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Abstract

This paper deals with estimability of variance components in mixed models
when all model matrices commute. In this situation, it is well known that the
best linear unbiased estimators of fixed effects are the ordinary least squares
estimators. If, in addition, the family of possible variance-covariance matrices
forms an orthogonal block structure, then there are the same number of
variance components as strata, and the variance components are all estimable
if and only if there are non-zero residual degrees of freedom in each stratum.

We investigate the case where the family of possible variance-covariance
matrices, while still commutative, no longer forms an orthogonal block struc-
ture. Now the variance components may or may not all be estimable, but
there is no clear link with residual degrees of freedom. Whether or not they
are all estimable, there may or may not be uniformly best unbiased quadratic
estimators of those that are estimable. Examples are given to demonstrate
all four possibilities.
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1. Some assumptions about the linear model

Let Y be a column vector of N random variables Y1, . . . , YN . Write E(Y)
for the expectation of the vector Y, and V for its variance-covariance matrix.
In this section we present some of the assumptions that are commonly made
about E(Y) and V in order to have a linear model with good properties.

Assumption 1. [Linear expectation] There is a known integer n, a known
N ×n real matrix X and an unknown column vector τ of length n such that
E(Y) = Xτ .

Under Assumption 1, let T be the N×N matrix of orthogonal projection
onto the column-space of X. Then T = X(X>X)+X>, where + denotes the
Moore–Penrose generalized inverse: see texts such as [11, 23]. Also, let GN

be the matrix of orthogonal projection onto the space W spanned by the
all-1 vector 1, so that GN = N−1JN , where JN is the N ×N matrix whose
entries are all equal to 1. It is often the case that 1 is in the column-space
of X. This happens if and only if TGN = GNT = GN : see [11, 39].

Assumption 2. [Spectral form of variance-covariance matrix] There are
known orthogonal symmetric idempotent matrices Q0, . . . , Qm summing
to the identity matrix IN of order N , and non-negative scalars γ0, . . . , γm

such that

V =
m∑

i=0

γiQi. (1)

This assumption says that the scalars γ0, . . . , γm are the eigenvalues
of V; the corresponding eigenspaces are the column spaces of Q0, . . . , Qm,
and these are known. It is often the case that W is one of the eigenspaces:
in that case, we label the spaces so that Qm = GN .

Assumption 3. [No relations among the eigenvalues] Assumption 2 is true
and there are no further constraints on the values of γ0, . . . , γm.

A weaker form of this, given in [37], is that there are no linear constraints
on γ0, . . . , γm. Here is an alternative weaker form.

Assumption 4. [Cone of full dimension] Assumption 2 is true and the fam-
ily of possible matrices V forms a positive cone of dimension m + 1 in the
space spanned by Q0, . . . , Qm.
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There are two common ways of justifying Assumption 2. The first starts
with known factors with random effects. A factor is simply a function as-
signing various discrete levels to each of the units 1, . . . , N . For j = 0, . . . ,
w, let Mj be the N ×N relation matrix for the j-th factor: its (α, β)-entry
is equal to 1 if this factor has the same level on units α and β; otherwise it
is equal to 0: see [4, 5]. We always include the trivial factor with N different
levels and label it as the 0-th factor, so that M0 = IN .

Assumption 5. [Mixed model] There are w+1 factors with random effects.
The relation matrices M0, . . . , Mw of these factors are known, and M0 = IN .
There are also unknown non-negative numbers σ2

0, . . . , σ2
w such that

V =
w∑

j=0

σ2
jMj. (2)

No relationships are assumed among σ2
0, . . . , σ2

w.

Assumption 6. [Mixed model with linear independence] Assumption 5 is
true and M0, . . . , Mw are linearly independent.

When Assumption 6 is true, there is a unique expression for the right-
hand side of Equation (2). For an example satisfying Assumption 5 but not
Assumption 6, use the five factors in a 2×2 Latin square: see Tjur [42, §7.3].

Assumption 7. [Commutativity of relation matrices] Assumption 6 is true
and MiMj = MjMi for 0 6 i < j 6 w.

Proposition 1. If Assumption 7 is true, then M0, . . . , Mw generate a com-
mutative algebra A of symmetric matrices. If the dimension of A is m + 1,
then m > w and Equation (2) can be written as (1), where Q0, . . . , Qm are
the primitive idempotents of A. Then there are known scalars bij such that
γi =

∑w
j=0 bijσ

2
j for i = 0, . . . , m.

Under Assumptions 1 and 7, Fonseca et al. [17, 18, 19] call the matri-
ces XX> and M0, . . . , Mw model matrices. In view of the different roles
played by expectation and variance, and to allow for treatments with unequal
replication, we prefer to use the term ‘model matrices’ for T and M0, . . . ,
Mw.

The other common way of justifying Assumption 2 comes from consider-
ing the pattern of the entries in V, which may well be justified by random-
ization, as in [1, 2, 27].
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Assumption 8. [Patterns of covariance] There are known non-zero sym-
metric matrices A0, . . . , Aw summing to JN , such that A0 = IN and all
entries in Ai are in {0, 1} for i = 1, . . . , w, and also a non-negative number
σ2, and numbers ρ1, . . . , ρw in [−1, 1] such that

V = σ2A0 + σ2

w∑
i=1

ρiAi.

The only further conditions assumed on ρ1, . . . , ρw are that V is non-negative
definite.

Assumption 9. [Commutativity of pattern matrices] Assumption 8 is true
and AiAj = AjAi for 0 6 i < j 6 w.

Assumption 9 gives a result similar to Proposition 1, with Mi replaced
by Ai. For simplicity, from now on we use the notation Mi in both cases.
Furthermore, let B be the (m+ 1)× (w + 1) matrix with entries bij.

The final assumption in this section relates the expectation part of the
model to the variance-covariance part.

Assumption 10. [Commutativity between expectation and variance matri-
ces] Assumptions 1 and 2 are true, and the matrix T commutes with Qi for
i = 0, . . . , m.

Under Assumption 10, put Ti = TQi = QiT and Pi = Qi − Ti for
i = 0, . . . , m. If the column-spaces of X and Qi are orthogonal to each
other then Ti is zero; otherwise, Ti is the matrix of orthogonal projection
onto the intersection Ui of these spaces. If Ui is the whole of the column-
space Wi of Qi then Ti = Qi and Pi = 0; otherwise, Pi is the matrix
of orthogonal projection onto the space Wi ∩ U⊥i , which is the orthogonal
complement of Ui in Wi. Let di be the rank of Pi, so that di = 0 if Pi = 0
and di = dim(Wi)− dim(Ui) otherwise.

Under Assumption 1, the ordinary least squares (OLS) estimator τ̂OLS

of τ is given by τ̂OLS = (X>X)+X>Y = (X>X)+X>TY. If V is known,
then the generalized least-squares (GLS) estimator τ̂GLS of τ is given by
τ̂GLS = (X>V−1X)+X>V−1Y. The importance of Assumption 10 is shown
by the following theorem, which can be found in [20, 22, 24, 26, 33, 44], for
example.
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Theorem 1. Under Assumptions 1 and 2, Assumption 10 is equivalent to
the condition that the OLS estimator of τ is the same as the GLS estimator
of τ no matter what the values of γ0, . . . , γm are.

More recently, Assumption 10 has been called ‘equivalent estimation’; see,
for example, [25, 30, 43]. In [8], Brown says that ‘ANOVA exists’ if and only
if Assumption 10 is satisfied.

2. Orthogonal block structure

Many authors have given conditions on V which ensure that Assumption 2
is true. A factor is said to be balanced if all of its levels occur on the same
number of units.

Assumption 11. [Tjur block structure] Assumption 7 is true, all the factors
with random effects are balanced, and M0, . . . , Mw span A.

In [42], Tjur discussed variance-covariance models satisfying Assump-
tion 11. He showed that this implies that m = w. Thus the matrix B is
square and invertible, and there is no linear relationship specified among γ0,
. . . , γm, but the non-negativity of σ2

0, . . . , σ2
w implies that Assumption 3 is

not satisfied if m ≥ 1. He further showed that it is possible to label the rela-
tion matrices and the primitive idempotents in such a way that the matrix B
is lower triangular: we adopt this convention in Examples 1–3, 5 and 6.

Nelder [27] and Bailey [4, 6] defined an orthogonal block structure (OBS)
to be a collection of factors satisfying some extra conditions in addition to
Tjur’s, but with Assumption 7 replaced by Assumption 9.

Houtman and Speed [21] generalized the definition of OBS to mean any
family of variance-covariance matrices satisfying Assumption 3. They explic-
itly specified that the family must consist of all positive semi-definite matrices
of the form (1), and gave the following two examples, which consider only
the structure of V, to clarify this point.

Example 1. Here N = bk, and the units are grouped into b blocks of size k.
The usual mixed model gives V = σ2

0M0 + σ2
1M1, where M0 = IN and M1

is the relation matrix for blocks. Then

V = γ0Q0 + γ1Q1, (3)
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where Q1 = k−1M1, Q0 = IN −Q1, γ0 = σ2
0 and γ1 = σ2

0 + kσ2
1. This is an

OBS, apart from the positivity constraint γ1 > γ0.
On the other hand, the randomization model of [1, 2] gives V = σ2A0 +

σ2(ρ1A1 + ρ2A2), where A0 = IN , A1 = M1− IN and A2 = JN −M1. Then

V = γ2Q2 + γ3Q3 + γ4Q4, (4)

where we start the numbering at 2 to avoid confusion with (3). Here Q4 =
GN , Q3 = Q1 −Q4, Q2 = Q0, γ2 = σ2(1− ρ1), γ3 = σ2[1 + (k − 1)ρ1 − kρ2]
and γ4 = σ2[1 + (k − 1)ρ1 + (N − k)ρ2]. This is a different OBS. The usual
mixed model gives the constraint that γ3 = γ4, and so expression (4) should
not be used to show that its variance-covariance structure is an OBS.

Example 2. Here N = rc, and the units are arranged in a rectangle with
r rows and c columns. The approach of Nelder [27] gives a mixed model
with four factors whose effects are random: M0 = IN , M1 and M2 are the
relation matrices for rows and columns respectively, and M3 = JN . This
defines an OBS with Q3 = GN , Q2 = r−1M2−GN , Q1 = c−1M1−GN and
Q0 = IN −Q1 −Q2 −Q3. Moreover, γ0 = σ2

0, γ1 = σ2
0 + cσ2

1, γ2 = σ2
0 + rσ2

2

and γ3 = σ2
0 + cσ2

1 + rσ2
2 +Nσ2

3. Nelder explicitly allows σ2
i to be negative so

long as γ0, . . . , γ3 are all non-negative.
An alternative mixed model omits M3, so that σ2

3 = 0. However, M1M2 =
M2M1 = M3, and so the spectral decomposition of V is still V = γ0Q0 +
γ1Q1 +γ2Q2 +γ3Q3. Now γ3 = γ2 +γ1−γ0, and this linear constraint implies
that the family of possible matrices V does not form an OBS.

Unfortunately, some later authors, such as Bailey [3] and Caliński and
Kageyama [9], defined OBS without including the condition of no linear
relationship among the γ parameters. There is now some confusion about
what an OBS is. Ferreira et al. [16] try to clarify the difference by calling
Assumption 3 OBS and Assumption 2 generalized OBS, while Bailey and
Brien [7] call them orthogonal variance structure and commutative variance
structure respectively. For the remainder of this paper we use Assumption 4
as our definition of OBS, so that it includes classes like (3) with the positivity
constraint γ1 > γ0.

The combination of the Nelder–Bailey type of OBS with Assumption 10 is
called simply ‘orthogonality’ in [6]. The combination of Assumption 7 (some-
times without linear independence of M0, . . . , Mw) with Assumption 10 is
called ‘commutative orthogonal block structure’ (COBS) in [10, 15, 19, 29].
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Estimation under Assumption 10 is straightforward and well-known. By
Theorem 1, τ̂OLS = τ̂GLS. The column-space of Qi is called the i-th stratum
in [2, 6, 27, 28], and in the statistical software GenStat [31, 32], and di is
called the number of residual degrees of freedom in the i-th stratum.

Consider a value of i such that Ti 6= 0. The standard error of any scalar
linear function of TiXτ is proportional to

√
γi. Thus we usually want to

estimate γ0, . . . , γm as well as τ .

Proposition 2. Suppose that Assumptions 3 and 10 hold.

(a) If di 6= 0 then ‖PiY‖2/di is an unbiased estimator for γi.

(b) If di 6= 0, the distribution of Y is multivariate normal, ti = rank(Ti)
and TiXτ = 0, then di‖TiY‖2/ti‖PiY‖2 has an F-distribution on ti
and di degrees of freedom.

(c) If di = 0 then there is no unbiased estimator for γi.

Proof . (a) and (b) See [36].

(c) See [37]. �

From (b), when di 6= 0 then the quantity di‖TiY‖2/ti‖PiY‖2 is used as
the test statistic for testing the null hypothesis that TiXτ = 0 . If di = 0
then this hypothesis cannot be tested.

The following two very simple examples demonstrate two features of this
process that are often overlooked. The first feature is discussed by Tjur in
[42, §7.3].

Example 3. Consider an n×n Latin square, with expectation corresponding
to the n letters. Then N = n2. The approach of Nelder [27, 28] gives a mixed
model with random factors like those in Example 2: M0 = IN , M1 and M2

correspond to rows and columns respectively, and M3 = JN . Then Q3 = GN ,
Q2 = n−1M2−GN , Q1 = n−1M1−GN and Q0 = IN −Q1−Q2−Q3, while
γ0 = σ2

0, γ1 = σ2
0 + nσ2

1, γ2 = σ2
0 + nσ2

2 and γ3 = σ2
0 + nσ2

1 + nσ2
2 + n2σ2

3.
Because the treatments are applied in a Latin square, T1 = T2 = 0 and

T3 = GN = Q3. Hence d3 = 0, and so it is impossible to estimate γ3 or σ2
3.

Put τ̄ = n−1(τ1 + · · · + τn), so that T3Xτ = τ̄1. It is impossible to give
a standard error for the estimate of τ̄ , and there is no test of the hypothesis
that τ̄ = 0. This may be why the line for the overall mean is often omitted
from the analysis-of-variance table.
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Example 4. Consider the two-sample t-test. Then n = 2. Suppose that
treatment 1 is applied to the first r units and that treatment 2 is applied to
the remaining s units, where r + s = N , r > 2 and s > 2. Let Q0 be the
diagonal matrix whose first r diagonal entries are equal to 1, the remainder
being 0, and put Q1 = IN −Q0.

Assume that
V = γ0Q0 + γ1Q1. (5)

(Usually we would write γi as σ2
i , but we want to be consistent with (1).) If

we believe that γ0 and γ1 are different then we have OBS with Assumption 10,
and we estimate the standard error of the difference τ̂1 − τ̂2 as√

γ̂0

r
+
γ̂1

s
,

where γ̂0 = ‖P0Y‖2/(r − 1) and γ̂1 = ‖P1Y‖2/(s− 1).
On the other hand, if we believe that γ0 = γ1 = γ then expression (5) is

not OBS. In this case, ‖P0Y‖2/(r−1) and ‖P1Y‖2/(s−1) are both unbiased
estimators of γ. They are usually combined to give the estimator

‖P0Y‖2 + ‖P1Y‖2

N − 2
=
‖(IN −T)Y‖2

N − 2
,

which comes directly from writing V = γIN , which is indeed an OBS.

3. Linear relationships among the eigenvalues

From now on, we assume Assumption 10 and either Assumption 7 or
Assumption 9, so that the matrix B is defined and its columns are linearly
independent. For simplicity, we discuss only Assumption 7, but the results
hold whenever the matrices Mi are symmetric and commute with each other.
In particular, writing Mi as Ai gives Assumption 9. Finally, we assume that
m > w, so that there is at least one linear relationship among γ0, . . . , γm.

Theorem 2. Suppose that there are exactly t+1 values of i for which di 6= 0.
Label the primitive idempotents in such a way that di = 0 if and only if
t < i 6 m. For i = 0, . . . , t, put γ̂i = ‖PiY‖|2/di, so that γ̂i is an unbiased
estimator for γi. Let B̃ be the (t+ 1)× (w+ 1) matrix obtained from the first
(t+ 1) rows of B. Let θ =

∑t
i=0 λiγi, where λ0, . . . , λt are known scalars.
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(i) If the rows of B̃ are linearly independent and the columns of B̃ are lin-
early independent, then t = w and B̃ is invertible. Thus B̃−1(γ̂0, . . . , γ̂w)>

gives an unbiased estimate of (σ2
0, . . . , σ

2
w)> and so BB̃−1(γ̂0, . . . , γ̂w)>

gives an unbiased estimate of (γ0, . . . , γm)>.

(ii) The quantity
∑t

i=0 λiγ̂i is an unbiased estimator for θ. If the rows of B̃
are linearly independent, then no other linear combination of γ̂0, . . . ,
γ̂t is an unbiased estimator for θ.

(iii) If the rows of B̃ are not linearly independent, then there is at least
one i with 0 6 i 6 t such that there is a linear combination of γ̂0,
. . . , γ̂t other than γ̂i which is an unbiased estimator for γi. This non-
uniqueness of estimation then propogates to some of σ2

0, . . . , σ2
w and

hence may propogate to some of γt+1, . . . , γm.

(iv) If the columns of B̃ are linearly independent, then each of σ2
0, . . . , σ2

w,
and hence each of γ0, . . . , γm, can be estimated unbiasedly by at least
one linear combination of γ̂0, . . . , γ̂t.

(v) If the columns of B̃ are not linearly independent, then there is at least
one value of i such that no linear combination of γ̂0, . . . , γ̂t gives an
unbiased estimate of γi.

Proof . (i), (ii) and (iii) are immediate.

(iv) See Ferreira [12].

(v) If the columns of B̃ are not linearly independent, then there is at least
one value of j such that σ2

j is not a linear combination of γ0, . . . , γt.
Hence no linear combination of γ̂0, . . . , γ̂t gives an unbiased estimate
of σ2

j . There is at least one value of i for which bij 6= 0: for any such i,
there is no linear combination of γ̂0, . . . , γ̂t which gives an unbiased
estimate of γi. �

When B̃ is invertible, the only difference from Section 2 is that, when
w < i 6 m, the estimate of γi may be a linear combination of two or more
mean squares, and so Satterthwaite’s approximation [35] must be used for
performing an F-test. Since m > w, there may be at least one such value
of i.
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When the columns of B̃ are linearly independent, then each parameter
σ2

i has at least one unbiased estimator which is a linear combination of the
residual mean squares. In [8], Brown says that (σ2

0, . . . , σ
2
w)> is ‘estimable’ if

and only if this happens. This property is called ‘segregation’ in [13, 14, 15,
16].

When the columns of B̃ are not linearly independent then there is one
or more values of i for which there is no unbiased estimator of γi. In such
cases, clearly i > t, and so Ti = Qi 6= 0. Thus there is no estimator of a
standard error for any scalar linear function of TiXτ , and there is no test of
the hypothesis that TiXτ = 0. If this occurs for only one value of i, and the
corresponding primitive idempotent is GN , as in Example 3, then this may
not be regarded as problematic.

When the rows of B̃ are not linearly independent, which estimator should
we use? Should we combine the different estimators in some way? In Exam-
ple 4, there was a simple answer, given by replacing model (5) by an OBS,
but this solution is not available in general.

The set of residual mean squares forms a minimal sufficient set of statis-
tics for γ0, . . . , γm when the columns of B̃ are linearly independent: see
[8]. However, Seely showed in [38] that it is not complete if the rows of B̃
are linearly dependent, because no unbiased linear combination is uniformly
better than any other.

One possibility is to maximize the likelihood of (IN −T)Y under the as-
sumption of multivariate normality. However, Szatrowski [40] and Szatrowski
and Miller [41] showed that there is no closed-form solution when the rows
of B̃ are linearly dependent.

When neither the rows nor the columns of B̃ are linearly independent,
we have both problems at the same time: inestimability of some variance
components but multiple estimates of others.

There are four possible combinations of linear independence/dependence
of the rows of B̃ with linear independence/dependence of the columns of B̃.
We show in Section 4 that all four possiblities can occur.

4. Examples

This section contains two examples to demonstrate all of the behaviour
described in Section 3. Each considers a variance model satisfying Assump-
tion 7 with m > w, and compares it with the model satisfying Assumption 3
with the same idempotents. Several different models for expectation are used
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in each case, all satisfying Assumption 10 and all defined by the combinations
of levels of one or more factors. In order to maintain the same notation for
the primitive idempotents while using different models for expectation, it is
not always possible for the strata for which di 6= 0 to be labelled 0, . . . , t.

Example 5. Suppose that N = 96, and that the units are partitioned into
six blocks, each of which is a 4× 4 array, so that the 24 rows and 24 columns
are nested within blocks: see Fig. 1.

Figure 1: Structure of the 96 units in Example 5

One practical instance of this occurs in consumer testing. An experiment
uses 24 volunteer consumers during 24 weeks. The weeks are divided into six
groups of four weeks each, so that each group is approximately one month.
The consumers are also partitioned into six groups of four. For i = 1, . . . , 6,
the consumers in group i participate during all the weeks in month i, and in
no others. Each volunteer is given a packet of a type of coffee during each
week in which he or she participates. He or she uses that coffee all week, and
gives it a score at the end of the week. Here the months are the blocks, the
weeks are the rows and the consumers are the columns.

A second instance of this structure is an experiment on feeds for lactating
cows. Six different pens are used, one in each four-week ‘month’. Twenty-four
cows are used, four per pen. Each cow is given one type of feed throughout
each week, and her milk production for that week is recorded. Of course, if
cows in the same pen get different feeds in the same week then they must
be fed individually. Now the pens, weeks and cows are the blocks, rows and
columns respectively.

In most statistical software, this structure is created by first declaring fac-
tors blocks, row and columns with six, four and four levels respectively. Then
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one unit is created for each combination of levels. Finally, the experimental
structure is declared by a formula such as

blocks/(rows ∗ columns),

which is used in GenStat [31, 32] and R [34].
Put M0 = I96. Let M1, M2 and M3 be the relation matrices correspond-

ing to rows, columns and blocks respectively. Then M1M2 = M2M1 = M3.
The primitive idempotents of the algebra generated by M0, M1, M2 and
M3 are Q0, Q1, Q2 and Q3, where Q3 = 16−1M3, Q2 = 4−1M2 − Q3,
Q1 = 4−1M1−Q3 and Q0 = M0−Q1−Q2−Q3. The Appendix shows the
R code which generates these matrices, for one systematic ordering of the
units.

First we consider the orthogonal block structure defined by

V = σ2
0M0 + σ2

1M1 + σ2
2M2 + σ2

3M3

= γ0Q0 + γ1Q1 + γ2Q2 + γ3Q3,

where γ0 = σ2
0, γ1 = σ2

0 + 4σ2
1, γ2 = σ2

0 + 4σ2
2 and γ3 = σ2

0 + 4σ2
1 + 4σ2

2 + 16σ2
3.

There is no assumed linear relationship among γ0, . . . , γ3, nor among σ2
0,

. . . , σ2
3.

We consider four different models for expectation.
(a) Treatment factors F and G each have four levels. Within each block,

levels of F are randomly applied to the four rows and levels of G are randomly
applied to the four columns. Each combination of levels of F and G gives
an entry in τ , so that n = 16. Then T0 corresponds to the interaction F.G,
T1 to the main effect of F , T2 to the main effect of G, and T3 to the overall
mean.

Part (a) of Table 1 gives the skeleton analysis of variance, including the
overall mean. It shows that d0 = 45, d1 = d2 = 15 and d3 = 5. There is one
residual mean square for each γ-parameter.

(b) Treatment factor A has three levels, randomly applied to two whole
blocks each. Each level of A gives an entry in τ , so that n = 3. Now T = T3,
which includes both the main effect of A and the overall mean. As part (b) of
Table 1 shows, d0 = 54, d1 = d2 = 18, d3 = 3, and there is still one residual
mean square for each γ-parameter.

(c) Treatment factor H is like treatment factor A, except that it has six
levels. As part (c) of Table 1 shows, t = 2 and there is no estimator for γ3.
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stratum df source df source df source df source df
Q3 6 mean 1 mean 1 mean 1 mean 1

A 2 H 5 H 5
residual 5 residual 3

Q2 18 G 3 G 3
G.H 15

residual 15 residual 18 residual 18
Q1 18 F 3

residual 15 residual 18 residual 18 residual 18
Q0 54 F.G 9

residual 45 residual 54 residual 54 residual 54

Expectation model (a) model (b) model (c) model (d)

Table 1: Skeleton analysis of variance tables in Example 5

(d) The treatment factors are G, as in (a), and H, as in (c). Expectation
effects correspond to the overall mean, the main effects of G and H, and
their interaction G.H. Part (d) of Table 1 shows that there is no estimator
for γ3 or γ2.

Now we suppose that σ2
3 = 0. The primitive idempotents of the algebra

generated by M0, M1 and M2 are still Q0, . . . , Q3. Now

V = σ2
0M0 + σ2

1M1 + σ2
2M2

= γ0Q0 + γ1Q1 + γ2Q2 + γ3Q3,

where γ0 = σ2
0, γ1 = σ2

0 + 4σ2
1, γ2 = σ2

0 + 4σ2
2 and γ3 = σ2

0 + 4σ2
1 + 4σ2

2 =
γ1 + γ2 − γ0.

If the expectation follows model (a), then part (a) of Table 1 shows that
there are four independent residual mean squares whose expectations are γ0,
. . . , γ3. There is therefore the problem of deciding, for example, whether to
estimate γ3 by γ̂3 or γ̂1+ γ̂2− γ̂0 or some weighted average of these. Model (b)
has the same problem.

If the expectation follows model (c) then part (c) of Table 1 shows that
t = w = 2. Moreover,

B̃ =

 1 0 0
1 4 0
1 0 4

 ,
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which is invertible. The unique estimator of γ3 is γ̂1 + γ̂2 − γ̂0. This can be
used to estimate standard errors of differences between levels of H, and for
an approximate F-test for H, even though d3 = 0.

If the expectation follows model (d) then part (d) of Table 1 shows that
t = 1. The parameters γ0 and γ1 can be estimated. Hence σ2

0 and σ2
1 can

be estimated, but σ2
2, γ2 and γ3 cannot. So there are no F-tests for any

treatment effects, and no estimators of standard errors of differences.

Example 6. In a modified version of the cow-feeding experiment, all six
pens are used at the same time for a single ‘month’ of four weeks. Thus rows
are now crossed with blocks, and the formula for the experimental structure
is

rows ∗ (blocks/columns) :

see Figure 2.

Figure 2: Structure of the 96 units in Example 6

Put M0 = I96. Let M1 be the relation matrix for row-block intersections.
Let M2, M3 and M4 be the relation matrices for columns, blocks and whole
rows, respectively, and let M5 = J96. The primitive idempotents of the
algebra generated by M0, . . . , M5 are Q0, . . . , Q5, where Q5 = 96−1M5 =
G96, Q4 = 24−1M4 − Q5, Q3 = 16−1M3 − Q5, Q2 = 4−1M2 − 16−1M3,
Q1 = 4−1M1 −Q3 −Q4 −Q5, and Q0 = M0 −Q1 −Q2 −Q3 −Q4 −Q5.

The corresponding orthogonal block structure has

V = σ2
0M0 + σ2

1M1 + σ2
2M2 + σ2

3M3 + σ2
4M4 + σ2

5M5

= γ0Q0 + γ1Q1 + γ2Q2 + γ3Q3 + γ4Q4 + γ5Q5,

where γ0 = σ2
0, γ1 = σ2

0 + 4σ2
1, γ2 = σ2

0 + 4σ2
2, γ3 = σ2

0 + 4σ2
1 + 4σ2

2 + 16σ2
3,

γ4 = σ2
0 + 4σ2

1 + 24σ2
4 and γ5 = σ2

0 + 4σ2
1 + 4σ2

2 + 16σ2
3 + 24σ2

4 + 96σ2
5.

This time, we consider three different models for expectation.
(a) Treatment factor A has three levels, each applied to two whole blocks,

so that n = 3. Part (a) of Table 2 gives the skeleton analysis of variance. It
shows that there is one residual mean square for each of γ0, . . . , γ4. As in
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stratum df source df source df source df
Q5 1 mean 1 mean 1 mean 1
Q4 3 F 3

residual 3 residual 3
Q3 5 A 2 H 5

residual 3 residual 5
Q2 18 G 3

residual 18 residual 15 residual 18
Q1 15 residual 15 residual 15 residual 18
Q0 54 F.G 9

residual 54 residual 45 residual 54

Expectation model (a) model (b) model (c)

Table 2: Skeleton analysis of variance tables in Example 6

Example 3, there is no estimator for γ5 and no test of the hypothesis that
τ̄ = 0.

(b) Treatment factors F and G each have four levels. Each level of F
is applied to one whole row. Levels of G are applied to the four columns
within each block. There is one entry in τ for each combination of levels of
F and G, so that n = 16. Part (b) of Table 2 shows that d4 = d5 = 0, so
that there is no estimate of γ4 or γ5, no test for τ̄ = 0 and no test for the
main effect of F .

(c) Treatment factor H has six levels, each of which is applied to one
whole block. Now part (c) of Table 2 shows that there is no estimator for γ3

or γ5.
A mixed model for this structure might have σ2

3 = σ2
5 = 0. (The labelling

of the matrices M0, . . . , M5 is chosen so that M0, . . . , M3 denote the same
matrices in Examples 5 and 6.) However, M1M2 = M2M1 = M3 and
M2M4 = M4M2 = M5, so the algebra generated by M0, M1, M2 and M4

still has primitive idempotents Q0, . . . , Q5. Now

V = σ2
0M0 + σ2

1M1 + σ2
2M2 + σ2

4M4

= γ0Q0 + γ1Q1 + γ2Q2 + γ3Q3 + γ4Q4 + γ5Q5,

where γ0 = σ2
0, γ1 = σ2

0 + 4σ2
1, γ2 = σ2

0 + 4σ2
2, γ3 = σ2

0 + 4σ2
1 + 4σ2

2, γ4 =
σ2

0 + 4σ2
1 + 24σ2

4 and γ5 = σ2
0 + 4σ2

1 + 4σ2
2 + 24σ2

4.
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If the expectation follows model (a) then part (a) of Table 2 shows that
there are five independent residual mean squares whose expectations are
γ0, . . . , γ4. However, γ3 = γ1 + γ2 − γ0, so each of γ0, . . . , γ3 can be
unbiasedly estimated by several linear combinations of these mean squares.
Since γ5 = γ3 + γ4 − γ1, it is also possible to estimate γ5, and so a standard
error can be given for τ̄ .

Under model (b), part (b) of Table 2 shows that t = w = 3, with di 6= 0
when i = 0, 1, 2 and 3. Thus

B̃ =


1 0 0 0
1 4 0 0
1 0 4 0
1 4 4 0

 .
Neither the rows nor the columns of B̃ are linearly independent. There is
no estimator for σ2

4, γ4 or γ5, and hence no test for the main effect of F .
However, there are multiple estimators for γ0, γ1, γ2, γ3, σ

2
0, σ2

1 and σ2
2.

On the other hand, if the expectation follows model (c) then part (c) of
Table 2 shows that again t = w = 3, with di 6= 0 when i = 0, 1, 2 and 4.
Labelling the rows of B̃ by γ0, γ1, γ2 and γ4 gives

B̃ =


1 0 0 0
1 4 0 0
1 0 4 0
1 4 0 24

 ,
which is invertible. Hence there are unique linear combinations of the residual
mean squares which provide unbiased estimators for each of γ0, . . . , γ5, σ

2
0,

σ2
1, σ2

2 and σ2
4. All treatment effects, including the overall mean, can be

tested and assigned standard errors.

5. Conclusion

It is widely believed that estimation and inference are straightforward for
mixed models in which all possible variance-covariance matrices commute
with each other and with the matrix of orthogonal projection onto the space
of all possible fitted values of the expectation vector. As summarized in Sec-
tion 2, this is indeed true when the dimension m + 1 of the commutative
algebra spanned by all possible variance-covariance matrices is equal to the
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number w + 1 of linearly independent unknown variance components. How-
ever, when m > w then there are four possibilities for estimability of variance
components. We recommend summarizing the data in an analysis-of-variance
table in every case. However, the criterion for unique estimability of all vari-
ance components is no longer a function of how many residual degrees of
freedom are non-zero: what is needed is that the matrix B̃ introduced in
Section 3 be invertible.

The examples discussed in Section 4 show realistic experimental situations
where different assumptions about the variance-covariance matrix, combined
with different simple methods of assigning treatments to experimental units,
can lead to all four types of behaviour: variance components may be all
estimable or not, and their estimators may or may not be unique linear com-
binations of the residual mean squares. This shows that, when an experiment
is being planned, it is advisable to construct the skeleton analysis-of-variance
table and find the properties of the matrix B̃, before the experiment is carried
out.
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Appendix: R code

a=4

b=4

c=6

Ia= as.matrix(diag(a))

Ib= as.matrix(diag(b))

Ic= as.matrix(diag(c))

Ja= rep(1,a)

Jb= rep(1,b)

Jc= rep(1,c)

X0=Ic%x%Ib%x%Ia

X1=Ic%x%Jb%x%Ia

17



X2=Ic%x%Ib%x%Ja

X3=Ic%x%Jb%x%Ja

M0=X0%*%t(X0)

M1=X1%*%t(X1)

M2=X2%*%t(X2)

M3=X3%*%t(X3)

Q3=(1/b)*(1/a)*M3

Q2=(1/a)*M2-Q3

Q1=(1/b)*M1-Q3

Q0=M0-Q1-Q2-Q3
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