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Abstract 

This thesis assesses long-term runoff projections form global multi-model ensembles used in 

hydrological impact studies. Firstly, the study investigates global-scale changes in frequency of high and 

low flow days towards the end of the current century compared to present day, quantifying the relative 

contribution to uncertainty from global climate (GCMs) and global impact models (GIMs). Results 

show increases in high flows for northern latitudes and in low flows for several hotspots worldwide. 

Overall, GCMs provide the largest uncertainty; but GIMs are the greatest source of uncertainty in 

snow-dominated regions. GIMs contribution to uncertainty is higher for low flows than for high flows. 

Secondly, the ability of a set of GIMs to reproduce observed runoff is evaluated at the regional scale. 

Results indicate that GIMs capture well overall trends in high, medium, and low flows, but differ from 

observations with respect to the timing of high and medium flows. In particular, GIMs that only include 

water balance tend to be closer to the observations than GIMs that also include the energy balance. 

Thirdly, the relative contribution to uncertainty from GCMs, GIMs, Representative Concentration 

Pathways (RCPs), and internal variability is quantified for transient runoff projections on different 

ensemble configurations. Over the USA, GCMs and GIMs are responsible for the largest uncertainty, 

followed by internal variability, which predominates in areas of topographic complexity like the 

Southwest USA. Culling least credible GIMs from the ensemble has a minor impact on low and medium 

flows uncertainty; but it has a substantial impact for high flows. Interestingly, regardless of the 

ensemble setup, RCPs always play a very small role in the uncertainty. In conclusion, efforts to improve 

(i.e. reduction of uncertainty) multi-model runoff projections from high to low flows should focus on 

GCMs and GIMs. In particular, GIMs should be evaluated in the region of study, so that ensembles are 

populated with models that exclude those GIMs that reproduce unrealistic runoff characteristics (e.g., 

disproportionate null runoff days in the year). This has the potential to yield greater confidence in future 

runoff projections.  
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1 Introduction 

1.1 Background and rationale 

“The flow and storage of water in the Earth’s climate system are highly variable, but 

changes beyond those due to natural variability are expected by the end of the current century. In a 

warmer world, there will be net increases in rainfall, surface evaporation and plant transpiration. 

However, there will be substantial differences in the changes between locations. Some places will 

experience more precipitation and an accumulation of water on land. In others, the amount of water 

will decrease, due to regional drying and loss of snow and ice cover.” (Collins et al. 2013 - IPCC 

WG1 5th AR Ch.12).  

The hydrological cycle plays a vital role in the well-being of the human society and of the 

ecosystems. A changing climate and an increasing world population make the knowledge of future 

hydrology ever more valuable to inform adaptation strategies that will have to deal with 

unprecedented pressures on food/energy production and exposure to water related hazards (e.g., 

Lavell et al. 2012). Therefore, adaptation and mitigation decisions need information on potential 

future changes in the hydrological cycle, and more often at regional rather than global scales 

(Tebaldi and Smith, 2009). In this context, a valuable contribution for anticipating what the future 

holds is provided by multi-model ensembles (i.e.: global impact models (GIMs) fed by multiple 

global climate models (GCMs) simulations under different scenarios), which can simulate future 

hydrological variables of direct human relevance that account for changes in the climate. However, 

these global models suffer from uncertainties that originate from different sources (e.g. model 

structure, incomplete knowledge of the physical processes, external forcing, and initial boundary 

conditions). These sources of uncertainty are cascaded and amplified throughout the modelling 
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chain.  In the case of extreme events (e.g., flood and drought occurrences), the uncertainty is even 

greater, as they are more difficult to simulate, partly because they are infrequent and thus poorly 

sampled, and partly because they tend to be more local and transient and thus more sensitive to 

differences in the definition of atmospheric quantities between the climate models and the 

observations (Stone and Knutti, 2010). 

Therefore, key priorities for climate impact science are i) to assess hydrological projections 

from global models not only mean quantities (e.g., mean runoff), but also hydrological extremes; ii) 

to quantify uncertainties in these projections in an effort to communicate effectively how uncertain 

are the estimates in climate impact studies and to reduce overall uncertainty. 

This thesis focuses on the assessment of runoff projections from global models. In 

particular, on sets of GIMs participating to multi-model ensemble experiments devoted to exploring 

the future water cycle: GIMs are used to assess future flows, and then are evaluated using observed 

data on different runoff characteristics, finally key contributors to uncertainty in future flows are 

quantified. 

1.2 Research gaps and objectives 

The literature review on simulated runoff from global models and its uncertainty (Chapter 2) 

identifies three research gaps for investigation: 

1. There are few published studies that assess hydrological extremes jointly both at the global and 

regional scale using the latest CMIP5 GCMs and multiple Global Impact Models. 

2. Multi-model ensembles of Global Impact Models fed by GCMs have proved useful tools for 

runoff simulation, but their ability to capture different characteristics of the terrestrial hydrology has 

not been tested outside of Europe. 
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3. There is a lack of knowledge in the dominant sources of uncertainty that are present in the 

modelling chain that affect the accuracy and the interpretation of the projections. 

In light of these research gaps, the overarching aim of this thesis is to evaluate the ability of 

multi-model ensembles to simulate runoff and to quantify the uncertainties that lie in their 

projections. To address the aforementioned gaps, the objectives of this thesis are: 

1) To assess the change in high and low flows at the global scale towards the end of the 21st century 

and the uncertainty share between GIMs and GCMs (Chapter 4). 

2) To evaluate the ability of GIMs to simulate runoff in the control period (hindcast) using observed 

data as benchmark at the regional scale (Chapter 5). 

3) To assess at the continental scale the contribution of the different sources of uncertainty 

(specifically, GCM, GIM, RCP, and internal variability) using transient runs spanning from the 

beginning to the end of the 21st century (Chapter 6). 

1.3 Thesis structure 

The thesis structure is depicted in Figure 1.1. Chapter 2 provides the literature review and 

identifies the research gaps presented in Section 1.2. Chapter 3 presents the research design, 

introducing the data and the methods used in the research. Chapter 4 investigates the changes in 

future runoff for high and low flows at the global scale and the uncertainty provided by GCMs and 

GIMs. Chapter 5 evaluates the ability of GIMs to simulate runoff at the regional scale. A 

quantification of the different sources of uncertainty over decadal transient hydrological indices is 

undertaken in Chapter 6. In Chapter 7 conclusions are drawn and suggestions are proposed for 

future research. 
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Chapter 1 Introduction 

Chapter 2 Literature Review / Research gaps 

Chapter 3 Research Design / Data and Methods 

    
 Chapter 4 Chapter 5 Chapter 6 

    

OBJECTIVE 
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of Global Impact 

Models in 
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Spatial Scale Global Regional Continental 
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Chapter 7 Conclusions and Future Work 

Figure 1.1 – Schematic diagram of the thesis (GCMs: Global Climate Models; GIMs: Global Impact 

Models). 

 

1.4 Chapter summary 

This chapter has provided a background and rationale to the research undertaken in the 

thesis on runoff simulation from global multi-model ensembles from the regional to the global 

scale. In Chapter 2 the literature review is presented and research gaps are identified; the thesis 

objectives are thus outlined to address these gaps in the following chapters. 
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This thesis is composed of papers published (two) or under review (one) in peer-reviewed 

journals. In particular, research from Chapter 4 corresponds to an Earth System Dynamics paper 

(APPENDIX V) on the projection of future global high and low flows and the uncertainty coming 

from GCMs and GIMs. The research in Chapter 5 on the evaluation of GIMs in reproducing 

observed streamflow was published in the Journal of Geophysical Research (APPENDIX VI). 

Research in Chapter 6 on the quantification of uncertainty sources in transient runoff is currently 

under review. Elements of these papers are part of Chapter 2 (Introduction section) and Chapter 3 

(Data and Methods sections). 

Specifically, the author contributions for the papers that compose the thesis are detailed 

below. For the 2015 Earth System Dynamics paper by Giuntoli, I., Vidal, J.-P., Prudhomme, C., 

Hannah, D.M., titled “Future hydrological extremes: the uncertainty from multiple global climate 

and global hydrological models”. - I.G., J.-P., C.P., D.H. designed the study. - I.G. wrote computer 

code, performed analyses and prepared the manuscript with contributions from all co-authors. For 

the 2015 Journal of Geophysical Research paper by Giuntoli, I., Villarini, G., Prudhomme, C., 

Mallakpour, I., Hannah, D.M., titled “Evaluation of global impact models’ ability to reproduce 

runoff characteristics over the central United States”. - I.G., G.V., C.P., D.H. designed the study. - 

I.G. coded and performed analyses (I.M. extracted hydrological indices from observed data) with 

feedback from G.V., C.P., D.H. - I.G. prepared the manuscript with contributions from all co-

authors. For the paper under revision by Giuntoli, I., Villarini, G., Prudhomme, C., Hannah, D.M., 

with prospective title “Uncertainties in projected runoff over the continental United States”. - I.G. 

and G.V. designed the study. - I.G. coded, performed analyses and prepared the manuscript with 

feedback from all co-authors. 

  



 6 

2 Literature Review and Research objectives 

2.1 Introduction 

In this chapter a literature review is undertaken to identify research gaps for investigation. 

The review consists of three main parts. Firstly, a summary is given on continental to global 

hydrology simulated by multi-model ensembles. Secondly, the importance of evaluating global 

impact models against observed data is reviewed. Thirdly, the interest of characterizing sources of 

uncertainty in space and time is discussed. Finally the research gaps identified are put in context 

with the objectives that the thesis aims to address. 

2.2 Future global hydrology from multi-model ensembles 

The ongoing intensification of the water cycle at the global scale is expected to continue in 

the coming decades (Huntington, 2006; Stott et al., 2010). Projected changes in climate variables 

from global climate models (GCMs) indicate an increase in the frequency of hydrological extremes 

(Kharin et al., 2013; Seneviratne et al., 2012; Sillmann et al., 2013; Tebaldi et al., 2006). These 

hydrological shifts go hand in hand with a growing world population that will become ever more 

vulnerable with respect to access to water and food, and resilience to natural hazards (Lavell et al., 

2012). In this context, global multi-model ensembles yield a valuable opportunity for climate 

projections and impact assessments. In hydrology, multi-model ensemble experiments – consisting 

of global impact models (GIMs) fed by input forcing simulated by GCMs – can be used to project 

future changes in the water cycle and future hydrological extremes, using modelled variables such 

as runoff and soil moisture. In recent years, a number of studies have assessed the future changes in 

the global water cycle (e.g., Arnell, 2003; Hirabayashi et al., 2008; Milly et al., 2005; Nohara et al., 
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2006; Sheffield and Wood, 2008). Although many of these studies have a representative number of 

GCMs in their ensembles, they rarely comprise more than one GIM – Table 2.1 lists and 

summarizes studies that have used runoff projections from ensembles comprising one GIM and one 

or more GCMs. This presents a limitation considering that GIMs provide more uncertainty than 

previously thought (Haddeland et al., 2011; Hagemann et al., 2013; Prudhomme et al., 2014; 

Schewe et al., 2014). In addition, the coarse temporal and spatial resolution of the climate signal 

used in these studies does not reflect well the potential changes in sub-monthly extreme events at 

the regional and local scale (Forzieri et al., 2014). 

 

Table 2.1 – Overview of macro-scale (continental to global) studies using runoff projections to assess aspects 

of the future water cycle using multiple GCMs and GIMs, sorted by number of GCMs employed. 

Study Region Number 

of GIMs 

Number 

of GCMs 

Runoff characteristic 

(Hirabayashi et al., 2008) Global - 1 Drought and Flood 

(Feyen and Dankers, 2009) Europe 1 1 Drought 

(Döll and Schmied, 2012) Global 1 3 Drought to Flood 

(Wanders et al., 2015) Global 1 5 Drought 

(Arnell, 2003) Global - 6 Drought to Flood 

(Alfieri et al., 2015) Europe 1 7 Flood 

(Hirabayashi et al., 2013) Global 1 11 Flood 

(Milly et al., 2005) Global - 12 Mean flow 

(Forzieri et al., 2014) Europe 1 12 Drought 

(Zhao and Dai, 2015) Global - 14 Drought 

(Nohara et al., 2006) Global 1 19 Mean flow 

(Collins et al., 2013)* Global - 22 Mean flow 

(Arnell and Gosling, 2013) Global 1 21 Mean flow 

*IPCC WG1 Fifth Assessment Report (Ch.12). 

 

Recently, model inter-comparison projects like WaterMIP (Haddeland et al., 2011) and 

ISI-MIP (Warszawski et al., 2014) have made it possible to include multiple GCMs and GIMs in 

global impact studies at unprecedented temporal (up to daily) and spatial (0.5) resolution, thereby 
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providing frameworks for consistent assessments of the terrestrial water cycle. Table 2.2 lists and 

summarizes studies that have used ensembles with multiple GCMs and multiple GIMs. 

In particular, the more recent ISI-MIP dataset has made available model runs at daily 

temporal scale, and use the most recent scenarios RCPs (representative concentration pathways, 

Moss et al. (2010); van Vuuren et al. (2011)), which have superseded the previous SRES scenarios 

(Nakicenovic et al., 2000) used in WaterMIP. 

 

Table 2.2 – Overview of macro-scale (continental to global) studies using runoff projections to assess aspects 

of the future water cycle using multiple GCMs and GIMs, sorted by number of GIMs employed. 

Study Region Number 

of GIMs 

Number 

of GCMs 

Runoff characteristic 

(Hagemann et al., 2011) Global 2 3 Mean flow 

(Roudier et al., 2015) Europe 3 5 Drought and Flood 

(van Huijgevoort et al., 2014) Global 5 3 Drought 

(Prudhomme et al., 2014) Global 7 5 Drought 

(Wada et al., 2013) Global 7 5 Irrigation water demand 

(Hagemann et al., 2013) Global 8 3 Mean flow 

(Dankers et al., 2013) Global 9 5 Flood 

(Schewe et al., 2014) Global 11 5 Water scarcity 

 

 

The ISI-MIP data set has been used to assess future changes in runoff at global and regional 

scales. Dankers et al. (2013) explored changes in a 30-year return period of river flow showing that 

flood hazard is projected overall to increase globally, although not uniformly, and that decreases 

occur mainly in areas where the hydrograph is dominated by spring snowmelt. Schewe et al. (2014) 

assessed future water scarcity by analysing changes in mean annual runoff together with global 

population patterns, showing how the number of people living in water scarcity is projected to 

increase globally. Davie et al. (2013) investigated runoff changes across models by grouping GIMs 

into hydrological and biome (including CO2 and vegetation dynamics) models, showing that while 
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both types agree on the sign of runoff change for most regions of the world (with contrasting 

exceptions like West Africa where biome models moisten and hydrological models dry), models 

accounting for varying CO2 yield more runoff than those with constant CO2. Prudhomme et al. 

(2014) examined the future frequency of droughts using a variable threshold method on daily 

runoff. They identified drought hotspots globally and observed, similarly to Davie et al. (2013), 

how biome models accounting for varying CO2 concentrations tend to project more runoff with 

increasing CO2, and generally higher increases and decreases of runoff, than the hydrological 

models. All of these studies emphasize how both GCM and GIM uncertainty contribute to the 

spread in projected changes in the hydrological cycle. Their findings highlight the importance of 

including different types of GIMs and GCMs for making comprehensive assessments of uncertainty 

in climate impact studies. 

In this context, modelling-induced uncertainty (i.e. inter-model spread of GCMs and GIMs) 

has been expressed by looking at the variance across both types of models. For example, Schewe et 

al. (2014) and Dankers et al. (2013) used the ratio of the variances of GCM and GIM results (for 

GCMs: variance of the change across all GCMs for each GIM, then averaged over all of the GIMs; 

and vice versa for GIMs). Similarly, using WaterMIP data, Hagemann et al. (2013) expressed the 

spread due to the choice of model type using the standard deviation of GCMs and GIMs (for 

GCMs: the mean across all GIMs for each GCM, and standard deviation of the GCMs; and vice 

versa for GIMs). Prudhomme et al. (2014) omitted the partition into GCM/GIM and expressed the 

uncertainty through the signal-to-noise ratio (by grouping results per type of model) in order to infer 

which global model type in the ensemble brings about highest agreement.  

The studies cited above have provided useful knowledge on climate change impacts on the 

water cycle using the ISI-MIP data set, however, a synthesis of future projections for high and low 

flows along with a consistent estimation of uncertainties from GCMs and GIMs is still missing. 
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The literature review of hydrological impact studies found that although multiple GCMs have 

been employed in ensembles to assess future hydrology, only recently have studies started to use 

more than one GIM in their ensembles. Moreover, aspects of future hydrology are studied at 

once, while it is essential to use the same dataset to concurrently explore multiple facets of runoff 

(low and high flows) and quantify the relative contribution to uncertainty from GCMs and GIMs. 

 

2.3 Evaluation of Global Impact models 

As noted in the previous Section 2.2, a valuable contribution in understanding the present 

and future hydrological processes in the context of climate impact studies is provided by Global 

Impact Models (GIMs), which allow simulation of the terrestrial water cycle at the global scale. 

Together with Global Circulation Models (GCMs), GIMs represent the physical processes in the 

atmosphere and land surface, and operate over relatively long time span (decades), at a coarse 

spatial resolution (typically 50-250 km), and time step from sub-daily to monthly. Broadly 

speaking, GIMs focus on simulating the land-surface whereas GCMs focus primarily on the 

atmosphere (although they generally include some sort of land-surface scheme, usually less 

sophisticated than that of the GIMs). Regarding the water cycle, the two model families meet at the 

land-surface/atmosphere interface, which represents the upper boundary for the GIMs and the lower 

boundary for the GCMs. Therefore, GCMs climate outputs often provide the basis for impact 

studies in which GIMs consider the interaction of the atmospheric and land-surface component of 

the water cycle (e.g., Mölders (2005)).  

GIMs can be subdivided into two broad categories, which differ in the land-surface 

parameterizations: i) the Global Hydrological Models (GHMs) have the water budget and lateral 
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transfer of water as the main interest, requiring a partitioning of precipitation into 

evapotranspiration, infiltration, interception, storage and runoff to determine the water fluxes within 

the soil and the groundwater recharge – with lateral transfer over the surface but not at the 

subsurface; and ii) the Land Surface Models (LSMs) try additionally to close the energy budget and 

run at sub-daily time steps. With the aim to describe the vertical exchanges of heat, water, and 

sometimes carbon in considerable details, LSMs need a partitioning for precipitation between the 

aforementioned processes to determine the partitioning of radiative forcing between soil heat flux 

and the turbulent fluxes of sensible and latent heat (e.g., Mölders (2005)). 

In the recent past, the hydrological impact research community has realized that the 

uncertainty associated with the GIMs (including model parameterization and structure) could be 

large and should not be neglected (Prudhomme and Davies, 2008). It has also been recognized that 

multi-model ensembles are much more robust tools to address the uncertainty associated with 

climate change impact than single models and hence should be used as much as possible in any 

climate change assessment work (e.g., Hagemann et al. (2013)). At the local/catchment scale, this is 

achieved through building hydrological catchment model ensembles (e.g., Smith et al. (2012)) from 

a wide range of models including simple lumped conceptual models to more complex 

physically-based distributed models (Beven, 2011). At continental to global scales, this relies on the 

GIMs, which are in turn, much more complex models that need a careful balance between 

accounting for the spatial heterogeneity of hydro-climatic processes and the computational burden 

associated with the multiplication of near-homogeneous areas. Also, differently from basin-scale 

hydrological models, which are routinely calibrated against observed river discharge, GIMs are 

usually not calibrated (Müller Schmied et al., 2014) and are instead tuned to set parameter values. 

For instance, for the MacPDM GIM, tuning involves tests of precipitation datasets and potential 
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evaporation calculations against long-term average runoff and long-term average within-year runoff 

patterns (Gosling and Arnell, 2011). 

Following the climate community and programs like the Climate Model Intercomparison 

Project, e.g. phase five, CMIP5, Taylor et al. (2012), the hydrological community has started 

modelling experiments using different global impact models driven by the same climate forcing. 

The first such initiative was the WaterMIP project (Haddeland et al., 2011), since followed for 

example by the ISI-MIP project (Warszawski et al., 2014). As a result the scientific community has 

now easy access to many multi-impact model ensembles providing information on the possible 

projections in hydrological variables in the future for the world. Along with ease of access comes 

the danger of the data being used not appropriately, for example if some members of the ensemble 

are poor at reproducing some part of the hydrological processes, that could result in misleading 

interpretation of the projections if caution is not taken.  This is because the global models used for 

experiments such as WaterMIP and ISI-MIP have generally been developed for different purposes – 

e.g.: water resource availability assessment (GWAVA, WaterGAP), carbon fluxes (LPJ), water and 

energy fluxes (JULES) – using different protocols for their parameterization and error-reduction, 

hence likely to have been tested differently for reproducing different processes. Moreover each 

model run can use a different set-up which is generally not fully published, and it is never 

guaranteed that the same set-up used to produce the result published in a paper have been used for 

another simulation. It might therefore not be appropriate to rely on previous assessment to evaluate 

the skill of a new ensemble. Furthermore, due to the scale and complexity of such global models, 

their parameterisation requires a long process, much more complex that that required for catchment 

models. In particular, comprehensive sensitivity testing of all parameters is a very ambitious task 

seldom undertaken by developers. While not all model codes are available to the research 
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community to use, it would require a huge (unrealistic) effort for someone not familiar with those 

models to undertake a uniform parameterisation testing for all global impact models together. 

To improve our confidence in the GIMs, namely in climate impact studies, a necessary first 

step is the evaluation of the models’ ability to reproduce the observational records. On this issue, 

Prudhomme et al. (2011) emphasized how an appraisal of the performance of large-scale models in 

replicating historical hydrological extremes is a necessary precursor to assessing the suitability of 

such models for projecting characteristics of hydrological extremes into the 21st century. 

Model intercomparison frameworks like the aforementioned Water Model Intercomparison 

Project – WaterMIP, provide the opportunity to compare model simulations from a number of 

GIMs all driven with the same meteorological forcing: the WATCH Forcing Data – WFD (Weedon 

et al., 2011). The WaterMIP GIMs have been evaluated with respect to low, medium and high flow 

in a number of studies (Gudmundsson et al., 2012b; Haddeland et al., 2011; Prudhomme et al., 

2011; Stahl et al., 2012; Tallaksen and Stahl, 2014; Van Loon et al., 2012) showing considerable 

variability in the magnitude and timing of the components of the hydrological cycle. Notably, all of 

these studies focused on Europe, despite the global coverage of the WaterMIP dataset. Little is 

known about the skill of these models in reproducing the hydrological processes for other regions of 

the world. Table 2.3 lists and summarizes studies that have assessed GIMs’ simulated runoff against 

observed data. 

The evaluation of the GIMs against observed data is not undertaken with the ISI-MIP runs 

because, with the forcing employed, these can reproduce the frequency but not the chronological 

occurrence of extreme events like the WaterMIP runs, which are forced with the WFD dataset and 

provide a valuable benchmark for the comparison. 
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Table 2.3 – Overview of macro-scale (continental to global) studies assessing simulated runoff from multiple 

GIMs, sorted by number of GIMs. 

Study Region Number 

of GIMs 

Forcing 

data 

Reference 

period 

Runoff characteristic 

(Prudhomme et al., 2011) Europe 3 WFD 1963-2001 Drought and Flood 

(Wang et al., 2009) Cont. U.S.A. 6 A2005 1920-2003 Drought 

(Tallaksen and Stahl, 2014) Europe 7 WFD 1963-2000 Drought 

(Yang et al., 2015) Global 7 TRENDY 1981-2010 Mean flow 

(Stahl et al., 2012) Europe 8 WFD 1963-2000 Drought to Flood 

(Gudmundsson et al., 2012a) Europe 9 WFD 1963-2000 Drought to Flood 

(Gudmundsson et al., 2012b) Europe 9 WFD 1963-2000 Mean flow 

(van Huijgevoort et al., 2013) Global 10 WFD 1963-2001 Drought 

(van Loon et al., 2012) Europe 10 WFD 1963-2000 Drought 

(Haddeland et al., 2011) Global 11 WFD 1985-1999 Mean flow 

WFD = Watch Forcing Data. A2005 = same forcing as (Andreadis et al., 2005). 

 

 

The use of multiple GIMs in hydrological impact studies should be accompanied by an evaluation 

of the models against observed data. This operation allows for an improved use/selection of GIMs 

in ensemble projects but is rarely undertaken as it is time consuming and as data is scarce in 

many areas of the world. The literature reviewed indicates that global data sets like WaterMIP, 

have not been evaluated outside of Europe in a systematic way. 

 

2.4 Uncertainties in runoff projections 

The utility of climate impact studies using runoff projections from multi-model ensemble 

experiments like WaterMIP (Haddeland et al., 2011) and ISI-MIP (Warszawski et al., 2014), is 

undermined by the large uncertainties that originate in the different components of the modelling 

chain. There is indeed a consensus on the growing need to well characterize uncertainty both to 

inform the selection/design of multi-model ensembles and to improve the components of the 

modelling chain (e.g., Northrop 2013). Uncertainty in climate projections comes from three main 
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sources: the models, the scenarios, and the internal variability (Hawkins and Sutton, 2009; Tebaldi 

and Knutti, 2007). Model uncertainty, or response uncertainty, results from different models 

yielding different responses to the same external forcing owing to differences in the physical and 

numerical formulations employed. Scenario uncertainty originates from the limited knowledge of 

the external factors that influence the climate system, for instance trajectories of greenhouse gases, 

land use change, ozone concentrations in the stratosphere. Internal variability is the natural 

variability of the climate system without external forcing, and it is caused by non-linear dynamical 

processes intrinsic to the atmosphere, the ocean, and the coupled ocean-atmosphere system (e.g., 

Deser et al. 2012b). 

Dominant sources of uncertainty in climate projections depend on the variable of interest. 

Precipitation projections are generally dominated by global climate model (GCM) uncertainty and 

internal variability rather than scenarios (e.g., Hawkins and Sutton 2011; Deser et al. 2012b; 

Pendergrass et al. 2015). For runoff projections, while GCMs play a large role, the global impact 

models (GIMs) can outweigh the GCMs in the contribution to uncertainty, especially in those areas 

where storage-release processes (e.g., snow-ice) present a challenge (Giuntoli et al., 2015a; 

Hagemann et al., 2013; Tallaksen and Stahl, 2014; van Huijgevoort et al., 2013). In particular, the 

choice of RCP has a more systematic impact on temperature than on precipitation change. For 

instance, at the decadal scale: for temperature Hawkins and Sutton (2009) found that model 

uncertainty dominates before ~2040, after which scenario uncertainty becomes the leading source; 

for precipitation, in a later study Hawkins and Sutton (2011) found that internal variability 

dominates at the beginning and that after the first few decades model uncertainty becomes 

dominant. Little is known about the contribution to the uncertainty in runoff projections coming 

from internal variability and scenarios as well as the interplay with the other two sources (i.e., 

GCMs and GIMs) throughout the 21st century, although we can expect that the RCP has a marginal 
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role in uncertainty contribution as hinted by few recent studies (Arnell and Gosling, 2013; 

Orlowsky and Seneviratne, 2013; Tang and Lettenmaier, 2012; Wada et al., 2013). 

If the uncertainty from model response (GCMs and GIMs) can potentially be reduced 

through improvement of the models, and if emission scenarios can be better constrained, internal 

variability is still unlikely to be reduced because of the inherently unpredictable nature of unforced 

climate fluctuations beyond a decade (Deser et al., 2012a). Because of internal variability, climate 

projections of different variables can be inherently uncertain in many parts of the world; with 

locations that are subject to large internal variability (e.g. the city of Seattle, U.S.A. in Deser et al. 

(2012a)) that are bound to be affected by an irreducible share of uncertainty in climate projections. 

Uncertainty is generally characterized by partitioning the variance of the ensemble spread 

into different components using statistical frameworks like analysis of variance (ANOVA; e.g., Yip 

et al. 2011; Sansom et al. 2013). When runs with different initial conditions are unavailable (e.g. 

ISI-MIP daily runoff runs), internal variability can be sampled as a measure of the noise in the 

projections throughout the runs as in the framework proposed by Hawkins and Sutton (2009) and 

used in Orlowsky and Seneviratne (2013), among others. 

Table 2.4 lists and summarizes studies that have used ensembles with multiple GCMs and 

multiple GIMs and have assessed uncertainty from these two sources (excluding Wada et al. (2013), 

who assessed uncertainty transiently throughout the 21st century on irrigated water demand having 

added the RCP source). 

The studies presented in Table 2.4 show that the uncertainty in runoff projections has been 

assessed with regards to GCMs and GIMs on delta changes (future minus past) that refer to a time 

in the second half of the 21st century. Differently from the delta change approach, one can assess 

how the uncertainty evolves transiently throughout the 21st century (as in e.g., Hawkins and Sutton 

2011; Hingray and Saïd 2014). In particular, a systematic uncertainty partition of future runoff 
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considering also RCPs and internal variability is still missing. Of particular interest is the analysis 

of high, medium and low flows jointly, showing how uncertainties differ across indices. 

 

Table 2.4 – Overview of macro-scale (continental to global) studies assessing uncertainty in runoff 

projections from multiple GIMs and GCMs. 

Study Region Uncertainty partition method Number of 

sources 

Period 

(Roudier et al., 2015) Europe Interquartile range 2 Future-past 

(Prudhomme et al., 2014) Global Signal-to-noise from GCM and GIM 2 Future-past 

(Wada et al., 2013) Global Analysis of variance; fractional change 3 21st c. transient 

(Hagemann et al., 2013) Global Spread owed to GCM, GIM, scenario 3 Future-past 

(Dankers et al., 2013) Global Variance ratio GCM to GIM 2 Future-past 

(Schewe et al., 2014) 

 

Global Variance ratio GCM to GIM 2 Future-past 

 

 

The analyses presented in Chapter 4 and Chapter 5, have yielded an improved understanding 

of the GIMs in their ability to simulate runoff. This allows, in the third and final part of the thesis 

(Chapter 6), to examine how different ensemble configurations affect the uncertainty partition by: i) 

culling models (as discussed in Overland et al. (2011) and Thibeault and Seth (2014) among others) 

on the basis of credibility in medium/low flows representation and type (biome models, which 

include CO2 and vegetation dynamics); ii) excluding intermediate RCPs (4.5 and 6.0). This is done 

to assess to what extent the uncertainty share changes using all of the available GIMs (e.g., Dankers 

et al. 2013, Schewe et al. 2014) or a subset (e.g., Prudhomme et al. 2014, Giuntoli et al. 2015a), and 

fewer RCPs with the aim to suggest a better use of resources making model runs and an improved 

choice of ensembles for future climate impact studies. 
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Any climate impact study is inherently affected by a degree of uncertainty that originates in the 

different components of the modelling chain (e.g., GCM, bias-correction, GIM, scenario, natural 

variability). A quantification of the uncertainty is essential for both improving the models and for 

providing useful information to end users on how large the uncertainty range is in the projections 

they are using for designing appropriate climate adaptation and mitigation policies. As hinted in 

few recent studies, RCP contribution to uncertainty in future water cycle is relatively small 

compared to e.g., GCMs and GIMs. It is important to undertake a study that explores multiple 

sources of uncertainty at once for different facets of the runoff spectrum. 

 

2.5 Research objectives 

With the aim to address the knowledge gaps identified in the previous sections, this thesis 

focuses on three research objectives. 

2.5.1 Assessment of future changes in runoff from a multi-model 

ensemble globally 

The first objective of the thesis is to assess future changes in runoff at the global scale using 

a global multi-model ensemble dataset. The use of both ends of the runoff spectrum (high and low 

flows) will allow for a systematic global assessment that is accompanied by an uncertainty analysis 

that will show which source is dominant between the GCMs and GIMs. This research objective is 

addressed in Chapter 4. 
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2.5.2 Evaluation of the ability of Global Impact Models in 

reproducing runoff in the Central United States 

The second objective of the thesis is to evaluate how GIMs reproduce runoff characteristics 

over a data-rich region like the Central United States, over which gridded runoff data is compared 

to observed streamflow data. The use of metrics that span from high to medium and low flows 

ensures systematic evaluation of these models in their ability to reproduce the different facets of the 

runoff spectrum. This research is presented in Chapter 5. 

2.5.3  Assessment of the contribution to uncertainty in runoff 

projections over the continental United States. 

The third objective of the thesis is to carry out an uncertainty partition in runoff projections 

considering, in addition to GCMs and GIMs (as in objective 2.5.1), RCP scenarios and internal 

variability. Moreover, the partition is undertaken transiently throughout the 21st century in order to 

reveal how the relative contributions to uncertainty evolve over time. As in the previous objectives, 

the use of metrics that span from high to medium and low flows ensures systematic assessment of 

uncertainty over the different facets of the runoff spectrum. This research is presented in Chapter 6. 

2.5.4 Chapter summary. 

This chapter has presented a literature review of the research undertaken on: i) runoff 

projections from multi-model ensemble experiments; ii) the evaluation of GIMs in reproducing 

observed runoff; and iii) the partition of uncertainty in runoff projections. The knowledge gaps 

identified constitute the objectives of this thesis. The next chapter presents the research design and 

presents the data and the methods used in the thesis. 
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3 Research design, data and methods 

3.1 Introduction 

This chapter details the research design of the thesis providing guidance on how the chapters 

fit together. Thereafter the data and the generic statistical methods used in the analyses presented in 

chapters 4, 5, and 6 are described. 

3.2 Research design 

The research undertaken is presented in three chapters, as shown on the thesis schematic in 

Figure 1.1. The study areas range from the global (Chapter 4) to the regional (Chapter 5) to the 

continental (Chapter 6) scales, as shown in Figure 3.1. 

Chapter 4 i) assesses changes in global high and low flows using an ensemble of multiple 

GIMs fed by multiple GCMs under RCP 8.5; ii) quantifies the uncertainty in the changes owed to 

GIMs and GCMs. This chapter thus addresses the research gap identified in Section 2.2 on the 

importance of using multiple GIMs/GCMs in hydrological impact studies exploring high and low 

flows jointly.  

Following this work, Chapter 5 evaluates the ability of GIMs to reproduce runoff 

characteristics, from high to low flows. The Central U.S. was chosen as study region (Figure 3.1b) 

as it is a data rich region where no systematic GIMs runoff evaluation has been carried out to date 

with the WaterMIP dataset. This chapter provides valuable information on the ability of multiple 

GIMs in reproducing runoff characteristics against observed data, thus building confidence in the 

impact model runs used in Chapter 4 and later in Chapter 6. This chapter addresses the research gap 

identified in Section 2.3. 
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Figure 3.1 – Study areas for: a. changes in global future flows (Chapter 4); b. GIMs model evaluation 

(Chapter 5); c. Uncertainty partition in transient future flows (Chapter 6).  
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Chapter 6 brings further the research undertaken in Chapter 4 by zooming on the continental 

U.S. (which includes the focus study region of Chapter 5) with an assessment of the uncertainty 

owed to, in addition to GIMs and GCMs (quantified in Chapter 4), RCP scenarios and internal 

variability and going beyond the delta method with a year-by-year approach analysing transient 

runs throughout the 21st century. Finally, in Chapter 7 the main conclusions of the thesis are drawn 

and suggestions for future work are discussed. 

3.3 Runoff data 

The data used in this thesis consists of gridded simulated runoff from two multi-model 

ensembles, namely the ISI-MIP and the WaterMIP data sets (Figure 3.2). The first data set employs 

the most recent model setups and scenarios (RCPs) and it is used to assess future runoff firstly at the 

global and secondly at the continental scale, while the use of the earlier WaterMIP data set is 

limited, in this study, to the control period (i.e., hindcast) to evaluate GIMs’ ability in reproducing 

runoff characteristic over a specific region using observed streamflow data as benchmark. Both 

ensembles do not account for anthropogenic influences (e.g. water abstraction, augmentation and  

 

 

Figure 3.2 – Modelling chain corresponding to the two datasets used in the thesis. 
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artificial storage) or land-use changes. Descriptions of the simulated data sets and observed data are 

given in the following three sections. 

3.3.1 The ISI-MIP data set 

The daily unrouted runoff data used in Chapter 4 and Chapter 6 comes from the Inter-

Sectorial Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 2014), which 

comprises nine GIMs driven by five bias-corrected CMIP5 (fifth Coupled Model Inter-comparison 

Project; Taylor et al. (2012)) GCMs in their control (1971-2005) and future (2006-2099) period, 

under four RCP scenarios (RCPs 2.6, 4.5, 6.0 and 8.5). 

3.3.1.1 Forcing data (GCMs) 

The climate information used as input for the GIMs comes from five of the CMIP5 GCMs 

(HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, NorESM1-M) covering 

the period from 1960 to 2099 (historical and all RCP scenarios). GCM selection was based on the 

availability, at the beginning of the ISI-MIP Project, of daily data for selected climate variables (see 

Hempel et al. (2013)) including average temperature and total precipitation. All five GCMs, whose 

characteristics and components are listed in Table A1.1 – APPENDIX I, consist of coupled 

Atmosphere-Ocean Global Circulation Model (AOGCM), which include earth system components 

like terrestrial and ocean carbon cycles. They can thus be called Earth System Models (ESMs). The 

inclusion of earth system components in an AOGCM allows for a consistent calculation of the 

impacts of the climate change on atmospheric composition or on ecosystems and it also allows for 

the incorporation of biogeochemical feedbacks: negative ones dampen the sensitivity of the climate 

to external forcing, while positive ones amplify the sensitivity (Collins et al., 2011). Adding Earth 

system components and processes increases the complexity of the model system and the model 
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spread in future projections. However, the larger spread should also better represent the true 

uncertainty of the future evolution of climate. In this thesis ESMs will henceforth be referred to as 

GCMs for consistency with the literature in the field of hydrological impact studies. 

The GCM outputs have a spatial resolution ranging from 1.875°×1.25° for HadGEM2-ES to 

2.8°×2.8° grid for MIROC-ESM-CHEM and have been bi-linearly interpolated to a common 

0.5°×0.5° grid and bias-corrected towards the observation based WATCH Forcing Data (WFD) 

whose reference period is 1960-1999. The WFD combines the daily statistics of the ERA-40 dataset 

with the monthly characteristics of the Climate Research Unit (CRU TS2.1) data set and the Global 

Precipitation Climatology Centre (GPCC) version 4 data set, making it particularly suited as 

gridded observational dataset for bias-correcting global climate data (Weedon et al., 2011). 

The bias-correction method applied to the GCM output first corrects the monthly mean data, 

and then the daily variability. More specifically, the climate variables’ monthly variability and 

mean are corrected using a constant offset or multiplicative correction factor that corrects for 

long-term differences between the simulated and observed monthly mean data in the historical 

period. Then, the daily variability is modified about their monthly means to match the observed 

daily variability. This method is designed to preserve the long term absolute and relative trends in 

simulated data and it is presented in detail in (Hempel et al., 2013). 

The bias-corrected daily runs from GCMs were used to force the nine GIMs to simulate 

runoff over the period 1971–2099. 

3.3.1.2 Global Impact Models 

The nine GIMs providing daily runoff output can be broadly grouped as hydrological 

models (H08, MPI-HM, PCRGlobWB, WBM, MacPDM, VIC, MATSIRO) and biome models 

(LPJmL and JULES; they are also hydrological models, but include effects of vegetation and CO2 
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dynamics on runoff). Every GIM was run with every GCM under four RCPs. All simulations 

available form a sample of 156 runs in total (MacPDM, VIC, and MATSIRO lack RCPs 4.5 and 6.0 

runs except when forced by the HadGEM2-ES GCM). All GIMs have a spatial resolution of 

0.5°×0.5° degrees (except JULES, whose runs were regridded to 0.5° from 1.25°×1.875°) and vary 

in the parameterization and in the types of processes they represent (Table 3.1). 

The GCM forcings employed vary across GIMs from precipitation and temperature (e.g., 

WBM), to additional variables like wind speed, air humidity, long (short) wave radiation flux and 

surface pressure (e.g., MacPDM). The method for potential evapotranspiration differs among the 

GIMs, as well as the schemes employed for runoff and snow representation. Moreover, H08, 

MATSIRO, and JULES solve also the energy balance at the land surface in addition to the water  

 

Table 3.1– Main characteristics of the ISI-MIP GIMs with unrouted runoff daily runs (after Prudhomme et 

al. (2014)). 

  Meteorological  Evapo-   Vege-  

 

Time forcing Energy transpiration Runoff Snow tation CO2 

Model Step variablesa Balance schemeb Schemec Scheme dynamics effect 

                  H08 Daily R, S, T, W, Q, Yes Bulk Saturation excess Energy No No 

  LW, SW, SP  formula nonlinear Balance   

MPI-HM Daily P, T, W, Q, LW, No Penman- Saturation excess Degree No No 

  SP  Monteith nonlinear Day   

PCRGlobWB Daily P, T No Hamon Infiltration & saturation Degree No No 

     excess, groundwater day   

WBM Daily P, T No Hamon Saturation excess Empirical T No No 

      &P formula   

MacPDM Daily P, T, W, Q, No Penman- Saturation excess Degree No No 

  LWnet, SW, SP  Monteith nonlinear day   

VIC Daily P, Tmax, Tmin, No Penman- Saturation excess/ Energy No No 

 3h sn W, Q, LW, SW,SP  Monteith beta function balance   

MATSIRO 1 h R, S, T, W, Q, Yes Bulk Infiltration & saturation Energy No constant 

  LW, SW, SP  formula excess, groundwater balance  345ppm 

LPJmL Daily P, T, LWnet, No Priestley- Saturation excess Degree Yes Varying 

  SW  Taylor  day   

JULES 1 h R, S, T, W, Q, Yes Penman- Infiltration & saturation Energy Yes Varying 

  LW, SW, SP  Monteith excess, groundwater balance   

         
a R = rainfall rate; S = snowfall rate; P = precipitation (rain or snow distinguished in the model); T = air temperature; W 

= wind speed; Q = specific humidity; LW = longwave radiation flux (downward); LWnet = longwave radiation flux 

(net); SW = shortwave radiation flux (downward); and SP = surface pressure. b Bulk formula: Bulk transfer coefficients 

are used when calculating the turbulent heat fluxes. c Beta function: Runoff is a nonlinear function of soil moisture. 
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balance (for this they can be called LSMs, i.e., Land Surface Models); however the most 

compelling structural feature in runoff generation is found in LPJmL and JULES, with the 

representation of the effects of CO2 on stomatal opening and the inclusion of a dynamic vegetation 

model that allows vegetation to grow in response to its environment (Prudhomme et al., 2014). In 

particular, with increased CO2, biome models have shown to yield increased runoff compared to the 

other GIMs (e.g., Wada et al. (2013); Prudhomme et al. (2014)), and this is the result of the 

combination of two main opposing effects of elevated CO2 on evapotranspiration and runoff: on the 

one hand, CO2 may increase plant productivity and consequently evapotranspiration from the 

canopy, thus decreasing runoff; on the other hand, CO2 may inhibit evapotranspiration by reducing 

stomatal conductance at the leaf level, leading to increased runoff (Davie et al., 2013). 

3.3.2 The WaterMIP data set 

The daily unrouted runoff data used in Chapter 5 comes from the WaterMIP Project. This 

data set comprises nine GIMs that, within a model evaluation effort, are analysed in the control 

period in which they are driven by the Watch Forcing Data (WFD) (Weedon et al., 2011). GIMs 

runs in this dataset provide a valuable basis for evaluation as the forcing employed reproduces the 

frequency and the chronology of occurrence of hydrological events, while for the ISI-MIP runs only 

the frequency can be reproduced. 

3.3.2.1 Forcing data (WFD) 

The WFD consists of gridded sub-daily meteorological forcing data derived from the surface 

variables of the ERA-40 reanalysis product (Uppala et al., 2005) for the period 1958-2001, but from 

reordered ERA-40 data for the period 1901-1957 (Weedon et al., 2011). More specifically, the 

WFD has been produced by combining i) the Climatic Research Unit’s monthly observations of 
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temperature, wet days and cloud cover; ii) the GPCCv4 monthly precipitation observations; and iii) 

the ERA-40 reanalysis products (with the addition of corrections for seasonal and decadal varying 

atmospheric aerosols needed to adjust the solar radiation components) (Weedon et al., 2010). The 

spatial resolution is 0.5° (~50 km) x 0.5° grid for a total of 67420 land cells globally. The variables 

included are: air temperature, surface pressure, specific humidity, wind speed, downwards 

long-wave (infra-red) radiation flux – provided at 6-hour intervals; downwards short-wave (solar) 

radiation flux, rainfall and snowfall rates – provided at 3-hour intervals. 

Among the different variables constituting the WFD, the reliability of precipitation data can 

be crucial in the context of extreme events (e.g., floods). The ERA-40 reanalysis, on which WFD 

precipitation is based, has shown acceptable skills in the simulation of the variability of extreme 

precipitation in the cold season, although this does not imply confidence in the actual amounts of 

precipitation, which are considerably underestimated in the case of extreme events (Zolina et al., 

2004). The ERA-40 precipitation has been corrected for the WFD in order to improve credibility for 

hydrological modelling at least at the sub-monthly, if not weekly or daily scale (Weedon et al., 

2010). In particular, precipitation was corrected using the CRU number of wet days, thus imposing 

an average number of precipitation days; then the monthly precipitation was corrected using the 

GPCCv4 data product, integrating with the CRU monthly totals to produce alternative rainfall and 

snowfall products; and finally, monthly precipitation totals were also corrected for gauge 

“undercatch” via the gridded average catch ratios of Adam and Lettenmaier (2003). These 

corrections have brought about improvements in the quality of precipitation. Weedon et al. (2010) 

report important disparities between ERA-40 monthly precipitation totals and both CRU and GPCP 

totals especially in tropical latitudes. Similarly, Weedon et al. (2011) describe how the wet-day 

correction employed for the WFD guarantees a spatial continuity and coherence of significant 

frontal precipitation across grid cells, emphasizing how large scale hydrological modelling remains 
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meaningful at the daily scale. The same authors show, in a comparison with FLUXNET data 

(www.fluxnet.ornl.gov/fluxnet/) at selected sites, a close correspondence between field- measured 

and the adjusted reanalysis data for all variables, including precipitation. Among the WFD 

precipitation issues Weedon et al. (2010) report the following ones: i) presence of outliers in 

precipitation rates in a few isolated places where exceptionally extreme precipitation rates were 

created, especially near the boundaries of the Inter-tropical Convergence Zone (e.g. Northern 

India); ii) underestimation of orographic effects as no attempt was made to adjust precipitation rates 

to allow for the effects of orography. 

3.3.2.2 Global Impact Models 

The WaterMIP GIMs dataset comprises both land surface (LSMs) and global hydrological 

models (GHMs). As mentioned in the previous chapter (Section 2.3), the key difference between 

these two types of models is whether they solve at the land surface both the water and the energy 

balances (LSMs) or only the water balance (GHMs). Table 3.2 provides a brief overview of these 

models, which vary in structure and parameterization (for a comprehensive description of the 

characteristics see Haddeland et al. (2011)). Five out of nine GIMs consist of antecedent versions of 

the GIMs presented in the previous section (ISI-MIP dataset) and listed in Table 3.1, namely: 

LPJmL, MPI-HM, MacPDM, JULES, and MATSIRO. 

All of the global models were run over the period 1963-2001 (except GWAVA: 1963-2000) 

at a spatial resolution of 0.5° degrees and forced by the same meteorological input data (WFD). The 

models vary substantially in the parameterizations of evaporation and runoff, and do not all use the 

same input variables or model time steps (in particular, all GHMs are run at a daily time step 

whereas LSMs are run at a sub-hourly time step). As noted in Chapter 2 (Section 2.3), in contrast to 
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basin-scale hydrological models, which are routinely calibrated against observed river discharge, 

GIMs are usually not calibrated (Müller Schmied et al., 2014). 

 

Table 3.2 – Main characteristics of the WaterMIP GIMs with unrouted runoff daily runs (after Haddeland et 

al. (2011)). 

  

Time Meteorological Energy Evapotranspiration 

 

Snow 

 

Model Step forcing variablesa Balance schemeb Runoff Schemec scheme 

                GHMs       

       

 

WaterGAP Daily P, T, LWnet, SW No Priestley-Taylor Beta function Degree-day 

        

 

LPJmL Daily P, T, LWnet, SW No Priestley-Taylor Saturation excess Degree-day 

        

 

MPI-HM Daily P, T No Thornthwaite Saturation excess/ Degree-day 

      Beta function  

 

GWAVA Daily P, T, W, Q, LWnet, SW, SP No Penman-Monteith Saturation excess/ Degree-day 

      Beta function  

 

MacPDM Daily P, T, W, Q, LWnet, SW No Penman-Monteith Saturation excess/ Degree-day 

      Beta function  

        LSMs       

       

 

HTESSEL 1 h R, S, T, W, Q, LW, SW, SP Yes Penman-Monteith Infiltration excess/ Energy 

      Darcy balance 

 

JULES 1 h R, S, T, W, Q, LW, SW, SP Yes Penman-Monteith Infiltration excess/ Energy 

      Darcy balance 

 

MATSIRO 1 h R, S, T, W, Q, LW, SW, SP Yes Bulk formula Infiltration and  Energy 

      saturation excess balance 

  Orchidee 15 R, S, T, W, Q, LW, SW, SP Yes Bulk formula Saturation excess Energy 

  min     balance 

        
a R = rainfall rate; S = snowfall rate; P = precipitation (rain or snow distinguished in the model); T = air temperature; W 

= wind speed; Q = specific humidity; LW = longwave radiation flux (downward); LWnet = longwave radiation flux 

(net); SW = shortwave radiation flux (downward); and SP = surface pressure. b Bulk formula: Bulk transfer coefficients 

are used when calculating the turbulent heat fluxes. c Beta function: Runoff is a nonlinear function of soil moisture. 

 

With the exception of WaterGAP, none of the models used in this dataset were calibrated 

specifically for the WaterMIP experiment, although they may have been calibrated for previous 

studies (Haddeland et al., 2011). The GIMs use their default soil and vegetation information derived 

from mapped land properties (e.g. soil texture and vegetation density) (Gudmundsson et al., 2012b), 

and no attempt was made to standardize these parameters (Haddeland et al., 2011). WaterGAP 
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underwent a limited calibration procedure using local measured streamflow data (for details see 

Hunger and Döll (2008)). 

3.3.3 Observed runoff data 

The reference dataset for evaluating simulated runoff consists of observed discharge data 

covering the 1963-2001 period over the selected study area (Figure 3.1b). A total of 252 gauging 

stations (Figure 3.3 and Table 3.3) were selected after intersecting ~700 gauges available over the 

study area with the Hydro-Climatic Data Network (HCDN) because no land use changes or water 

management interventions are accounted for in the modelled data. The HCDN dataset was 

introduced in 1992 and updated in 2011 (Whitfield et al., 2012) as a subset of U.S. Geological 

Survey (USGS) streamflow gauging stations with historical streamflow data responsive to climatic 

variations, so relatively free of anthropogenic influences such as dam impoundment, regulation and 

wide-scale urbanization (although minor impacts may still be present, e.g. land use change). 

The size of the catchments of the 252 gauges varies, with drainage areas ranging from 64 to 

1,350,000 km2, with a majority (80%) with area up to 7000 km2 (see Figure 3.3b, while the 

catchment boundaries are shown in Figure 3.3c). 

For an in-depth comparison gauge-grid-cell, a subset of 128 gauges (shown in red in Figure 

3.3a-c) have been selected within the 400 to 3500 km2 catchment area range in order to match more 

closely the size of the model grid cells whose area ranges from approximately 2500 km2 at 36°N to 

2000 km2 at 49.5°N depending on the latitude. 
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a. 

 b. 

 c. 

Figure 3.3 – The 252 streamflow gauges used in this study: a) their location (in red the 128 subset used for 

pairwise comparison, in black the remainder of the gauges, in blue the river network); b) the distribution of 

their catchment areas (green the whole 252 set, in red the 128 subset); c) Catchment boundaries relative to 

the streamflow gauges (in red the 128 subset, in purple the remainder of the gauges).  
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Table 3.3 – List of the 252 stream-gauges used for the GIMs’ evaluation (*128 pairwise comparison subset). 

 
USGS Catch. 

 
USGS Catch. 

 
USGS Catch. 

 
USGS Catch. 

 
str.flow area 

 
str.flow area 

 
str.flow area 

 
str.flow area 

 
gauge [Km2] 

 
gauge [Km2] 

 
gauge [Km2] 

 
gauge [Km2] 

*1 3109500 1285 *64 4198000 3240 127 5444000 378 *190 6471200 1971 
2 3144000 363 *65 4201500 692 128 5446500 24732 191 6478500 53501 

*3 3159500 2442 *66 4213000 453 *129 5447500 2598 192 6480000 8645 
4 3219500 1469 67 5053000 5387 130 5451500 3968 *193 6481500 1606 

*5 3230500 1383 *68 5054500 1098 131 5454500 8472 194 6483500 4123 
6 3234500 13289 69 5056000 5361 *132 5457000 1033 195 6485500 20407 

*7 3237500 1002 70 5057000 16757 *133 5458000 793 *196 6600500 2295 
*8 3262000 666 *71 5057200 1790 134 5458500 4302 197 6606600 6475 
*9 3265000 1303 *72 5059700 2183 *135 5459500 1362 *198 6800000 953 
10 3266000 1683 73 5060500 300 136 5462000 4522 199 6800500 17871 

*11 3269500 1269 *74 5062000 2525 137 5464000 13328 *200 6808500 3434 
*12 3272000 712 *75 5066500 3116 138 5464500 16861 201 6809500 2315 
13 3274000 9402 *76 5069000 1088 139 5465500 32375 202 6810000 7268 

*14 3275000 1352 *77 5078500 3574 *140 5466000 401 *203 6811500 2051 
*15 3294000 490 78 5082500 77959 *141 5470000 816 *204 6814000 715 
16 3324000 681 *79 5084000 1181 *142 5472500 1891 *205 6853800 588 

*17 3324300 1101 80 5100000 8832 143 5474000 11168 206 6864500 19632 
*18 3326500 1766 81 5113600 4636 144 5474500 308209 207 6867000 3890 
19 3328500 2044 *82 5120500 1826 *145 5476000 3237 208 6869500 7304 
20 3333600 64 *83 5123400 3004 *146 5479000 3388 *209 6876700 995 
21 3334500 629 84 5131500 4351 147 5480500 10852 210 6876900 17534 
22 3335500 18821 85 5133500 50246 *148 5481000 2186 *211 6878000 777 

*23 3339500 1318 86 5280000 6838 149 5482500 4193 *212 6884200 891 
24 3340800 360 *87 5286000 3522 *150 5484000 2574 213 6884400 8679 

*25 3343400 482 88 5288500 49469 151 5484500 8912 *214 6885500 1062 
26 3345500 3926 *89 5291000 1031 152 5486490 1268 *215 6888500 824 

*27 3346000 824 90 5304500 4869 *153 5489000 969 216 6889200 386 
*28 3351500 438 *91 5313500 1725 154 5490500 36358 *217 6889500 751 
29 3360500 12142 *92 5316500 1629 *155 5495000 1036 218 6891500 1101 
30 3362000 277 *93 5317000 3367 *156 5500000 1606 *219 6892000 1052 

*31 3362500 1228 *94 5320500 2875 *157 5501000 917 *220 6894000 477 
32 3363500 785 95 5330000 41958 158 5520500 5941 221 6897500 5827 
33 3364000 4421 96 5331000 95312 *159 5525000 1777 *222 6898000 1816 
34 3373500 12761 97 5340500 16162 160 5526000 5416 223 6899500 4455 
35 3374000 28814 *98 5362000 1492 161 5527500 13338 *224 6908000 2901 
36 3377500 74164 *99 5368000 1083 *162 5555300 3240 *225 6913500 3237 

*37 3379500 2929 *100 5379500 1665 *163 5556500 508 *226 6917000 813 
*38 3380500 1202 *101 5381000 1940 164 5567500 1987 227 6933500 7356 
39 3381500 8034 102 5393500 211 *165 5569500 2776 228 6934500 1353269 

*40 3612000 632 103 5394500 477 166 5570000 4237 *229 7013000 2023 
*41 4010500 1577 *104 5397500 971 *167 5572000 1424 *230 7016500 2093 
*42 4027000 1546 105 5399500 580 *168 5585000 3349 *231 7018100 1904 
*43 4040500 443 *106 5405000 1577 169 5592500 5025 232 7018500 2375 
*44 4045500 2046 107 5407000 26936 170 5593000 7042 233 7019000 9811 
*45 4056500 2849 *108 5408000 689 *171 5597000 2051 *234 7057500 1453 
*46 4059500 1165 109 5412500 4002 172 6334500 5113 235 7061500 1254 
*47 4069500 2797 *110 5413500 697 173 6335500 12018 236 7067000 4318 
48 4071000 1826 111 5414000 368 174 6337000 21523 237 7068000 5278 

*49 4073500 3471 112 5418500 4022 *175 6339500 3186 *238 7071500 2054 
50 4079000 5853 *113 5419000 640 176 6340500 5802 239 7141200 5563 
51 4084500 15566 114 5420500 221703 177 6350000 1502 *240 7144200 3437 

*52 4086000 1083 *115 5421000 2714 *178 6352000 1432 241 7146500 113216 
53 4087000 1803 116 5422000 6050 179 6354000 10619 242 7147800 4869 
54 4093000 321 *117 5426000 1974 180 6359500 6724 *243 7149000 2339 
55 4094000 171 118 5430500 8651 181 6395000 18658 *244 7157500 2997 

*56 4100500 1538 *119 5431486 515 182 6409000 205 245 7167500 334 
*57 4105000 624 *120 5432500 707 *183 6425500 1422 *246 7172000 1153 
*58 4112500 919 121 5433000 572 *184 6431500 427 247 7180500 285 
59 4121500 3711 122 5434500 2678 185 6441500 8151 248 7183000 9643 

*60 4142000 829 123 5435500 3434 186 6446000 5594 *249 7184000 510 
*61 4189000 896 *124 5436500 1355 *187 6449500 2675 *250 7186000 3015 
62 4191500 6004 *125 5438500 1393 188 6452000 25693 251 7187000 1106 
63 4193500 16395 126 5440000 2846 *189 6464500 2924 *252 7189000 2204 
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3.4 Overview of the statistical methods 

This section introduces the statistical methods used in the thesis. Details of the methods used 

in this research are given in the respective chapters. 

3.4.1 Hydrological indices 

3.4.1.1 Changes in the frequency of high and low flows. 

In Chapter 4, delta indices are used to express changes in the frequency of high and low 

flows. The indices extraction consists of two steps: i) time series of days classified as high and low 

flows are extracted from daily total runoff record; ii) high and low flow indices (i.e. change in 

frequency of high/flow flows) are calculated (future minus historical period). 

In the first step, in order to quantify high and low flow inter-annual variability, daily binary 

series (zero or one) are extracted for every land grid cell: high flow days, HFD; and low flows days, 

LFD. The series extraction uses daily varying threshold curves obtained from the daily runoff series 

for the historical period (1972–2005), which are then applied to the historical period and future 

projections to identify days above (for HFD) or below (for LFD) threshold, as in e.g. for low flows 

Prudhomme et al. (2014). High flows are characterized by the 95th percentile (Q95 – runoff equalled 

or exceeded 5 % of the time) and low flows by the 10th percentile (Q10 – runoff equalled or 

exceeded 90 % of the time). For HFD, a value of 1 (high flow) is assigned to each cell if the cell’s 

runoff exceeds the Q95 value, otherwise a value of 0 (no high flow) is assigned. For LFD, a value of 

1 (low flows) is assigned to each cell if the cell’s runoff is below the Q10 value, otherwise a value of 

0 (no low flow) is assigned. Explanatory graphics for both threshold and binary series extraction are 

shown in Figure 3.4. 
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In the second step, the indices expressing the change in the frequency (in %) of future high 

(HFI) and low (LFI) flows are then calculated as follows: for each ensemble member HFI (LFI) is 

equal to the difference between the frequency (in %) of high (low) flows days (100 mean of HFD 

(LFD)) from the future (e.g., 2066–2099) and historical period (e.g., 1972–2005), for the whole 

year or per season. 

It is worth describing in more detail the first step, i.e. the development of the threshold and 

binary series extraction of HFD and LFD, undertaken after participating to the study on future 

droughts of Prudhomme et al. (2014) to overcome a glitch in their drought index extraction. 

The threshold curves are obtained by linearly interpolating percentiles calculated over fixed 

5-day windows (e.g. 1–5 December, 6–10 December, and so forth, i.e. 73 for the whole year) of the 

historical period runoff (i.e. December 1971 to December 2005), having considered the 

hydrological year from December to November. In general, the identification of high and low flows 

at the global scale imposes the selection of a universal threshold level serving many hydrological 

regimes and climate regions at once (thereby pooling events that may not always be extreme) and it 

is based on physical processes: low flows are generally characterized by a slower onset, and a 

longer duration, and high flows by a sudden onset, and a shorter duration. Accordingly, high and 

low flows are not necessarily symmetric with respect to the median flow (Q50). For low flows in 

particular, the choice of Q10 comes from seeking a sufficiently low quantile without compromising 

the analysis, as quantiles lower than 10% become intractable for the large presence of zero pools in 

some time series. This is in agreement with e.g. Gudmundsson et al. (2012a) who showed how the 

performance of a similar set of WaterMIP global models decreased systematically from high Q95 to 

low Q5 runoff percentile over Europe. The choice of a fixed 5-day time window with interpolation 

was preferred over the 30-day moving average used in e.g. Prudhomme et al. (2014) because the  
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Figure 3.4 – Schematic of HFD and LFD extraction (days under high and low flows): a) daily varying 

threshold curves for HF and LF from 5-day percentiles calculated over the historical period; b) High and low 

flow days extraction for a given year. 

 

latter had shown some limitations with regards to the low flow quantile extraction. The effect of 

levelling out over 30 days could lead to lower values than expected in the control period (10% by 

design but). The choice of 5-day was made after testing 1, 5, 11, 31-day windows at nine locations 
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world-wide (considering, for each location, a cluster of 5 contiguous grid cells) as 5-day proved to 

be closest to the 10% (Figure 3.5). In addition, favouring the use of the same framework for high 

and low flows, the 5-day window was considered to be most appropriate for the identification of 

both types of events. The choice of a linear interpolation was preferred over the moving window 

approach to minimize dependence (i.e. inertia) within quantile estimates with the following 

rationale:  

i) moving average aims to smooth out wiggles for a less spiky identification of 

hydrological events like droughts that could result in erratic threshold crossings, thereby 

pooling several times over the same event; however, its quantile estimates use the same 

information from neighbouring days (as many as the time window), resulting in a 

quantile series holding a correlation that is higher the longer the time window, 

potentially leading to inadvertent effects of large inertia during the extraction of the 

hydrological index.  

ii) In our case, as we count high (low) flow days (as opposed to single events), smoothing 

the threshold is unnecessary.  

iii) A 1-day window would ensure a series of independent quantile estimates, but the 

computation over 34 points (i.e. 34 years of the control period) was considered 

insufficient for quantile estimation.  

iv) Seeking a representative number of points for quantile extraction (170, i.e. 5 days × 34 

years), a choice was made to compute the quantile by extracting a point every 5 days 

and extrapolating values for intermediate days to the next 5-day point; as a result 

threshold values were obtained with a nonrecursive use of data, thereby minimizing 

dependence. 
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Figure 3.5 – Sensitivity analysis for low flow threshold estimation using 5-, 11-, 31-day windows for 5 

contiguous grid cells from 9 selected locations worldwide over the reference period 1972-2005. Boxplots are 

per GIMs and comprise four GCMs for 5 grid cells (20 points). On the y-axis: the closest to 10% the better.  
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The index extraction described above is not applicable when the runoff is very low, i.e. 

when long periods of the year have the same value. Therefore, with reference to the control period 

(1972–2005), grid cells showing little or no seasonal change in daily runoff were screened out 

(details on the masking procedure are provided in APPENDIX II). 

3.4.1.2 Annual block indices 

Hydrological indices extracted annually from daily runoff series are used in Chapter 5 for 

the model evaluation (over the Central U.S.A.) and in Chapter 6 for the transient uncertainty 

partition (over the continental U.S.A.). In particular, in order to analyse changes in runoff over 

different parts of the flow regime (including high, medium, and low flows), the following three 

magnitude indices are considered: 1) annual maximum flow (AMax: a record of the largest daily 

discharge value for every year), 2) annual median flow (AMed: a record of the median daily 

discharge value for every year), and 3) annual minimum flow (AMin: a record of the smallest daily 

discharge value for every year). For the model evaluation analysis, in addition to these three indices, 

three timing indices were used to gain a basic understanding of whether the models are able to 

capture the timing of flooding, medium flow, and drought: 1) annual maximum date (AMaxDate: 

the day of the year in which the largest daily discharge value occurs for every year); 2) medium 

flow date (V50Date: the day of the year by which half of the annual total discharge volume has 

occurred); V50Date follows the concept of “center of mass” timing proposed by Stewart et al. 

(2005), also used, for instance, in Moore et al. (2007); and 3) drought start date (VDef10Date: the 

day of the year by which 10% of the annual volume deficit has occurred). The threshold used to 

define the VDef10Date corresponds to the 20th quantile of the time series; following the center of 

mass concept over the volume deficit (as, for instance, in Giuntoli et al. (2013), which provide a 
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schematic of the index), the drought starts on the day the 10% of the annual volume deficit has 

occurred. 

3.4.2 Multi-model ensemble metrics 

The different model runs make up a multi-model ensemble spread, whose strength is to 

express the range of plausible future outcomes. In order to use this information, both the mean 

(arithmetic average) or the median (the value separating the data sample in halves) can be used, 

although the latter – used in this study – is usually favoured as it is more robust and less influenced 

by potential outliers (Roudier et al., 2015). In order to express the degree of agreement of multiple 

model outputs the Signal-to-Noise ratio, S2N, is used and it is obtained by dividing the median of 

the ensemble indices by the inter-quartile range (75th percentile minus 25th percentile). The higher 

the S2N, the higher the agreement of the model members in the signal, as in Prudhomme et al. 

(2014). 

3.4.3 Uncertainty partition 

The uncertainty assessed in the thesis is reflected by the spread of the flow indices. In 

Chapter 4, while assessing changes in high and low flows globally, the uncertainty is quantified 

with regards to the choice of GCM or GHM. Whereas in Chapter 6, while analysing decadal high, 

medium, low flows in the continental U.S.A., the uncertainty is quantified with regards to the 

choice of GCM, GHM, RCP scenario and the contribution of the internal variability. 

Analysis of variance frameworks have become common in hydroclimatology for quantifying 

sources of uncertainty in climate projections. In the Chapter 4, a 2-way ANOVA is used to quantify 

GCM and GHM uncertainty under one RCP scenario (8.5), while in Chapter 6, the methodology 

proposed by Hawkins and Sutton (2009) is used to quantify relative contributions of also RCP and 
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internal variability, provided that the latter (theoretically not samplable in our dataset owing to the 

unavailability of run replicates) is sampled using the distance from the mean of each source and is 

considered and assumed constant throughout the 21st century. 

3.5 Chapter summary 

This chapter has presented the research design of the thesis. After illustrating the study areas 

corresponding to the three main analyses, the data employed and the generic statistical methods 

used are presented. The methods are detailed in each of the chapters. The next chapter assesses 

future changes in high and low runoff globally and assesses the contribution to uncertainty form 

GCMs and GIMs.  
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4 Changes in future hydrological extremes and the uncertainty from 

global impact and global climate models 

4.1 Abstract 

Projections of changes in the hydrological cycle from global impact models (GIMs) driven 

by global climate models (GCMs) are critical for understanding future occurrence of hydrological 

extremes. However, uncertainties remain large and need to be better assessed. In particular, recent 

studies have pointed to a considerable contribution of GIMs that can equal or outweigh the 

contribution of GCMs to uncertainty in hydrological projections. Using six GIMs and five GCMs 

from the ISI-MIP multi-model ensemble, this chapter aims: (i) to assess future changes in the 

frequency of both high and low flows at the global scale using control and future (RCP8.5) 

simulations by the 2080s, and (ii) to quantify, for both ends of the runoff spectrum, GCMs and 

GIMs contributions to uncertainty using a two-way ANOVA. Increases are found in high flows for 

northern latitudes and in low flows for several hotspots. Globally, the largest source of uncertainty 

is associated with GCMs, but GIMs are the greatest source in snow-dominated regions. More 

specifically, results vary depending on the runoff metric, the temporal (annual and seasonal) and 

regional scale of analysis. For instance, uncertainty contribution from GIMs is higher for low flows 

than it is for high flows, partly owing to the different processes driving the onset of the two 

phenomena (e.g. the more direct effect of the GCMs’ precipitation variability on high flows). This 

study provides a comprehensive synthesis of where future hydrological extremes are projected to 

increase and where the ensemble spread is owed to either GCMs or GIMs. Finally, our results 

underline the need for improvements in modelling snowmelt and runoff processes to project future 
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hydrological extremes and the importance of using multiple GCMs and GIMs to encompass the 

uncertainty range provided by these two sources. 

4.2 Introduction 

The use of global multi-model ensembles in climate impact studies has been discussed in 

Chapter 2 (Section 2.2). The paucity of studies considering a representative group of GIMs has been 

highlighted together with the interest to assess two extremes at once and to quantify uncertainty 

coming from GIMs and GCMs using a formal statistical framework.  

The present study builds on the work on low flows of Prudhomme et al. (2014), but 

introduces several new aspects. Firstly, low flows (Q10) are now analysed using an improved index 

extraction. The variable threshold method used in Prudhomme et al. (2014) has been revisited to 

overcome a limitation of the 30-day moving window for which grid cells were assigned lower 

threshold values than the theoretical threshold assigned (Q10) (i.e. a tendency to capture fewer 

occurrences, an effect perhaps attributable to GIMs’ slow emptying of reservoirs during the 

recession phase). A shorter 5-day fixed time window eliminates this effect. Note that, in order to 

gather further data for the estimate of the quantile flow, the period of analysis was increased from 

30 to 34 years, starting 4 years earlier (1972 for control and 2066 for future). Secondly, we now 

analyse high flows (Q95), with the same method used for low flows (5-day fixed-window 

variable-threshold method). Dankers et al. (2013), who also analysed high flows, have focused on a 

different metric (annual extreme monthly flood peak with 30-year return level), as their aim was to 

describe changes in flood hazard, while our focus is on change in frequency of high flow days. In 

our study high and low flows are hence identified jointly with the same ensemble of five GCMs and 

six GIMs. While comprising the same number of GCMs, the ensemble used by Prudhomme et al. 

(2014) uses one additional GIM (JULES) and Dankers et al. (2013) uses three additional GIMs 
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(JULES, LPJmL, MATSIRO). We did not use these additional GIMs as they showed large areas 

with long pools of zero values hindering the index extraction, making them unsuitable for our 

analysis, especially for the low flows; additionally, JULES was run at a coarser resolution (1.25–

1.875 vs. 0.5–0.5) that would potentially influence the uncertainty analysis. Thirdly, we assess 

systematically the relative contribution of GIMs and GCMs to uncertainty using an analysis of 

variance (ANOVA) framework as in e.g., Yip et al. (2011) and Sansom et al. (2013). This 

uncertainty assessment moves beyond the signal-to-noise ratio by Prudhomme et al. (2014), as the 

quantification of each source (GCM/GIM) to total uncertainty allows us to describe the spatial 

variability of the contributions grid cell per grid cell. While Dankers et al. (2013) and Schewe et al. 

(2014) partition GCM/GIM uncertainty using ratios between the variances, our ANOVA approach 

adds the contribution of the error (or residual) to the partition of the variance along with post hoc 

testing on the residuals for model adequacy. We thus describe how high and low flows and inherent 

uncertainty vary at the seasonal and spatial scale, identifying areas where we have more confidence 

in the climate or in the hydrology (i.e. uncertainty is owed to GCMs or GIMs). Finally, to 

understand how the variance of the changes differs regionally, we carry out analysis at the regional 

scale expressing the ANOVA sum-of-squares of each source using homogeneous geo-climate 

regions (Köppen–Geiger). This allows for an improved understanding of how the climate and 

hydrological processes drive uncertainty for both runoff ends.  

By comparing an ensemble of GCMs (5) and GIMs (6) for future projections (2066–2099) 

against the historical period (1972–2005), this study aims (i) to assess future high and low flows 

changes at global and annual and seasonal scales, and (ii) to quantify the uncertainty attributable to 

GIMs and GCMs using ANOVA. In the next section, the data set and the different steps of the 

methodology are detailed. The results of projected hydrological extremes and respective uncertainty 
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are presented in Section 4.4 before discussing the important and wider implications of this research 

in the fifth and final section. 

4.3 Data and Methods 

The data set used herein – introduced in Section 3.3.1 – comes from the Inter-Sectorial 

Impact Model Intercomparison Project (ISI-MIP) (Warszawski et al., 2014) and consists of daily 

total unrouted runoff at a spatial resolution of 0.5 degrees from an ensemble of six GIMs forced 

with five CMIP5 GCMs’ bias-corrected climate (Hempel et al., 2013) for the historical (1972– 

2005) and future (2066–2099) periods under the RCP8.5 scenario. The six GIMs are: H08, 

MPI-HM, MacPDM, VIC, WBM, PCRGlobWB (see Table 3.1 in Section 3.3.1.2 for a summary of 

the main characteristics), and the five GCMs are: HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-

CHEM, GFDL-ESM2M, NorESM1-M (see Section 3.3.1.1 – refer to Warszawski et al. (2014), for 

further details on the models and to www.isi-mip.org to access the simulation protocol). It should be 

noted that the selection of GIMs was dictated by temporal (daily runoff) resolution and time series 

tractability: models with lengthy pools of runoff equal to zero over large portions of the globe 

imposing constraints to the index extraction were not included (this aspect has been described 

further at the end of Section 3.4.1.1). The selected model combinations form an ensemble of 30 

experiments, each consisting of a historical and future period; none of the GIMs include varying 

CO2. 

The analytical framework employed was composed of three steps: (i) high and low flow 

indices (i.e. change in frequency of high/flow flows) were calculated (future minus historical 

period) and mapped; (ii) ANOVA was carried out on the high and low flow indices considering 

GCMs and GIMs as factors; and (iii) the dominant uncertainty factors were explored for high and 

low flows across different climate regions based on the Köppen–Geiger classification. 
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As detailed in Section 3.4.1.1, the extraction of high and low flow indices consists of 

extracting daily binary series (zero or one) for every land grid cells using daily varying threshold 

curves obtained from the historical period (1972–2005), which are then applied to the historical 

period and future projections to identify days above (for HFD) or below thresholds (for LFD). High 

flows are characterized by the 95th percentile (Q95 – runoff equalled or exceeded 5% of the time) 

and low flows by the 10th percentile (Q10 – runoff equalled or exceeded 90% of the time). 

Grid cells showing little or no seasonal change in the daily runoff of the control period 

(1972–2005) were screened-out and represented in grey on the maps. These screened-out grid cells 

are often located in arid or frozen regions where there is little or no runoff during long periods of 

the year and so the index extraction becomes intractable due to the presence of repeated zero values 

in the series. The grid cell masking procedure is detailed in APPENDIX II, while Table 4.1 shows  

 

Table 4.1 – Percentage of available land grid cells after masking per GIM-GCM model combination. 

        GCM 

        HadGEM IPSL MIROC  GFDL NorESM 

          

G
IM

 

 

H08 
Q10 99.97 99.82 99.96 99.96 99.95 

 Q95 99.98 99.98 99.98 99.99 99.98  

        

MPIHM 
Q10 89.85 89.14 89.69 89.68 89.68 

 Q95 92.75 92.24 92.52 93.17 93.08  

        

MacPDM 
Q10 100 100 100 100 100 

 Q95 100 100 100 100 100  

        

VIC 
Q10 96.25 96.25 96.47 96.59 96.39 

 Q95 99.48 97.72 99.41 99.20 99.36  

        

WBM 
Q10 96.19 96.29 95.72 96.02 96.27 

 Q95 97.38 97.97 96.81 97.75 97.58  

        

PCRGlobWB 
Q10 90.91 91.17 90.39 91.26 90.71 

 Q95 92.92 92.84 92.16 93.16 92.79  

        

JULES* 
Q10 64.07  64.05 65.45 66.06 66.59 

 Q95 84.71 89.16 91.39 89.57 91.06  

        

LPJmL* 
Q10 26.97 25.07 25.95 26.12 26.89 

 Q95 70.22 67.27 69.76 68.50 69.72  

        

MATSIRO* 
Q10 25.73 23.27 29.60 25.39 27.70 

 Q95 64.56 61.26 67.15 69.10 67.42 

                  
         

  

*Models not included in the ensemble. 
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percentages of available land grid cells after screening for the different GCM–GIM combinations 

and runoff percentile, which led to the choice of the first six models (notice the low percentage 

values for LPJmL and MATSIRO especially).  

Once binary series are obtained, the indices expressing the change in the frequency (in %) of 

future high (HFI) and low (LFI) flows can be calculated as follows: for each ensemble member HFI 

(LFI) is equal to the difference between the frequency (in %) of high (low) flows days (100 mean 

of HFD (LFD)) from the future (2066–2099) and historical period (1972–2005), for the whole year 

and per season (DJF and JJA). Both HFI and LFI are composed of 30 series (i.e. six GIMs fed by 

five GCMs each). The agreement in the change across ensemble members is expressed by the 

signal-to-noise ratio, S2N, calculated by dividing the median of the ensemble flow indices (HFI and 

LFI) by the inter-quartile range (75th percentile minus 25th percentile). The higher the S2N, the 

higher the members’ agreement in the signal; assuming signal greater than noise if S2N > 1. 

In this study, the uncertainty is reflected by the spread of the flow indices due to the choice 

of GCM or GIM. To quantify the individual contribution of GCMs and GIMs to total uncertainty, a 

2-factor ANOVA was carried out on the flow indices HFI and LFI for each grid cell. For this data 

set, model runs had no replicates, therefore the ANOVA model considers one case per treatment 

(Neter et al. 1999, Chap. 21), so no interactions ij = 0) and fixed factors levels (n=1): 

Yij =  + i + j + ij , (1)  

where Yij is the mean change for GCMi and GIMj ,  is a constant (the overall mean of all ensemble 

members), i is the main effect for GCM at the ith level, j is the main effect for GIM at the jth 

level, ij is the residual ≈ N (0, 2)iid. Thus, the variance is partitioned into two factors, GCMs and 

GIMs, plus the residuals. The results, expressed in terms of sum of squares, are used to quantify the 

factors’ contributions to the total variance, here considered as uncertainty as in e.g. Sansom et al. 
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(2013). ANOVA models are reasonably robust against certain types of departures from the model 

(e.g. error terms not being exactly normally distributed). Nonetheless, the suitability of the ANOVA 

model with the data at hand should be checked for serious departures from the conditions assumed 

by the model by looking at the residuals (Neter et al. 1999, Chap. 18) and testing their normality 

(e.g. Lilliefors test) and constancy of variance (e.g. Hartley test). Unsatisfactory results would 

require remedial measures like data transformation or a modification of the model. To understand 

how variance differs between climate regions, the ANOVA sum of squares for all model 

combinations are shown per Köppen–Geiger class. We used the Köppen–Geiger data classification1 

based on the present day as proposed by Kottek et al. (2006). A total of 15 (out of 31) regions are 

considered leaving out under-represented regions with too few grid cells (<1000). The number of 

grid cells required to retain a region was set to 1000 so that regions excluded would not account for 

more than 10% of global unmasked grid cells (precisely 9.1% for both indices). 

4.4 Results 

Annual mean changes and associated S2N across all GIMs and GCMs are shown for HFI 

and LFI in Figure 4.1a and Figure 4.1b. For high and low flow indices, the mean changes vary 

spatially and in magnitude (Figure 4.2) but they are positive generally. This means increases in 

number of days with (i) high flows, mostly over high northern latitudes; and (ii) low flows, spread 

over all latitudes with hotspots in southern Europe, south-western and mid Latin America, 

south-eastern USA and south-eastern Canada, lower parts of Central Africa, north/north-eastern 

China, and south-western Australia. Regions screened-out represent 14 and 18 % of land for HFI 

and LFI, respectively. The S2N shows model agreement generally over the same regions for both 

indices (e.g. southern Europe, south-western and mid Latin America, south-eastern US). However, 

                                                 
1 Map link: http://koeppen-geiger.vu-wien.ac.at/pdf/kottek_et_al_2006_A4.pdf. 
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model agreement is found for HFI – but not for LFI – over Alaska, eastern Canada, and 

north-western and eastern Russia. In some regions increases are not associated with a strong S2N 

(e.g. for high flows over western China and the Horn of Africa).  

 

 

Figure 4.1 – Change in the frequency (in %) of days under high (left) and low (right) flow conditions for the 

period 2066–2099 relative to 1972–2005, based on a multi-model ensemble (MME) experiment under 

RCP8.5 from five GCMs and six GIMs: (a) MME mean change and associated (b) signal-to-noise ratio; (c) 

Proportion of variance per factor for the MME mean change: GCM (yellow), GIM (green), Residual (red). 

The colour of the dominant factor is given.  
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Mean changes and S2N for boreal winter (DJF) and summer (JJA), in Figure 4.3 and Figure 

4.4 respectively, show an increased intensity with very similar spatial patterns to their annual 

counterparts in DJF for the high flows and in JJA for low flows. Conversely, high flows in JJA 

show virtually no change, while low flows in DJF show decreases at high northern latitudes with 

high model agreement and increases elsewhere with smaller model agreement (S2N). This can be 

seen also in Figure 4.2: the PDF (i.e. the density of the mean change percentage) stretches towards 

higher mean changes for high flows in DJF and for low flows in JJA. Global results are dominated  

 

 

Figure 4.2 – PDFs of mean changes in high (HFI) and low (LFI) flows, annually and per season (DJF and 

JJA) for North, Tropics, and South latitude bands. Based on a multi-model ensemble (MME) experiment 

under RCP8.5 from five GCMs and six GIMs.   
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by boreal seasonality (high flow changes dominant in DJF, and low flow changes dominant in JJA) 

as the majority of global land cells 65% (of unmasked land) are located north of latitude 23.5. The 

remainder of the land cells (35%) are located within the Tropics and south latitude bands, and 

depict weak changes for high flows in all seasons, and increased changes for low flows in all 

seasons, though JJA’s are more marked.  

 

 

Figure 4.3 – As Figure 4.1, for the season DJF.  
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The results of the ANOVA across the 30 members of HFI and LFI are shown in Figure 4.1c; 

they are expressed, for each factor, as the proportion of sum of squares divided by the total sum of 

squares (refer to APPENDIX II for residuals testing for model adequacy). For the high flows, the 

variance is explained mostly by the GCMs (yellow, 47 % of unmasked land, Figure 4.1c), although  

 

 

Figure 4.4 – As Figure 4.1, for the season JJA.  
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the GIMs are the major factor over western Europe and central Canada (green, 28% of unmasked 

land, Figure 4.1c). For low flows, the proportions change: the GCMs (43%) remain the major 

contributors over the globe, but GIMs (35%) increase to a relative influence closer to the GCMs, 

and become the major factor in some northern (e.g. north-eastern Russia) and southern (e.g. 

southern Africa, south-western Australia) regions. Seasonal results (Figure 4.3c and Figure 4.4c) are 

very similar to their annual counterparts in the case of high flows in DJF and low flows in JJA, 

whereas for high flows in JJA and for low flows in DJF higher residual rates (i.e. decreased overall 

GIM and GCM contributions) are found, perhaps owing to fewer events occurring in these seasons 

for both low and high flow indices. 

To capture better the spatial distribution of the major sources of uncertainty, ANOVA 

results are aggregated by climatic homogeneous regions based on the climatological Köppen-Geiger 

classification. Scatterplots in Figure 4.5 show the proportions of sums of squares of GIMs (y-axis) 

 

 

Figure 4.5 – ANOVA sum of squares (SS) of the two factors (GIM y axis; GCM x axis) divided by the total 

sum of squares (TSS) for all grid cells as grey dots; and for each Köppen–Geiger climate region (15 most 

represented), as region letters shown at the medians of the region’s GCM SS/TSS as x-coord and of the 

region’s GIM SS/TSS as y-coord.  
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vs. GCMs (x-axis); medians for each climatic region are shown as their class letter and summarize 

the prominent factor of uncertainty. For both high and low flows calculated over the year and 

seasonally, uncertainty in equatorial regions (A) is dominated by GCMs (median closest to the 

x- axis); while in snow-dominated climate (D) it is dominated by GIMs (median closest to the 

y-axis). 

 

 

Figure 4.6 – As Figure 4.5, for the seasons DJF (top) and JJA (bottom).  
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In warm temperate regions (C), uncertainty is slightly higher for GCMs than GIMs. In arid regions 

(B), the variance is not well explained by either GCMs or GIMs (median farthest from 1; i.e. 

residuals explain most of the variance), suggesting that reproducing hydroclimatology over these 

regions represents a challenge for both GCMs and GIMs. 

The ANOVA results for the whole year and those for winter and summer seasons (DJF and 

JJA shown in Figure 4.3c and Figure 4.4c) are quantified further in Table 4.2. This table provides a 

breakdown with both the regional and global results expressed for mean changes, S2N and 

percentage of sum of squares per factor at the annual and seasonal (DJF and JJA) scale. Looking 

jointly at the annual and seasonal results in Table 4.2, it is clear that the widespread dominance of 

the GCMs’ contribution to uncertainty is outweighed by the GIMs in the snow- and ice-dominated 

regions (D). This pattern is visible also on the scatterplots (Figure 4.5 and Figure 4.6) with the GIM 

uncertainty-dominated regions (near the y-axis) often populated by D regions for both HFI and LFI 

(although to a lesser extent for the former).  
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Table 4.2 – Summary of mean changes, signal-to-noise S2N, and sources of variance for high and low flows 

at the annual and seasonal (DJF, JJA) scale, and at the global and climate region scale. The first source of 

variance is shown in grey, the second in light grey. 

 

 



 56 

4.5 Discussions and conclusions 

Using six global impact models (GIMs) fed by five global climate models (GCMs) under the 

RCP8.5 scenario, this study aimed to assess future high and low flow changes globally by the 

2080s, and to quantify the uncertainty attributable to GIMs and GCMs. We decided to focus solely 

on the uncertainty coming from GIMs and GCMs using as many ensemble members (from the 

ISI-MIP project data set) as possible under the RCP8.5, in which change signals are expected to be 

larger (i.e. emissions continue to rise leading to global radiative forcing levels of 8.5 W/m2 by the 

end of the 21st century). The hydrological simulations used in this study do not account for 

anthropogenic influences (e.g. water abstraction, augmentation and artificial storage) or land-use 

changes.  

High and low flow changes in the future (2066–2099) relative to the control period (1972–

2005) exhibit a number of robust large-scale features. Increases in high flow days were found at 

northern latitudes, with a strong signal over eastern Canada, Scandinavia, north-western Russia, and 

around the Bering Sea (eastern Russia and Alaska). Increases in low flow days were found in 

southern Europe, south-western and central Latin America, south-eastern USA, more southerly 

parts of Central Africa, and south-western Australia. These patterns are largely consistent with the 

few other studies carried out on runoff at the global scale with several GIM–GCM combinations: 

e.g. for high flows (Hirabayashi et al., 2013), low flows (Prudhomme et al., 2014; van Huijgevoort 

et al., 2014) and for mean flows (Davie et al., 2013; Hagemann et al., 2013; Schewe et al., 2014). 

More specifically, the comparison of flood hazard patterns by Dankers et al. (2013) with the 

changes in the occurrence of high flow days from our study reveals some similarities, mostly 

northern North America and Northern Asia, while in some regions like north-eastern Europe 
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patterns are opposite. Low flow patterns are similar to Prudhomme et al. (2014) although they find a 

weaker S2N.  

In this study we provide for the first time a comprehensive assessment of both ends of the 

runoff spectrum at the same time using the same data set globally. Moreover, we undertake a 

consistent partition of uncertainty via ANOVA for both high and low flows, showing that GCMs 

provide the largest uncertainty, although the GIM contribution can be substantial in particular 

regions. The results from our ANOVA framework are consistent with other global studies based on 

the ratios between the variances (or standard deviations) of ensemble members averaged per type of 

model (Dankers et al., 2013; Hagemann et al., 2013; Schewe et al., 2014). In particular, uncertainty 

results that Dankers et al. (2013) expressed with GCM/GIM variance are in agreement with our 

findings for high flows in the Southern Hemisphere, mainly driven by GCM uncertainty, whereas 

there is less agreement for the Northern Hemisphere (in North America, Central Canada is 

GCM-driven uncertainty, whereas it is GIM driven in our results). Uncertainty results for low flows 

from Prudhomme et al. (2014), expressed as S2N ratio, are not directly comparable, but as will be 

discussed later, the inclusion of the JULES GIM in their ensemble has pointed to lower model 

agreement (i.e. increased uncertainty).  

At the regional level, the uncertainty partition enables us to delineate in which climate 

region each factor (GCMs or GIMs) provides the largest uncertainty at the annual and seasonal 

scales. Notably, for snow- and ice-dominated polar regions, and for arid zones, GIMs bring about 

the largest portion of uncertainty, especially for low flows. This is likely to reflect uncertainty in the 

way the hydrological storage–release processes can modify the climate signal, particularly where 

these storage components are relatively large or water residence times high – hence the importance 

of considering several GIMs in studying changes in high and low flows. GCM and GIM uncertainty 

shares are similar for HFI and LFI globally, although the spatial patterns differ slightly (e.g. north-
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eastern Russia, south-western Australia and Alaska are GCM driven in HFI, and GIM driven in 

LFI). This could reflect different dominant processes for high and low flow generation, with high 

flow events mainly driven by precipitation inputs or snow/ice-melt (i.e. atmospheric-driven 

processes); whereas low flows event develop over longer durations and are influenced more by 

land-surface processes like evaporation, infiltration and storage, which are simulated by the GIMs, 

each one with its own scheme and parameterization: e.g. for evapotranspiration, Penman–Monteith, 

Hamon (Haddeland et al. 2011; and Table 3.2). Haddeland et al. (2011) have identified in the snow 

scheme employed by different GIMs a major source of difference between the model runoff 

simulations, and recent studies at global (e.g. Hagemann et al. 2013) and regional scale (e.g. Jung et 

al. 2012) hint at an increase in uncertainty in snow-dominated regions. Our study shows that in 

snow-dominated and arid regions GIM uncertainty equals or outweighs GCM uncertainty for both 

high and low flows, highlighting the importance of comprising balanced sets of both global 

hydrological and climate models to encompass the overall uncertainty in these regions.  

To put the current study in context and to provide suggestions for further studies, it is worth 

making a few considerations on the hydrological index extraction and clarify a few aspects of the 

uncertainty partition concerning the method and the data set we used.  

The identification of high and low flows over long time series, and particularly over climate 

projections, is nontrivial. As an illustration, van Huijgevoort et al. (2014) in their multi-model 

ensemble study on droughts report that applying the threshold level method to the future period 

using a threshold derived from the control period can lead to spurious pooling of drought events. 

They suggest that future changes could be accounted for by linking the drought threshold to 

adaptation scenarios like Vidal et al. (2012) did over France. Wanders et al. (2015) used a transient 

threshold level method for a moving reference period, in order to reflect the changes in hydrological 

regime over time, finding that the nontransient threshold method projected larger shares of areas in 
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drought (except in snow-dominated regions). For our study, the threshold was calculated over the 

control period, as changes in future extremes with respect to present day were sought. In general, 

the selection of threshold approach should consider that if, on the one hand, a consistent pooling of 

extreme events may be hampered by incremental shifts or shape changes of the hydrograph 

throughout the future; on the other hand, when assessing the changes in frequency with respect to 

the present, information on the present used for comparison is lost when the threshold adapts 

throughout the projections. 

The model runs used in this study have no replicates; therefore, our ANOVA partition set-up 

poses some limitations as it assumes that the factors do not interact (no degrees of freedom are 

available for the estimation of the experimental error). However, interactions between the factors 

may indeed be present and, as pointed out by Bosshard et al. (2013), these interactions may 

represent uncertainty contributions that do not behave linearly: e.g. a snowmelt bias of a GIM may 

depend on the temperature projection of the driving GCM that could lead to a nonlinear response in 

the simulated runoff. This could in part explain the high rate of residuals’ contribution seen in some 

grid cells for which potential interactions hinder the ANOVA to properly disclose the factors main 

effects. To avoid this drawback multiple model runs would be necessary. 

Bias correction and CO2 and vegetation dynamics represent other sources of uncertainty that 

were not accounted for in this study, though their influence should be further investigated in future 

works. Bias correction is commonly used to overcome bias inconsistencies between GCMs and 

GIMs in climate impact studies; however, this technique alters the model output by e.g. reducing 

the inter-GCM variability and potentially their contribution to total uncertainty in climate 

projections (Dankers et al., 2013; Wada et al., 2013), and it is argued that its use is not always 

justified (Ehret et al., 2012). Hagemann et al. (2011) even found that uncertainty due to 

bias-correction can be of the same order of magnitude as that related to the choice of GCM or GIM. 
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As Huber et al. (2014) points out, findings on relative contributions of GCMs and GIMs to total 

impact uncertainty would need to stand the test of using non bias-corrected runs, but runs that have 

not been bias corrected (with a method designed to preserve the long-term trends in temperature and 

precipitation projections, Hempel et al. 2013) are unavailable within ISI-MIP or with the same 

GCM/GIM combinations. 

As mentioned in the Introduction, biome models have shown a larger spread than GIMs 

without varying CO2 and vegetation dynamics processes, and it is argued that, due to the additional 

processes that they simulate, the inclusion of biome models in multi-model ensemble studies is 

important to capture a comprehensive range of uncertainty (Davie et al., 2013; Prudhomme et al., 

2014). Within our study specifically, biome models with runs at daily resolution were JULES and 

LPJmL. These models were excluded primarily for intractability in low flow analysis. Therefore, 

uncertainty from varying CO2 is not sampled and could suggest overconfidence (or bias) in favour 

of non-biome GIMs, which simulate less runoff than biome models. During our exploratory 

analysis we actually included JULES in the ensemble and found that the uncertainty was driven 

towards the GIM source (in agreement with Prudhomme et al. 2014, who found higher S2N, i.e. 

stronger agreement between the models, when considering the ensemble without JULES). However, 

the inclusion of models in the ensemble must be compatible with the applicability of the method, 

and the biome models available through ISI-MIP proved to hamper the global comparison 

assessment for the heavy masking over large areas with zero-rich time series. As shown in Table 

4.2, low flow index extraction was vetoed over large areas of the globe, ultimately leaving 61 and 

20 % of land cells for JULES and LPJmL respectively (note that the masking is formed by 

superimposing masking from each GIM–GCM combination). Also, JULES’ coarser resolution 

(7558 vs. 67420 total land grid cells for JULES and the other GIMs respectively, i.e. a ratio of 1 to 

9 cells) may contribute to more uncertainty, although lower-resolution runs would be necessary to 
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assess such contribution. Index extraction for high flows proved more favourable, but we adopted 

the pragmatic approach of using the largest possible ensemble of models common to both high and 

low flows. We are aware that the inclusion of multiple models is not sufficient to fully scope model 

uncertainty due to resolution and structural errors that are common across models and place a limit 

to the confidence we obtain from robustness (Knutti, 2010). However, our results demonstrated 

that, even excluding biome models and other model structure differences in the ISI-MIP ensemble, 

large uncertainty in the signal of changes in high and low flows is attributable to GIMs and not only 

on GCMs.  

Were biome models’ shortcomings not present, their inclusion in our ensemble would have 

required a modification of our uncertainty partition strategy because the presence of outliers (likely 

introduced by biome models) would limit our ANOVA model (whose assumptions include no or 

minimal presence of outliers). For their distinct behaviour from the other GIMs, biome models 

could be considered as a factor level in a two-way ANOVA framework with unequal sample sizes 

(Neter et al. 1999, Chap. 23), i.e. the spread of future hydrological extremes would be examined as 

the function of factor 1 – the type of hydrological model (level 1: six GIMs; level 2: two biome 

models) and factor 2 – the GCMs.  

Finally, the focus of our uncertainty analysis was on GCMs and GIMs, therefore the effect 

of emission scenarios (RCPs) was neglected. The few studies that have considered this aspect hint 

at a relatively small role of emission scenarios (Hagemann et al., 2013; Wada et al., 2013) all 

throughout the 21st century when compared to GCMs and GIMs, which play a stronger role in 

uncertainty contribution over most of the globe. 

To conclude, knowledge of the dominant source of uncertainty in climate-to-hydrology 

signal is critical to modellers for improving modelling of the terrestrial water cycle and to scientists 

for putting together targeted multi-model ensembles for climate impact studies. In addition to GIMs 
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and GCMs, further work is needed to assess the degree to which internal variability, bias correction, 

biome models (i.e. GIMs that simulate vegetation dynamics and varying CO2) and emission 

scenarios contribute to total uncertainty.  
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5 Evaluation of global impact models’ ability to reproduce runoff 

characteristics over the central United States 

5.1 Abstract 

The central United States experiences a wide array of hydrological extremes, with the 1993, 

2008, 2013, and 2014 flooding events and the 1988 and 2012 droughts representing some of the 

most recent extremes, and is an area where water availability is critical for agricultural production. 

This study aims to evaluate the ability of a set of global impact models (GIMs) from the WaterMIP 

project to reproduce the regional hydrology of the central United States for the period 1963-2001. 

Hydrological indices describing annual daily maximum, medium and minimum flow and their 

timing are extracted from both modelled daily runoff data by nine GIMs and from observed daily 

streamflow measured at 252 river gauges. We compare trend patterns for these indices, and their 

ability to capture runoff volume differences for the 1988 drought and 1993 flood. In addition, we 

use a subset of 128 gauges and corresponding grid cells to perform a detailed evaluation of the 

models on a gauge-to-grid-cell basis. Results indicate that these GIMs capture the overall trends in 

high, medium, and low flows well. However, the models differ from observations with respect to 

the timing of high and medium flows. More specifically, GIMs that only include water balance tend 

to be closer to the observations than GIMs that also include the energy balance. In general, as it 

would be expected, the performance of the GIMs is the best when describing medium flows, as 

opposed to the two ends of the runoff spectrum. With regards to low flows, some of the GIMs 

having considerably large pools of zeros or low values in their time series, undermining their ability 

in capturing low flow characteristics and weakening the ensemble’s output. Overall, this study 
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provides a valuable examination of the capability of GIMs to reproduce observed regional 

hydrology over a range of quantities for the central United States. 

5.2 Introduction 

Model intercomparison frameworks like WaterMIP, provide the opportunity to compare 

model simulations from a number of GIMs all driven with the same meteorological forcing: the 

WATCH Forcing Data – WFD (Weedon et al., 2011). As noted in Chapter 2 (Section 2.3), the 

WaterMIP GIMs have been evaluated with respect to low, medium and high flow in a number of 

studies (Gudmundsson et al., 2012b; Haddeland et al., 2011; Prudhomme et al., 2011; Stahl et al., 

2012; Tallaksen and Stahl, 2014; Van Loon et al., 2012) showing considerable variability in the 

magnitude and timing of the components of the hydrological cycle. Notably, despite the WaterMIP 

global coverage, all of these studies focused on Europe, and – apart from two studies (Haddeland et 

al., 2011; van Huijgevoort et al., 2014) – little is known about the skill of these models in 

reproducing the hydrological processes for other regions of the world. In this study, we address this 

gap in our knowledge by aiming to examine the capability of nine GIMs to reproduce key features 

of the hydrological regime, including high, medium and low flow over the central United States 

(defined as the region between 36°N to 49.5°N and -105°E to -80°E): a region that experiences a 

wide array of hydrological extremes, with the 1993, 2008, 2013 and 2014 flooding events and the 

1988 and 2012 droughts representing some of the most recent extremes, and where water 

availability is critical for agricultural production. 

5.3 Data and Methods 

In this study a first level of analysis uses a larger streamflow dataset to verify whether the 

models are able to capture overall trend patterns of regional hydrology and two specific extreme 
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events (1988 drought and 1993 flood), and a second level uses a smaller set of gauges (whose 

catchment have comparable size with the grid cells) to evaluate model performance matching 

observed and modelled data at the gauge-grid-cell scale. This framework was chosen to ensure a 

first level of analysis with a sufficient number of streamflow gauges for spatial representativeness in 

the trend (Section 5.3.4) and extreme events (Section 5.3.5) comparison and a robust second level 

of analysis on carefully selected pairs (Section 5.3.6). 

The rationale behind this choice is that model evaluations must deal with a misalignment 

between modelled and observational data: as pointed out by other authors (e.g., Gudmundsson et 

al., 2012b), large-scale hydrological models are not designed to model runoff at the catchment scale 

and interpreting localized model performance by comparing it with observed data may yield 

misleading results. Modelled data are systematically distributed in grid cells over the study region at 

a given spatial resolution, while the observational records do not have the same homogeneous 

coverage. Also stream gauges provide an integrated measurement over a catchment (e.g., Hannah et 

al. (2011)), while the runoff information provided by the models represents values uniformly 

distributed over grid cells. 

5.3.1  Simulated data 

We use daily total (surface plus subsurface) unrouted runoff outputs from nine GIMs created 

as part of the WaterMIP project. WaterMIP, comprises both land surface models (LSMs), which 

solve at the land surface both the water and the energy balances, and global hydrology models 

(GHMs), which only solve the water balance. These models vary in structure and parameterization 

(see Section 3.3.2.2 and Table 3.2 for an overview of the models). All of the global models were 

run over the period 1963-2001 (except GWAVA: 1963-2000) at a spatial resolution of 0.5 decimal 

degrees and forced by the same meteorological input data (WFD).  
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The models vary substantially in the parameterizations of evaporation and runoff, and do not 

all use the same input variables or model time steps (in particular, all GHMs are run at a daily time 

step whereas LSMs are run at a sub-hourly time step). 

None of the models were calibrated specifically for the WaterMIP experiment except 

WaterGAP, which underwent a limited calibration procedure using local measured streamflow data 

(Hunger and Döll (2008)). 

5.3.2 Observations 

The observed data, described in Section 3.3.3, consists of daily discharge data covering the 

1963-2001 period from 252 stream gauging stations (shown in Figure 3.3 and listed in Table 3.3). 

The size of the gauging stations’ catchments ranges from 64 to 1,350,000 km2, with a majority 

(80%) with area up to 7000 km2. Because no land use changes or water management interventions 

are accounted for in the modelled data, the 252 gauges were selected from the Hydro-Climatic Data 

Network (HCDN). 

5.3.3 Hydrological indices 

We aim to analyse changes in discharge over different parts of the flow regime (including 

high, medium and low flows). The central United States is a region marked by a high flow season 

mostly from April to July (e.g., Villarini et al. (2011)) and a low flow season usually from 

September to February. We focus on different hydrological indices extracted from daily discharge 

time series over the period 1963-2001 (except for GWAVA, for which data were available for 

1963-2000) for both observed (252 gauges) and modelled (1350 grid cells) data. The hydrological 

year is January-December for high and medium flows indices, and April-March for low flows 

indices. We use (introduced in Section 3.4.1.20) three magnitude:  
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i) Annual Maximum Flow (AMax) 

ii) Annual Median Flow (AMed) 

iii) Annual Minimum Flow (AMin) 

and three timing indices: 

i) Annual Maximum Date (AMaxDate) 

ii) Medium flows Date (V50Date) 

iii) Drought Start Date (VDef10Date). 

The latter timing index poses some limitations in the presence zero (or very low values) rich time 

series for which the index cannot be extracted or there are too few threshold crossings over the time 

series to provide useful information. Therefore, if the index has insufficient non-zero values (at least 

25 over 38) it is screened out (shown in grey on the maps). In this regard, it is worth noting that 

other studies have highlighted how low flow tractability can be problematic for GIMs. For instance, 

Gudmundsson et al. (2012a) found that the performance of this same set of GIMs decreased 

systematically from high (Q95) to low (Q5) runoff percentiles over Europe. The ensemble median of 

the GIMs, calculated as the median of the single GIMs’ indices series, was added to complement 

the results and assess whether its results are more satisfactory than for any of the GIMs. 

5.3.4 Trend patterns in hydrological indices 

A first step in our evaluation is geared towards the assessment of the skill of the GIMs in 

reproducing regional patterns of changes in the selected metrics, as well as their temporal 

evolutions. We examine temporal changes in discharge using the Mann-Kendall test (among others, 

consult Helsel and Hirsch (1992) for a description of this test). This is a non-parametric test (it does 

not require any distributional assumption) that allows the detection of monotonic patterns in the 

record of interest. 
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5.3.5 The 1988 drought and the 1993 flood 

We selected two major hydrological extremes that occurred during the time of analysis 

(1963-2001), namely the 1988 summer drought, which affected most of the conterminous U.S., and 

the 1993 summer flood, which affected the U.S. Midwest particularly. Both events have developed 

over a time span of approximately three months, from June to August, as reported by the NOAA 

Billion-Dollar Weather and Climate Disasters2. We thus assessed how well the GIMs captured these 

events by considering the mean summer runoff volumes (from June 1st to August 31st) of the year in 

which the event occurred, and compared them to the mean summer runoff volumes over the whole 

time series. These differences are quantified using the following coefficient of variation (e.g. for the 

1988 drought): 

CV = QJJA[88]-QJJA[63-01] / σ(QJJA[63-01]) 

We thus map this quantity to show whether the models indicate negative (positive) balances for 

drought (flood). In addition, we express the exceedance probability (p) by ranking the years based 

on their summer runoff volumes, and compute the plotting position of the particular year event 

(1988, or 1993) with reference to the whole time series: 

p = m / n+1 

where m, is the rank position, and n is the number of years in record. 

5.3.6 Modelled – Observed pairwise comparison 

We carry out a pairwise comparison between observed and modelled discharge using a 

subset of 128 non-nested gauges, which were selected within the 400 to 3500 km2 catchment area 

range (Figure 3.3) – while the size of the model grid cells ranges depending on the latitude from 

approximately 2500 km2 at 36°N to 2000 km2 at 49.5°N. The selection of the pairs was carried out 

                                                 
2 https://www.ncdc.noaa.gov/billions/events 
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on a GIS using the streamgauges’ catchment boundaries obtained from the National Weather 

Service3: the grid cell corresponding to a given catchment was selected on the basis of centroid 

proximity. Priority was given to larger catchments (i.e. with area closer to the grid cells) and, in 

case of more catchments overlapping over the same grid cell, the one that shared the majority of the 

area was selected. Because of the different units used for modelled and observed data – except for 

the timing indices (expressed in number of days from beginning of hydrological year) – the indices 

series for the observed streamflow data were converted from cubic feet per second to mm of runoff 

per unit area per second. 

The comparison is carried out first on the timing indices assessing the monthly frequency of 

occurrence; this is followed by analyses on all of the index series using three performance metrics: 

Pearson correlation coefficient, computed to assess the similarity of the indices series across pairs, 

with optimal value R=1; the relative difference in standard deviation, computed to compare the 

amplitude of observed and modelled indices data, with optimal value ∆σ=0; Root Mean Squared 

Error, computed to express the magnitude of the difference between observed and modelled indices 

series, with optimal value RMSE=0. 

5.4 Results 

5.4.1 Trend patterns 

Results related to the temporal change in AMax (Figure 5.1), AMed (Figure 5.2), and AMin 

(Figure 5.3) are presented through maps showing the sign and significance of the results of the 

Mann-Kendall test. Note that grid cells were greyed out when the total runoff was negative. These 

negative values can be achieved if, for instance, there is high evaporation and no sufficient 

                                                 
3 http://www.nws.noaa.gov/geodata/catalog/hydro/html/basins.htm 
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precipitation to generate runoff, as seen for the WaterGAP and JULES (Döll and Schmied, 2012; 

Williams and Clark, 2014). Grid cells were also greyed out when runoff was unavailable – for the 

Great Lakes (WaterGAP, LPJmL, MPI-HM, GWAVA), or when the hydrological index tested had 

null variance (e.g. all annual minima equal to zero). Also note that there are very few streamflow 

gauges in the south-western part of the study region. While there are a number of USGS stream 

gaging stations, a very small number are included in the HDCN, mostly because of large water 

withdrawal for agriculture (e.g., Rasmussen and Perry (2001)). 

The 1-day annual maximum index based on the observations (Figure 5.1, top-left panel) 

shows a weak tendency towards increasing trends over most of the region, although the trends are 

generally not significant at the 0.1 significance level. These results are consistent with what 

discussed in the literature (e.g., Hirsch and Ryberg (2012); Peterson et al. (2013); Villarini et al. 

(2011); Vogel et al. (2011); Mallakpour and Villarini (2015)) where there is not a very strong 

indication of changes in extreme discharge over this area, but more of a tendency towards 

increasing trends. For the GIMs, MacPDM depicts a rather muted signal with virtually no 

significant trends over the entire region. In comparison, the remaining models show stronger 

patterns of change. In particular, WaterGAP, MPI-HM, and MATSIRO yield spatial patterns that 

more closely resemble the observations, with an even stronger signal of change than observed. Most 

of the models indicate a decreasing trend in northern Minnesota that could not be compared with the 

observations due to the lack of stream gaging stations in the area. The lack of observational records 

holds true for the area including Nebraska and Kansas, for which the models suggest increasing 

trends in annual maximum daily discharge. The models GWAVA, HTESSEL, JULES, and 

Orchidee show a generally noisier signal with both positive and negative trends over the region of 

study. 
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Figure 5.1 – Trends in the annual maximum flow for observed data (top left), the nine GIMs and their 

ensemble median. Negative trends are shown in blue and positive trends in red, with three levels of 

significance (1, 5, 10%) from pale (not significant) to dark (significant at the 1% level). 

 

Trends in median (Figure 5.2) and minimum (Figure 5.3) discharge show a much clearer 

pattern than for the annual maximum daily series. These results are consistent with published work 

(e.g., Douglas et al. (2000); Lins and Slack (1999, 2005); McCabe and Wolock (2002)), in which 

most of the statistically significant increasing trends were detected for low to moderate quantiles,  
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Figure 5.2 – Same as Figure 5.1 for annual median flow. 

 

and much fewer when dealing with annual maximum discharge. 

Trends in observed annual minimum indicate strong and highly significant (p-values 

generally < 0.01, i.e. 1%) increasing trends over most of the region, with the exception of the 

south-eastern part of the domain (weaker signal). Overall, the models capture well this increasing  
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Figure 5.3 – Same as Figure 5.1 for annual minimum flow. 

 

pattern. In particular, the LSMs (HTESSEL, JULES, MATSIRO) show strong increasing trends that 

are also detected, although not as strongly, in the GHMs (WaterGAP, GWAVA, MPI-HM) and to a 

lesser extent in MacPDM (positive significant detections are limited to the western part of the 

domain). The models LPJmL and Orchidee have a substantial number of grid cells screened out 

(grey), where the annual minimum is equal to zero over the 38 years considered. This behaviour 
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results in a large part of the pixels being removed from the analysis in south-west for Orchidee, and 

in the west and the north-east for LPJmL. In the unmasked areas, Orchidee reproduces well the 

spatial signal patterns with positive trends, whereas LPJmL shows no significant detections (this is 

also the case for MacPDM over the same area). Thus, LPJmL and MacPDM do not seem to capture 

the overall trend in runoff Annual Minima as well as the other GIMs.  

Trends in median flow (Figure 5.2) are broadly similar to those for the annual minimum 

flow, with most GIMs capturing the observed overall increasing signal. In contrast with the other 

GIMs, MacPDM has virtually no significant trends. Although less than for the AMin, LPJmL and 

Orchidee have grid cells screened out even for the median flow. This is rather surprising because it 

indicates that at least half of the days every year have daily discharge equal to zero. At this stage, it 

is unclear what the issues with these two models are, although this issue was also noted by 

Gudmundsson et al. (2012a) where the two GIMs have constant low values of interannual 

variability at low percentiles (i.e. Q5, Q25), and by Prudhomme et al. (2014) where LPJmL displays 

a similar behaviour in the runs of the ISI-MIP experiment. 

We focused also on the timing of high (AMaxDate; Figure 5.4), medium (V50Date; Figure 

5.5), and low flows (Vdef10Date; Figure 5.6) to aid inference of the discharge-generating processes 

over this region. The observations do not point to a change in the seasonality of high flow or 

medium discharge, with no statistically significant (at the 0.1 level) trends. The lack of a clear 

spatial pattern and significant trends in the date of annual maxima is reproduced by most GIMs 

(WaterGAP, GWAVA, HTESSEL, JULES, MATSIRO, and Orchidee; Figure 5.4). However, 

decreasing trends are simulated in the north/ north-east part of the region by three of the GHMs 

(LPJmL, MPI-HM, and MacPDM) and by the ensemble median. 
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Figure 5.4 – Same as Figure 5.1 for annual maximum flow date (positive trends indicate events occurring 

later, negative trends earlier). 

 

Results for the AMaxDate index would indicate an earlier occurrence of annual peaks, 

potentially linked to an earlier melting of the snowpack. While this finding would be consistent with 

increasing temperatures (e.g., Villarini et al. (2013)), it is not picked up in observational records at 

the 0.1 significance level. The medium flow date (Figure 5.5) shows very few trend detections for 

both the observed and the GIMs (including the ensemble median). A few models show areas with  
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Figure 5.5 – Same as Figure 5.1 for annual medium flow date (positive trends indicate events occurring later, 

negative trends earlier). 

 

decreasing trends – as seen for the maximum flow date – especially in the north (MacPDM) and to a 

lesser degree in the west (MATSIRO, MPI-HM); while LPJmL shows an increasing trend in the 

north. Except for the marked decreasing pattern of MacPDM, the few hotspots seen in the other 

models are small and point to scarce detections and no clear overall pattern.  
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Figure 5.6 – Same as Figure 5.1 for drought start, namely the annual volume deficit 10% date (positive 

trends indicate events occurring later, negative trends earlier). 

 

The drought start for observed data (expressed as volume deficit date; Vdef10Date) shows a few 

decreasing trends in the northwest (mostly North and South Dakota) and very few increasing trends 

in the south-eastern part of the domain. This would hint at an earlier onset of the drought start in the 

northwest. The masking applied to the GIMs depends on whether the grid cells had sufficient 
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non-zero values in the index (<25). In spite of the considerable masking, most models seem to 

match the weak pattern in the trends detected on the observed data, though MacPDM shows marked 

decreases in the southeast and an increase in the northeast. Finally, JULES and the Ensemble 

median seem to capture well the light decreasing pattern present in the observations in the 

northwest part of the study region. 

5.4.2 The 1988 drought and the 1993 flood 

All GIMs and the Ensemble, show good agreement with the observed data in capturing both the 

1988 drought (Figure 5.7) and the 1993 flood (Figure 5.8). While the pattern is more evenly 

distributed for the 1988 drought, the 1993 flood appears intensified with a patch spanning from the 

southwest (Kansas) to the north east (Wisconsin) of the domain. The intensity of the variations is 

different for the two events, CVs vary mostly between 0 and -2 for the 1988 drought, and between 0 

and 5 for the 1993 flood. This indicates that the 1993 summer flood volumes have a more 

pronounced departure from the whole period’s summer volumes than the 1988 summer drought 

does. This is to be expected and can be explained by the more erratic nature of the flood runoff 

volumes compared to slower onset and development of the drought ones (whose values, differently 

from the flood, are bound to zero). The good performance in capturing these two events is 

confirmed by the exceedance probability maps (Figure A3.1 and Figure A3.2 in APPENDIX III), 

where, as expected, low probabilities result for the 1993 mean summer runoff and vice versa for the 

1988. While all GIMs tend to capture the mean runoff differences with similar intensity and spatial 

pattern, MacPDM appears to capture the spatial pattern equally well, but with a weaker intensity 

with regards to the 1993 flood (Figure 5.8).  
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Figure 5.7 – 1988 drought Coefficient of Variation for observed data (top left), the nine GIMs and their 

ensemble median. Negative CVs are shown in blue and positive CVs in red (negative CVs indicate 1988 

summer mean runoff smaller than mean 1963-2001 summer mean runoff).  
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Figure 5.8 – Same as Figure 5.7 for 1993 flood (positive CVs indicate 1993 summer mean runoff larger than 

mean 1963-2001 summer mean runoff). 

 

5.4.3 Modelled – Observed pairwise comparison 

After considering the whole domain for the examination of trends of magnitude and timing 

indices, and the consideration of two particularly extreme events, we focus on a subset of stations to 
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examine whether the models are able to capture the seasonality in these quantities. More 

specifically, we focus on 128 grid cells selected to correspond to 128 streamflow gauges. 

5.4.3.1 Timing of annual high, medium and low flows 

For the entire region, the monthly frequency of occurrence of annual maxima, annual 

medium flows, and annual drought start are shown as boxplots in Figure 5.9, Figure 5.10, and 

Figure 5.11, while Figure 5.12 quantifies the differences in the median and the interquartile range of 

the models from the observations. It is worth clarifying that the boxplots summarize the results 

grouping outcomes from different regions and on a limited number of grid cells (128 of 1350). The 

observed annual maxima (Figure 5.9) occur mostly from March to June, with the highest frequency 

in April. This pattern is reproduced by the GIMs, but specific behaviours emerge depending on the 

nature of the model (LSMs versus GHMs). The GHMs tend to show a seasonality characterized by 

an enhanced frequency of occurrence of annual maxima about 1-2 months earlier than the 

observations, with medians that are closer overall to observed data. The LSMs, on the other hand, 

tend to exhibit a delayed seasonality (1-2 months later) and to show an overall greater discrepancy 

from observations. This pattern is shown very clearly in Figure 5.12 (top panels), where the GHMs 

(WaterGAP, LPJmL, MPI-HM) tend to overestimate count rates in AMaxDate occurrences from 

December to March, and to underestimate them from April to September. Opposite to this pattern, 

the LSMs (JULES, MATSIRO, Orchidee) tend to underestimate count rates from February to April 

and to overestimate them from June to September. The spread (quantified in terms of interquartile 

range IQR) of the LSMs is higher when there is an overestimation of the count rates and lower in 

the case of underestimation, whereas the spread of the GHMs is generally closer to the 

observational one throughout the year. Between these two marked behaviours lay GWAVA, 

MacPDM (GHMs), and HTESSEL (LSM), which show the smallest differences from the  
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Figure 5.9 – Frequency of occurrence of annual maximum flow per month for 128 gauges and coresponding 

grid cells (bar: median, box: interquartile range, whiskers: 10th and 90th percentiles). In light grey the 

observed records, in orange the GHMs, in blue the LSMs, in dark grey the ensemble median. 

 

observations both in the median and IQR. The observed data indicate that the V50Dates occur from 

March to June with the highest counts in June (Figure 5.10). Few or no events are counted from 

September through February, and this is captured unanimously by all the models. For March to 

August, GHMs tend to capture better the timing of the medium flows than the LSMs, although there 

are some discrepancies among these models. More specifically, WaterGAP, GWAVA and 

MacPDM underestimate the count rates in V50Date occurrences during March and April, while  
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Figure 5.10 – Same as Figure 5.9 for annual medium flow. 

 

GWAVA and MacPDM also overestimate from May to August; LPJmL and MPI-HM 

underestimate them in late spring. With the exception of HTESSEL, which captures rather well the 

timing throughout the entire year, for the LSMs there is a marked underestimation during the spring 

(March to May) and an overestimation in the summer (June to August). The LSMs are strikingly 

not in line with the observations, and they appear to be out of phase with a lag of 1-2 months.  
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Figure 5.11 – Same as Figure 5.9 for annual drought start. 

 

Figure 5.12 (middle panels), shows this phase shift for which the largest differences in the median 

and the IQR appear for the LSMs JULES, MATSIRO, and Orchidee and to a smaller extent for the 

GHMs MPI-HM and GWAVA. The drought starts (Vdef10date) in observed data show few 

occurrences in the spring (April-May) and an increasing frequency in the summer, peaking in 

August and decreasing in early fall (September-October), with virtually no occurrences in the 

winter from November to March (Figure 5.11). The GIMs ability to reproduce ground observations 

is weak, highlighting the difficulty in capturing the timing of low flows with respect to high and   
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Figure 5.12 – Occurrence of annual maximum (top panels), annual medium flow (middle panels), and annual 

drought start (bottom panels) events per month (as seen in Figure 5.9-Figure 5.11): difference in median 

(left) and the interquartile range IQR (right) of the models from the observations – red, overestimation; blue, 

underestimation. 

 

medium flows. For instance, for the two previous indices (Figure 5.9; Figure 5.10), months with no 

occurrences were broadly well reproduced by the majority of the GIMs, while for the drought start 

some GIMs show considerable frequencies, especially in the winter as opposed to the frequencies of 

the observations that are near zero; there is also a less pronounced homogeneous response per type 

of GIM seen thus far. With the exception of MPI-HM, which seems to follow the most closely the 
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observed results, all of the other GIMs show noticeable fewer counts in the summer when counts 

are high. The situation changes in September, when GIMs’ counts increase and tend to decrease in 

the fall at a much slower rate than the observed data. This lag seems to indicate that GIMs tend to 

capture the drought onset later in the year, with approximately a 1-2 month delay. In addition, there 

are higher frequencies in winter and spring. This is visible in Figure 5.12 (lower panels), where 

there is clear marked underestimation of the drought start in the summer (especially July and 

August) and an overestimation in spring and fall. 

5.4.3.2 An assessment of the GIMs’ performance 

Figure 5.13 summarizes the results of the performance achieved by the GIMs in the pairwise 

comparison for the hydrological indices from the streamflow gauges and from the corresponding 

grid cell. The first index, AMax, depicts a performance that is fairly homogeneous across the GIMs. 

The main differences are for the Pearson coefficient (R), according to which GHMs perform 

slightly better than the LSMs. For the annual median discharge performances improve in all metrics 

compared to the AMax: the GIMs’ correlation to the observed data improves noticeably, with R 

values closer to 1; the ∆σ are closer to zero and their spreads decrease; the RMSE values show that 

GIMs are closer to the observations. The other end of the hydrological regime, the annual minima, 

seems to perform better in the RMSE and R correlation than the annual maximum, but results 

within models in the ∆σ can differ considerably in the spread. The results for the annual median 

discharge have less pronounced variability in ∆σ. This can be due to the description of the central 

part of the hydrological regime, as opposed to intrinsically more erratic nature at the tails (AMax, 

AMin). Similarly, lower values of correlation (R) of AMax compared to Amin may be partly owed 

to AMax’s more erratic behaviour, while AMin is bounded below at zero. It should be noted that 
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Figure 5.13 – Performance metrics (in column: Pearson R correlation coefficient, relative difference in 

standard deviation ∆σ, RMSE) on the pairwise comparison observed-modelled (128 points) for the six 

hydrological indices (in row). For the boxplots: bar, median; box, interquartile range; whiskers, 10th and 

90th percentiles. Note that the vertical scales are different for ∆σ (middle column) and RMSE (right column). 
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the index series comparison modelled-to-observed is based on approximately 39 points (1963-2001) 

for high and median flows, and on 38 (1963-2000 as the hydrological year starts in April) for low 

flows. Also, while computing the metrics, a year with a missing value found in one of the two series 

is excluded from both series. 

The following three rows in Figure 5.13 describe the timing of high, medium and low flows 

indices expressed in number of days from the beginning of the hydrological year. In general, similar 

to the previous three indices, the Ensemble median seems to outperform individual GIMs, and the 

medium flow (V50Date) is the index that is the closest to the observations. Focusing on the 

correlation coefficient, the second best index is the annual maximum flow (AMaxDate) with the 

GHMs performing better than the LSMs, followed by the annual drought start (Vdef10Date). 

Similar to V50Date, the ∆σ nears zero for most of the GIMs for AMaxDate. This is not true for the 

Vdef10Date, which have higher values and larger spreads. The RMSE stays below 50 for V50Date, 

and around 100 for AMaxDate and Vdef10Date, though the latter shows stronger variations from 

GIM to GIM, including in the spread. It should be noted that results for Vdef10Date tend to include 

fewer than 128 pairs because the presence of zeros in the index series (the threshold was not always 

crossed) affecting the pairwise comparison: series with less than 25 values different from zeros 

were excluded. The GIMs using fewer pairs are LPJmL and MATSIRO (47 pairs), followed by 

HTESSEL (71), Orchidee (78), with the remainder of the GIMs having between 109 and 124 pairs. 

5.5 Discussion and conclusions 

The aim of this paper was to assess how well the regional hydrology of the central United 

States (based on observations at 252 reference gauges from 1963-2001) was reproduced by a set of 

nine global impact models from the WaterMIP Project and their ensemble medians. The focus was 
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on the examination of a number of discharge indices related to high, medium and low flows, as well 

as the seasonality and timing of the flow regime. 

In our model-observation comparison, there are few elements that we need to keep in mind 

when interpreting these results. The spatial resolutions of the models and observed records used as 

reference are not the same. The models do share a historical forcing (the Watch Forcing Data: 

WFD) that has been provided globally and whose quality can vary depending on the region, as 

noted in Section 3.3.2.1. However, our study region lacks high elevation features, which typically 

have a negative effect on the quality of the forcing, and, more importantly, the scale at which we 

operate for the trend detection is sufficiently large to allow for a comprehensive comparison of the 

patterns, while for the pairwise comparison analysis, the observed dataset is reduced using only 

catchment of comparable size with the grid cell. 

To date, the WaterMIP GIMs have been used in other studies (e.g., Gudmundsson et al. 

(2012b); Prudhomme et al. (2011); Stahl et al. (2012)) comparing their control period with observed 

data over parts of Europe. A general conclusion was that the models tend to capture the interannual 

variability of high, medium and low flows well. All of these studies show that simulated runoff can 

vary substantially depending on the GIM, as every model has different characteristics in the way it 

simulates the different components of the water cycle. The type of flow (high or low) also plays a 

role: Gudmundsson et al. (2012a) show that for low runoff percentiles the performance of the 

models decreases, reflecting the uncertainty associated with the representation of the hydrological 

processes (e.g. the depletion of soil moisture storage). The same authors confirm the results by 

Haddeland et al. (2011) on MATSIRO’s propensity to predict less seasonal variation in runoff than 

the other models. This is owed to a deep groundwater reservoir that buffers the timing of runoff, in 

turn leading to an underestimation of the magnitudes and to delays of the high flows peaks. 

Moreover, Prudhomme et al. (2011) focused on three WaterMIP GIMs and showed that WaterGAP 
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is the model that best reproduces the regional characteristics of high and low flow events in Europe, 

while JULES and MPI-HM tend to have a slow and fast responding runoff respectively. Tallaksen 

and Stahl (2014) focused on droughts (using seven WaterMIP GIMs) and also suggested that 

WaterGAP and GWAVA are better at capturing hydrological droughts over Europe. 

The findings outlined above are generally consistent with our study: most of these GIMs are 

able to reproduce the spatial trends in the observational records over the central United States. 

However, a new element in our results is the clear dichotomy between LSMs and GHMs, which is 

reflected in the ability of each model to capture the timing of maximum and medium flows. The 

LSMs are less capable of capturing the timing exhibited in the observed data than the GHMs. For 

the annual maximum flow, GHMs tend to overestimate frequencies in the winter and to 

underestimate them during spring and summer, while the opposite is true and more marked for the 

LSMs. For medium flow, a strong underestimation of the frequencies is shown for the LSMs in the 

spring and an overestimation in the summer, while the GHMs are closer to the observations and 

show a less marked behaviour in general. Though less marked, indications of similar behaviour can 

be found in the works by Haddeland et al. (2011) and Gudmundsson et al. (2012b). Over basins 

with a climate comparable to our study region (i.e., Northern Europe), Haddeland et al. (2011) 

showed that peaks occur earlier for GHMs than LSMs and linked this behaviour to the snow scheme 

employed: the energy balance approach used by LSMs predicts reduced snow water equivalent 

(SWE) values, leading to lower winter and spring runoff volumes than predicted by the degree-day 

approach used by GHMs. The snowy winters in the northern part of the central United States may 

explain the clear shift in the timing of high and medium flows yielded by GHMs and LSMs. It 

should be noted that, as shown in Table 3.2, energy balance models (LSMs) comprise more forcing 

variables than degree-day models (GHMs), and are thus prone to additional associated errors. 
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The timing of low flows depicts a less marked behaviour in terms of the type of GIM as seen 

for medium and high flows and also a poorer ability in capturing the frequencies of occurrence. In 

particular, GIMs’ counts of drought start occur sporadically during seasons for which the 

observations display no counts. More importantly, during the summer, when observed data 

frequencies are high, GIMs tend to a generalized underestimation of the occurrences, and to an 

overestimation in the fall, when the results based on observations tend to decrease while the GIMs 

continue to have fairly higher rates. It is worth noting that the identification of drought start can be 

cumbersome when dealing with zero/very small values rich time series, by which some GIMs (e.g. 

LPJmL, MATSIRO, Orchidee) are particularly affected (and to a lesser extent some streamflow 

gauges in part of the study domain). The problem is present even when choosing large thresholds 

quantiles, because for those grid cells/gauges whose runoff tends to plateau over most of the year 

and have an isolated very large peak, the threshold crossing may not occur every year (i.e. metric is 

not computed). This underlines the aforementioned increased difficulty of the GIMs to describe the 

lower tail of the runoff spectrum and the interest for future research in considering alternative low 

flow timing approaches (e.g., van Huijgevoort et al. (2012)). 

The 1988 drought and the 1993 flood events were overall well captured by all the GIMs, 

with runoff variations compared to the observed data of comparable spatial pattern and intensity. 

This result provides insightful confidence on the capability of these models to simulate single 

specific multi-month events on both ends of the runoff spectrum. 

To complement our evaluation of the GIMS, we carried out an in-depth pairwise comparison 

between observations and model outputs using a subset of streamflow gauges and corresponding 

grid cells. The GIMs’ performance was assessed on all hydrological indices through a number of 

performance metrics. Results from this assessment indicate a better performance of the GIMs in 

describing the medium flow and its timing compared to the annual maximum and minimum flows. 
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This could be expected as it reflects the increased difficulty of the GIMs in describing extreme 

events whose occurrence is more erratic (especially high flows) and whose onset is harder to 

capture (especially low flows) considering the uncertainties that are cascaded across the different 

model components, and the limited knowledge of the world. In general the ensemble median proved 

to perform better and to be more stable than any of the GIMs individually as seen in other previous 

studies. This is consistent with Stahl et al. (2012) who used the same dataset over Europe. They 

found both a better performance of the ensemble mean over each GIM, and a decreasing agreement 

between observed and modelled trends as they moved from annual mean runoff to the tails of the 

distribution. They also found the widest spread among models for low flows trends, in the same 

way the performance metrics of our low flow indices were more variable than medium and high 

flows. Tallaksen and Stahl (2014) also revealed considerable model dispersion in simulating 

temporal and spatial persistence of drought. They warned about the importance of validating GIMs 

specifically for hydrological drought when analysing drought characteristics from a limited number 

of models. Generally, this is valid for all hydrological studies that involve the use of GIMs: the 

validation of their performance in either high, medium or low flows is key depending on the flow of 

interest. However, this is particularly relevant for low flows, because GIMs tend to provide larger 

uncertainties (i.e. inter-model spread) than the other flow types (high and medium) due to their high 

sensitivity to model structure and parameterization (Wang et al., 2009). 

Multimodel studies like WaterMIP comprise many participating GIMs, each of them 

developed using different conceptual approaches. This make it difficult to identify the reasons for 

different model behaviour and more generally to attribute model error. For instance, conducting 

parameter sensitivity on an ensemble of GIMs is theoretically possible, but unrealistic in practice, as 

it would require full control over each model. Similarly, the effect of calibration on model output is 

rarely quantified for large-scale models, which rarely undergo calibration as the traditional 
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catchment models do. The study by Müller Schmied et al. (2014) provides some insights in this 

regard as it uses the only WaterMIP calibrated model WaterGAP in different configurations to 

investigate the sensitivity of simulated freshwater fluxes and storages to five major sources of 

uncertainty: climate forcing, land cover input, model structure/refinement, human water use and 

calibration against observed mean river discharge. They find that the largest impacts on freshwater 

fluxes and water storages came from calibration and model structure (e.g. modelling groundwater 

depletion), and to a lesser extent to alternative climate forcings, and land cover data, whose effects 

tend to compensate and cancel each other out. In a study on the MacPDM model Gosling and Arnell 

(2011) present a sensitivity analysis and report that simulated runoff is more sensitive to the choice 

of method to calculate PE (having tested Penman-Mointeith and Priestley-Taylor) than to 

perturbations in soil moisture capacity and field capacity for each specific vegetation type. In 

particular, they suggest that regional projections from GIMs are likely to be conditional upon the PE 

method applied, because each method may be more reliable in dry rather than in wet regions. For 

instance, for much of the United States, the Priestley-Taylor is associated with positive runoff 

anomalies compared the Penman-Monteith (used in our study), and the situation is reversed for 

wetter regions. The same authors also report that MacPDM, when running with monthly input data 

(in our study, however forcing data from WaterMIP is provided at daily time step), produces a 

negative runoff bias in several regions of the world where day-to-day variability in relative 

humidity is high, and attribute this bias to difficulties of this GIM in disaggregating monthly 

relative humidity into daily data. 

These results represent a key step toward an improved understanding of the ability of the 

models to reproduce the hydrologic processes and their temporal changes over the central United 

States. In particular, this study provides a benchmark for the application of data from 

intercomparison experiments that make use of this type of GIMs. Building confidence in the 



 94 

models’ ability to capture the overall temporal trends and the timing of the hydrology at the regional 

scale is of great importance for the climate impact studies that will follow, in light of the large 

socio-economic impacts of too little or too much water will have over this region in a warmer 

climate.  
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6 Uncertainties in projected runoff over the continental United States 

6.1 Abstract 

Projections of runoff from global multi-model ensembles provide a valuable basis for the 

estimation of future hydrological extremes. However, projections suffer from uncertainty that 

originates from different error sources along the modelling chain. Hydrological impact studies have 

generally partitioned these error sources into global impact (GIMs) and global climate (GCMs) 

models uncertainties, neglecting other sources, including scenarios and internal variability. Using a 

set of GIMs driven by GCMs under different representative concentration pathways (RCPs) from 

the ISI-MIP Project, this study aims to partition the uncertainty of future flows coming from GIMs, 

GCMs, RCPs, and internal variability over the United States. We focus on annual maximum, 

median, and minimum runoff, analysed decadally over the 21st century. Results show that GCMs 

and GIMs are responsible for the largest fraction of uncertainty over most of the study area, 

followed by internal variability and to a smaller extent RCPs. In order to investigate the influence of 

the ensemble setup on uncertainty, three ensemble configurations are also studied using fewer GIMs 

(culling least credible GIMs in low/medium flows representation and GIMs accounting for 

vegetation and CO2 dynamics), and excluding intermediate RCPs.  Overall, the use of fewer GIMs 

has a minor impact on uncertainty for low and medium flows (except for the north-eastern U.S.), 

but a substantial impact for high flows. Regardless of the exclusion of intermediate pathways, RCPs 

still play a very small role, suggesting that improvement of GCMs and GIMs and more informed 

ensemble selections a can lead to a reduction of projected uncertainties, rather than a better 

constraint in the path we may be on. 
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6.2 Introduction 

As highlighted in Chapter 2, runoff projections from multi-model ensemble experiments 

(e.g., WaterMIP, ISI-MIP) are increasingly used in climate impact studies, but their utility is 

undermined by the large uncertainties that originate in the different components of the modelling 

chain. Therefore, uncertainties need to be quantified in order to: i) acknowledge which components 

provide the largest uncertainties and ii) attempt to reduce the uncertainty (not for e.g., internal 

variability).  

In order to better constrain future projections of runoff, it is important to quantify major 

sources of uncertainty not only at one extreme (e.g., flood or drought), but across the runoff 

spectrum. To this aim, this study examines the partition of uncertainty in annual maximum, 

medium, and minimum flows from the ISI-MIP runoff projections. This multimodel ensemble has 

been studied globally for low (Giuntoli et al., 2015a; Prudhomme et al., 2014; Schewe et al., 2014), 

medium (Davie et al., 2013), and high (Dankers et al., 2013; Giuntoli et al., 2015a) flows, 

comparing runoff metrics from future and past periods. We focus on the continental United States 

using a fractional change approach to assess how the uncertainty evolves transiently throughout the 

21st century (e.g., Hawkins and Sutton 2011; Hingray and Saïd 2014). In particular, we analyse 

high, medium and low flows jointly, showing how uncertainties differ across indices; moreover, in 

addition to GCMs and GIMs (as done in the aforementioned studies), we also include the 

contribution of RCPs and internal variability. 

We also investigate whether the ensemble configuration influences the partition of 

uncertainty by: i) culling models (as discussed in Overland et al. (2011), Thibeault and Seth (2014), 

and van Huijgevoort et al. (2014) among others) on the basis of credibility in medium/low flows 

representation and type (biome models, including CO2 and vegetation dynamics); ii) excluding 
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intermediate RCPs (4.5 and 6.0). This is done to assess to what extent the uncertainty shares change 

using all of the available GIMs (e.g., Dankers et al. 2013, Schewe et al. 2014) or a subset (e.g., 

Prudhomme et al. 2014, Giuntoli et al. 2015a), and fewer RCPs with the aim to suggest a better use 

of resources making model runs and an improved choice of ensembles for future climate impact 

studies. 

After describing the data and methods in Section 6.3 we examine how uncertainty evolves 

over time using transient runs focusing on the continental United States and the full ensemble of 

five GCMs and nine GIMs. In Section 6.4.2 we investigate the effect of culling models on the basis 

of credibility and type. Finally, the effect of considering fewer RCPs is investigated. Section 6.5 

provides a discussion of the results, followed by summary and conclusions. 

6.3 Data and Methods 

6.3.1 Simulated runoff 

We use simulations of daily unrouted runoff from the ISI-MIP project comprising nine 

GIMs driven by five bias-corrected CMIP5 (fifth Coupled Model Inter-comparison Project; Taylor 

et al. 2012) GCMs in their control (1971-2005) and future (2006-2099) period, under four RCP 

scenarios (RCPs 2.6, 4.5, 6.0 and 8.5). All GIMs have a spatial resolution of 0.5°×0.5° degrees 

(except JULES, whose runs were regridded to 0.5° from 1.25°×1.875°) and vary in the 

parameterization and in the types of processes they represent (Table 3.1). As noted in Chapter 3 

(Section 3.3.1.2), only two of the GIMs (LPJmL and JULES), so-called biome models, represent the 

effects of CO2 on stomatal opening. This feature have shown that, with increased CO2, biome 

models yield higher runoff increases and decreases compared to the other GIMs. As noted by other 

authors, the inclusion of a diverse set of GIMs is important to sample the GIM uncertainty range 
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(Davie et al., 2013; Prudhomme et al., 2014). However, even though biome models are pioneering 

the inclusion of an important process affecting runoff projections – absent in the other GIMs – they 

have shown unrealistic representations of runoff over some areas of the globe (Giuntoli et al., 

2015a, 2015b; Prudhomme et al., 2014); this is particularly true for LPJmL, which is primarily a 

dynamic global vegetation model, and was therefore designed to model global vegetation chiefly, 

rather than surface hydrology. For this reason, we decided to analyse the ensemble uncertainty 

considering all GIMs as well as culling the ensemble leaving out the GIMs that have shown 

unrealistic runoff characteristics and the biome GIMs, so to determine the extent of their influence 

on uncertainty. 

6.3.2 Hydrological indices 

We aim to partition uncertainty in runoff over the high-, median- and low-flow regime 

focusing on three hydrological indices for the period 2006-2099 over the conterminous United 

States (approximately 5700 land cells) – defined as the area bounded in longitude by -135° and -60° 

E, and in latitude by 54° and 24° N. To this aim, over the period 1971-2099 we extracted the 

following three indices (introduced in Section 3.4.1.2) from the daily runoff projections:  

i) Annual Maximum (AMax) 

ii) Annual Median (AMed) 

iii) Annual Minimum (AMin) 

We use these indices decadally, as for temperature and precipitation in e.g., Hawkins and Sutton 

(2009) and Pendergrass et al. (2015), thereby reducing the noise in the signal of the ensemble 

spread and the contribution of internal variability to uncertainty. As discussed in Hawkins and 

Sutton (2009), internal variability would be a dominant component at the annual scale, with its 

contribution decreasing for increasing spatial and temporal aggregation scales. Hence, we run a 
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10-yr moving average on the annual indices obtaining decadal AMax, AMed, AMin series for the 

period 1975-2095 (later denoted by X). 

6.3.3 Partition of uncertainty 

We followed the statistical framework proposed by Hawkins and Sutton (2009) to quantify 

four sources of uncertainty: GCMs, GIMs, RCPs, and internal variability (henceforth called IVar). 

The uncertainty is expressed by the variance of multimodel anomalies averaged for each source 

(except for IVar). Prior to computing the variance for each source, each decadally averaged 

projection X is fitted with a robust locally weighted regression function - loess (Cleveland, 1979) 

with a 2nd degree polynomial model and a time window of 20 years, represented by x. Next, the 

temporal mean, i, calculated over the common reference period 1976–2005 (estimated from the 

loess-smoothed series, x) is removed. Therefore, every projection X, for each GCM c, GIM h, RCP 

s, and year t, can be written as: 

Xc,h,s,t = xc,h,s,t + ic,h,s + c,h,s,t [1] 

The residuals, , resulting from the difference between the decadally averaged and the loessed 

projections, are used to express the uncertainty from internal variability. IVar is thus estimated 

independently of RCPs and lead time and is defined as the variance of the residuals from the fits 

across RCPs and time: 

IVar = ∑c∑h vars,t (c,h,s,t)  [2] 

In this study, GCMs and GIMs are assumed to be independent and, differently from Hawkins and 

Sutton (2009), received the same weight (as in Villarini and Vecchi (2012)). The GCM uncertainty, 

denoted by C, is estimated from the variance in the mean of the different GCM prediction fits (five): 

C(t) = 1/NsNh • ∑s∑h varc (xc,h,s,t)  [3] 
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where Ns is the number of RCPs (four), and Nh is the number of GIMs (nine). Similarly, the GIM 

uncertainty, denoted by H, is estimated from the variance in the mean of the different GIM 

prediction fits (nine):  

H(t) = 1/NsNc • ∑s∑c varh (xc,h,s,t)  [4] 

where Nc is the number of GCMs, therefore the mean is computed over 20 values (four RCPs × five 

GCMs). The RCP uncertainty, denoted by S, is the variance of the multimodel means for the four 

RCP scenarios: 

S(t) = vars (∑c∑h xc,h,s,t)  [5] 

Finally, the total variance, T (representing the total uncertainty) at time t can be written as: 

T(t) = C(t) + H(t) + S(t) + IVar [6] 

To represent how the different sources contribute to the total uncertainty, we map the fraction of 

total variance corresponding to each source.  

We express transient uncertainty over the entire domain on a grid-cell basis, as well as over 

regions characterized by aggregating grid cells into nine climate homogeneous areas 

(http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php). 

For a selected grid cell in the northeast, Figure 6.1 shows the overall spread of the transient 

runs from 2006 to 2095 and the corresponding fractional variance (uncertainty): AMax shows a 

large share of uncertainty from GCMs at the beginning of the run that decreases rapidly in the first 

decade and continues to decrease until the end of the run in favour of the GIMs; on the other hand, 

when focusing on AMin, after a balanced start with GIMs and GCMs accounting for almost 80% of 

the uncertainty, the share of GIM rises quickly and explains (around 2020) virtually all of the 

variance in the projections. Similarly to AMax, AMed depicts a declining GCM contribution, 

although the RCP uncertainty share is generally larger. For these three indices all throughout the 

run, RCP and the IVar keep a constant and marginal contribution to total variance with respect to  

http://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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Figure 6.1 – Decadally averaged AMax (top panels), AMed (mid panels), and AMin (lower panels) 

projections (left) coloured according to GIM (thick lines are averages per GIM) and corresponding fractional 

uncertainty (right column), for a selected grid cell (42.7° N -73.9° E; Albany, NY). 

 

the GIM and GCM contributions. The differences in the magnitude of the projections across GIMs 

can be considerable and this explains how they dominate future uncertainty. 

It should be noted that the loess window of 20-yr was chosen after testing 10, 20, and 30-yr 

windows, for which results do not differ greatly. In particular, increasing the year window from 10 

to 30 led to a general smoothing of the fluctuations in the fractional uncertainty contributions, with 

a moderate increase of the IVar contribution (at the expenses of GCM and GIM contributions 
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primarily) as a result of greater residual values from the stronger smoothing fit on the decadal 

indices series. Importantly, the overall results for the three windows tested provide similar results 

across the domain of study (see, e.g., in APPENDIX IV, Figure A4.1, based on the same grid cell of 

Figure 6.1, and Figure A4.2, for a contrasting grid cell within the study region). 

6.3.4 Ensemble configurations 

The uncertainty partition was carried out over the entire ensemble and over selected subsets 

obtained by culling specific GIMs and ultimately intermediate RCPs (Table 6.1). This is done to 

improve our understanding of the effect of a reduced ensemble on the results. In particular, a 

multi-model ensemble can be used in its entirety or in part, depending on the availability of the runs 

or on the focus of the study (e.g. often projections are used under one or two RCPs scenarios rather 

than all four); therefore it is important to find out to what extent the use of different ensemble  

 

Table 6.1 - The ensemble combinations presented in this study comprise five GCMs (HadGEM2-ES, IPSL-

CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M, NorESM1-M), four RCPs (2.6, 4.5, 6.0, 8.5), and six to 

nine GIMs; “(–)” not included. 

  GIM Runs 

Ensemble combination 
   

 
  

#21 #26 #25 § 
   

 

  

oE clcE clcbE clcirE 
   

             

  

H08 20         
   

                 

  

MPI-HM 20         
   

                 

  

PCRGlobWB 20          
                   

  

WBM 20         
   

                 
Missing 
RCP4.5 
RCP6.0 

  MacPDM* 12         
 

  

 

  

  

           

   VIC* 12         
 

   

  

                MATSIRO* 12   – – – 
     Low 

credibility 
AMed AMin                 

Biome 
Models 

  LPJmL 20   – – – 
 

 
  

  

                  JULES 20     –   
 

  
 

    

 

       

  

Total Runs   156 124 104 70 
   

 
§ RCPs 4.5 and 6.0 excluded.  

* GIMs lacking runs from intermediate RCPs (4.5, 6.0) for all GCMs except HadGEM2-ES. 
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configurations can impact the uncertainty for each of the indices selected. 

6.3.4.1 Ensemble of opportunity – oE 

We first examine the uncertainty in the general case of using the ensemble of opportunity, 

i.e., all runs available (156), henceforth called oE (Table 6.1 – first column). This is the general case 

that ensures the sampling of the largest spread provided by the ISI-MIP dataset, comprising 156 

runs. For instance, all nine GIMs with daily runoff were used in Dankers et al. (2013) to assess the 

risk of future floods. Results for the oE are presented in Section 6.4.1. 

6.3.4.2 Culled low credibility GIMs Ensemble – clcE 

In addition to the general case, we have analysed subsets of the oE to investigate the effect 

of the exclusion of the GIMs showing limitations in simulating realistic low and medium runoff on 

the uncertainty. Indeed, two GIMs have shown a disproportionate number of days with null runoff 

(Giuntoli et al., 2015a, 2015b), notably in the western United States (Figure 6.2). We define low 

credibility GIMs as those with more than 40% of land grid cells in the domain of study with more 

than 40% of days in the year with null runoff on average, calculated across the five GCMs in the 

control period 1971-2005. Consequently, MATSIRO and LPJmL are identified as less credible, 

with 50% and 53% of land grid cells with more than 40% with null runoff days, respectively. 

JULES is retained with 27% of land with more than 40% of null runoff days on average, with grid 

cells located mostly in the arid U.S. southwest. The remaining GIMs have negligible percentages of 

null runoff days as shown in Figure 6.2 (in Figure A4.3, APPENDIX IV, results are shown for 

Europe for comparison). By analysing the ensemble excluding MATSIRO and LPJmL, named clcE, 

(Section 6.4.2.1), we address the question of what the effect of using low credibility GIMs is on the 
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uncertainty, compared to the whole ensemble. This GIM configuration has been used for the study 

of future droughts in Prudhomme et al. (2014). 

 

Figure 6.2 - Days in the year [%] with runoff equal to zero per GIM (averaged over the five GCMs) for the 

historical period (1971-2005). 

 

6.3.4.3 Culled low credibility and biome GIMs Ensemble – clcbE 

We also analyse the effect of excluding the so-called biome GIMs (Section 6.4.2.2). These 

GIMs account for vegetation dynamics and have a behaviour distinct from the other GIMs as noted 

in the introduction. For instance, this GIM configuration has been used for the study of future floods 

and droughts by Giuntoli et al. (2015a). 
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6.3.4.4 Culled low credibility GIMs Ensemble – clcirE 

We finally examine the effect of the exclusion of intermediate RCP runs from the clcE 

(Section 6.4.2.3) to test whether the use of the lower (2.6) and upper (8.5) boundaries alone brings 

about the same results as using all RCPs. 

6.4 Results 

6.4.1 Ensemble of opportunity - oE 

We present the partition of uncertainty into four sources for decadally averaged transient 

runs of AMax, AMed, AMin for all available runs of the ensemble. We map the relative 

contributions to the total uncertainty over the whole domain at five time slices from 2010 to 2090 

(Figure 6.3a-Figure 6.4a-Figure 6.5a). Throughout the 21st century, the uncertainty in AMax (Figure 

6.3a) is explained mostly by the GCMs and GIMs (first two columns), with the latter increasing 

their contribution to the total uncertainty from the west of the domain spreading to the northwest 

(around 2030) and to the upper Midwest and north-eastern United States; this leads to a reduced 

importance of the GCMs over the 21st century, especially for the northern half of the domain. The 

share of IVar is large at the beginning of the century over the domain but declines steadily with the 

exception of the south and southeast, with a contribution to the total variance (15-30%) comparable 

to that of the GIMs. In contrast and similar to what highlighted in Figure 6.1, the contribution to the 

total uncertainty from RCPs is very limited compared to GIMs and GCMs, with shares ranging 

from 5% to 20% of the total variance. In particular, both RCPs and IVar show the smallest 

contributions in the northern part of the domain, although RCPs have larger contributions in the 

east, while IVar in the south (see mean relative contributions per region in Figure A4.4, 

APPENDIX IV). Figure 6.4a summarizes the results for AMed and depicts a picture similar to that 
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of AMax. GCMs and GIMs are by far the major contributors, with GIMs increasing their 

contribution to uncertainty over the domain during the 21st century. This is particularly true in the 

northern and eastern part of the continental United States, even though regional patterns are 

different and shares are more balanced between the two sources, without the clear predominance of 

GIM contribution as seen, for instance, in the western United States for AMax. Also, GCMs show 

larger contributions to the total variance both at the beginning of the run and, in general, in the 

western and north-western United States compared to AMax (see Figure A4.5). Interestingly, in the 

U.S. Southeast the RCP contribution to uncertainty is the largest thus far, with a share of around 

20%, making it comparable to that of the GCMs. Conversely, in the U.S. West and Southwest, IVar 

has high shares from as much as 40% in 2006 to 15-20% in 2095. This is due to the large 

fluctuations in the projections that make up large deviations from the smooth fit, thereby making the 

contribution of IVar to uncertainty substantial (as seen for the Las Vegas grid cell in Figure A4.2). 

For AMin (Figure 6.5a) the similar contribution to the uncertainty by GCMs and GIMs seen 

for AMax and AMed only holds at the beginning of the 21st century, in which IVar, especially 

through the mountainous north-south chain of the Rockies has a substantial contribution to 

uncertainty. GIMs increase steadily their share throughout the period, leaving the remainder of the 

contributions to GCMs and IVar. In particular, the GCMs lose their share to the advantage of GIMs 

in the east, while in the west IVar shows considerable percentages of about 40%, which slowly 

reduce to 15-20% at the end of the run. The strong role that IVar plays in the southwest (in the area 

spanning from the lower Rocky Mountains to the arid areas of the south) can partly be attributed to 

the difficulty of both GCMs and GIMs in simulating runoff in mountainous and arid areas, where 

indeed AMin time series generally suffer from poor simulations with anomalous erratic departures 

from zero or very low values. With the exception of the U.S. Southeast around the years 2030-2040 

(~20%), RCPs contribute only marginally to the total variance (Figure A4.6). 
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The relative contributions to the uncertainty described above refer to a measure of total 

variance on the ensemble spread. As expected, total variance increases with time to various degrees 

depending on region and on runoff index. Plots of regional averages of total variance throughout the 

21st century are shown in Figure 6.6 (see Figure A4.7-Figure A4.9 for a breakdown of transient total 

variance per index). Orders of magnitude are closer for AMin and AMed than for the much higher 

AMax. All three indices show a steady increase across the period, with the highest values and the 

largest increases in the U.S. Northeast and, in contrast, the smallest values and the weakest  

 

 

Figure 6.6 - Increase of total variance per region for AMax, AMed, AMin (in mm/day). Thick line: whole 

ensemble (oE); circle-marked line: low-credibility GIMs excluded (clcE); square-marked line: 

low-credibility and biome GIMs excluded (clcbE). 
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increases in the U.S. Southwest. In the south-western United States in particular, very low variances 

translate into a noisy pattern in the uncertainty partition. The AMax shows the highest increases in 

the U.S. Northwest, Northeast and Upper Midwest regions. AMed shows the strongest increases in 

the eastern part of the domain, while AMin shows rates of increase in the eastern part and virtually 

no increase in the western United States, where values remain very small over the 21st century. 

6.4.2 Culled Ensembles 

We show results for subsets of the oE by culling i) less-credible GIMs on medium and low 

flows – clcE;  and ii) biome GIMs – clcbE. This is done to examine the effect of the use of different 

subsets from the oE on the uncertainty partition (Table 6.1 shows the combinations presented in the 

study). Finally, the effect of excluding intermediate RCPs (4.5, 6.0) – clcirE is investigated. 

6.4.2.1 Less-credible GIMs culled Ensemble – clcE 

The culling of the oE by excluding two (MATSIRO and LPJmL) out of nine GIMs has an 

effect on both relative contributions and total variance. For AMax in particular, patterns are 

markedly different: the GIM source ceases to dominate over most of the domain (Figure 6.3b), the 

strong contribution in the northern half is indeed limited to the west and northeast of the domain in 

favour of the uncertainties in the GCMs. Compared to the oE, the lower variance of the clcE is 

reflected in lower total variance in all regions, particularly those in the northern ones (Figure A4.7). 

When we focus on AMed (Figure 6.4b), GCM and RCP contributions grow from 5% to 10% over 

the entire domain, with a reduction in GIM contribution. There are large fractions of GCM 

uncertainty at the beginning of the run over most of the domain that decline in favour of the GIM 

uncertainty; GIM uncertainty explains most of the uncertainty at the end of the run, with the 

exception of the western region. The total variance for clcE is close and only slightly higher to that 
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of oE (Figure A4.8), suggesting that MATSIRO and LPJmL projections lie within the range of the 

other GIMs, and do not increase the AMed spread. 

Similar to AMed, AMin (Figure 6.5b) has close shares of fractional variance to the oE 

(Figure 6.5a) all throughout the run. In particular, fractions remain the same, with the exception of a 

shift of 5-10% in favour of the GCMs, together with a concurrent decrease for GIMs over the entire 

domain. Total variance increases are in line with those of oE in all regions except for the 

north-eastern United States (Figure A4.9). 

6.4.2.2 Less-credible and biome GIMs culled Ensemble – clcbE 

If, in addition to MATSIRO and LPJmL, we exclude the JULES, the resulting ensemble 

(clcbE) depicts marked differences especially for AMax. It should be noted that the LPJmL and 

JULES account for vegetation dynamics and varying CO2 (absent in the other GIMs) and tend to 

project higher runoff, depending on the region (e.g., not in the southwest). 

Consistent with what discussed for clcE, when we focus on AMax the clcbE (Figure 

A4.10a) depicts even lower fractions of GIM uncertainty, in favor of the GCM and IVar. This is 

especially true in the southern and south-western parts of the study region. Both clcE and clcbE 

have in common the exclusion of LPJmL, which is responsible for bringing about high variance in 

the northern half of the domain from the northwest to the east. Substantial changes in the proportion 

of total variance result from the exclusion of the three GIMs: the high uncertainty in the northwest 

and north seen with the oE for the GIMs is no longer present, and GCMs become the dominant 

source over the entire domain during the whole period. Except for the south and southeast where the 

GIMs contribution was already small (~15-30%), GCM and IVar increase their shares. This shows 

that this type of GIMs bring about greater variance to the ensemble for the peak flows, with the 

exception of the southern/south-eastern United States. It is worth noting that, over the regions 
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covering the southern half of the United States, the RCP contribution to uncertainty is similar to that 

of GIMs (~10-20%) and sometimes greater, reaching 30% in the South and Southeast. This suggests 

that low credibility and biome GIMs can be considered as outliers in the GIMs spread; therefore, 

their exclusion facilitates an emerging signal of the RCP in these regions, although the GCMs and 

IVar are still the dominant contributors to uncertainty. 

Changes in proportions from oE to clcE and clcbE for AMax are not as pronounced as those 

obtained for AMed (Figure A4.11a) and AMin (Figure A4.12a) for which we see a clear shift from 

the GIMs’ to the GCMs contribution. Namely, for AMed there is a marked gain in GCM 

contribution, especially in the northern regions. Interestingly, the exclusion of JULES increases the 

RCP relative variance: it starts with similar percentages at the beginning of the run (~10% for all 

regions), increases considerably up to approximately 35%, essentially equalling and almost 

outweighing those of GIMs and GCMs in the southern and eastern of the domain.  

The influence of biome GIMs on AMin’s total variance (Figure A4.9) is fairly weak from 

the west to the south of the study region, where these models tend to simulate zero runoff over 

extended periods of time, leading to lower variance when included in the oE. Elsewhere (Figure 

A4.12a), GCMs increase their share by about 10%. As seen for AMed, RCP’s contribution 

increases (especially in the eastern part of the domain) to equal the GCMs’ contribution; this holds 

even though GIMs still remain the dominant source of uncertainty. 

The inclusion of biome models in the ensemble brings about larger shares of GIM 

uncertainty. In particular, the marked difference is the larger and increasing GIM share in the 

southern half of the domain when JULES is present, owing to the fact that MATSIRO has 

considerably lower values not only in AMed and AMin (for which annual zero values are common), 

but also for AMax. 
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6.4.2.3 Intermediate RCPs culled Ensemble – clcirE 

We tested the influence on the model spread due to the use of only the lower (2.6) and 

higher (8.5) RCPs, as runs for all scenarios are not always available for climate impact studies (in 

our dataset three GIMs lack intermediate RCPs 4.5 and 6.0). For AMax (Figure A4.10b), compared 

to the ensemble with all RCPs (Figure 6.3b), apart from a slight reduction in IVar and a slight 

increase of the GCM variance, the exclusion of intermediate RCPs is barely noticeable on the 

partition of uncertainty. For AMed (Figure A4.11b – versus all RCPs in Figure 6.4b), the RCP 

fraction of total variance has higher values in the eastern United States when compared to the clcE, 

especially in the south and southeast U.S. after 2050. For AMin (Figure A4.12b), IVar proportions 

decline in the southern half of the domain (as seen for AMax), and RCP proportions increase at the 

end of the run especially in the east (as seen for AMed). In essence, all indices show proportions 

similar to those of clcE, but these proportion tend to systematically fluctuate throughout the period, 

perhaps owing to the use of fewer projections (i.e., decreased information), which is also reflected 

on the total variances (Figure A4.7-Figure A4.9). In the absence of the two intermediate RCPs, 

weak changes occur in the uncertainty shares along the different sources, but this does not lead to a 

change in the overall results; as seen for the previous ensemble setups, this is also consistent with 

the fact that RCPs account for very little uncertainty in runoff projections. 

6.5 Discussion 

GCMs and GIMs are responsible for most of the uncertainty in runoff projections over the 

United States. This is consistent with Wada et al. (2013), who analysed projections of irrigated 

water demand. 
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If we consider the physical processes pertaining the study region, Villarini (2016) gives an 

overview of the meteorological patterns that influence flood seasonality in the United States: the 

North American monsoon and the North Pacific tropical cyclones in Arizona and New Mexico; 

snowmelt in the north-central United States; thunderstorms and mesoscale convective systems 

towards the Gulf of Mexico; North Atlantic tropical cyclones in Florida; extratropical cyclones and 

atmospheric rivers in the central and western United States; snowmelt, rain on snow and rain on 

frozen ground in the north-eastern U.S.; tropical and extratropical systems along the U.S. East 

Coast. Berghuijs et al. (2016) report that the variability of annual flows is much larger for the more 

arid catchments of the central U.S. and that snow controls the flood response in the Rockies and in 

the northern states. Moreover, evaporation-controlled soil moisture plays a dominant role over most 

of the United States. 

We can summarize the main contributing factors affecting the uncertainty in: snow-melt, 

storage-release processes and soil moisture accounting for the GIMs, potentially affecting the 

AMin; precipitation variability, intensity and spatial/temporal distribution for the GCMs, potentially 

affecting AMax (for its sudden onset and short duration); uncertainty in CO2 emissions and in the 

way a warmer world changes the climate for RCPs; and the natural variability in the climate and the 

hydrology for IVar. 

As described in Chapter 3, large differences in parameterization and model structure exist 

across GIMs. Notably, GIMs accounting for vegetation and CO2 dynamics tend to produce 

increased (reduced) runoff in the east (southwest) of the United States, while two GIMs have shown 

unrealistic runoff representation over the west-southwest. Given the variety of GCMs and GIMs 

forming the ensemble of projections, we have limited scope to reconcile how the main physical 

processes play out in the uncertainty contributions and their evolution in time. Clearly, orography 
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(i.e. mountainous areas) represents a challenge for both GCMs and GIMs, and this may explain the 

higher fractional contribution of internal variability over the Rocky Mountains. Another difficult 

setting both in terms of GIMs and GCMs is represented by arid regions (e.g., U.S. southwest); 

GIMs have also difficulties in the cold regions (e.g., U.S. Midwest or the northern Great Plains), 

where snow and ice dynamics play a role in the lag at which runoff is generated from melting. 

Generally, GIM uncertainty is amplified in those areas where storage-release processes play a role 

in the reproduction of runoff. 

In addition to the structural model differences of GIMs and GCMs, more uncertainty lies in 

the grid transformation from the coarser resolution of the GCMs to the finer resolution of the GIMs, 

and in the bias-correction of the climate variables. Even though the bias-correction may affect the 

results of the different sources of uncertainty by reducing inter-GCM and RCP variability (Hempel 

et al., 2013), we are unable to quantify these impacts because of the lack of non-bias-corrected runs 

in our dataset. Hempel et al. (2013) also note that, while trends and long-term means are well 

represented, the ISI-MIP bias-correction approach can present limitations with regards to the 

adjustment of variability; this is because it corrects daily data about the monthly mean, but it 

neglects the variability at other time scales (e.g., weekly and monthly variability of precipitation), 

which can affect the representation of droughts and floods. 

Similarly, we do not know to what extent the coarser grid resolution of JULES impacts 

uncertainty, as no simulations at other scales are available; Prudhomme et al. (2014) note that 

results based on JULES are generally not very sensitive to the size of the grid cells, at least for 

modest changes in resolution and for regionally or globally averaged statistics. However, it is 

difficult to extend these findings to our work. 
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We have tested to what extent the uncertainty contributions change using the whole 

ensemble or subsets of it as; this is of relevance to those who may conduct a study with an approach 

of including all runs, as well as excluding some of the runs deemed less credible or that simply 

poorly adapt to the methodology. Appraisal of model credibility is arbitrary and much depends on 

the variable of interest and the metric used. Within our dataset, the five GCMs available have been 

considered to represent CMIP5 GCMs reasonably well, although McSweeney and Jones (2016) 

argue that twice as many CMIP5 GCMs would be necessary to adequately represent the range of 

temperature and precipitation changes globally. This suggests that the GCM uncertainty could be 

larger if more GCMs were available within ISI-MIP.  

While there has been a consensus on using all GCMs, the other studies using this dataset 

have occasionally excluded some of the nine GIMs from the ensemble. This choice was generally 

dictated by tractability of the data with respect to the metric used rather than by model selection 

based on some sort of evaluation or credibility criterion. For instance, with the ISI-MIP runoff 

dataset at the daily scale, Dankers et al. (2013) have employed all nine GIMs available when 

working on high flows; on the other hand, Prudhomme et al. (2014) excluded LPJmL and 

MATSIRO whose runs would poorly adapt to the threshold level method used to quantify drought 

changes; finally Giuntoli et al. (2015a) excluded LPJmL, MATSIRO and JULES for the joint 

assessment of high and low flows, with the purpose of keeping a consistent GIM sets for both flow 

quantiles. One merit of our study was to reveal the difference it makes to use the whole ensemble or 

to exclude the GIMs that have progressively been culled from the ensemble in the aforementioned 

studies. This was possible thanks to the indices we employed, for which the presence of long lower 

tails (zero rich time series) does not pose any type of limitation. 
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This study clearly shows that the contribution of RCPs to uncertainty is small compared to 

the other sources. This was already suggested by previous studies, including Wada et al. (2013) 

Orlowsky and Seneviratne (2013). However, we have shown how this weak contribution holds for 

runoff indices going from one end (AMin) to the other (AMax) of the runoff distribution, regardless 

of time and of whether less-credible and biome GIMs are excluded from the analysis. 

Finally, within the uncertainty quantification, the sampling of internal variability bears the 

brunt of lacking model run replicates; therefore, with the method we employed, instead of 

calculating uncertainty from internal variability via, for instance the variance among replicates, we 

assess it on the basis of the distance of the departures from to the smooth fit and we assume it to be 

constant throughout the period of analysis. However, were run replicates available, and therefore 

e.g., a 4-way ANOVA feasible, we could expect results to change quantitatively, but we have no 

reason to expect them to change qualitatively. 

Moreover, in the interpretation of the uncertainty results, one should bear in mind that fewer 

models from a culled ensemble do not necessarily lead to a smaller spread and to a lower 

uncertainty (i.e. uncertainty can increase as a result of computing the variance on the same range of 

values but with fewer projections). This explains the higher total variances for the smaller sample 

analysed excluding RCPs that lie between the upper and lower radiative forcing levels (RCPs 2.6 

and 8.5). Similarly for AMin, the presence in the ensemble of GIMs producing very low values 

(e.g., LPJmL and MATSIRO) tends to lower the variance as these GIMs add projections with 

smaller deviations from the mean. 

6.6 Conclusions 

The aim of this paper was to partition the uncertainty of ISI-MIP runoff projections 

throughout the 21st century over the continental United States. The contributions of GCMs, GIMs, 
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RCPs and Internal Variability to the uncertainties in projected runoff vary regionally and through 

time depending on the runoff index (annual minimum, median and maximum runoff).  

Regardless of the runoff index, GCMs and GIMs account for the largest uncertainty in 

decadal runoff projections, followed by IVar and ultimately by RCPs, whose contribution is 

smallest. In particular, uncertainty in AMax is increasingly dominated by GIMs in the western and 

north-eastern United States, while in the east the GCMs’ contributions decrease their share over the 

21st century. Although regional patterns differ, similar to Amax, the uncertainty in AMed sees an 

increase in GIM uncertainty with a concurrent decrease of GCMs’ contribution over the 21st 

century. For AMin, uncertainty is mainly governed by GIMs, the predominant source over the 

continental United States, in particular towards the end of the 21st century. 

After considering the entire ensemble, we have focused on subsets of it, considering fewer 

GIMs on the basis of their credibility and consideration of vegetation and CO2 dynamics. We found 

that the use of the full ensemble or the subsets tested, delivers essentially the same results in the 

case of AMin and AMed. Conversely, GIMs’ uncertainty is markedly lower when fewer projections 

are used for AMax, in particular when biome models are excluded. This is due to an attenuation of 

the higher peaks introduced by the biome GIMs (LPJmL and JULES), which simulate increased 

runoff (thus variance), especially in the north-eastern United States. 

As hinted by previous studies at the regional (Giuntoli et al., 2015b; Gudmundsson et al., 

2012b) and global (Giuntoli et al., 2015a; Prudhomme et al., 2014) scale, some GIMs have 

difficulties in simulating runoff, especially low flows. Over our study area, this difficulty is most 

evident in the U.S. south-southwest, and it explains the higher fractions of variance explained by 

IVar, a source that is otherwise generally small. Interestingly, the oE, which includes GIMs with 

lower credibility in medium and low flows, has a lower degree of uncertainty than the clcE. As 



 120 

mention in the previous section, this is due to the inclusion of projections that have low variance 

(for being near zero most of the time), producing the apparent beneficial effect of reducing the 

variance (uncertainty), while it is just an artefact. 

Finally, we have tested the influence of excluding two intermediate RCPs, as it can occur when 

modelling centres contribute to some scenarios and not others to reduce the burden of producing 

simulations. We found that the use of only the higher (RCP 8.5) and lower (RCP 2.6) scenarios 

slightly increases the variance (as expected excluding projections from within the sample) and 

intensifies fluctuations of the different sources in time, but it returns essentially the same results of 

using all RCPs. Overall, the variety of GIMs used makes it difficult to identify key drivers 

responsible for how the uncertainty is partitioned and evolves over time across these models. 

To conclude, the quest for reducing uncertainty, either via model culling or choosing impact 

models that are deemed best or more credible, is of little relevance for medium and low flows over 

the United States, for which uncertainty remains largely the same over time regardless of the 

selected ensemble. Overall, promising margins for reducing uncertainties will come from improved 

constraints on the GCMs and GIMs, rather than scenarios. Moreover, the limited impact of internal 

variability indicates that the majority of the uncertainties are indeed predictable, and not chaotic and 

irreducible.  
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7 Conclusions and future work 

7.1 Introduction 

The overarching aim of the thesis was to assess future runoff from multi-model ensembles 

and to quantify the uncertainties that lie in the projections. Particular attention was given to GIMs, 

directly responsible to generate runoff output at the land surface. In light of the knowledge gaps 

identified in Chapter 2, the objectives of this thesis were: 

1) To estimate the changes in high and low flows projections at the global scale towards the end of 

the 21st century (~2080) providing an assessment of the uncertainty from GIMs and GCMs. This 

was presented in Chapter 4. 

2) To evaluate the ability of GIMs in simulating runoff characteristics in the control period 

(hindcast) using observed data at the regional scale. This was presented in Chapter 5. 

3) To assess the contribution of the different sources of uncertainty (specifically, GCM, GIM, RCP, 

and internal variability) from the beginning to the end of the 21st century using different ensemble 

configurations. This was the topic of Chapter 6. 

This final chapter summarizes the results on the research undertaken and presents areas for 

future research. 

7.2 Key research findings 

Before summarizing conclusions for each objective, the thesis’s major research findings are 

presented as follows: 

1) Uncertainty in runoff projections from global impact models is large. The inclusion of a 

representative number of GIMs in climate impact studies is not sufficient to encompass the overall 
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uncertainty in future projections from this source. The GIMs need improvement in describing the 

hydrological processes over land and should be routinely evaluated against observations for 

avoiding the selection of GIMs that are poorly consistent and for identifying weaknesses and 

modules that need improvement (e.g., parameterization, processing of evapotranspiration, 

representation of snow-ice and storage and release processes). 

2) Multi-model ensembles tend to project medium flows with a lower uncertainty than at the 

extremes (high and low flows). In particular, a few GIMs have shown poor realistic representations 

of runoff (low flows), especially in arid and mountainous areas (e.g., U.S. arid southwest and Rocky 

Mountains) in which runoff equals zero during large portions of the year. This can affect the 

uncertainty estimation, indicating to a lower variance (which is the metric that expresses 

uncertainty) that hints to an erroneously apparent decreased uncertainty. 

3) Regardless of considering high, medium, or low flows, RCP scenarios account for negligible 

shares of uncertainty throughout the 21st century compared to GCMs, GIMs, and, in arid or 

mountainous areas especially, internal variability. 

7.3 Synthesis 

7.3.1 Changes in future hydrological extremes and GCM/GIM 

uncertainty (Chapter 4) 

Addressing objective 1, this chapter assessed changes in the frequency of high and low flow 

days at the end of the 21st century (2066-2099) compared to present day (1972-2005) quantifying 

the uncertainty from GCMs and GIMs using an ANOVA framework. These changes have shown 

robust large-scale features: for high flow days, increases were found at northern latitudes with 

strong signal over eastern Canada, Scandinavia, north-western Russia; for low flow days, increases 
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were found in several hotspots e.g., southern Europe, south-western and central Latin America, 

south-eastern USA. As noted in Chapter 4, these patterns are largely consistent with the literature, 

although, in general, the task of comparing results is non-trivial because the ensembles can vary 

significantly across experiments in the forcings, the model structures, and the spatial and temporal 

scales. The identification of both high and low flows at once using the same approach (5-day 

variable threshold method) had the merit of revealing the different spatial patterns and model 

agreement depending on which flow is considered. Moreover, the inability to extract the low flows 

quantile from the control period (1972-2005) of two of the GIMs in particular (LPJmL and 

MATSIRO), has shed light on the unrealistic simulation of this flow (see, e.g., percentages of 

vetoed cells per quantile flow in Table 4.1). Without this step, these models would have normally 

been included in a high flows analysis, hence, the importance to consider multiple aspects of the 

runoff spectrum when using multi-models ensembles. It is in fact assumed that models should not 

be limited to satisfactorily simulate one aspect of runoff, but possibly the whole spectrum, although 

bearing in mind that global models are generally more capable of simulating mean quantities rather 

than the extremes (Stone and Knutti, 2010). The quantification of the relative uncertainty from 

GCMs and GIMs has shown how GIMs’ contribution can be substantial, especially for low flows, 

and how it is predominant in snow- and ice-dominated and arid zones. This was attributed to the 

way the hydrological storage-release processes can modify the climate signal, particularly where 

storage components are large or water residence times high. The differences in the relative 

contributions obtained in high and low flows is reflected by the different processes that govern their 

generation (e.g., mainly precipitation or snow- ice-melt for high flows; evaporation or infiltration 

and storage for low flows), and provides insightful information on the ensemble uncertainty 

depending on the flow that is analysed. 
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7.3.2 Evaluation of GIMs ability in reproducing runoff over the 

Central U.S. (Chapter 5) 

Objective 2 was addressed in Chapter 5. A comparison of simulated runoff with observed 

streamflow was undertaken considering indices of magnitude and timing for high, medium, and low 

flows. The comparison consisted in a first level of analysis, in which streamflow gauges were 

compared to grid cells testing temporal trends, and a second more in-depth level of analysis, in 

which a pair-wise comparison was undertaken using fewer gauges – those with catchment of size 

comparable to that of the grid cells. Most GIMs were able to reproduce spatial trends in the 

observed data over the Central United States. An interesting element was the similarity in the results 

in relation to the GIM type for several indices. Generally, GIMs closing the water balance (GHMs) 

were closer to the observations than GIMs that also close the energy balance (LSMs). Depending on 

the index, the tendency to be out of sync with the observations was generally clustered per GIM 

type, as in the over- or under- estimation in the frequencies of high and medium flows. This was at 

least partly attributed to the snow scheme employed: the energy balance for LSMs and the 

degree-day for GHMs. This dichotomy between GIM types appeared less marked for low flows, for 

which all GIMs have shown a poorer ability in capturing frequencies of occurrence generally 

(occurring mostly in the fall for the models and in the summer for the observed data). The difficulty 

of the models in describing low flows (noted in Chapter 4 and pointed out by e.g., Gudmundsson et 

al., (2012a)), was further highlighted upon the extraction of the low flow timing index, which was 

hindered by the abnormal presence of zero-rich time series in some of the GIMs (LPJmL, 

MATSIRO, and Orchidee, especially). The gauge-to-grid-cell pairwise comparison indicated a 

better performance of the GIMs in describing the medium flows and its timing compared to the 

annual maximum and minimum flows, thus confirming the increased difficulty of the GIMs in 

capturing the ends of the runoff spectrum. However, results also provided confidence on the 
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capability of the GIMs in simulating specific multimonth extreme events as all models captured 

successfully intensity and spatial extent of the 1988 drought and the 1993 flood. 

As in multi-model ensemble evaluations, the reasons behind the different model behaviour 

are extremely difficult to track down and disentangle. Indeed, each GIM is unique, but may share 

few to many characteristics with its peer models (meteorological forcing variables, 

evapotranspiration scheme) and therefore, it becomes intractable to attribute e.g., a delayed runoff 

peak to one or more characteristic without being able to perform sensitivity analyses on each of the 

GIMs employed. 

Updated versions of the GIMs assessed in this chapter (or similar ones), have been 

employed in the ISI-MIP project runs used in Chapter 4 and Chapter 6. Therefore, the overall good 

performance of the WaterMIP GIMs in describing regional scale hydrology has helped building 

confidence for using these models in hydrological impact studies. 

7.3.3 Uncertainties in projected runoff over the continental U.S. 

(Chapter 6) 

The research on the uncertainty from GCMs and GIMs (Chapter 4) was taken further in 

Chapter 6 to determine the contribution of also RCPs and internal variability, thus completing 

objective 3. Uncertainty was partitioned transiently throughout the 21st century (as opposed to 

~2080 in Chapter 4) and fractional uncertainties in decadal maximum, median, and minimum flows 

were thus described over time. The continental USA was chosen as study region as it encompasses 

a diverse range of morphology and climates, and it includes the region in which the GIMs have 

been evaluated (in Chapter 5). Regardless of the flow, internal variability predominates over areas 

of topographic complexity (U.S. southwest, the Rocky Mountains), while GCMs and GIMs account 

for the largest uncertainty, followed by RCPs, whose contribution is smallest. Uncertainty shares 
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vary depending on the index, with GCMs generally contributing the most in maximum and median 

flows while GIMs contributed the most for minimum flows. The exclusion (culling) from the entire 

ensemble of GIMs on the basis of their credibility and consideration of vegetation and CO2 

dynamics has delivered the same results essentially in the case of minimum and medium flows, 

whereas for maximum flows GIMs’ uncertainty was markedly lower when biome models were 

excluded. It can be concluded that for maximum flows the biome models (LPJmL and JULES) 

contribute to a larger spread (especially in north-eastern United States) that yields a more 

comprehensive sampling of plausible futures (i.e. uncertainty). On the other hand, the difficulty of 

GIMs in simulating low flows, most evident in the south-southwest U.S. (and documented 

throughout this thesis), is not reflected in the uncertainty shares, which are lower when the GIMs 

that simulate low flows poorly (e.g., MATSIRO) are included. This effect, due to the lower variance 

produced when unrealistic zero-rich time series are included, highlights the importance of 

performing model evaluation in the region of study to avoid interpretations of uncertainty that are 

biased by low credibility runs in the ensemble. Overall, provided that uncertainty from internal 

variability is inherently irreducible, promising margins for reducing uncertainty in runoff 

projections will come from improvements in GCMs and GIMs, rather than scenarios, whose 

contribution proved minimal in all indices and ensemble setups. 

7.4 Future directions 

Hydrological impact studies make use of multi-model ensembles to which different 

modelling groups contribute form across the world. Scientists and modellers work on common 

frameworks to produce model output using high performance computers, and the resources required 

for letting this happen are considerable, as it is considerable the amount of data that is produced for 

each experiment. For instance, the ISI-MIP daily unrouted runoff runs alone – considering all 
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GCMs, all GIMs, and all scenarios available – amount to ~1.2 Terabytes of storage memory. If the 

modelling effort is huge and time consuming, the data retrieval and analysis is also very demanding. 

As a result, it is hard to exploit the data and to identify model errors and biases in a comprehensive 

way. As discussed in Chapter 5, the risk is then to generate a plethora of studies that describe a 

more or less certain future for a given variable, time-window, and metric, without being able to 

fully discern model errors and deficiencies. This is particularly difficult to do at the global scale, at 

which many hydrology relevant processes are levelled out (e.g., precipitations). Clearly, the 

long-term goal is to enhance global models to include more detailed processes (e.g., vegetation 

dynamics, water abstraction from human activities) and to run them at higher spatial and temporal 

resolution. However, there is an immediate demand for evaluating these models at the regional scale 

(where observed data is available) in order to ensure reliability of simulations and to provide insight 

on how the processes develop over land and how the different variables are intertwined. This calls 

for an effort to develop standardized tools and assessment strategies that will facilitate comparisons, 

increase robustness in the results and help in the selection of models, discounting those that are 

found unsatisfactory in the representation of key processes (McSweeney et al., 2015). For instance, 

in the context of assessing changes in future flood risk, as in e.g., Dankers et al. (2013), fitting a 

generalized extreme value distribution (GEV) (e.g., Coles (2001)) to historical and future annual 

peak flows could be undertaken at the regional scale, benchmarking modelled historical peak 

distributions against peak distribution from observed data, retaining only consistent model runs for 

fitting peak flows in the future. 

This evaluation effort is also valid for GCMs, which feed the GIMs. For instance, 

McSweeney et al. (2015) have provided a valuable evaluation of GCMs in capturing the range in 

surface temperature and precipitation over selected regions of the world, attesting which models are 
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‘implausible’, thus suggesting to avoid the poorest ones in the selection of models suitable for 

climate change impact assessments. In a later study (McSweeney and Jones, 2016), the same 

authors have shed light on the representativeness of the five (out of the ~36 available) CMIP5 

GCMs used for the ISI-MIP project runs, suggesting that they sufficiently express the uncertainty 

range in future climate impact, but that at least 13 GCMs would be required to capture 80% of the 

range in >75% of regions and seasons. The fact that they also emphasize how the selection of 

regionally optimized subsets of models (i.e. fewer models that perform well in a given region) can 

capture the uncertainty range equally well, suggests that climate impact studies, that are often 

carried out at the regional or continental scale, should be undertaken with an informed selection of 

GCMs and GIMs.  

In addition to model evaluation, further investigations are needed to better characterize the 

uncertainty in hydrological projections. This thesis has highlighted that an improvement in global 

models is needed to reduce overall uncertainty, as the contribution from GCMs and GIMs – 

regardless of the flow type – is very large and that the role of RCPs is negligible. In addition to 

assess uncertainty in other regions of the world, additional sources neglected in this study should be 

quantified, like bias-correction, which requires the use of both bias-corrected and non-corrected 

runs, as noted in Chapter 4. The influence of internal variability on uncertainty should also be 

further investigated through the use of run replicates (i.e. runs with different initial conditions, 

unavailable within ISI-MIP at this stage), as opposed to a measure of the distance of the projections 

from their mean (as done in Chapter 6).  

Discarding ‘implausible’ models and characterizing uncertainty from the aforementioned 

sources can indeed yield greater confidence in the projected climate. 
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Finally, promising prospects for improved climate impact studies lie in the assessment of 

GIMs output variables (e.g., temperature, precipitation, runoff) whose joint analysis can help both 

to identify biases in the models and to better quantify the uncertainty in the projections, as it has 

been done in the literature, especially for the GCMs (e.g., Tebaldi and Sansó (2009)). 
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Table A1.1 – CMIP5 GCM models used in ISI-MIP and their attributes (adapted from Maloney et al. 
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APPENDIX II 

 

Appendix to Chapter 4. 

 

Masking of grid cells – With reference to the control period (1972–2005), grid cells showing 

little or no seasonal change in daily runoff were screened out using the 5-day percentiles series that 

form the threshold curves (i.e. one mask for HF and one for LF) following these rules: (i) 

percentiles are equal to zero for more than one-third of the year; (ii) standard deviation of 

percentiles of first and/or second half-year equals zero; (iii) annual percentiles Q10 and Q95 series 

are equal. 

 

Tests on ANOVA’s residuals – To verify whether the ANOVA model assumptions hold, 

statistical tests were performed on the ANOVA residuals. For every unmasked grid cell, for both 

HFI and LFI, residuals were assessed as follows: we tested (i) normality with the Lilliefors test; and 

then, for grid cells for which the null hypothesis (that the residuals’ vector comes from a 

distribution in the normal family) was not rejected, we tested (ii) constancy of variance with the 

Hartley test. Results for the annual and seasonal ANOVAs show that HFI has higher rates of 

residuals for which the hypotheses of normality and constancy of variance were rejected compared 

to the LFI. For the year, the percentages of unmasked grid cells not meeting the residuals 

requirements were: HFI 22 % not normal, 15 % no constant variance, for a total of 37 % globally; 

LFI 12 % not normal, 15 % no constant variance, for a total of 27 % globally. JJA and DJF have the 

lowest proportions of residuals’ requirements not met for HFI and LFI respectively. We also 

applied the ANOVA on HFI and LFI transformed via the normal-score method (seeking normality 



 iii 

of the data); this showed lower percentages of cells not satisfying the ANOVA assumptions of 

normality and constant variance (HFI: 7.5 and 11 %; and LFI: 7 and 12 % respectively) for a total 

of 19 % globally. It should be noted that the residuals’ contribution to uncertainty tends to be lower 

for the transformed data (e.g. grid cells with residuals’ dominated uncertainty decreased by 6 % for 

HFI and 1 % for LFI). Because the partition of uncertainty between GCMs and GHMs are similar 

from both ANOVA applied to raw and transformed data sets, and because the areas of 

non-satisfaction of normality are not located where the residuals dominate the uncertainty, we 

discussed results obtained from the raw, non-transformed data.  
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APPENDIX III 

 

Appendix to Chapter 5. 

 

 

 

 
Figure A3.1 – Estimated exceedance probabilities [p] of mean summer (JJA) runoff for the 1988 drought. 
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Figure A3.2– Same as Figure A3.1 for the 1993 flood.  
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APPENDIX IV 

 

Appendix to Chapter 6. 

 

 

 

 

 

 

 

 

 

 
Figure A4.1 – For a selected grid cell (42.7° N -73.9° E; Albany, NY). On the first column: decadally 

averaged AMax, AMed, and AMin projections (top, mid, and lower panels respectively) colored according 

to GIM (thick lines are averages per GIM); second to fourth columns: corresponding fractional uncertainty 

using a loess window of 10, 20 (chosen for the study), and 30 years respectively. 



 vii 

 

Figure A4.2 – Same as Figure A4.1 but for a contrasting grid cell (36.1° N -115.3° E; Las Vegas, NV). 

 

 

Figure A4.3 – Same as Figure 6.2 but for Europe. 
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Figure A4.4 – Relative contributions to uncertainty in AMax: GCMs, GIMs, RCPs, and IVar for oE. 

 

Figure A4.5– Same as Figure A4.4 but for AMed. 
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Figure A4.6 – Same as Figure A4.4 but for AMin. 

 

Figure A4.7 – Total variance increase in AMax per ensemble combination. 
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Figure A4.8 – Total variance increase in AMed per ensemble combination. 

 
Figure A4.9 – Total variance increase in AMin per ensemble combination.
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