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All domains of life make carbohydrate polymers and by

anchoring them to lipid molecules they can decorate the

outside of the cell. Polysaccharides are linked to proteins by

glycosylation, a process found in both bacteria and in higher

organisms. Bacteria do have other distinct uses for

carbohydrate polymers; in gram-negative bacteria glycolipids

form the outer leaflet of the outer membrane and in many

pathogens (both gram-positive and gram-negative) sugar

polymers are used to build a capsule or are secreted into the

environment. There are parallels, but of course differences, in

the biosynthesis of glycolipids between prokaryotes and

eukaryotes, which occur at the membrane. The translocation of

large sugar polymers across the outer membrane is unique to

gram-negative bacteria. Recent progress in the molecular

understanding of both the biosynthesis at the inner membrane

and the translocation across the outer membrane are reviewed

here.
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Introduction
Sugars are perhaps best known for their central role in

metabolism; the chemical and structural biology of the

glycolytic pathway is taught to generations of biochemists

[1]. At the same time, and with growing prominence,

polymeric sugar molecules have been recognised as criti-

cal to a range of molecular recognition events in biology

[2]. In bacteria sugars, often conjugated to lipid mole-

cules, for example lipopolysaccharide (LPS) in the outer

leaflet of the outer membrane of gram-negative bacteria

[3], play important roles in shielding the organism from

attack from small molecule toxins, such as antibiotics and

the immune system upon infection of a host organism [4].
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Many of the polymers can modulate the human immune

system and one example, lipid A, which anchors LPS in

the gram-negative bacterial outer membrane, can trigger

septic shock, resulting in profound morbidity and mortal-

ity. Peptidoglycan, a polymer composed of amino acids

and carbohydrates, is almost universal in bacteria and

encapsulates the plasma membrane. The biosynthesis

and structure of peptidoglycan is the target for many of

the most important antibiotics and is also the target for

lysozyme, part of the innate immune response. Other

bacteria use sugar polymers to form a capsule in which the

entire cell resides [5], in one case anchored to the outer

membrane by a protein [6]. Of course many other eu-

karyotic pathogens, for example, yeast [7] and Trypano-
soma cruzi [8] also utilise sugars to form the interface with

a host organism. The synthesis of such polymers has

attracted considerable attention as a drug target.

In the case of gram-negative bacteria starting from the

synthesis of simple sugar building blocks in the cytoplasm

to becoming extracellular polysaccharides results in a

particular set of challenges. Sugar polymers are large

polar molecules and both the inner and outer membranes

are highly hydrophobic; how and where the polymers are

made and how they cross these barriers is of particular

interest (Figure 1) [9�].

Polymer synthesis
The first step in polymer synthesis is the synthesis of the

sugar lipid conjugate that acts as the sugar carrier

(Figure 2a). This begins with the transfer of sugar-1-

phosphate to undecaprenyl phosphate on the cyto-

plasmic face of the inner membrane. Gram-negative

bacteria have two broad classes of initiating enzyme,

the polyisoprenyl-phosphate hexose-1-phosphate trans-

ferase (PHPT) family and polyisoprenyl-phosphate N-

acetylaminosugar-1-phosphate transferase (PNPT) fam-

ily. Humans only have PNPT-type enzymes [10]. The

nomenclature reflects an earlier understanding that

PNPT enzymes used only UDP-N-acetyl-glucosamine

and PHPT utilised UDP-galactose (or other ‘simple’

sugars). A more useful, structural-based classification

has since emerged; the PNPT class contains 10 or

11 transmembrane helices, which together form the

active site, whilst the PHPT class has a cytoplasmic C-

terminal soluble domain that contains the catalytic ma-

chinery (Figure 2b). Phospho N-acetylmuramic acid

pentapeptide translocase (MraY) initiates the process

of peptidoglycan formation by transferring phospho-

MurNAc pentapeptide onto undecaprenyl phosphate

(recently reviewed [11]). MraY belongs to the PNPT

class and its crystal structure (from Aquifex aeolicus)
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Figure 1

Wzi

Wzc

ADP + Pi

ATPPNPT or
PHPT

1

2

NDP-sugars

NDP

PglK

Wzx

Wzy

Wzb

Wzz

6

8

7

WaaL
PglB

PgpB

3

4

Wza

5

Current Opinion in Structural Biology

A schematic showing the functions of the different proteins discussed during the course of this review. Bacterial polysaccharide biosynthesis [9�]

begins on the cytoplasmic face of the inner membrane by the transfer of a sugar-phosphate on to undecaprenyl phosphate via either a PNPT or

PHPT, in step 1. The initial lipid-linked sugar is built upon by the sequential action of various glycosyltransferases to form a repeat unit (step 2). In

the case of protein N-glycosylation in C. jejuni, this is then flipped across the inner membrane via the ABC transporter PglK (step 3), where it is

transferred onto the target protein by PglB (step 6). During capsular polysaccharide and LPS biosynthesis, the undecaprenyl-linked repeat unit is

flipped across the inner membrane by Wzx (step 3). These repeat units are then polymerised by Wzy (step 4). Depending on the system, the

number of repeat units polymerised by Wzy is controlled by either Wzc before the transport of the sugar polymer to the outer membrane by Wza

(step 5) or by Wzz before the transfer of the sugar polymer to lipid A core oligosaccharide by WaaL to form LPS (step 6). LPS is then transferred

to the outer membrane by the Lpt family of proteins (step 7). The remaining undecaprenyl pyrophosphate is recycled to undecaprenyl phosphate

by PgpB (step 8).
reveals that it possesses 10 transmembrane helices [12]

with both the N-terminus and the C-terminus on the

periplasmic face of the inner membrane (Figure 2b). The

protein is found as a dimer in the crystal with interactions

between helix 7 and 10 around a two-fold axis normal to

the bilayer [12]. The active site was identified, as

expected, to be on the cytoplasmic surface with residues

from helices 3, 4, 5 and as well as cytoplasmic loop E

contributing to its architecture. Transmembrane helix

9 is unusual in that has a kink that breaks the helix into a

short 9a and a longer 9b, which is close to parallel to the

membrane. The unusual arrangement  may reflect the

complex donor substrate, which is predicted to bind here.

The structure of the complex between MraY and its

inhibitor muraymicin [13��] shows profound changes in

the helix 9b and loop E as they bind to peptidic compo-

nent of muraymicin (Figure 2c). Other PNPT enzymes,

which utilise simple UDP-N-acetylglucosamine, exem-

plified by WecA, are predicted to have a periplasmic N-

terminus and cytoplasmic C-terminus and consequently

an odd number of helices [14,15] (Figure 2b). The PHPT

class of enzymes show significant variation N-terminal to

the conserved catalytically active C-terminal domain
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[16,17,18�]. The most common form of PHPT, exempli-

fied by WbaP, has a cytoplasmic N-terminus four large

transmembrane helices and two shorter helices, six trans-

membrane helices in total, whilst PglC, which initiates

the biosynthesis of the glycan precursor required for N-

linked glycosylation in Campylobacter jejuni, has a peri-

plasmic N-terminus and a single transmembrane helix

[19] (Figure 2b). A molecular model of the PglC catalytic

domain has been generated (EV-fold and I-TASSER)

and validated by site directed mutagenesis [18�]. Potent

inhibitors of PglC have also been reported [20�].

Export across the inner membrane
In order to cross the membrane, the polar surface of the

sugar must be masked from the lipid (Figure 3a). There

are two broad mechanisms by which this is achieved, one

involves ATP-driven ABC-type transporters, represented

by PglK (Figure 3b) and the other the ATP-independent

flip floppase, represented by Wzx. The ABC transporter

system was reviewed recently [21]. Most recently the

structure of PglK has been determined [22��], the struc-

ture has the typical ABC transporter fold, in which the

consumption of ATP is used to drive domain motions,
www.sciencedirect.com
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The initiating event, the coupling of the lipid carrier to the sugar molecule. (a) At the start of the process uridinyl diphosphate sugar (U circle circle

hexagon) is coupled to undecaprenyl (zig zag line) phosphate (circle). (b) The two principal enzyme superfamilies that catalyse the process in

bacteria, PNPT and PHPT. PNPT is subdivided into MraY and WecA enzymes. PHPT is subdivided into WbaP and PglC enzymes (shown here are

topology predictions for MraY from Aquifex aeolicus, WecA from Escherichia coli, WbaP from Salmonella typhimurium LT2 and PglC from

Campylobacter jejuni). Images created using Protter [50]. (c) An alignment of the muraymycin-bound MraY structure (shown in green, with

muraymycin shown in sticks) [13��], with the native structure (shown in blue) [12]. The result of ligand binding is a shift in the helix 9.

www.sciencedirect.com Current Opinion in Structural Biology 2016, 40:81–88
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Figure 3
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The translocation of lipid-linked polymers across the inner membrane.

(a) A cartoon illustrating the translocation of polymer (black ball)

across the membrane. The systems all involve shielding the polar

molecule from the lipid environment and require the transporters to

undergo large conformational changes. (b) The ABC transporter PglK

uses ATP as a power stroke to drive the translocation across the inner

membrane of large lipid linked oligosaccharides [22��] (cytoplasmic

domains are shown in yellow and transmembrane domains in red). (c)

Wzx does not require ATP to translocate the lipid-linked polymer and

is thought to resemble the multidrug and toxic compound extrusion

protein NorM (Vibrio cholerae), shown here with the transmembrane

domains in red and the periplasmic loops in blue [23].
shown in Figure 3b, with the cytoplasmic domains

highlighted in yellow and the transmembrane domains

in red. The paper describes the conformational itinerary

that the protein undergoes during translocation. Although

no crystal structure of a member of the Wzx family has

been reported, it is predicted to be similar to the multidrug

and toxic compound extrusion (MATE) family of proteins,
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represented by NorM (Vibrio cholerae) whose structure has

been determined [23], shown in Figure 3c with the

periplasmic loops highlighted in blue and the transmem-

brane domains in red. A model for the Wzx structure based

on the NorM structure has been reported [24].

Polymer fate in the periplasm
During bacterial N-glycosylation, a process that at one

time was thought to be confined to eukaryotes, PglB

transfers sugar polymers to target proteins. The structure

of this enzyme was determined in 2011 [25] and is shown

in Figure 4a, with the periplasmic domain in blue and the

transmembrane domains in red. During LPS biosynthe-

sis, undecaprenyl-linked sugar repeat units can be poly-

merised by Wzy, with the number of repeat units

polymerised being controlled by the polysaccharide co-

polymerase Wzz [26], resulting in an organism-specific

modal distribution of polymer lengths. Using radiola-

belled substrates in vitro Woodward and colleagues [27]

were able to monitor purified Escherichia coli O86 Wzy

activity and found that O-antigen chain length modality

could be restored purely upon the addition of Wzz to the

reaction mixture. However the mechanism by which

polymerisation occurs and how Wzz controls polymer

length is unknown [28]. Structures of the periplasmic

domains of various Wzz homologues have been solved

[29] as well as the structure of full length Escherichia coli
WzzE to a resolution of 6 Å, with all sharing the same bell

shape [30�]. A recent study reported the structure of the

periplasmic domain of Wzz from Shigella flexneri and

identified a single point mutation (A107P) that affects

the chain length of the synthesized carbohydrate [31��]. A

single Wzz from this structure is shown in Figure 4b, with

the location of this point mutation indicated with an

arrow. Different structures of Wzz homologues show

different oligomerisation states and the significance of

the oligomerisation state remains unclear. During the

synthesis of the E. coli O9a antigen, a coiled coil molecu-

lar ruler, WbdD, directly controls the length of the

polysaccharide formed in the cytoplasm, by WbdA

[32��] (Figure 4c).

The O-antigen chain is ligated on to the lipid A core

oligosaccharide by WaaL, mutations in which result in

LPS lacking the O-antigen, known as rough LPS, being

translocated to the outer membrane [33]. Although the

structure of WaaL is yet to be determined, WaaL homo-

logues are predicted to contain a large periplasmic loop

[34] that is proposed to form two almost perpendicular

alpha helices, with one helix contributing a conserved

arginine and the other a conserved histidine [35]. Mutants

in either of these residues are unable to rescue WaaL

function in a knockout strain, though if the arginine is

mutated to a lysine function can be restored, suggesting

these residues are important for interaction with unde-

caprenyl pyrophosphate [36]. It was originally proposed

that ligation of the O-antigen chain by WaaL onto lipid A
www.sciencedirect.com
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The fate of the lipid-linked building blocks. (a) The enzyme PglB

glycosylates proteins [25] by transferring the completed polymer to

asparagine (N-glycosylation). Transmembrane helixes are coloured red

and the periplasmic domain blue. (b) Wzy is an en-bloc polymerase,

the lengths of carbohydrate polymers that are regulated by Wzz. A

single mutant, in the shigella flexneri homologue, highlighted with an

arrow, results in change of chain length [31��]. (c) The chain length of

carbohydrate polymers synthesized in the cytoplasm by conventional

glycosyl transferases are also regulated. A ruler provided by the coiled

coil of WbbD is first such ruler to be characterised at a molecular level

[32��]. (d) PgpB dephosphorylates the lipid carrier, so it can be

recycled. The transmembrane domains are shown in red and the

periplasmic domain in blue [38��].
core oligosaccharide requires ATP [36], this now seems

unlikely [34,37].

Recycling
Once the completed polysaccharide has been transferred

to the appropriate acceptor, undecaprenyl pyrophosphate

needs to be recycled to form undecaprenyl phosphate.

This is achieved by a membrane-integrated member of

the type II phosphatidic acid phosphatase family, exem-

plified by phosphatidylglycerol-phosphate phosphatase

B, known as PgpB. The structure of the Escherichia coli
homologue of PgpB has been solved [38��] showing a six

pass transmembrane topology, with both the N- and C-

termini located in the cytoplasm and is shown in

Figure 4d, with the transmembrane domains in red and

the periplasmic domain in blue. The protein shares the

same overall fold and active site as soluble members of
www.sciencedirect.com 
this family. The active site residues are located at the

interface between the membrane and periplasm. Trans-

membrane domains 2 and 3 are proposed to form the

substrate entrance at the membrane-solvent interface in

the periplasm. Mutations at the proposed lateral entrance

of this cleft result in a reduced ability to dephosphorylate

a range of substrates compared to the wild type [38��].

Export across the outer membrane
The first carbohydrate translocase to be structurally de-

scribed was the novel alpha helical outer membrane

protein Wza, required for the export of capsular polysac-

charide across the outer membrane [39]. Although pro-

posed from the structural study, it has only recently been

experimentally established that the carbohydrate does

indeed pass through the central pore [40]. Blocking of

Wza using specifically designed compounds has raised the

possibility of targeting this event for novel drug therapies

[41]. Since the reported structure of Wza is of a closed

vessel in the periplasm, further questions have yet to be

answered regarding the function and regulation of Wza.

The channel has been opened by applying voltage in a

two droplet system with subsequent translocation of

carbohydrate detected [42] in a partial recapitulation of

the cell system.

In order to insert in the outer leaflet of the outer mem-

brane the LPS molecule must first exit the inner mem-

brane and be transported from the inner membrane across

the periplasm and then translocated across the outer

membrane. Seven genes constitute the pathway that

accomplishes this transport. LptA forms an extended

polymer via b-sheet interactions between monomers

[43] and this polymer acts to shuttle LPS across the

periplasm. One LptA molecule is thought to dock to

periplasmic domain of the inner membrane protein LptC.

The structure of the periplasmic domain of LptC [44]

shows it too has an exposed b-sheet suggesting a model in

which LptA docks to LptC via b strand-strand interac-

tions. Full length LptC forms a complex with two other

integral membrane proteins, namely LptF and LptG,

whose structures have not been determined. The energy

required to release LPS from the inner membrane and

onto LptA is provided by the hydrolysis of ATP, catalysed

by LptB. The structure of LtpB [45�,46�] has been deter-

mined and has a fold similar to other nucleotide binding

domains. LptB undergoes a profound conformation

change upon ATP hydrolysis [45�]. This conformational

change occurs in the region that is thought to contact LptF

and LptG; providing a model for how hydrolysis might

lead to movement of LPS. Two groups determined the

structure of the LptE and LptD hetereodimeric complex

at the same time [47��,48��], recently further structures of

the complex have been reported [49]. LptD is a 26 anti-

parallel stranded b-barrel in which LptE (whose structure

was determined previously from multiple organisms by

structural genomics efforts) sits; akin to a plug. LptE has a
Current Opinion in Structural Biology 2016, 40:81–88
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Figure 5
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The transport of LPS from the inner to the outer membrane. (a) Two orthogonal views of the outer membrane LptE (purple) and LptD (light purple)

heterodimeric complex [47��,48��] which is key to the insertion of LPS into the outer membrane. LptE sits inside LptD. (b) The LptD/LptE

heterodimeric complex is itself part of a larger transmembrane complex. The crystal structures of LptA [43] (orange), LptB [45�,46�] (dark red) and

LptC [44] (soluble domain in blue) are known. The structures of LptF and LptG are not known.
b-sheet and an a-helix and is thought to bind LPS and

then catalyse its flipping to the outer leaflet of the outer

membrane. LptD has a large N-terminal domain (only

visualised in one report [48��]) that presents a b-sheet with

an exposed strand and is thought to bind to LptA through

b-strand-strand interactions forming a periplasm-spanning

complex (Figure 5).

Conclusions
The assembly of complex glycolipids has long been of

interest in biology. These complex molecules coat the

surface of cells and thus are crucial in forming contacts

with other cells as well as for protection from the envi-

ronment, including the protection of bacteria from the

host immune system upon infection. Recent protein

crystal structures have completed an atomic model of

the process of synthesis to export. This unprecedented
Current Opinion in Structural Biology 2016, 40:81–88 
detail has not only transformed our understanding of the

underlying biochemistry, much of which is common to

higher organisms, but will aid in drug development; an

urgent priority given the concerning rise of multidrug

resistant organisms.
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