untransduced), CMV-IE1 – control cell line transformed using the same lentivirus 
technology and RBV-P – resultant A549/pr(ISRE).GFP.Tet-One-RBV-P cell line following 
lentiviral transduction. 
 

 Although we had confirmed that the A549/pr(ISRE).GFP.Tet-One-RBV-P 

cell line contained the RBV-P gene, we needed to verify that the protein was 

expressed and that it was functional. To achieve this, A549/pr(ISRE).GFP and 

A549/pr(ISRE).GFP.Tet-One-RBV-P cells were used in the IFN signalling 

reporter assay. Untreated A549/pr(ISRE).GFP and A549/pr(ISRE).GFP.Tet-

One-RBV-P cells show no fluorescence, achieving a S/B ratio of 1 (Figure 
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6.7A). When treated with a 2-fold serial dilution of IFNα however, 

A549/pr(ISRE).GFP and A549/pr(ISRE).GFP.Tet-One-RBV-P cells exhibit 

comparable dose-dependent expression of GFP as a result of successful IFN 

signalling pathway activation. In the presence of Dox and IFNα, 

A549/pr(ISRE).GFP.Tet-One-RBV-P cells exhibit greatly reduced S/B ratio in 

comparison to cells treated only with IFNα. Although suggesting that induction 

of RBV-P expression by Dox treatment is successful and results in the 

production of functional protein, GFP expression is not completely inhibited. To 

investigate the effect of Dox concentration on RBV-P expression, 

A549/pr(ISRE).GFP and A549/pr(ISRE).GFP.Tet-One-RBV-P cells were again 

used in the IFN signalling assay, and  treated with a 2-fold serial dilution of Dox. 

In the presence of IFNα, low Dox concentrations (0.03 to 0.06 µg/ml) result in 

comparable levels of GFP expression in A549/pr(ISRE).GFP.Tet-One-RBV-P 

and A549/pr(ISRE).GFP cells (Figure 6.7B). At higher Dox concentrations, GFP 

expression in A549/pr(ISRE).GFP.Tet-One-RBV-P cells is reduced by up to 

50% compared to the parental A549/pr(ISRE).GFP cell line. However, a 

reduction in S/B ratio is also observed in the A549/pr(ISRE).GFP cell line as 

Dox concentrations increase. 

 Thus far, assessment of RBV-P functionality has been carried out in the 

IFN signalling reporter assay. We therefore endeavoured to evaluate the effect 

of RBV-P in the context of the IFN signalling pathway itself by comparing the 

levels of MxA and GFP expression in both A549/pr(ISRE).GFP and 

A549/pr(ISRE).GFP.Tet-One-RBV-P cell lines. Dox treatment does not impact 

the IFN signalling pathway as A549/pr(ISRE).GFP cells exhibit the same levels 
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of MxA and GFP expression irrespective of Dox (Figure 6.7C). Strong 

expression of MxA and GFP was also observed in IFNα treated 

A549/pr(ISRE).GFP.Tet-One-RBV-P cells. Upon Dox induction, RBV-P is 

strongly expressed, and there is a marginal decrease in GFP expression, but 

not MxA, which remains unaltered. This suggests that RBV-P does not 

successfully inhibit the IFN signalling pathway. 

Variation in RBV-P expression within the cell population was investigated 

using immunofluorescent microscopy of A549/pr(ISRE).GFP and 

A549/pr(ISRE).GFP.Tet-One-RBV-P cells. Dox treatment does not impede the 

expression of GFP following IFNα treatment in A549/pr(ISRE).GFP cells (Figure 

6.7D). In the absence of Dox, both cell lines express comparable levels of GFP, 

indicating successful activation of the IFN signalling pathway. 

A549/pr(ISRE).GFP.Tet-One-RBV-P cells treated with both Dox and IFNα show 

clear expression of both GFP and RBV-P. Interestingly, cells that express GFP 

do not appear to express RBV-P, and in cells where RBV-P is detected, GFP is 

not expressed. This suggests that although RBV-P is successfully expressed 

and functional, the cell population is heterogeneous and therefore there are 

cells present that do not contain the inducible RBV-P gene. 
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Figure 6.7: Assessing the functionality and expression of Rabies virus phosphoprotein in 
an inducible reporter assay 
Following generation of the A549/pr(ISRE).GFP.Tet-One-RBV-P cell line, the functionality of the 
expressed protein was assessed. The IFN signaling assay using A549/pr(ISRE).GFP and 
A549/pr(ISRE).GFP.Tet-One-RBV-P cell lines was performed using a 2-fold dilution series of 
IFN-α (A) or Dox (B) to assess GFP expression in the presence and absence of Rabies 
phosphoprotein. Cellular expression levels of GFP, Rabies phosphoprotein and the ISG MxA 
were assessed in the presence and absence of IFN-α and Dox by SDS-PAGE separation and 
western blotting of whole cell lysates (C). To further investigate the expression of GFP and 
phosphoprotein in the cell population, immunofluorescent microscopy was utilized. 
A549/pr(ISRE).GFP and A549/pr(ISRE).GFP.Tet-One-RBV-P cells were seeded onto coverslips 
and either left untreated, incubated with IFN-α only or with Dox followed by IFN-α treatment. 
Cells were fixed and probed with α-V5 primary and Texas red-conjugated secondary antibodies 
and DAPI (D). Data is representative of 3 independent repeats, each conducted in triplicate 
(n=3). Error bars display StDev. 
 

 To reduce the heterogeneity of the population and maximize RBV-P 

mediated inhibition of GFP expression, further optimization of the cell line was 

required. We aimed to increase the homogeneity of the cell line by selecting 

against cells that poorly express RBV-P using FACS, which can isolate 

thousands of cells with the same expression profiles from a given population. 

The levels of GFP expression in the RBV-P expressing cell line was assessed 

in comparison to the parental A549/pr(ISRE).GFP cell line. In the presence of 

RBV-P and IFNα, a fluorescent profile similar to that of unactivated 

A549/pr(ISRE).GFP cells should be observed, as the IFN signalling pathway 

would be inhibited. The GFP expression profile of the A549/pr(ISRE).GFP 

population exhibited a clear shift in fluorescence following IFNα treatment, 

where one clear peak is observed (Figure 6.8A). As expected, 

A549/pr(ISRE).GFP.Tet-One-RBV-P cells treated only with IFNα exhibited the 

same profile as the parental cell line (Figure 6.8B). When Dox treatment is 

included to induce RBV-P expression, there is a clear decrease in fluorescence, 

although a second lesser peak of high fluorescence was observed (Figure 
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6.8C), where a sub-population of cells exhibiting high GFP expression was 

present. FACS was used to select for the population of cells that, in the 

presence of Dox and IFNα, expressed low levels of GFP. The expression profile 

of these sorted cells exhibited a more defined peak of low fluorescence (Figure 

6.8D). However, although reduced, the second peak of cells expressing high 

levels of GFP was not eradicated. 

 

Figure 6.8: Optimization of viral IFN antagonist expression through FACS 
To maximize the inhibitory effect of viral IFN antagonists on the IFN signalling pathway, we 
sought to optimize the fluorescent signal window through FACS. The parental 
A549/pr(ISRE).GFP cells were analyzed for GFP expression following incubation with and 
without IFNα to establish the original signal window of the IFN signaling assay (A). Cell lines 
expressing the IFN antagonist of Rabies virus (B-D) were then either left untreated or treated 
with Dox, followed by incubation with IFNα and subjected to FACS analysis on the basis of GFP 
fluorescence. Cells treated with both Dox and IFNα (C) were sorted, and those expressing the 
lowest levels of GFP isolated. The GFP fluorescent profile of sorted cells in the presence of Dox 
and IFNα is shown (D). 
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We previousliy utilized multiple rounds of lentivirus transduction to 

optimize the A549/pr(ISRE).GFP cell line. Therefore, we used the same 

approach to reduce the heterogeneity of the A549/pr(ISRE).GFP.Tet-One-RBV-

P cell line, which were subjected to six rounds of lentivirus transduction. We 

used FACS to compare GFP expression in cells that had undergone 1 and 6 

rounds of transduction. Following IFNα treatment, the GFP expression profiles 

observed in A549/pr(ISRE).GFP cells (Figure 6.9A), and 

A549/pr(ISRE).GFP.Tet-One-RBV-P cells, which had undergone 1 (Figure 

6.9B) or 6 (Figure 6.9C) lentiviral transductions all exhibited high levels of GFP 

fluorescence, producing a single defined peak. Following Dox induction of RBV-

P expression, A549/pr(ISRE).GFP.Tet-One-RBV-P cells that had been 

transduced once with lentivirus again displayed 2 peaks (Figure 6.9D). 

Interestingly, A549/pr(ISRE).GFP.Tet-One-RBV-P cells that had been 

transduced 6 times displayed a single peak comparable to that observed in 

untreated A549/pr(ISRE).GFP cells (Figure 6.9E). Only a slight shoulder was 

observed however, where a small number of cells continued to express high 

levels of GFP. 
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Figure 6.9: Optimization of viral IFN antagonist expression through repeated lentivirus 
transduction 
To optimize the inhibitory effect of RBV-P expression on the IFN signalling assay, we sought to 
maximize the fluorescent signal window through repeated lentivirus transduction of cells. The 
parental reporter cell line (A549/pr(ISRE).GFP) (A) was transduced once or 6 times with 
lentivirus containing the gene encoding RBV-P. Cells were then either left untreated (B&C) or 
treated with Dox (D&E), followed by incubation with IFNα. All cells were subjected to FACS 
analysis on the basis of GFP fluorescence. 
 

100# 101# 102# 103# 104#

+ IFNα 

100# 101# 102# 103# 104#

- IFNα 

A549/pr(ISRE).GFP 

A549/pr(ISRE).GFP.Tet-One-RBV-P  
+ IFNα + IFNα + Dox 

100# 101# 102# 103# 104# 100# 101# 102# 103# 104#

100# 101# 102# 103# 104# 100# 101# 102# 103# 104#

GFP (530/40) GFP (530/40) 

A 

B D 

E 

1 
le

nt
iv

iru
s 

tra
ns

du
ct

io
n 

6 
le

nt
iv

iru
s 

tra
ns

du
ct

io
ns

 

C 



	
  

 159 

6.3 Summary 

 Validation of the A549/pr(ISRE).GFP.RBV-P cell line in the IFN signalling 

reporter assay potentiated a successful primary screening campaign against 

16,000 compounds, which identified 56 putative hits. Following potency 

assessment of these hits through dose-response screening, all 56 compounds 

exhibited inactivity or some degree of autofluorescence and as such were 

categorized as false positive hits. With the aim of developing a less complex 

assay that required a single cell line for HTS, we developed a derivative of the 

A549/pr(ISRE).GFP cell line where the expression of RBV-P was under the 

control of a Dox inducible promoter. Although functional protein resulted from 

Dox treatment of this cell line, heterogeneous expression resulted in 

inconsistent levels of IFN signalling pathway inhibition within the population. 

Therefore, using FACS, we sought to select for cells expressing functional 

antagonist that was successfully blocking IFN signalling. As this did not 

sufficiently optimize the cell lines, they were transduced a further 5 times with 

lentivirus containing the inducible integration cassette. Through repeated 

rounds of lentivirus transduction, we have successfully optimized the 

A549/pr(ISRE).GFP.Tet-One-RBV-P cell line, resulting in the production of a 

population with more homogeneous expression of RBV-P. These results further 

support repeated rounds of lentivirus transduction as a method to achieve an 

optimal signal window, potentiating successful optimization of an assay for use 

in HTS. 
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7. Discussion 

 Through the use of GFP reporter cell lines, we successfully developed 

and validated two cell-based assays to identify modulators of the IFN induction 

and signalling pathways. We performed a robust phenotypic HTS with the IFN 

induction reporter assay, which has the potential to target all components 

involved in RIG-I-induced, IRF3-dependent IFN induction. The screen identified 

2 compounds, StA-IFN-1 and StA-IFN-4 that specifically inhibit IFN induction. 

The potency of these compounds is in the micromolar range, and along with 

other dose-response parameters for hill slope, and maximum and minimum 

percentage effects, are broadly comparable to the IKKβ inhibitor, TPCA-1. We 

did not know the cellular targets of StA-IFN-1 and StA-IFN-4, as the assay used 

to identify them was phenotypic. Therefore, we instigated target deconvolution 

studies to characterize their target(s), which is discussed below. 

 

7.1 Target deconvolution 

 Data mining and target set enrichment can be a powerful tool to direct 

target deconvolution. Although not crucial for clinical approval of a candidate 

drug (Perola, 2010), target elucidation of a hit compound can be valuable to 

medicinal chemistry to further optimize the compound in terms of potency and 

specificity. We identified that StA-IFN-1 and StA-IFN-4 were novel in their ability 

to inhibit IFN induction through the use of SciFinder database searches and so 
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extended the investigation into the cellular targets of StA-IFN-1 and StA-IFN-4 

through preliminary target deconvolution studies. 

7.1.1 StA-IFN-4 

 StA-IFN-4 is a novel inhibitor of IFN induction, as SciFinder database 

searches against its structure gave no indication as to the compound’s 

mechanism of action or cellular target within the pathway. Although a patent 

detailing a compound with 74% similarity to StA-IFN-4 has been published, it 

details the use of Imidazo pyridines as GABA receptor agonists (Fang et al., 

2011, Goodacre et al., 2006). To characterize the antagonistic action of StA-

IFN-4 in IFN induction, we first assessed its effect on IRF3. We discovered that 

StA-IFN-4 is a potent inhibitor of IRF3 phosphorylation and subsequent nuclear 

translocation, suggesting that the cellular target of StA-IFN-4 must be at, or 

upstream, of IRF3 phosphorylation. To investigate this further, we assessed the 

affect of StA-IFN-4 on the kinases TBK1, and IKKε, which are responsible for 

IRF3 phosphorylation. In contrast to the IRF3 experiments conducted in A549 

cells, where SeV activated IFN induction, StA-IFN-4 had no impact on the levels 

of IRF3, TBK1 or IKKε phosphorylation where IFN induction in HACAT cells was 

activated by Poly(I:C). Although the difference in cell line may have a causal 

role in the differences observed in pIRF3 levels, the most likely reason for this 

discrepancy is the nature of the inducer used to activate the IFN induction 

pathway. As poly(I:C) is introduced to cells in liposomes via transfection, it is a 

potent activator of TLR3-dependent IFN induction (Naumann et al., 2013, 

Matsumoto and Seya, 2008). SeV Cantell on the other hand is a well-

characterized ligand of RIG-I (Martinez-Gil et al., 2013). This difference would 
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suggest that the cellular target of StA-IFN-4 is upstream of TRAF3 recruitment, 

as this is where the signalling cascades instigated by TLR3 and RIG-I converge 

(Figure 7.1). Therefore, StA-IFN-4 could target MAVS or RIG-I. Additionally, it 

could target the cellular regulators of these signalling molecules such as 

TRIM25, PP1α, PP1γ and TRAF 2, 5 and 6 (Gack et al., 2009, Wies et al., 

2013, Liu et al., 2013). In order to strengthen the kinase data, the experiment 

should be repeated to test RIG-I and TRL3-dependent kinase activity in parallel, 

and also to include an appropriate control compound, such as the TBK1 

inhibitor BX795. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 7.1: TL3- and RIG-I-dependent activation of IRF3. 
Poly(I:C) induced activation of IRF3 signals through TLR3 and TRIF, whereas SeV is sensed by 
RIG-I, and induces IRF3 phosphorylation through MAVS. TRIF- and MAVS-dependent 
signalling converges at TRAF3 recruitment. (Modified from Goodbourn and Randall, 2009)   
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 To further investigate the activity of StA-IFN-4 upstream of TRAF3, co-

immunoprecipitation (IP) experiments could be utilised. As RIG-I-dependent IFN 

induction relies on the dephosphorylation of RIG-I by PP1 proteins, this 

interaction could be studied through IP of RIG-I followed by western blotting for 

PP1α and PP1γ (Wies et al., 2013). The levels of phosphorylated RIG-I could 

be examined in the presence and absence of StA-IFN-4. Furthermore, the 

interaction between RIG-I and its regulator TRIM25 can be detected through IP 

experiments (Gack et al., 2007). If, in the presence of StA-IFN-4, this interaction 

were undetectable, it would suggest that the target is either of these two 

proteins or upstream effector molecules such as PP1 proteins. Likewise, the 

association of MAVS with TRIM25, and MAVS CARD with RIG-I CARD could 

be studied using IP to assess these interactions in the presence of StA-IFN-4 

(Castanier et al., 2012, Nistal-Villan et al., 2010).  

As a result of this preliminary investigation into the target of StA-IFN-4, 

we have identified that it is acting at, or upstream, of IRF3 phosphorylation. 

Furthermore, it is suggested that StA-IFN-4 is acting upon RIG-I, MAVS or their 

modulators, as no inhibition of TLR3-dependent IFN induction was observed. 

Further deconvolution studies are required to verify the exact cellular target of 

StA-IFN-4. Other approaches that could be used for this are discussed below 

(7.1.3). 

7.1.2 StA-IFN-1 

 As with StA-IFN-4, we carried out SciFinder searches of published patent 

and research literature relating to the structure of StA-IFN-1, which revealed 

that it is also a novel antagonist of IFN induction. These searches did not 
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highlight its specific mode of action in the IFN induction pathway. In fact, 

literature relating to this compound was limited to an 87% similar molecule 

identified as binding to BRPF1, a transcriptional scaffolding protein (Zhu and 

Caflisch, 2016), and a molecule with ~70% similarity patented as an inhibitor of 

tyrosine kinases involved in angiogenesis (Arnold et al., 2002). In contrast to 

StA-IFN-4, StA-IFN-1 did not potently inhibit IRF3 phosphorylation of nuclear 

translocation. Although we cannot rule out the possibility that StA-IFN-1 is 

acting downstream of IRF3 nuclear translocation, by inhibiting IFNβ 

enhanceosome assembly for example, we postulated that its target might be 

elsewhere in the IFN induction pathway. The compound with 70% similarity 

identified through SciFinder suggests that StA-IFN-1 may be a kinase inhibitor. 

It may therefore inhibit a kinase involved in the NF-κB branch of the IFN 

induction cascade, such as TAK-1, IKKβ or IKKα (Israel, 2010). To investigate 

this further, the impact of StA-IFN-1 on the nuclear translocation of NF-κB 

subunits could be assessed via immunofluorescent microscopy (Unterholzner et 

al., 2011). Additionally, as NF-κB activation is dependent on the proteasomal 

degradation of IκBα (Li et al., 2000), the levels of this cellular effector in the 

presence of StA-IFN-1 could also be monitored. More specifically, as TAK-1 is 

responsible for IKKβ phosphorylation in the course of NF-κB activation (Israel, 

2010), monitoring the levels of pIKKβ in the presence of StA-IFN-1 could 

indicate that TAK-1 is the cellular target. However, it is worth noting that TAK-1 

is a serine kinase, and the 70% similar compound identified is responsible for 

inhibiting tyrosine kinases.  
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 As a result of this preliminary study into the cellular target of StA-IFN-1, 

we have identified that, unlike StA-IFN-4, it is not a potent inhibitor of IRF3 

phosphorylation or nuclear translocation. Although StA-IFN-1 may inhibit 

downstream events in the IRF3 branch of the IFN induction cascade, it is likely 

that it may also target elsewhere such as the NF-κB branch of IFN induction. 

Structural similarity searches suggest that StA-IFN-1 may be a kinase inhibitor 

and as such may target TAK-1, IKKβ or IKKα. Further target deconvolution 

studies will be necessary to verify the exact cellular target of StA-IFN-1. The 

approaches that could be used for this are discussed below (7.1.3). 

7.1.3 Further approaches to target deconvolution. 

 Although a case-independent systematic approach to target 

deconvolution is yet to be established, there are numerous methods that can be 

employed to identify the target of a hit molecule. Through the characterisation of 

StA-IFN-1 and StA-IFN-4 we had identified that the latter acts at or upstream of 

IRF3 phosphorylation. Here, we will discuss 3 methods that could be employed 

to elucidate the exact targets of StA-IFN-1 and StA-IFN-4. 

7.1.3.1 Functional screening of IFN induction pathway effector molecules 

A targeted approach that could be used to identify the cellular targets of 

StA-IFN-1 and StA-IFN-4 is the use of expression vectors encoding signalling 

factors involved in the IFN induction pathway. This approach has been 

successfully applied to identify the cellular targets of the viral IFN antagonists 

expressed by Vaccinia virus and Poxvirus. The overexpression of MAVS 

activates the IFN induction pathway (Unterholzner et al., 2011). In the presence 
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of an IFN antagonist acting at or downstream of MAVS, induction is inhibited. 

However, if the target of the antagonist is upstream of MAVS, induction is 

unimpeded. As such, this provides a convenient method for target identification 

and could be applied to test StA-IFN-4. If the target of StA-IFN-4 is MAVS, IFN 

induction would be blocked. If, on the other hand, StA-IFN-4 inhibits RIG-I or a 

regulator of MAVS or RIG-I, then IFN will be induced as normal. Similarly, this 

approach has been used to identify the cellar target of IFN antagonists acting 

upon the NF-κB branch of IFN induction. Ectopic overexpression of IKKα, IKKβ, 

and TRAF6 induce the expression of a luciferase gene under the control of an 

NF-κB dependent promoter (DiPerna et al., 2004). If a molecule targets 

downstream of these signalling molecules, luciferase expression will be 

impeded. This approach could also be applied to StA-IFN-1 to establish 

whether it targets the NF-κB branch of the IFN induction pathway and indicate 

its point of action. However, to date, this method has only been used to identify 

the target of overexpressed viral proteins following the overexpression of 

cellular signalling molecules. It remains to be seen therefore whether it is a 

suitable method for small molecule target deconvolution, as the compound may 

not be potent enough to interfere with the pathway to a detectable level. 

7.1.3.2 Global approaches to target deconvolution 

Historically, target deconvolution has involved affinity-based approaches 

based on immunoprecipitation and chromatography (Reviewed by Lomenick et 

al., 2010, Titov and Liu, 2012, McFedries et al., 2013). Although a powerful 

approach, it relies on the conjugation of a small molecule to an affinity tag such 

as biotin, or a solid matrix such as agarose, which can reduce the activity of the 
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compound. More recently, a technique has been developed, which negates the 

need for small molecule conjugation. Drug affinity responsive target stability 

(DARTS) suggests that when bound to a ligand (small molecule), the stability of 

a protein is increased, and thus is less susceptible to protease cleavage 

(Lomenick et al., 2010, Lomenick et al., 2009). For target deconvolution of StA-

IFN-1 and StA-IFN-4, cell lysates would be incubated with or without the 

compounds. As the compounds were identified through a phenotypic screen 

where the IFN induction pathway was activated, the cell lysates should be taken 

from both activated and unactivated cells. Following protease digestion, protein 

samples are separated on 1-dimensional SDS-PAGE gels, which are then 

stained with Silver staining or Coomassie blue for example (Figure 7.2A). Visual 

analysis of the differences in the banding patterns between the two samples 

can identify changes in the abundance of specific proteins, which can then be 

identified by LC-MS. If protein levels are too low to assess visually, direct LC-

MS followed by subtractive analysis of results from the two samples and other 

label-free approaches could be utilized (Wiener et al., 2004). 
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Figure 7.2: Schematic representation of two global approaches to target deconvolution. 
DARTS relies on the decreased protease susceptibility of the binding partner upon small 
molecule binding (A) whereas affinity chromatography-based target elucidation requires the 
small molecule to be immobilized in order to capture its interaction partner (B). (Adapted from 
Lomenick et al., 2010) 
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One of the most commonly used approaches to target elucidation is 

affinity-chromatography (Titov and Liu, 2012, McFedries et al., 2013). Cell 

lysates are incubated with affinity-tagged compound followed by standard 

immunoprecipitation protocols and LC-MS or western blotting to identify the 

bound proteins (Figure 7.2B). As these approaches rely on the conjugation of a 

small molecule to an affinity tag such as biotin, or a solid matrix such as 

agarose, these methods require considerable knowledge of SAR relating to the 

compound as to not ablate activity once immobilised. To determine the regions 

of StA-IFN-1 and StA-IFN-4 that may be amenable to conjugation, we tested 

molecules with high levels of similarity to the parental compounds and 

fragments of the structures. These experiments suggest that the acetyl indole of 

StA-IFN-1 and the dichloro pyridazinone of StA-IFN-4 are crucial for their 

inhibitory activity. Therefore, in order to use affinity chromatography to elucidate 

the target of StA-IFN-1, a biotin affinity-tag could be attached to the pyrazolone 

structure. Loss of this group did not ablate the activity of StA-IFN-1, although it 

was reduced. Similarly, the pyridopyrimidine group of StA-IFN-4 appeared 

dispensable, and as such a biotin tag could be attached here. In order to 

maximize the knowledge pertaining to mode of action, SAR and potentiate 

target elucidation, medicinal chemistry to optimize the potency of StA-IFN-1 and 

StA-IFN-4 may be necessary before affinity-based approaches to target 

deconvolution are utilized. 

As a result of preliminary investigations into the targets of StA-IFN-1 and 

StA-IFN-4, we have identified StA-IFN-4 as a potent inhibitor of IRF3-dependent 

IFN induction. As such, StA-IFN-4 could be targeting RIG-I, MAVS or one of 
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their effector molecules. The reduced activity of StA-IFN-1 in comparison to 

StA-IFN-4 against IRF3 activation suggests that its cellular target may be 

involved in the NF-κB branch of IFN induction. To further elucidate the cellular 

targets of these compounds, various approaches can be employed ranging 

from targeted IP analysis and signalling molecule activity studies to more global 

methods such as DARTS and affinity chromatography. 
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7.2 Applications of IFN induction inhibitors 

 The IFN response is a potent first line of cellular defence against 

invading pathogens. However, aberrant activation of IFN induction and 

signalling either as a result of persistent viral infection or autoimmunity has 

potentially devastating effects. Compounds that inhibit IFN induction have 

potential uses in the clinic as therapeutics to treat diseases associated with 

dysfunction in the IFN system. Furthermore, IFN induction inhibitors could have 

applications in the biotechnology industry for the production of live-attenuated 

viral vaccines and oncolytic viruses, and could also be powerful tools for use in 

the research environment. 

Inhibitors of the IFN response can be used to increase the growth of IFN 

sensitive viruses, including oncolytic viruses and live-attenuated viral vaccines 

(Jackson et al., 2016, Cataldi et al., 2015, Stewart et al., 2014). We assessed 

the replication of BunVΔNSs, a recombinant virus lacking its viral IFN antagonist 

(Weber et al., 2002), in the presence of StA-IFN-1 and StA-IFN-4. BunVΔNSs 

has a reduced plaque size in cell culture, whereas in the presence of TPCA-1, 

plaque size is increased by 6-fold. The plaque size in the presence of both StA-

IFN-1 and StA-IFN-4 significantly increased to almost 2-fold, and although 

marginal, these results are promising for further compound optimization. Due to 

its potent inhibition of IRF3, it was interesting that only a marginal increase in 

plaque size was observed in the presence of StA-IFN-4. We demonstrated that 

the lack of potency of StA-IFN-4 on BunVΔNSs plaque size was a result of 

instability in tissue culture, causing a rapid loss of compound activity. Therefore, 

to increase the stability of StA-IFN-4 medicinal chemistry is required. BunV is 



	
  

 172 

sensed by RIG-I and has also been shown to activate PKR, which induces NF-

κB and IRF1-dependent pathways and also has direct antiviral activity 

(Streitenfeld et al., 2003). Therefore, to further assess StA-IFN-1 and StA-IFN-4 

for their ability to increase the growth of IFN sensitive viruses, plaque assays 

using viruses known to activate specific PRRs, such as IAV PR8 (Hale et al., 

2008), could be used. 

To the best of our knowledge, there are no known chemical antagonists 

of MAVS, and only one chemical modulator of RIG-I activity. Bufalin, an FDA 

approved cardiac glycoside, appears to inhibit the ATPase activity of RIG-I by 

increasing the intracellular sodium concentration (Ye et al., 2011). If StA-IFN-4 

specifically inhibits RIG-I or MAVS, it has various potential uses. For example, it 

could provide a straightforward method to transiently inhibit RIG-I or MAVS in a 

research environment. To achieve knockdown such as this currently, the use of 

expensive reagents such as short-interfering RNA, or the lengthy development 

of stable cell lines is required (Jiang et al., 2012, Schmolke et al., 2012, 

Spengler et al., 2015). Furthermore, knowledge regarding the mode of binding 

of a molecule specific to RIG-I could be used to highlight the mechanistic 

differences between RLRs. Targeting of RIG-I, MAVS or any their regulatory 

molecules such as TRIM25, PP1α or PP1γ, suggests that StA-IFN-4 could be a 

clinical candidate for use in the treatment of diseases associated with RLR 

dysfunction such as AGS, SMS and SLE (Buers et al., 2016, Rice et al., 2014, 

del Toro Duany et al., 2015, Miner and Diamond, 2014). 

As the precise target of StA-IFN-1 remains unknown, we can only 

speculate as to its specific application. If it does act in the NF-κB branch of IFN 
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induction, StA-IFN-1 has potential applications in the treatment of cancers and 

the aforementioned production of IFN sensitive viruses. Due to the involvement 

of NF-κB in the regulation of many cellular pathways, it has been the target of 

many drug discovery programs, and as such hundreds of modulators have 

already been identified (Ahmad et al., 2013, Herrington et al., 2015, Gilmore 

and Herscovitch, 2006). 

The potential uses of IFN induction inhibitors are numerous, ranging from 

clinical treatments to basic research tools. StA-IFN-1 and StA-IFN-4 although 

specifically inhibiting IFN induction require further characterization and 

medicinal chemistry to improve their potency before they can be considered 

NMEs. 
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7.3 Design and optimization of cell-based assays for 

HTS 

 The use of cell-based assays in HTS has increased dramatically in 

recent years due to their potential to indicate more biologically relevant 

characteristics of test compounds (Clemons et al., 2014). Due to the sensitivity 

of cells and the potential for variation within a population, optimization is crucial 

for an assay to be successful. Below, we will discuss some of the aspects 

involved in the successful development of phenotypic and targeted cell-based 

assays. 

7.3.1 Phenotypic assays 

 We successfully used a phenotypic fluorescent assay in HTS following 

the development of a reporter cell-line to monitor IFN induction. The IFN 

induction assay performed exceptionally following optimization achieving Z’ 

factors of >0.6 and S/B ratios >3, which are above pre-set industry standards 

(Iversen et al., 2006, Zhang, 1999). Although a S/B ratio of 3 may be regarded 

as relatively low in comparison to other reporter systems such as luciferase, 

where the S/B ratio can range from 79 to >11,000 (Guo et al., 2014, Martínez-

Gil et al., 2012, Patel et al., 2012), the Z’ factors achieved by these assays 

ranged between 0.3 and 0.7. Therefore, the excellent Z’ factors achieved by our 

assays are comparable to those of reporter assays associated with a large 

signal window. 

Typically, a high S/B ratio giving a larger signal window is advantageous 

to HTS and although an accurate and sensitive method (Zhang et al., 2012), the 
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use of enzyme reporters such as firefly and Renilla luciferase have been 

associated with compound interference from screening libraries (Auld et al., 

2008). Therefore, we believed that the use of GFP as a reporter would give rise 

to a more robust assay, less amenable to off-target compound interference. 

Although there remains the possibility that compounds in screening libraries 

could interfere with the generation of a fluorescent reporter signal, no detection 

method is capable of differentiating between real activity and interference 

(Gribbon and Sewing, 2003). That being said, the inclusion of a secondary 

reference signal could increase the robustness of an assay (Cali et al., 2008). 

For example, we could have included a constitutively expressed fluorophore in 

the IFN induction assay. The expression of mCherry for example, with excitation 

and emission wavelengths distinct from the GFP signal being assayed (Kremers 

et al., 2011), would potentiate the differentiation between test and control 

signals. This could reduce the false positive hit rate of the primary diversity 

screen by identifying compounds that interfere with signal generation, such as 

translational inhibitors, as both signals would be affected. Nevertheless, the IFN 

induction assay was optimized and validated as suitable for use in an HTS, 

where we successfully identified two specific inhibitors. 

We also validated the IFN signalling assay for use in HTS following cell 

line optimization and assay development. Prior to optimization, both the IFN 

induction and signalling assays had comparable levels of variability, although 

the initial S/B ratio of the A549/pr(ISRE).GFP cell line was below 2. Therefore, 

we sought to increase the signal window of the IFN signalling assay, theorizing 

that repeated rounds of lentivirus transduction could achieve this. Different 
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methods for the titration of lentivirus stock show inconsistency (Geraerts et al., 

2006), and as such they cannot be quantified in the same way as infectious 

viruses. The same principle of multiplicity of infection (MOI) can be applied, 

where plaque-forming units is substituted for transducing units. Working on the 

principle that one lentivirus results in one integration event per cell, applying the 

Poisson distribution suggests that only 62% of cells will be successfully 

transduced from an MOI of 1 (Fields et al., 2013). By increasing the rounds of 

lentivirus transduction, we effectively increase the MOI. Thus, following multiple 

rounds of transduction, each cell in the population should have at least one 

integration event. For the A549/pr(ISRE).GFP cell line, multiple rounds of 

lentiviral transduction followed by FACS significantly increased S/B ratio, 

potentiating the successful optimization and validation of the IFN signalling 

assay for HTS. Due to the excellent performance of the IFN induction and 

signalling assays in HTS, they have the potential to be used in HCS, where 

multiplexing of assays is potentiated (Nichols, 2006). As such, the IFN induction 

and signalling assays could be combined into one cell line. To achieve this, one 

of the promoters would need to drive the expression of a distinct fluorophore, 

such as the aforementioned mCherry. HCS is a powerful approach and 

multiplexing the IFN induction and signalling assays potentiates the screening 

of a compound library against both assays simultaneously, immediately 

allowing the identification of compounds acting specifically upon either pathway. 

Phenotypic assays are powerful tools for use in HTS as they not only 

indicate the biological activity of a test compound, but also, as we have 

demonstrated, have the potential to identify compounds with distinct targets. 
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The IFN induction assay was successfully optimized and validated for use in an 

HTS where it identified two specific inhibitors. The IFN signalling assay was 

also optimized and validated as suitable for HTS, and as such could be used to 

identify modulators of the IFN signalling pathway. Both GFP reporter assays 

produce excellent Z’ factors comparable to other reporter assays such as 

luciferase-based systems. 

7.3.2 Targeted cell-based assays 

As the IFN induction and signalling assays were successfully optimized 

and validated for use in HTS, we postulated that we could expand the assays 

and develop a platform to target viral IFN antagonists. We developed and 

validated an assay using the IFN signalling reporter cell line, in which RBV-P 

was constitutively expressed. The function of RBV-P antagonising IFN 

signalling results in the inhibition of GFP expression, and therefore, a 

compound that modulates RBV-P function will result in a restoration of GFP 

signal. We successfully performed an in-house HTS of 16,000 small molecules 

that performed well and remained robust throughout, identifying 56 putative hit 

compounds that resulted in an increase in GFP signal. During dose-response 

screening, all putative hits were eliminated as they either displayed inactivity or 

autofluorescence. As the A549/pr(ISRE).GFP.RBV-P cell line expresses high 

levels of RBV-P, we hypothesised that it may be saturating the IFN signalling 

pathway. Thus, a small molecule at a relatively low concentration of 11.42 µM 

may simply not be potent enough to modulate the protein-protein interaction of 

RBV-P with STATs (Kuenemann et al., 2016, Bakail and Ochsenbein, 2016). 

Therefore, the case may be that RBV-P is simply not a druggable target. If the 
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binding of RBV-P to STAT molecules is very rapid and highly stable, a small 

molecule may not be able to disrupt the interaction. A possible solution to this 

would be to alter the order in which the assay is performed. RBV-P binds only to 

phosphorylated STAT molecules (Wiltzer et al., 2014, Brzozka et al., 2006), 

which occurs only upon IFN signalling pathway activation. Therefore, compound 

treatment of the cells prior to IFNα treatment would allow for their binding to 

RBV-P and blockage of the interaction with phosphorylated STAT upon 

activation of IFN signalling. As small molecule compound libraries require 

constant upkeep and maintenance, an additional consideration as to why no 

modulators of RBV-P function were identified may be the size and age of the 

library used. The Maybridge library at just 16,000 compounds has undergone 

countless freeze-thaw cycles, which could expedite compound loss. A study by 

Kozikowski et al demonstrated that although not due to considerable levels of 

compound degradation, loss was observed following just 5 freeze-thaw cycles, 

most probably due to compound precipitation (Kozikowski et al., 2003). 

To simplify the assay to require only one cell line, and have greater 

control over the levels of RBV-P expressed, we further developed this assay 

format with a derivative of the IFN signalling reporter cell line where RBV-P 

gene expression is under the control of a Dox inducible promoter. Initially, the 

expressed viral protein did not fully block the IFN signalling pathway. We 

hypothesized that this was due to inconsistent levels of RBV-P expression 

within the cell population, and confirmed this through immunofluorescent 

microscopy illustrating that RBV-P and GFP expression were indeed 

heterogeneous and appeared mutually exclusive. Additionally, the 
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corresponding FACS profile of this cell line showed 2 distinct sub-populations. 

As with the parental A549/pr(ISRE).GFP cell line, we successfully optimized the 

inducible expression cell line through multiple rounds of lentivirus transduction 

followed by FACS. Although requiring further characterization, we have 

optimized the inducible RBV-P assay, and demonstrated a straightforward 

method by which an HTS appropriate assay, targeting a specific viral protein, 

can be developed. Furthermore, the inducible assay format can be applied to a 

variety of viral IFN antagonists, including those of high containment category 

viruses, as whole, live virus is not required. This may be a more favourable 

approach for pharmaceutical companies to adopt, as it does not require 

expensive high containment facilities. An interesting option for further expansion 

of the assay would be through the use of a dual reporter cell line as previously 

discussed, where the IFNβ promoter drives the expression of GFP and another 

fluorophore is under the control of the MxA promoter. Thus, when used in HTS, 

it could potentiate the simultaneous detection of hit compounds that modulate 

the IFN induction or signalling functions of a viral IFN antagonist. 

We have successfully expanded the IFN signalling assay to develop an 

screening platform to target viral IFN antagonists, which could identify 

compounds with potential uses as antiviral drugs. Through the use of an 

inducible expression system and multiple rounds of lentivirus transduction, we 

have demonstrated the flexibility of this assay format, and highlighted 

approaches that potentiate successful assay optimization. 
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7.4 Concluding remarks 

 With the primary aim of developing a fluorescent-based phenotypic 

assay for use in HTS to identify novel modulators of the IFN response, we 

instigated a campaign of optimization of two reporter assays to monitor the 

activity of the IFN induction and IFN signalling pathways. Through successful 

optimization and validation, the IFN induction assay was used in an HTS 

against 15,667 small molecules that culminated in the identification of 2 specific 

IFN induction inhibitors. Although not inconsequential, StA-IFN-1 is arguably 

less interesting in comparison to StA-IFN-4, which appears to target the IFN 

induction pathway upstream of TRAF3, potentially directed against RIG-I or 

MAVS. Both compounds warrant further investigation and chemical optimization 

to improve potency and pinpoint their mode of action. Nevertheless, they 

provide an exciting starting point for the development of novel therapeutics 

against RLR-associated diseases and as chemical tools to expedite the growth 

of live-attenuated viral vaccines and oncolytic viruses. 

We also demonstrate the optimization of the signal window of a 

fluorescent assay through the use of multiple lentiviral transduction and FACS. 

Additionally, we extended the IFN signalling assay to incorporate the 

expression of the RBV IFN antagonist and demonstrate the development of a 

target-specific fluorescent assay through the use if an inducible expression 

system. This assay can be easily manipulated to target the IFN antagonists of 

different clinically relevant viruses, including those typically requiring high 

containment facilities. 
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Appendices 
Appendix 1: qPCR data output using MxA and β-Actin primers 
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