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Abstract 1 

Fire regimes in savannas and forests are changing over much of the world. Anticipating the 2 

impact of these changes requires understanding how plants are adapted to fire. Here we test 3 

whether fire imposes a broad selective force on a key fire-tolerance trait, bark thickness, across 4 

572 tree species distributed worldwide. We show that investment in thick bark is a pervasive 5 

adaptation in frequently burned areas across savannas and forests in both temperate and tropical 6 

regions where surface fires occur. Geographic variability in bark thickness is largely explained 7 

by annual burned area and precipitation seasonality. Combining environmental and species 8 

distribution data allowed us to assess the vulnerability to future climate and fire conditions: 9 

tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more 10 

robust. The strong link between fire and bark thickness provides an avenue for assessing the 11 

vulnerability of tree communities to fire and demands inclusion in global models.  12 
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Introduction 13 

How plant communities respond to perturbations imposed by novel fire regimes is an 14 

important uncertainty in predicting the reaction of ecosystems to future global change (Cochrane 15 

et al. 1999; Westerling et al. 2006). Increased burning in ecosystems that rarely experienced fire 16 

historically, such as moist tropical forests (Nepstad et al. 1999), can result in rapid ecosystem 17 

degradation due to the lack of woody plant species with fire-tolerance traits (Uhl & Kauffman 18 

1990; Cochrane et al. 1999). The loss of woody plant biomass during fires produces substantial 19 

carbon emissions (van der Werf et al. 2010), and may act to accelerate climate change, which is 20 

critical given projections of increasing fire occurrence in future climates (Moritz et al. 2012) . 21 

Consequently, predicting the future of the terrestrial carbon sink depends on the ability of 22 

ecosystem models to accurately capture the fire tolerance of woody plants to future fire regimes 23 

(Huntingford et al. 2008).  24 

Fire can be a strong selective force, and many tree species have evolved traits to better 25 

tolerate frequent burning and intense fires (Simon et al. 2009; Rosell et al. 2014). Variability in 26 

plant traits related to fire tolerance can determine the response of ecosystems to fire (Rogers et 27 

al. 2015), thus requiring a need to understand both the current distribution of traits as well as the 28 

mechanisms that generate their variability. The evolution of fire tolerance traits within numerous 29 

and widely distributed plant species and clades may allow communities containing those taxa to 30 

be more robust to increasing fire frequency (Pellegrini et al. 2016). Alternatively, if the global 31 

distribution of taxa that have evolved fire tolerance traits is limited to specific biomes or plant 32 

lineages, then some communities may be especially vulnerable. Consequently, understanding the 33 

mechanisms leading to the evolution of fire tolerance traits will give insight into potential 34 

constraints on the capacity of ecosystems to respond to changes in fire regimes. 35 
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In addition to the vulnerability of individual plant species, the distribution of fire 36 

tolerance traits in a community is important for determining vulnerability of an ecosystem to 37 

increased burning. On short timescales (i.e., years to decades), the potential for loss of woody 38 

plant biomass and carbon storage is determined largely by the vulnerability of individuals 39 

present in a community (Uhl & Kauffman 1990). Variability in the distribution of fire tolerance 40 

traits within a plant community is important, however, as it determines the overall proportion of 41 

plant species vulnerable to intensifying fire regimes as well as the potential for fire-tolerant 42 

species to replace fire-sensitive ones (i.e., ecological filtering; (Cavender-Bares & Reich 2012)). 43 

Moreover, trait-environment relationships can reveal how environmental conditions may filter 44 

species according to their traits, providing insight into the vulnerability of communities to 45 

change (Diaz et al. 1998). Consequently, we can estimate the ability of plant communities to 46 

tolerate increased burning by combining knowledge on the present-day distribution of fire-47 

tolerance traits with projections of future fire regimes. 48 

Here we examine global patterns of a key woody plant trait, bark thickness, which 49 

confers fire tolerance for trees in ecosystems with surface fire regimes such as xeric pine and oak 50 

forests (Harmon 1984); rainforests (Brando et al. 2012); savannas (Hoffmann et al. 2009; Lawes 51 

et al. 2011)). Bark is important because it helps protect the stem from overheating during a 52 

surface fire, conferring resistance to losses of aboveground biomass through either complete 53 

mortality or topkill. Although other traits can also influence whether fire actually kills a tree, 54 

such as the ability to resprout and location of buds inside the stem (Clarke et al. 2010; Pausas et 55 

al. 2016), bark thickness has been shown in numerous studies across multiple ecosystems 56 

(Harmon 1984; Van Nieuwstadt & Sheil 2005; Hoffmann et al. 2009; Brando et al. 2012; 57 

Pellegrini et al. 2016) to be a critical trait for the vulnerability of plant bole biomass – the largest 58 
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carbon storage pool in trees – to fire (explaining the majority of the variability in biomass losses 59 

with r2≥0.80 ). Crown fire regimes are also important for a number of ecosystems, where plants 60 

contain a suite of other adaptations to either resist crown char (by growing tall and dropping 61 

branches) or quickly re-grow after a stand-replacing fire (through adaptations like serotinous 62 

cones, e.g., (Rogers et al. 2015)). However, here we focus on ecosystems with surface fire 63 

regimes.  64 

We examine patterns of bark thickness to better understand ecosystem vulnerability to 65 

fire by addressing three questions: (i) how does bark thickness differ across species in different 66 

biomes and regions? (ii) to what degree do differences in fire frequency and fire-climate 67 

interactions filter species’ relative bark thickness? and (iii) based on current bark thickness 68 

distributions and projected changes in climate and fire, how does the vulnerability to future fire 69 

regimes differ across savannas and forests worldwide? Although absolute bark thickness 70 

generally increases with stem size, plant species differ in their relative investment in bark. 71 

Consequently, we quantify bark investment as the thickness of bark at a standardized stem 72 

diameter (i.e., relative bark thickness). 73 

 74 

Methods 75 

Dataset compilation 76 

We compiled a dataset of bark thickness investment across 572 abundant woody plant 77 

species distributed across biomes worldwide from published and unpublished sources (Table S1). 78 

To account for the influence of stem size and allometric equations reported (which varied from 79 

linear to saturating), we calculated bark thickness at three stem diameters —10cm, 20cm, and 80 

30cm—which spanned the critical range of stem size over which trees are most vulnerable to 81 
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topkill and comprise a large proportion of tree biomass in savannas and forests (Uhl & Kauffman 82 

1990). We also verified that our results were robust to alternative calculations of bark thickness 83 

(Supplementary Information, SI). 84 

 85 

Comparison among biomes and continents 86 

We classified species as being associated with savanna vs. forest biomes because these 87 

biomes have different fire regimes and woody plant species tend to specialize in either savanna 88 

or forest biomes, but not both (Hoffmann et al. 2012). Savannas are defined as ecosystems with 89 

intermediate tree cover (20-80%) and a continuous grassy layer while forests have complete 90 

woody cover and grasses are minimal to absent (Staver et al. 2011). Species were grouped as 91 

specializing on savanna or forest biomes based on how they were categorized by the paper 92 

authors. In all cases where we compare bark thickness between savanna and forest biomes, we 93 

are referring to the comparison of species classified as specializing on either biome.  94 

It is more difficult to classify species and make generalizations of fire regime differences 95 

between biomes in temperate forests and savannas (here we focused on North America in 96 

particular) given that (i) species can occur in multiple habitats (e.g., savannas, woodlands, 97 

forests); and (ii) forests can also experience a range of fire frequencies. Consequently, we 98 

complement our analysis with a detailed dataset specific to North America (SI) that classifies 99 

species into multiple habitat types based on a synthesis of existing distribution data. This allowed 100 

us to further test (i) whether species associated with more open vegetation (savannas and 101 

woodlands) experience fires more frequently than those with closed vegetation (mixed 102 

woodlands and forests) and (ii) how species’ bark investment varied across these habitats. 103 
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To evaluate the potential for crown fire regimes to influence our results, we took 104 

advantage of the tendency for many North American forests, especially those dominated by 105 

gymnosperms, to experience crown fires. Consequently, we investigate the potential role of 106 

exposure to crown fire in modifying the relationship between bark and fire by testing how 107 

angiosperms vs. gymnosperms differ in their bark investment and bark-fire relationships (SI).  108 

Comparisons between species grouped into different biomes (and other habitat 109 

classifications in North America) were performed using ANOVAs, with the potential covariate 110 

interactions among biome, continent, and region (i.e., tropical vs. temperate locations) evaluated 111 

using ANCOVAs.  112 

 113 

Establishing environmental conditions for each species 114 

We determined the spatial distribution of species using field georeferenced locations 115 

from the Global Biodiversity Information Facility (GBIF) to obtain global occurrence data (Fig. 116 

S1). These distribution data were combined with burned area estimates and climate data to obtain 117 

the average environmental conditions over the distribution of each species. In all cases, the 118 

distribution of the mapped areas cover the complete ranges of all the included species. For fire, 119 

we analyzed two burned area datasets spanning 10 and 19 years, which are currently the longest 120 

available datasets on global fire patterns. This assumes that relatively recent spatial patterns of 121 

fire frequency structure patterns in bark thickness. The first fire dataset is the annual burned area 122 

product from the Global Fire Emissions Database 3 with small fires (spanning 2001-2010) 123 

(hereafter referred to as GFED3s), which aims to account for detection of fires in closed-canopy 124 

forests (Randerson et al. 2012; Giglio et al. 2013). The second is the annual burned area product 125 

from GFED4, which spans 1997-2015, but does not yet have the correction for small fires. We 126 
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focus our analyses on the shorter time-series GFED3s because the systematically lower measured 127 

frequency of fires in forests in GFED4 (SI) likely misses the key role of small fires in forest 128 

areas. Nonetheless, our results are qualitatively consistent when using the longer GFED4 record 129 

(SI). 130 

Here we were concerned with the climate factors that have the potential to influence fire 131 

behavior. Consequently, we focused on precipitation partitioned into the driest and wettest 132 

quarter obtained via WorldClim (Hijmans et al. 2005). Higher precipitation in the driest quarter 133 

can increase fuel moisture and thus reduce burned area and intensity. On the other hand, higher 134 

precipitation in the wettest quarter can increase fire intensity in biomes with grasses (which grow 135 

but then dry out, becoming highly flammable in the dry season (Govender et al. 2006)).  136 

To determine the relative impact of fire, climate and the interaction between climate and 137 

biome on relative bark thickness, we performed model selection on generalized additive models 138 

using the lowest Akaike Information Criterion (AIC), with a threshold of two. Model selection 139 

was used to assess variable importance as well as the potential for non-linear relationships. We 140 

focus on the results for 10cm, but results from other stem diameters are presented in the SI, all of 141 

which yielded qualitatively similar results.  Bark thickness and annual burned area were log-142 

transformed prior to analysis to reduce heteroscedasticity.  143 

 144 

Comparison across taxonomic groups 145 

We used linear mixed-effects models to compare the bark thickness of savanna and forest 146 

species nested within their corresponding genera and families, using either family or genus as 147 

random effects. Consequently, this analysis is only performed on the species where both savanna 148 

and forest species are present in the same genus or family. We also performed a regression 149 
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between the mean bark thickness of savanna species and forest species grouped within each 150 

genus and family. This was used to determine whether the bark thickness of savanna species was 151 

correlated with the bark thickness in forest species. 152 

 153 

Vulnerability to future changes 154 

 To estimate the vulnerability of plant communities to future changes in climate and fire, 155 

we aggregated individuals into 1°x1° gridcells across the globe using the GBIF distribution data 156 

to calculate mean bark thickness values for each gridcell (incorporating the abundance of 157 

individuals within a species and the bark thickness for that species). We performed this 158 

aggregation process separately for savanna and forest species because of the potential biome-by-159 

climate interaction. We refer to these spatially aggregated values as the “community” bark 160 

thickness. Climate and burned area data were also calculated for each gridcell. We fit a 161 

generalized additive model between bark thickness and environmental data across all gridcells 162 

for both savanna and forest communities (statistical fits and a verification that our results are 163 

robust to spatial autocorrelation are in the SI).  164 

 We then used the regressions between climate, fire, and community bark thickness to 165 

project the future expected distribution of bark thickness according to future fire and climate 166 

conditions. Future climate conditions were determined from five climatic models obtained via 167 

CMIP5 outputs for 2070 RCP8.5 scenario (SI). Future fire conditions come from a recent output 168 

of annual burned area from LPJ-GUESS-SIMFIRE (Knorr et al. 2015), which incorporates 169 

future climates, human populations, and fuel loads (SI), for 2071-2100 RCP8.5 scenario. We 170 

chose the high emissions scenario to quantify an upper bound on potential changes in fire 171 

regimes. We averaged forecasted values across all models within each grid cell. To evaluate 172 
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climate uncertainty, we used the standard deviation among climate model precipitation 173 

projections to calculate “wet” and “dry” (+1 vs. -1 standard deviation precipitation, respectively) 174 

future scenarios. The potential role of uncertainties in fire projections are presented in the 175 

discussion.  176 

The robustness of communities to change was then quantified by comparing the current 177 

distribution of bark thickness within gridcells with the expected future distribution. Specifically, 178 

we used the log-transformed community means and variances to generate a normal distribution 179 

of bark thicknesses for each gridcell. Next, we used the projected community mean bark 180 

thicknesses to generate a normal distribution curve of future bark thickness for each gridcell, 181 

assuming that present day variances remained unchanged. The ability of a particular community 182 

to achieve the future expected bark thickness was quantified as the area under the two probability 183 

densities (Fig.  S2), which is known as the overlapping coefficient (OVL, (Inman & Bradley 184 

1989)). Here we interpret the OVL to be a measure of robustness because it estimates the 185 

fraction of individuals with bark thicknesses compatible with future conditions. Consequently, 186 

the OVL estimates the potential for an ecosystem to adjust to more extreme conditions through 187 

shifts in the abundance of its current species pool. Importantly, this metric estimates only the 188 

relative robustness of gridcells, it does not predict the percent of individual trees that will be lost. 189 

 190 

Results 191 

Across the globe, investment in thick bark is a consistent adaptation to fire-prone 192 

environments. At the biome scale, bark was three-fold thicker in tree species specialized in fire-193 

frequent savannas vs. fire-infrequent forests (Fig. 1, Tables 1,S2). This pattern was observed 194 

across Africa, Australia and the Americas, each of which contain extensive savanna-forest 195 
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boundaries (Fig. 1, Tables 1,S3), and was robust to variation in stem size and alternative 196 

calculations of relative bark thickness (Fig. S3, Table S3). We confirmed that savanna species 197 

differed broadly from forest species in their characteristic fire regimes using remotely sensed 198 

estimates of annual burned area from both the long time series (F1,569= 154.8, p<0.0001) as well 199 

as the shorter time series that corrects for small fires (F1,570=187, p<0.0001).  200 

Within the broad global pattern, the differences in bark thickness between species 201 

specialized in savanna vs. forest differed in magnitude across regions and continents (Figs. 202 

2,S4,S5, Tables S2-S4). In the tropics, savanna species had 3.3-fold thicker bark than forest 203 

species, while in temperate regions this difference was only 1.4-fold (Table S2), consistent with 204 

the greater between-biome differences in the fire frequency characterizing species’ distributions 205 

in the tropics (Fig. 2).  206 

Among continents, there was substantial variability in the bark thickness of species both 207 

in the savanna and forest biomes (continent-by-biome interaction: F4,562=15.6,p<0.0001, Figs. 208 

1,S5, Tables S2,S4). As a result, Australia and South America had the starkest contrast between 209 

biomes, with savanna species having 5.3- and 3.8-fold thicker bark than forest species, 210 

respectively (Figs. 1,2,S5, Tables S2,S4). On the other hand, North American and African 211 

savanna species were only 1.4- and 1.8-fold thicker than forest species (Figs. 1,2,S5, Table S4). 212 

Only in Asia did we not find a significant difference between biomes (Table S3), although there 213 

were data on only a few savanna species (n=5). Consistent with the continent-by-biome 214 

interaction for bark thickness, we also found a significant interaction for fire frequency 215 

(F4,562=4.54, p =0.0013). Subsequently, the contrast in bark thickness between savanna and forest 216 

species was largely consistent with the contrast in fire frequencies that characterized their 217 

distributions (Fig. 2); we quantitatively test for the relationship between bark and fire below.  218 
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A more detailed evaluation of the habitat preferences of species in North America 219 

revealed qualitatively similar results: species that that predominantly occurred in savanna 220 

habitats experienced a higher frequency of burning than those found only in forests (GFED3s: 221 

F2,74=9.15, p=0.0002, GFED4:F2,74=10.75, p<0.0001); correspondingly, species that 222 

predominantly occurred in savannas tended to have 1.4-fold thicker bark than those found only 223 

in forests (F2,74=4.1, p=0.020), in spite of North American forest species experiencing relatively 224 

frequent burning (SI, Fig. S6). 225 

Globally, variation in bark thickness across species could be explained by the fire regime, 226 

climate, and the interaction between climate and fire that characterized a species’ distribution. 227 

First, annual burned area alone explained 20% of the global variation in bark thickness, with 228 

bark thickness increasing as a nonlinear function of the annual burned area that characterized a 229 

species’ distribution (Fig.  3A, Table 1). Second, species found in areas with lower dry season 230 

rainfall tended to have thicker bark in both savannas and forests (Fig.  3B, Table 1), likely a 231 

result of the negative relationships between dry season moisture and annual burned area (t= -232 

3.726, p<0.001) and fire intensity (Govender et al. 2006). Third, there was a significant 233 

interaction between precipitation in the wet season and the biome a species specialized on; bark 234 

thickness of savanna species increased with wet-season precipitation whereas that of forest 235 

species decreased (Fig.  3C, Table 1). This climate-biome interaction likely reflects adaption to 236 

the higher fuel loads and more intense fires in the more productive wetter savannas, which our 237 

remote sensing fire metric cannot capture but has been well established across savannas 238 

(Williams et al. 1999; Govender et al. 2006). All conclusions were robust to variation in stem 239 

diameter (Table S5) and the different burned area products (Fig. S7, Table S6,S7). AIC-based 240 

model selection illustrated that the most parsimonious model included annual burned area and 241 
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biome-precipitation interactions and explained 50% of the deviance in bark thickness across all 242 

572 woody plant species (Table 1).  243 

The potential for crown fire regimes to influence our results was explored by evaluating 244 

bark-fire relationships across plant communities in North America, under the assumption that 245 

gymnosperm forests have a higher probability of experiencing crown fires and may invest less in 246 

bark. Across all species, fire frequency appears to be a less powerful, but still significant, 247 

predictor of bark thickness (explaining 7.6% of deviance across species, Table S8). Comparisons 248 

between gymnosperm and angiosperm species illustrated no significance difference in bark 249 

thickness between groups when we considered either all species or only forest species (SI). 250 

However, when gymnosperms were analyzed alone, we found that the significant relationship 251 

between bark and fire frequency depended on the habitat of a species (F1,24=5.16, p=0.032), with 252 

no relationship between fire and bark in species that occurred only in forests. Consequently, the 253 

relationship between fire frequency and bark becomes less significant in habitats prone to crown 254 

fires.  255 

Comparisons among congeneric species and species within the same family illustrated 256 

that bark thickness is well matched to the environment across diverse plant lineages.  At the 257 

genus level, species associated with the savanna biome had 2.07-fold thicker bark than their 258 

congeneric forest species (n=32 genera, 156 species, t=8.46, p<0.0001; Fig. 4A). At the family 259 

level, savanna-associated species had on average 2.59-fold thicker bark than forest-associated 260 

species in the same family (n=36 families, 377 species, t=20.52, p<0.0001; Fig. S8). Moreover, 261 

there was no significant relationship between the bark thicknesses of forest species and the 262 

savanna species within either shared genera or shared families (r2<0.01, p=0.29 and r2<0.01, 263 

p>0.5 respectively; Fig. 4B,C), illustrating that the investment in bark of a savanna species is 264 



14 
 

independent from the investment in bark of a forest species within shared clades (i.e., thicker 265 

barked savanna species are not significantly more likely to come from thicker barked forest 266 

species and vice versa).  267 

Fire frequency is expected to increase in many areas that currently contain savanna and 268 

forest species. Specifically, 61% and 63% of savanna- and forest-containing grid cells are 269 

expected to experience increases in the proportion of area burned each year, respectively, in a 270 

high emissions climate scenario (Fig. 5A). However, the robustness of plant communities is 271 

forecasted to vary widely among biomes. Communities of savanna species have higher 272 

robustness than forest communities, on average, despite having higher fire frequencies and 273 

experiencing equivalent relative gains in annual burned area (Figs. 5,S9). Accordingly, the 274 

distribution of robustness across grid cells reveals that 93% of savanna gridcells had >50% of 275 

individuals with traits consistent with future fire conditions whereas only 62% of forest gridcells 276 

exceeded the threshold of 50% (Fig.  S9C). The qualitative trends were consistent regardless of 277 

different precipitation scenarios, although on average forest communities tended to be less robust 278 

under the “dry” scenario (only 55% of cells exceeded the threshold of 50%) and more robust 279 

under the “wet” scenario (63% of cells exceeded the threshold of 50%), while savanna 280 

community showed little change (both scenarios ~93% of cells above the threshold).   281 

Variability in the potential robustness across regions identified sensitive areas, such as 282 

moist tropical forests and temperate forests in western North America, which have the lowest 283 

forecasted robustness.  However, some areas of forest in western North America and transitional 284 

tropical forest at savanna-forest ecotones in South America have relatively high robustness (Fig.  285 

5C,D), perhaps due to the historical presence of fire in these contrasting forests having selected 286 

for thicker barked species (Harmon 1984; Paine et al. 2010). Importantly, this analysis of 287 



15 
 

vulnerability is to surface fire regimes, and further analysis of the western North American 288 

forests that can experience crown fires in addition to surface fires is warranted. Tree 289 

communities in savannas tend to be robust because of the presence of thick-barked species that 290 

can persist even with increased annual burned area.  291 

 292 

Discussion 293 

Convergence of thick bark as a fire tolerance trait reflects consistent filtering of species 294 

with thin bark from areas prone to surface fires. The physics that govern how fire kills a tree are 295 

consistent across biomes: the insulation provided by bark protects the tissue inside the stem from 296 

overheating. As a result, the negative relationship between bark thickness and the loss of 297 

aboveground stem biomass in a fire is remarkably similar across ecosystems (Uhl & Kauffman 298 

1990; Lawes et al. 2011) and is even present in forests that can also experience crown fires such 299 

as those in western North America (Harmon 1984). Consequently, plant lineages distributed 300 

across the seed plants contain a broad range of bark thicknesses, and species that occur in 301 

historically fire-prone environments consistently exhibit high bark thickness, a pattern consistent 302 

with the convergent evolution of bark as a fire-tolerance adaptation.  303 

The general relationship between frequent fire and investment in bark identified here is a 304 

substantial step forward, given that a recent review concluded the paucity of data on bark 305 

investment across species limits generalizability (Pausas 2015). Indeed there has been debate on 306 

the role of fire and potential climate-fire interactions in determining species’ investment in bark 307 

(Hoffmann et al. 2012; Poorter et al. 2014; Rosell 2016). We help resolve this debate by 308 

illustrating the substantial role of fire and fire-climate interactions in determining global patterns 309 

of bark investment (Figs. 1-3). Additional explanations for variability in bark investment such as 310 
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defense against pathogens and mechanical stability are likely to contribute to the variability in 311 

the relationship between bark investment and fire (Paine et al. 2010; Rosell et al. 2014). These 312 

alternative factors may explain the result in Asia, where we did we not find a significant 313 

difference in bark thickness between savanna and forest species. Nonetheless, our relatively 314 

simple model predicts 50% of the variance in bark thickness, illustrating the predominant role of 315 

fire in structuring the distribution of bark and presenting a framework to gain inference into how 316 

certain ecosystems differ in their vulnerability to future fire regimes. 317 

Our approach to characterize the climate and fire niches of species using available 318 

distribution data allowed us to complement our between-biome analysis with continuous 319 

estimates of fire regimes. The consideration of continuous variability in climate and fire 320 

illustrated that a substantial amount of the variance among regions within biomes is due to their 321 

different fire and climate conditions. The variability in fire frequency and climates that exists 322 

across savanna and forest biomes (Lehmann et al. 2014) may explain why studies find 323 

inconsistent evidence on the degree to which thick bark is an adaptation to frequent fire 324 

(Hoffmann et al. 2009; Pausas 2015; Rosell 2016). For instance, even within savannas, species’ 325 

investment in bark increased in areas with more frequent fire and higher wet quarter rainfall (Fig. 326 

3B,C). This climate-fire interaction provides one explanation for the relatively greater 327 

investment in bark found in the wet South American savannas relative to the drier African 328 

savannas (Dantas & Pausas 2013).  329 

North America presents a number of interesting contrasts to observations from the 330 

tropical savanna-forest ecotones. Many forest species in North America experience relatively 331 

frequent fires (Fig. S6), likely leading to their higher investment in bark relative to forest species 332 

in tropical forests in Australia and South America (Fig. S4). The comparable fire frequencies in 333 
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savannas and forests in North America is likely to contribute to the small differences in bark 334 

thickness between savanna vs. forest congeners in Pinus and Quercus (Fig. 4A,S8). Moreover, 335 

although we found that the bark-fire relationships were robust in North America where many 336 

species experience mixed fire regimes, gymnosperm tree species, which occur in habitats more 337 

likely to experience crown fires had a weaker relationship between bark and fire. Specifically, 338 

the bark thickness of gymnosperm forest species was not significantly related to fire frequency, 339 

which supports the hypothesis that other traits such as reseeding and resprouting are critical in 340 

crown fire ecosystems (Keeley et al. 2011). Consequently, consideration of other traits will be 341 

important for predicting the vulnerability to crown fires and presents a useful expansion to our 342 

current study that focused on surface fires.  343 

We predict striking differences in robustness across biomes and regions, identifying 344 

especially sensitive areas in carbon-dense forests of the wet tropics where increases in fire 345 

activity are forecasted to occur throughout a large area where trees invest relatively little in bark 346 

(Fig. 5). In contrast, trees in drier tropical forests and the ecotonal areas between savannas and 347 

forests invest more in bark (Fig. 3B,C) and are better suited to tolerate the intensifying fire 348 

regimes (Fig. 5). Consequently, important heterogeneity exists across forests in different climates 349 

not just due to projections in fire activity, but the distribution of species with fire tolerance traits. 350 

More accurate predictions of vulnerability will be gained as we reduce the uncertainties 351 

in the factors driving changes in fire. The future fire projection utilized here identified that 352 

assumptions about population growth heavily influence the projections of burned area; however, 353 

the direction of the projected fire trends across the areas that we identify as most vulnerable (e.g., 354 

moist Neotropical forests) were robust to different population growth and urbanization scenarios, 355 

even though the exact change differed (Knorr et al. 2016).  356 
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Further insight into mechanisms structuring variability in the vulnerability of ecosystems 357 

can be gained by considering other fire-tolerance traits such as resprouting or reseeding from 358 

serotinous cones (Ondei et al. 2015) that can allow thin barked species to persist in areas 359 

frequently burned (Bond & Midgley 2001). Nonetheless, by considering the full trait-360 

environment probability distribution, our models of robustness partially account for the 361 

possibility that other traits may modify the relationship between the bark thickness of a species 362 

and the fire frequency it experiences. For example, the presence of thin barked species in a 363 

frequently burned area, which may be due to their capacity to resprout or rapidly reseed 364 

following a fire, will widen the estimated trait distribution and allow for greater variance in bark 365 

thickness at a particular fire frequency.  366 

The ability to simulate the effects of fire on ecosystem carbon pools will depend on 367 

accurately capturing the distribution of traits within and across communities. Many Dynamic 368 

Global Vegetation Models, which are commonly used to forecast change in the global carbon 369 

cycle, use fire modules that represent fire tolerance traits as static properties of plant functional 370 

types, fixed within broad vegetation classifications (Thonicke et al. 2010; Li et al. 2012). We 371 

suggest that using a single bark thickness value per plant functional type fails to capture 372 

important heterogeneity in fire tolerance that exist within geographies and ecosystems and may 373 

allow for ecological filtering. Consequently, the use of fixed trait means, rather than 374 

distributions, may underestimate robustness to fire and lead to large error in estimates of carbon 375 

emissions. 376 

We show that the widespread convergence of a fire tolerance trait, bark thickness, 377 

underpins a striking range of robustness exhibited by vegetation communities to future fire 378 

regimes. Estimates of ecosystem robustness can be further improved by considering additional 379 



19 
 

traits of the plant community, variation in the rates and mechanisms of trait evolution, other 380 

important disturbances such as drought. Nonetheless, trait-based approaches to assessing 381 

robustness to fire have the potential to be powerful predictors of the future response of 382 

ecosystems to fire.  383 

 384 

 385 
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Table 1: Statistical results from generalized additive models between log bark thickness (for 544 

stems 10cm in size), fire, climate, and biome using model selection. Dev refers to deviance 545 

explained. Mean_fire = annual burned area, Precip_Wetq = precipitation in the wettest quarter, 546 

Precip_Dryq = precipitation in the driest quarter, Biome = biome a species specialized in (either 547 

savanna or forest). The best fit models are highlighted in bold, we utilized the more 548 

parsimonious of the two. 549 

 550 

 551 

Variables included Dev  AIC 

Mean_fire+Precip_Wetq*Biome+Precip_Dryq*Biome 50.20% 930 

Mean_fire+Precip_Wetq*Biome+Precip_Dryq 49.90% 930 

Mean_fire+Precip_Wetq+Precip_Dryq*Biome 47.40% 961 

Mean_fire+Precip_Wetq+Precip_Dryq+Biome 46.50% 965 

Precip_Wetq+Precip_Dryq+Biome 46.30% 966 

Mean_fire+Precip_Dryq+Biome 44.80% 984 

Mean_fire+Precip_Wetq+Biome 40.80% 992 

Mean_fire+Biome 35.60% 1049 

Biome 35.50% 1066 

Mean_fire+Precip_Wetq+Precip_Dryq 30.20% 1065 

Mean_fire 21.60% 1180 

 552 

 553 

 554 

 555 

  556 
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Figure 1: Broad evidence for high bark investment in savanna environments. Comparison 557 

of bark thickness, normalized to a 10 cm stem size, in plant species across the globe. Map was 558 

generated using an inverse distance weighted approach to create spatial averages of trait values 559 

from GBIF occurrence data within distances of 0.5° around each observation point. Dark grey 560 

areas indicate locations that do not contain species distribution/bark thickness data. Color ramp is 561 

pivoted on the median of bark thickness to illustrate relative variability across the globe. The 562 

box-plot comparisons between savanna and forest species are across four continents that contain 563 

extensive savanna-forest ecotones. Statistics and sample sizes are in Table S2.  564 

Figure 2: Difference between savanna and forest species across regions and continents. 565 

Comparison of the ratio of the mean bark investment and fire frequency of savanna vs. forest 566 

species between regions (A) and among continents (B). In all cases the ratio is calculated by 567 

dividing the savanna value (averaged within either the region or continent) by the forest value. 568 

Significance of the interactions were determined by ANOVAs. A) Region-by-biome interaction 569 

for fire (F1,568=26.4, p<0.0001) and bark thickness (F1,568=26.0, p<0.0001). B) Continent-by-570 

biome interaction for fire (F4,562=4.54, p =0.0013) and bark thickness (F4,562=15.6, p<0.0001). 571 

For specific comparison among continents, see Table S4. 572 

Figure 3: Key role of environment in determining the relative bark thickness of plant 573 

species. A) Relative bark thickness of a species vs. the mean annual burned area of a species’ 574 

distribution across all species on log-transformed annual burned area and bark thickness data. 575 

Solid line represents model fit. Appropriate nonlinear fit determined using model selection 576 

(nonlinear fit AIC=1180, linear fit AIC=1209). Bark thickness of savanna and forest species vs. 577 

mean climate of a species’ distribution for precipitation in the driest quarter (B) and wettest 578 

quarter (C), solid line indicates fitted model relationship with the dashed lines indicating 95% 579 
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confidence intervals. Separate lines were fitted in (C) because of the significant climate-biome 580 

interaction. The complete model of annual burned area, precipitation, and biome explained 50% 581 

of variation in bark thickness. 582 

Figure 4: Savanna species have consistently thicker bark than their congeners. A) 583 

Comparison of bark thickness in species specializing in savannas vs. forests in the same genus 584 

across 32 genera containing 156 species. Scatter plots comparing the bark thicknesses of savanna 585 

vs. forest species within each genus (B) and family (C). Error bars are ±95% confidence 586 

intervals. The dashed line illustrates a 1-to-1 line. 587 

Figure 5: Heterogeneity in robustness. Global distribution of future fire regimes and the 588 

overlapping coefficient (OVL) comparing the difference in probability distributions of bark 589 

thicknesses between present day  and future conditions. A) relative change in annual burned area, 590 

expressed as the % of a gridcell burned, between the present day (based on 2001-2010 591 

observations) and the future (projections to 2070-2100). B) forecasted annual burned area for 592 

year the 2070-2100 period. C-D) OVL between present day and future trait distributions for 593 

forest (C) and savanna (D) communities. The spatial overlap of colored points in panels C and D 594 

results from the spatial proximity of savanna and forest biomes in those gridcells. Only gridcells 595 

projected to experience gains in fire frequency are mapped in panels C and D.   596 
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Figure 1:  597 
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Figure 2:  601 
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Figure 3:  603 
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Figure 4:  606 
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Figure 5:  610 
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Supplemental Information 614 

 615 

Different stem allometries and calculations 616 

Because absolute bark thickness is positively associated with stem diameter, and 617 

published studies have used different allometric equations to relate stem diameter with bark 618 

thickness, we calculated bark thickness for identically sized trees to allow for comparability. We 619 

calculated bark thickness at three stem diameters—10cm, 20cm, and 30cm. These diameters 620 

span the critical range of stem size over which trees are most vulnerable to topkill and comprise 621 

a large proportion of tree biomass in savannas and forests (Uhl & Kauffman 1990; Barlow et al. 622 

2003; Pellegrini et al. 2016). The consistency of our results across these stem diameters 623 

illustrates our results are robust to the number of different allometric relationships (power, linear, 624 

logarithmic, etc.) both across and within studies. 625 

Here, we calculate bark thickness based off of relationships determined between bark 626 

thickness and the stem diameter measured on the outside of the bark. One alternative way to 627 

calculate relative bark thickness is to relate bark thickness with the bole diameter of a stem (the 628 

diameter inside of the bark) (Midgley & Lawes 2016). We verified our results were robust to 629 

consideration of the ratio between bark and bole diameter by back calculating the bole diameter 630 

and calculating bark thickness on stems that were 10cm in bole diameter (we chose 10cm, 631 

because that is the primary size of our analysis). We found that in general bark thickness 632 

estimated from bole diameter was higher than from the outer bark, which tended to increase in 633 

thicker barked species (Fig. S3). However, the majority of our points have litter residual error 634 

and a partial re-analysis of the data illustrate that our qualitative results are not sensitive to 635 

whether bark thickness is calculated by outer stem size or bole stem size (Fig. S3).  636 
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Establishing differences in fire frequencies between biomes  637 

           Using data on fire from a longer time-series (GFED4, 1997-2015), we found that savanna 638 

species experienced a 9.2-fold higher frequency of burning than forest species, expressed as the 639 

average proportion of a grid-cell that burns each year (F1,569= 154.8, p<0.0001). The shorter fire 640 

time-series (2001-2010) corroborated these results as savanna species experienced a 5.4-fold 641 

higher frequency of burning than forest species (F1,570=187, p<0.0001) but also illustrated the 642 

potential that the longer fire product is biased against detecting fires in forests relative to 643 

savannas (inter-biome differences were twice as high when there were no corrections for small 644 

fires). Moreover, using GFED4, one species was categorized as experiencing no fire, likely due 645 

to the lack of small fire correction. Consequently we utilize the shorter time series to avoid 646 

detection bias in forests. 647 

 648 

Analyses in North America  649 

We complemented our analysis with a more detailed dataset specific to North America 650 

from the Fire Effects Information System (USDA, http://www.feis-crs.org/feis) that classifies 651 

species into multiple habitat types based on a synthesis of existing distribution data and 652 

knowledge. The FEIS is a searchable database of fire regime characteristics and habitat 653 

associations for plant species that occur in North America. Because habitat categorizations were 654 

descriptive (and not quantitative), we developed our own classification scheme to best determine 655 

savanna vs. forest species. This involved categorizing species as associating with (i) only forest 656 

habitats, (ii) >90% forest habitats, (iii) mixed between forest and woodlands/grasslands/ 657 

prairie/savanna, (iv) predominantly in woodlands/grassland/prairie/savanna. We then repeated 658 

our analyses comparing the two disparate categories as forest vs. savanna as well as the “mixed” 659 
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species. This allowed us to further test whether our assumption that species associate with more 660 

open vegetation (savannas and woodlands) experience fires more frequently than those with 661 

closed vegetation (mixed woodlands and forests). 662 

Incorporating newly classified species as savanna vs. forest specialists using the detailed 663 

habitat dataset yielded quantitatively similar results in our comparison between savannas and 664 

forests in North America (savannas species had 1.31-fold thicker bark in original classification 665 

vs. 1.37-fold thicker bark in detailed classification).  666 

We also used comparisons within North America to estimate potential effects of crown 667 

fire regimes influencing our results. Under the assumption that other traits such as reseeding, 668 

resprouting, and/or height allometry are more important than bark thickness, we would expect 669 

the relationship between fire and bark to be weak. Although we found that fire frequency was 670 

still a significant predictor of bark investment, fire only explained 7.6% of the deviance across 671 

species (Table S8), which is ~1/3 of its explanatory power in the global analysis (21.6%). Model 672 

selection illustrated two models that were within 2 AIC of one another. The model that explained 673 

the most deviance included fire frequency, precipitation in the driest quarter, and habitat (19.7% 674 

of variance explained). Consequently, fire frequency appears to be a less powerful, but still 675 

significant, predictor of bark thickness.  676 

Gymnosperm dominated forests in North America tend to be the forest types most prone 677 

to crown fires. Consequently, we compared the relative bark thickness of gymnosperm vs. 678 

angiosperm plant species as another indirect test of how crown fire regimes may be influencing 679 

the selection for bark thickness. We found no significant difference in relative bark thickness 680 

between gymnosperm vs. angiosperm tree species either across the entire dataset 681 

(F1,59=1.8,p=0.184) or within the subset of species that occurred primarily in forests (F1,39=1.0, 682 
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p=0.32), suggesting that different fire regimes may not influence the bark relationship heavily. 683 

However, we found no significant relationship between bark and fire frequency when we 684 

analyzed gymnosperms alone (F1,26=1.9,p=0.18). Further analysis revealed that the lack of a 685 

relationship between fire and bark thickness was dependent on the habitat of a species 686 

(fire*habitat interaction, F1,24=5.16, p=0.032); in other words, the relationship between fire and 687 

bark was weak in species that occurred only in forests and stronger in species that occurred in 688 

savannas. Consequently, species that occur in habitats more likely to experience crown fires have 689 

a weaker relationship between bark and fire, under the assumption that gymnosperm forests are 690 

more susceptible to crown fire than angiosperm forests or savannas.  691 

 692 

Statistical relationship between bark thickness, climate, and fire frequency  693 

Incorporation of GFED4 to determine the fire frequency of species’ distributions resulted 694 

in no significant qualitative changes to our model fit and selection analysis (Tables S6,S7).  695 

In all cases, we performed model selection to determine the most parsimonious 696 

combination of variables (using the lowest AIC with a threshold value of two). We tested for 697 

potential non-linear relationships between variables by comparing the AIC of non-linear and 698 

linear fits. Analyses were performed separately for bark thickness on standardized diameters of 699 

10, 20 and 30 cm, all of which yielded qualitatively similar results. Bark thickness and annual 700 

burned area were log-transformed prior to analysis to reduce heteroscedasticity.  701 

 702 

Congener comparison 703 
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We removed the Acacia genus given the taxonomic issues as well as those with species 704 

that occurred in fundamentally different habitats (e.g., Melaleuca forest trees specializing in 705 

swamps). 706 

 707 

Quantifying within-species variability in bark thickness allometries  708 

To assess whether within-species variability in bark thickness could impact our 709 

conclusions, we evaluated the error within bark thickness allometry relationships across the 710 

studies that presented goodness of fit measures. An analysis of the goodness of fit between stem 711 

diameter and bark thickness illustrated low error when assessing variability explained (mean: 712 

r2=0.77; median: r2=0.83; n=235 species) and the ratio of the standard error vs. slope of bark 713 

thickness ~ stem diameter relationship (ratio of SE/slope mean: 0.19; median: 0.16; n=151 714 

species). These errors are relatively minor when compared to the differences across biomes 715 

(Figure 1, Tables S2-S4). 716 

 717 

Spatial analyses of grid cell bark thickness means  718 

This involved summarizing traits, fire regimes, and climate conditions within 1ºx1º grid 719 

cells using the GBIF occurrence data. A model without considering different effects in biomes 720 

explained less of the variance and had a higher AIC than when considering biome (r2=0.39 vs. 721 

r2=0.57; AIC = 13038 vs. 10865). Consequently, we split the analysis into different biome 722 

categories and analyzed savanna and forest species trait means separately to avoid inflating the 723 

fire regime of forest species and deflating the fire regime of savanna species in ecotonal areas 724 

with high co-occurrence of the two biomes in spatial proximity (e.g. Fig.  1, South America and 725 

Australia).  726 
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Within biomes, a statistical model of the probability density of community as a function 727 

of fire and wet and dry quarter precipitation explained 33% and 35% of deviance in forest and 728 

savanna communities, respectively. There were significant non-linear relationships between bark 729 

thickness and climate variables (savanna, non-linear AIC: 3023.91, linear AIC: 3584.998; forest, 730 

non-linear AIC: 1702.902, linear AIC: 3160.667). These models were then used to project the 731 

bark thickness distributions under future conditions.  732 

 We also evaluated the potential for spatial autocorrelation affecting the model fit and 733 

results. To do so, we calculated the residuals from the model for each gridcell and performed a 734 

Moran’s I test. We found significant spatial autocorrelation for the savanna (p<0.0001) and 735 

forest (p<0.0001) models. To verify our results were robust to potential spatial autocorrelation 736 

we (i) compared our model with a model include latitude and longitude as an interactive effect 737 

and (ii) used a correlogram to determine the minimum distance for independence and fit the 738 

model on repeatedly resampled independent data. To evaluate the robustness of our model, we 739 

compared our model’s predictions with those of the resampled fittings. 740 

 Incorporating latitude and longitude as an interactive effect increased the explanatory 741 

power of the model (deviance explained: 68% in savanna and 45% in forests) and produced 742 

significantly similar predictions to the model without spatial effects (regression between 743 

predicted bark thickness: slope=1.004, r2=0.35, p<0.0001 in savanna and slope=1.000, r2=0.43, 744 

p<0.0001 in forests). Importantly, the predictions of the spatial distribution of bark thicknesses 745 

were qualitatively the same (e.g., savanna fit in Fig. S10).  746 

 Repeatedly fitting the model on resampled data sufficiently far apart to allow for 747 

independence also reproduced our results. The fitted values from the different re-sampling 748 

models (n=500 resample model fits) were significantly related to the global model fits for 749 
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savannas and forests: mixed effects model with iteration number as random effect, savannas:  750 

F1,4592=1806, p<0.0001; forests: F1,5605=13864, p<0.0001.   751 

 752 

Climate projections 753 

Models included are: BCC-CSM1-1, GFDL-CM3, HadGEM2-ES, MIROC-ESM, 754 

NorESM1-M. The model outputs are bias-corrected and calibrated using WorldClim 1.4 at 5-755 

minute resolution. We averaged forecasted values across all models within each grid cell. Future 756 

fire projections come from a recent output  of LPJ-GUESS-SIMFIRE (Knorr et al. 2015), which 757 

incorporates future climates, human populations, and fuel loads. The model projects changes in 758 

annual burned area to 2071-2100 assuming the RCP8.5 climate scenario. We chose this high 759 

emissions scenario to quantify an upper bound on potential changes in fire regimes. Because 760 

future fire projections rely on human factors (e.g. population growth, ignition sources, 761 

suppression), climate factors (e.g. rainfall, temperature, vapor pressure deficit), and vegetation 762 

itself, they inherently contain a large degree of uncertainty in the amount of annual burned area 763 

and the areas where it may change the most. Thus, we consider the potential sensitivity of our 764 

results to variation in projected climate conditions and examine qualitatively the potential 765 

influence of uncertainties in human factors on our findings based on published patterns (Knorr et 766 

al. 2015). To evaluate uncertainty across climate model projections, we used the standard 767 

deviation among climate model precipitation projections (CMIP5 outputs for 2070 RCP8.5 from 768 

BCC-CSM1-1, GFDL-CM3, HadGEM2-ES, MIROC-ESM, NorESM1-M.) to calculate “wet” 769 

(+1 standard deviation) and “dry” (-1 standard deviation) future scenarios.   770 

 771 

Uncertainties in future projections  772 



42 
 

The model forecasts used here focus on the upper bound scenarios for both changes in 773 

climate (RCP8.5) as well as fire (incorporates a high RCP8.5 scenario as well as high population 774 

growth).  775 

Although evaluation of the full variability in future climate and fire projections are out of 776 

the scope of this study, we evaluate uncertainties in our projections within gridcells. We evaluate 777 

the uncertainty by considering uncertainty in the climate projections of wet and dry season 778 

precipitation.  779 

To evaluate uncertainty within the climate projections we used the standard deviation in 780 

precipitation among the models (CMIP5 outputs for 2070 RCP8.5 from BCC-CSM1-1, GFDL-781 

CM3, HadGEM2-ES, MIROC-ESM, NorESM1-M.) to calculate a “wet” scenario by adding one 782 

standard deviation to the mean to for wet and dry season precipitation . Similarly, we calculated 783 

a “dry” scenario by subtracting one standard deviation from the mean.  784 

Similarly, because future fire projections rely on human factors (e.g. population growth, 785 

ignition sources, suppression), climate factors (e.g. rainfall, temperature, vapor pressure deficit), 786 

and vegetation itself, they inherently contain a large degree of uncertainty in the amount of 787 

annual burned area and the areas where it may change the most. Thus, we consider the potential 788 

sensitivity of our results by discussing the potential influence that uncertainties in human factors 789 

may have on our findings based on published patterns (Knorr et al. 2015). 790 

  791 
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Figure S1: Distribution of plant species used in the analysis taken from GBIF and amounting to 792 

578,071 observations. grey indicates areas where the species under consideration do not occur. 793 

 794 
  795 
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Figure S2: Schematic representing trait overlap to calculate robustness. Bark thickness 796 

distributions within a location calculated using present-day means in a grid cell combined with 797 
total variance in bark thickness. Future means are calculated by integrating projected fire and 798 
climate into the bark thickness ~ environment model. Variance in bark thickness is assumed 799 

constant. The integral under overlapping curves is the overlapping coefficient and we interpret it 800 
here to quantify robustness. Present-day mean bark thickness indicated by µBT0 and future mean 801 
bark thickness indicated by µBT1. 802 
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Figure S3: Sensitivity of our results to calculations of relative bark thickness based off of outer 805 

stem diameter from alternative calculations using the diameter from the stem bole (Midgley & 806 

Lawes 2016). All calculations were performed on stem diameters of 10cm. A) histogram of the 807 

residuals between the calculation of outer bark (non-bole) vs. bole. B) scatter plot of the two 808 

calculation methods with the solid line representing the 1:1 relationship. C and D) comparison 809 

between biomes across continents using the two different calculation methods of outer bark (C) 810 

and bole (D). Qualitative results using bole calculations were the same (NA: F1,103=6.57, 811 

p=0.0118; SA: F1,269=217, p<0.0001; AF: F1,36=5.15, p=0.0294; AU: F1,91=144.6, p<0.0001). 812 
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Figure S4: Global distribution of bark thickness across all species. Occurrence points were 818 

inverse distance weighted to create spatial averages within distances of 0.5 degrees around each 819 

observation point. Bark thicknesses correspond to trees with a reference stem diameter of 10 cm. 820 

Grey areas are locations where we do not contain data. 821 

 822 

 823 
  824 

Global distribution of bark thickness across biomes

15mm

10mm

5mm



47 
 

Figure S5: Bark thickness of 10cm diameter stems in savanna and forest biomes across 825 

continents. Letters indicate significant differences determined via Tukey HSD with correction for 826 

multiple comparisons (Table S4 for statistics). 827 
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Figure S6: Annual burned area and bark thickness across species specialized in different habitat 834 

types in North America. Bark thickness is evaluated for a stem 10 cm in diameter. Letters 835 

indicate significant differences among treatments evaluated using a Tukey HSD post-hoc at 836 

p<0.05. 837 
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Figure S7: Comparison of the relationship between burned area and bark thickness using the two 840 

different fire frequency datasets. GFED3s is based off of data from 2001-2010 and includes 841 

correction for small fires (20% of deviance explained). GFED4 is based off of data from 1996-842 

2015 but does not include correction for small fires likely leading to the lower-bound x-axis 843 

being smaller (20% of deviance explained). 844 
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Figure S8: A) Comparison of bark thickness in species specializing in savannas vs. forests in the 847 

same family. Error bars are ±95% confidence intervals. Rank order figure illustrates the 848 

distribution of bark thickness ratios (savanna / forest) with individual families (B) and genera 849 

(C), with the dashed line indicating 1.   850 
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Figure S9: Future changes in fire and bark thicknesses from modelled projections. A) future 855 

annual burned area for grid cells partitioned between savanna vs. forest species. B) absolute 856 

changes in bark thickness assuming model projections expressed as probability distributions; C) 857 

estimated proportion of individuals in an area containing the new bark thickness (only for cells 858 

which are projected to experience increased annual burned area).  859 
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Figure S10: Fitted model output of bark thickness in savannas using a model that either (A) 864 

includes latitude and longitude as model covariates or (B) only includes climate and fire.  865 
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Table S1: List of species, the studies that they were compiled from, their location, biome, and 867 

bark thicknesses. The bark thickness for a specific species in some cases came from multiple 868 

studies, which we averaged, but present the full dataset for the species available here. Attached. 869 

 870 

Table S2: Means and standard errors of bark thicknesses at particular stem sizes (10, 20, and 871 

30cm) in savanna and forest biomes (both global and across continents). Biome refers to the 872 

general biome a species was categorized into and location refers to the geographical grouping. 873 

Sample size is given for the 10cm comparison. 874 

 875 

 876   
# 10cm 

 
20cm 

 
30cm 

 

Biome Location species mean SE mean SE mean SE 

Forest Global 445 3.71 0.11 6.94 0.20 10.34 0.33 

 Tropical 329 3.42 0.12 6.46 0.24 9.43 0.36 

 Temperate 116 4.52 0.21 8.29 0.35 13.09 0.74 

Savanna Global 127 11.10 0.54 21.56 1.11 33.50 1.74 

 Tropical 110 11.80 0.58 23.20 1.20 34.53 1.83 

 Temperate 17 6.22 0.51 10.95 0.88 26.44 5.29 

Forest Africa 5 4.98 0.26 7.49 0.45 10.01 0.81  
Asia 60 2.97 0.14 5.72 0.27 8.43 0.42  

Australia 60 2.16 0.11 4.31 0.22 6.47 0.33  
North America 94 5.08 0.22 9.23 0.36 14.78 0.83  
South America 226 3.72 0.17 6.99 0.33 10.18 0.49 

Savanna Africa 33 8.64 0.68 15.91 1.48 22.99 2.31  
Asia 5 3.85 1.06 7.71 2.12 11.56 3.19  

Australia 33 11.37 1.22 22.74 2.44 34.11 3.66  
North America 11 6.96 0.63 11.63 1.21 33.56 7.60  
South America 45 14.40 0.82 28.80 1.65 43.20 2.47 

 877 

 878 

  879 
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Table S3: Statistical analyses comparing the effect of biome both globally and within continents. 880 

All models have log transformed bark thicknesses. Significance of including continent into 881 

biome model indicated by the “+” inclusions.  882   
10cm 20cm 30cm  

Df F p F p F p 
Biome 1,570 313 <0.0001 321 <0.0001 322 <0.0001 

 +Continent 4,562 18.8 <0.0001 15.2 <0.0001 20 <0.0001 
 +Continent:Biome 4,562 15.6 <0.0001 17.3 <0.0001 9.7 <0.0001 

Biome - Asia 1,63 1.03 0.31 1.5 0.22 1.71 0.19 
Biome - Africa 1,36 5.22 0.028 6.21 0.017 5.8 0.021 

Biome - Australia 1,92 149 <0.0001 149 <0.0001 149 <0.0001 
Biome - North America 1,107 7.78 0.006 4.8 0.031 24.4 <0.0001 
Biome - South America 1,287 194 <0.0001 211 <0.0001 215 <0.0001 

 883 

  884 
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Table S4: Bark thickness differences among continents. Comparison among biomes using Tukey 885 

HSD post-hoc test performed separately within each biome. Difference refers to the difference 886 

between means (statistics performed on log transformed bark thickness data for 10cm stems). 887 

 888 

Comparison Forest Savanna 

 Diff p value Diff p value 

Asia-Africa -0.57 0.178 -0.86 0.014 

Australia-Africa -0.90 0.004 0.11 0.923 

NorthAmerica-Africa -0.06 0.999 -0.18 0.895 

SouthAmerica-Africa -0.50 0.270 0.53 <0.001 

Australia-Asia -0.34 0.008 0.97 0.004 

NorthAmerica-Asia 0.50 <0.001 0.68 0.160 

SouthAmerica-Asia 0.07 0.910 1.38 <0.001 

NorthAmerica-Australia 0.84 <0.001 -0.29 0.574 

SouthAmerica-Australia 0.41 <0.001 0.41 0.014 

SouthAmerica-NorthAmerica -0.44 <0.001 0.70 0.003 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 
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Table S5: Statistical results from generalized additive models between log bark thickness, fire, 900 

climate, and biome using model selection on stems 20cm and 30cm in size. Dev refers to percent 901 

deviance explained. The best fit models are highlighted in bold, we utilized the most 902 

parsimonious of the two.  903 

 904 

Variables included AIC 20cm Dev 20cm AIC 30cm Dev 30cm 

Mean_fire+Precip_Wetq*Biome+Precip_Dryq*Biome 940 49.7% 993 48.0% 

Mean_fire+Precip_Wetq*Biome+Precip_Dryq 941 49.4% 991 48.0% 

Mean_fire+Precip_Wetq+Precip_Dryq*Biome 976 46.2% 1027 45.2% 

Mean_fire+Precip_Wetq+Precip_Dryq+Biome 980 45.8% 1026 44.5% 

Precip_Wetq+Precip_Dryq+Biome 980 45.5% 1024 44.4% 

Mean_fire+Precip_Dryq+Biome 988 42.3% 1033 43.5% 

Mean_fire+Precip_Wetq+Biome 1014 39.9% 1056 41.3% 

Mean_fire+Biome 1053 38.1% 1091 37.4% 

Biome 1068 36.0% 1096 36.5% 

Mean_fire+Precip_Wetq+Precip_Dryq 1088 34.3% 1147 31.2% 

Mean_fire 1189 21.1% 1240 18.1% 

 905 
 906 
 907 
 908 
  909 
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Table S6: Using GFED4 to characterize environmental conditions that determine bark 910 

thickness. Statistical results from generalized additive models between log bark thickness (for 911 

stems 10cm in size), fire, climate, and biome using model selection. Dev refers to deviance 912 

explained. Mean_fire = annual burned area, Precip_Wetq = precipitation in the wettest quarter, 913 

Precip_Dryq = precipitation in the driest quarter, Biome = biome a species specialized in (either 914 

savanna or forest). The best fit models are highlighted in bold, we utilized the more 915 

parsimonious of the two. 916 

 917 

Variables included Dev  AIC 

Mean_fire+Precip_Wetq*Biome+Precip_Dryq*Biome 49.8% 784.654 

Mean_fire+Precip_Wetq*Biome+Precip_Dryq 49.6% 785.1415 

Mean_fire+Precip_Wetq+Precip_Dryq*Biome 47.2% 807.0707 

Mean_fire+Precip_Wetq+Precip_Dryq+Biome 46.6% 809.7317 

Precip_Wetq+Precip_Dryq+Biome 46.6% 810.6547 

Mean_fire+Precip_Dryq+Biome 45.1% 823.489 

Mean_fire+Precip_Wetq+Biome 43.3% 838.3743 

Mean_fire+Biome 39.2% 869.499 

Biome 36.5% 888.4946 

Mean_fire+Precip_Wetq+Precip_Dryq 33.0% 916.2993 

Mean_fire 19.2% 1001.298 

 918 
 919 

  920 
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Table S7: Using GFED4 to characterize environmental conditions that determine bark 921 

thickness. Statistical results from generalized additive models between log bark thickness, fire, 922 

climate, and biome using model selection on stems 20cm and 30cm in size. Dev refers to percent 923 

deviance explained. The best fit models are highlighted in bold, we utilized the most 924 

parsimonious of the two. 925 

 926 

Variables included AIC 20cm Dev 20cm AIC 30cm Dev 30cm 

Mean_fire+Precip_Wetq*Biome+Precip_Dryq*Biome 789.79 49.4% 997.90 47.5% 

Mean_fire+Precip_Wetq*Biome+Precip_Dryq 790.30 49.2% 998.88 47.5% 

Mean_fire+Precip_Wetq+Precip_Dryq*Biome 815.84 46.4% 1032.13 44.0% 

Mean_fire+Precip_Wetq+Precip_Dryq+Biome 817.92 45.9% 1033.71 44.0% 

Precip_Wetq+Precip_Dryq+Biome 819.6 45.8% 1035.67 43.9% 

Mean_fire+Precip_Dryq+Biome 826.09 45.0% 1040.80 43.2% 

Mean_fire+Precip_Wetq+Biome 849.79 42.1% 1060.54 41.2% 

Mean_fire+Biome 870.78 39.3% 1082.00 38.8% 

Biome 885.32 37.2% 1095.02 37.2% 

Mean_fire+Precip_Wetq+Precip_Dryq 931.79 31.0% 1165.29 29.2% 

Mean_fire 1007.84 18.4% 1253.13 17.0% 

 927 
 928 
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Table S8: Analysis within North America. Statistical results from generalized additive models 931 

between log bark thickness (for stems 10cm in size), fire, climate, and biome using model 932 

selection. Dev refers to deviance explained. Mean_fire = annual burned area, Precip_Wetq = 933 

precipitation in the wettest quarter, Precip_Dryq = precipitation in the driest quarter, Biome = 934 

biome a species specialized in (either savanna or forest). The best fit models are highlighted in 935 

bold, we utilized the more parsimonious of the two. 936 

 937 

Variables included Dev  AIC 

Mean_fire+Precip_Wetq+Precip_Dryq 17.40% 110.6098 

Mean_fire+Precip_Dryq+Biome 19.70% 111.6916 

Mean_fire+Precip_Wetq+Precip_Dryq+Biome 20.30% 112.8949 

Mean_fire+Precip_Wetq*Biome+Precip_Dryq 22.60% 115.8903 

Mean_fire+Precip_Wetq+Precip_Dryq*Biome 21.20% 117.6691 

Mean_fire 7.57% 118.1583 

Mean_fire+Biome 11.20% 119.9901 

Mean_fire+Precip_Wetq*Biome+Precip_Dryq*Biome 23.50% 120.6815 

Mean_fire+Precip_Wetq+Biome 11.30% 121.9151 

Biome 7.57% 122.1543 

Precip_Wetq+Precip_Dryq+Biome 9.33% 124.1714 

 938 


