
EuroGP-2017, M. Castelli and J. McDermott and L. Sekanina Eds., LNCS, Amsterdam,
19-21 April, Springer. Publisher policy allows this work to be made available in this
repository; The final publication is available at Springer via http://
dx.doi.org/10.1007/978-3-319-55696-3_7

Visualising the Search Landscape of the
Triangle Program

William B. Langdon and Nadarajen Veerapen and Gabriela Ochoa

CREST, Computer Science, UCL, London, WC1E 6BT, UK
Computing Science and Mathematics, University of Stirling, FK9 4LA, UK

Abstract. High order mutation analysis of a software engineering bench-
mark, including schema and local optima networks, suggests program
improvements may not be as hard to find as is often assumed. 1) Bit-
wise genetic building blocks are not deceptive and can lead to all global
optima. 2) There are many neutral networks, plateaux and local optima,
nevertheless in most cases near the human written C source code there
are hill climbing routes including neutral moves to solutions.

Keywords genetic improvement, genetic algorithms, genetic program-
ming, software engineering, heuristic methods, test equivalent higher or-
der mutants, fitness landscape, local search

Fig. 1. Local optima network of the Triangle Program using 100 random starts
(see Section 4.4). Edges are coloured if they start and end at the same fitness.
Insert shows fitness levels edge on. Best (bottom) red 0 (pass all tests), pink 1
(fail only one test), green 2, purple 3, orange 4, brown 5.

1 Genetic Improvement

Genetic Improvement [1,2,3] can be thought of as the use of Search Based Soft-
ware Engineering (SBSE) [4] techniques, principally genetic programming [5,6,7],
to the optimisation of existing (human written) software. GI is often applied

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/77612365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.evostar.org/2017/cfp_eurogp.php
http://www.cs.ucl.ac.uk/staff/W.Langdon/
http://www.cs.stir.ac.uk/~nve/
http://www.cs.stir.ac.uk/~goc/
http://crest.cs.ucl.ac.uk/
http://www.stir.ac.uk/natural-sciences/

to non-functional properties of software but perhaps it is most famous for im-
proving program’s functionality, e.g. by removing bugs [8,9,10,11,12,13,14,15,16]
or adding to its abilities [17,18,19,20,21,22]. Non-functional improvements that
have been considered or results reported include: faster code [23,24], code which
uses less energy [25,26,27,28,29,30,31,32,33,34] or less memory [35], and auto-
matic parallelisation [36,37,38] and automatic porting [39] and embedded sys-
tems [40,41,25,42,43,44,45] as well as refactorisation [46], reverse engineering [47,48]
and software product lines [49,50]. There is very much a GI flavour in the air
with a three-fold increase in GI publications (as measured by GI papers in the
genetic programming bibliography) since the first GI workshop [51] was first
mooted (October, 7 2014)1. Nonetheless there remains a deal of scepticism in
software engineering circles.

One criticism of genetic improvement is that the results are empirical and
there is little theoretical underpinning [52]. One of the prejudices holding back
software engineering is the assumption that software is fragile. It has been shown
in a small number of cases that this fear has been overplayed. Whilst many
mutations are highly deleterious, in the few cases reported, many others are
not [53]. If presented differently, this idea is not news to software engineers: the
failure of software engineering to widely adopt mutation testing [54] is in part
due to the presence of many equivalent mutants. But an equivalent mutant is
simply a mutation which has no effect, which is exactly what GI has reported!
Until recently [55] mutation testing rarely considered more than one change to
the source code at a time, whereas GI typically allows high order mutations
(which make multiple changes simultaneously). We consider up to 17th order
mutations.

Mostly genetic improvement considers mutations to source code (typically
C, C++ or Java [56]) but similar empirical results have been reported at byte
code [57], assembly [58] and indeed machine code [59,60] levels.

Due to the dearth of theoretical genetic improvement analysis, we shall study
the GI search landscape [61,62]. Although small (39 lines of C code) we chose
the Triangle Program as it is a well known software engineering benchmark
and we have used it with mutation testing [55]. Briefly, in mutation testing [54]
errors (mutations) like those a human programmer might make are deliberately
injected into the program to see if the program’s test suite can detect them.
Our mutations were to replace numeric comparison operators, e.g., replace ==

with <=. In the next section we describe a cut down version where there are only
two choices for each of the seventeen comparison sites in the Triangle Program.
Section 3 presents a schema [63] analysis of the simplified landscape which shows
none of the high order schema are deceptive [64]. This suggests that it might be
easy for a genetic algorithm (GA) to find solutions. (Section 4.2 adds to this by
showing none are strongly deceptive when larger moves are allowed.) We also
see (Section 3.3) that there are large plateaux where neighbours have identical
fitness.

1 http://geneticimprovementofsoftware.com/?page id=13 (accessed Oct, 9 2016)

2

http://geneticimprovementofsoftware.com/?page_id=13

Section 4 returns to allowing all six possible C numeric comparison opera-
tions and shows that although solutions are extremely rare, the vastly increased
search space is still easy for genetic improvement in the sense that a local search
hill climbing algorithm can reach a global optima from almost any low order
mutation provided neutral moves are allowed. In contrast search from a random
point seldom finds a program that can pass all the test cases. This supports the
idea that genetic improvement, where search may start near the good part of the
search space, is easier than GP, where search may start from a random point.

2 Triangle Program Software Engineering Benchmark

The Triangle Program is well studied software engineering benchmark. It can be
thought of as a model of unit testing. It classifies triangles as scalene, isosceles,
equilateral or not a triangle. We have previously used it to study high order mu-
tation, concentrating particularly on injecting faults which change the numeric
comparison operators (<, <=, ==, !=, => and >) [55]. We now consider mutation of
all 17 of the comparison operators in the Triangle Program as a genetic algorithm
fitness landscape. Taking as our fitness the number of tests [55, Tab. 2] which
the modified code fails. A test equivalent mutant is one that passes all the tests
and so has the best fitness value, which is zero. We consider all possible simulta-
neous changes. For the Triangle Program there are 617 − 1 = 16 926 659 444 735
mutations, of which 9215 are test equivalent, i.e. pass all the test cases.

3 Binary Representation:
Replacing Comparisons with One Alternative

At first, instead of allowing all possible combinations, we study allowing each
numerical comparison in the Triangle Program to be replaced by only one other.
Table 1 is taken from [55]. It shows hard to detect mutations of the Triangle
Program. The source code of the unmutated Triangle Program contains only <=,
== and > comparisons. The last three lines of Table 1 gives their replacements in
the commonest lower order hard to detect mutations. In mutation testing these
mutations are known as the hardest to “kill”. Therefore the substitutions given
in last three lines of Table 1 are the ones we use. Since there are six comparison
operators and 17 potential mutation sites, this reduces the search space from 617

to 217. (We shall return to the original problem in Section 4.) We evaluate all
possible mutants.

3.1 High Order Binary Schema are Not Deceptive

There are 2048 global optima (shown in white in Figure 2). On average each
mutant fails only 4.344 ±1.360 tests. The worst mutant only fails six of the 14
tests (Figure 3).

3

Table 1. Hardest to detect mutations
of the Triangle Program [55, Fig. 3].
The first column contains the number
of times the individual changes shown
appear in 1st, 2nd, 3rd and 4th order test
equivalent mutations.

Table 2. Mean and standard devia-
tion of number of tests failed for high-
est order binary schema of the Trian-
gle Program (excluding 22 with average
means). Last column is estimated pop-
ulation size needed for a random sample
to distinguish between competing pairs
of schema.

354 == replaced by >=

576 <= replaced by <

708 == replaced by <=

1062 > replaced by !=

1992 <= replaced by ==

-4 3.719 ±1.328 1.9
4 4.969 ±1.075

-5 4.062 ±1.478 4.7
5 4.625 ±1.166

-6 3.812 ±1.509 2.4
6 4.875 ±0.927

-11 3.438 ±1.273 1.1
11 5.250 ±0.661

-14 4.312 ±1.424 43.5
14 4.375 ±1.293

-16 4.188 ±1.550 8.6
16 4.500 ±1.118

Of the 34 high order schema2, 22 have exactly average fitness and contain
exactly half the global optima. The other 12 schema either contain no solutions
or all of them. In the six schema which contain solutions, on average individuals
are better than the average of the whole space. In the other six, the schema
average is worse than the average of the whole space. That is, 22 schema have
no signal and the remaining 12 are not deceptive. In the best schema (i.e. -11)
mutants pass on average 1.813 ±1.015 more tests than its opposite (11) (see also
Table 2).

3.2 Binary Schema Predict All Solutions of the Triangle Program

As the previous section showed, there are twenty two 16-order schema that have
exactly average fitness. These correspond to 22/2 = 11 variable gene locations.
I.e. locations of *s, where either alternative can be used. Together they can be
represented as a 17 − 11 = 6th order schema by taking their union. This sixth
order schema is shown in Table 3. These 11 * (don’t cares) give 2048 combinations
(211 = 2048) each of which is one of the solutions!

An alternative way of looking at this is, once we fix the six mutation sites in
the C source code corresponding to the better than average schema in Table 2
we are free to mutate all the others (using our restricted mutation operator, last
three rows of Table 1) and the new program will return the correct answer for
all of the tests (Table 3).

2 A 16th order schema has 16 defined positions [64, page 29], and one variable * position
(length = 17). Whereas a 1st order mutation is identical to the original except for
one change.

4

0
1
2
3
4
5
6

Fig. 2. Fitness landscape of binary comparison improvement of Triangle Pro-
gram. First 9 bits (512) horizontal, last 8 bits (256) vertical. 2048 test equivalent
mutants (fitness=0) in white. The regular pattern of individuals with the same
fitness indicates short building blocks. E.g. the vertical strips 8 pixels wide in-
dicates the first three bits do not impact fitness. In contrast the last but one bit
divides the figure into four horizontal stripes, two contain 50 176 mutants which
fail 4 or more tests (dark pixels) whilst the others hold all the solutions (white).
Fitness distance correlation is 0.45

Table 3. 6th order binary schema giving 2048 test equivalent mutations of the
Triangle Program. * indicates don’t care but a 0 (or 1) means that only the one
numeric comparison shown in the next row can be used. The bottom two rows
gives the 211 alternatives (for the 17 − 6 = 11 *s) which pass all the tests.

Position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Schema * * * 0 0 0 * * * * 0 * * 0 * 0 *

Code
<= <= <=

== == ==
== <= <= <=

>
== >

==
>

==
>

== == == <= == == == <= != != !=

3.3 Local Search Landscape of the Binary Space

After full enumeration, we modelled the corresponding landscape as a network,
with nodes being mutants and edges linking mutants with only one difference
between them. Plateaus, i.e. a connected collection of solutions with the same
fitness, were identified using code adapted from [65], giving Figure 4. In Figure 4
each rectangular box is a plateau of mutants, whose width is proportional to the
number of mutants. Lines between boxes indicate pairs of mutants which differ
only by a single bit flip. An edge’s width is proportional to the number of such
mutants. In the context of this simplified binary version, all mutants can reach
at least one other mutant that fails fewer test cases in a single step. There is
therefore no point in traversing any plateau to try to escape it.

5

 0
 2048

10240(5)

18432(9)

24576(12)

49152(24)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u
m

b
e
r

o
f

b
in

a
ry

 m
u

ta
n
ts

Tests failed

mean 4.34

1.36

Fig. 3. Fitness distribution in the binary comparison version of the Triangle
Program. Gaussian fit to mean and standard deviation shown in background.

0
1

2
3

4
5

6

F
itn

es
s

(f
ai

le
d

te
st

 c
as

es
)

Fig. 4. Plateaux and their connections in the landscape of the binary comparison
version of the Triangle Program.

4 Original All Comparisons

Sections 2 and 3 described how in [52] we simplified the Triangle Program Soft-
ware Engineering benchmark to ease analysis of its schema and fitness landscape.
From here on we return to the original formulation [55]. Next we evaluate all
possible mutations (Figures 5–8). In Section 4.2 we repeat the binary schema
analysis and find when larger moves are allowed there may be deceptive schema.
In Section 4.3 we run a local hill climber both, from every part of the search
space near the original program, and from samples of higher order mutations,
and show that improvements are easy to find. Finally in Section 4.4 we use an-
other local iterated search, which alternates between hillclimbing and random
moves, to map the local optima network, see also Figure 1 (page 1).

6

 0

 2e+12

 4e+12

 6e+12

 8e+12

 1e+13

 1.2e+13

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b
e

r
o

f
6

-w
a
y
 m

u
ta

n
ts

Number of tests failed

mean 5.42

 1.05

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+13

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

N
u

m
b
e

r
o

f
6

-w
a
y
 m

u
ta

n
ts

Number of tests failed

Fig. 5. Fitness distribution of all 16 926 659 444 735 possible comparison muta-
tions of the Triangle Program. Note most (78%) mutants fail five tests which
corresponds with the peak in the two options only subspace, Figure 3. Right:
same data plotted on log scale. Considering all six comparison operations in-
creases the number of changes which still pass the whole test suite from 2048 to
9215.

4.1 Fitness Space of Triangle Program
We evaluated the whole of the search space. If we compare the results in Figure 5
with the same data for the binary subset (Figure 3) we see:

– Firstly the space is vastly bigger.
– The number of global solutions increases by a factor of 4.5 to 9215. However

as a fraction of the total search space it becomes tiny (5 10−10) so random
or brute force search are ineffective.

– However the overall shape of the distribution of fitness values of high order
mutations remains similar. (The mean increases slightly from 4.34 to 5.42
and the standard deviations are similar, 1.36 v. 1.05 in the full search space.)
Note, for example, in both cases there is a large peak of mutated programs
that fail exactly five tests. Indeed most mutants still pass most tests.
As we shall see in Section 4.3, the large fraction of the search space with

fitness of exactly five contributes to a huge neutral network. That is, there
are many neighbouring programs (i.e. they differ in exactly one comparison)
which fail exactly the same number of tests.

– The fraction of mutants which fail more than half the tests remains low
(albeit finite rather than zero). Indeed only 40 in a million randomly sampled
mutations fail all fourteen tests (right end side Figure 5).

– Considering only first order mutations (Figure 6), 16% pass all the tests.
Indeed, as with the smaller search space (shown with dashed line in Figure 6)
most programs with only one change fail no more than two tests.

4.2 High Order Schema Analysis
There are 17×6 = 102 16-order schema. We estimated their fitness by randomly
sampling each one a million times. The results are given in Table 4 and Figure 7.
Whereas when considering only two options (Section 3.1, Table 2) in eleven of the

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

F
ra

c
ti
o
n

 o
f

fi
rs

t
o
rd

e
r

m
u
ta

n
ts

Number of tests failed

6-way
Binary

 0

 3072

 4607

 9215

 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8

N
u

m
b
e

r
o

f
6

-w
a
y
 g

lo
b

a
l
o

p
ti
m

a

Six comparisons high order schema mean fitness

 mean = 5.4209

Fig. 6. Fitness distribution of all
85 possible first order comparison
mutations of the Triangle Program.
(I.e. rescaled leftmost line of Figure 8)
Corresponding data for the binary ver-
sion of the search space shown plotted
with dashed line for comparison.

Fig. 7. Fitness of all 102 high order
schema and the number of solutions
they contain for the Triangle Program
with six comparison mutations. Schema
contain either none, 1/3, 1/2 or all the
solutions. Vertical noise added to sep-
arate data. All 16-schema containing a
solution have fitness > mean − 0.0368.

17 mutation sites both alternative schema had the same average fitness, in only
three locations (4, 5 and 6) might all six schema be said to be within sampling
noise of the mean fitness of the whole space. Now that we are considering moves
that take us further from the original code, we do find weakly deceptive schema.
For locations 11, 12, 14, 15 and 17, although none of the 5×6 = 30 schema differ
strongly from the average, all of the solutions occur in below average schema. (See
cluster in centre of Figure 7.) Also in three more locations (3, 8 and 9), although
one or more schema containing solutions are above average, the strongest schema
does not contain any solutions. Only in the first two locations is there a strong
signal (i.e. > 0.1) leading to any of the solutions. In the remaining four locations
(7, 10, 13 and 16) there are solutions in above average schema, but there isn’t a
strong signal leading to any of them.

4.3 Local Search for the Triangle Program

Since all first order mutations are by definition one move away from a solution,
in all cases it is possible to hillclimb from any 1st order mutation to a solution
(Figure 9). In the case of 2nd order mutations, a hill climber can find a program
which passes all the test cases in all but two cases (both these local optima fail
two tests). For third order there are 133 (0.15% of 3rd order mutations) and for
4th 3623 (0.24%) points in the search space from which a solution cannot be
reached by hill climbing. For 5th and 6th its about 4%, after which the fraction
of higher order mutations from which a solution can be reached progressively
falls towards zero. Even so in most cases a program which fails only one or two
test cases can be found by hill climbing. I.e., in almost all cases hill climbing can
improve a mutant from failing five test cases to failing two (Figures 8 and 9).

8

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 0
 1

 2
 3

 4
 5

 6
 7

 8
 9

 10
 11

 12
 13

 14

 0

 5e+11

 1e+12

 1.5e+12

 2e+12

 2.5e+12

 3e+12

 3.5e+12

Number of 6-way mutants

6-mutation order

Number of tests failed

Number of 6-way mutants

Fig. 8. Fitness distribution of all 16 926 659 444 735 possible comparison muta-
tions of the Triangle Program. (Summary data plotted in Figure 5.) Values above
109 plotted in bold. 39% of mutations are either 14th or 15th order which fail
five tests, whilst the fitness distance correlation is near zero at -0.070837.

4.4 Local Optima Networks

Local optima networks are a compact representation of fitness landscapes that
can be used for analysis and visualisation [66]. A solution is a local optimum
if none of its neighbours have a better fitness value. A full enumeration of the
local optima for the Triangle Program is clearly unmanageable. The networks
are therefore based on a sample of high-quality local optima in the search space.
This is much more of a practical search algorithm than in the previous section,
where we treat finding any hill climbing route to a solution as a problem of
searching a directed graph and so we include backing up and trying again if it
appears no forward progress is possible.

The sampling algorithm is an Iterated Local Search (ILS) which starts from
a locally optimal solution and then alternates between a random mutation and
a best-improvement hill-climber. The termination criterion is a fixed number of
iterations. At each hill climbing step, only non-worsening local moves are ac-
cepted. Both the hill-climber and mutation consider the immediate neighbour-
hood, i.e, a program which differs only in a single comparison.

Edges are directed and based on the mutation operation. There is an escape
edge from local optimum i to local optimum j if j is obtained from the mutation
of i followed by hill-climbing. The local optima network is the graph where the
nodes are the local optima and the edges are the escape edges.

To sample the local optima, we ran an ILS, from 1000 random starting points,
with a budget of 10 000 iterations. This generated 2 372 805 unique local minima.
Figure 10 presents the proportion of those runs that find a solution that passes
all test cases. Figure 10 shows that in many cases the landscape can be easily
traversed to reach solutions that pass all test cases.

9

Table 4. Average fitness of high order schema and number of solutions they
contain for all six comparisons in the Triangle Program. See also Figure 7

Schema mean sd above average Sol
1 < 5.843567 1.423400 0.4227 ±0.0014 3072
1 <= 5.727581 1.349277 0.3067 ±0.0013 3071
1 == 5.726547 1.349000 0.3056 ±0.0013 3072
1 != 5.114173 0.318021 -0.3067 ±0.0003 0
1 >= 5.000000 0.000000 -0.4209 ±0.0000 0
1 > 5.113825 0.317599 -0.3071 ±0.0003 0
2 < 5.842667 1.471239 0.4218 ±0.0015 3072
2 <= 5.614215 1.319723 0.1933 ±0.0013 3071
2 == 5.616813 1.323260 0.1959 ±0.0013 3072
2 != 5.228102 0.473518 -0.1928 ±0.0005 0
2 >= 5.000000 0.000000 -0.4209 ±0.0000 0
2 > 5.228345 0.473535 -0.1926 ±0.0005 0
3 < 5.840933 1.576470 0.4200 ±0.0016 0
3 <= 5.499540 1.233664 0.0786 ±0.0012 4607
3 == 5.500957 1.236198 0.0801 ±0.0012 4608
3 != 5.343792 0.582205 -0.0771 ±0.0006 0
3 >= 5.000000 0.000000 -0.4209 ±0.0000 0
3 > 5.342161 0.582014 -0.0787 ±0.0006 0
4 < 5.421830 1.059801 0.0009 ±0.0011 0
4 <= 5.421768 1.041495 0.0009 ±0.0010 0
4 == 5.419896 1.025397 -0.0010 ±0.0010 9215
4 != 5.422214 1.078773 0.0013 ±0.0011 0
4 >= 5.421401 1.050374 0.0005 ±0.0011 0
4 > 5.420884 1.038998 -0.0000 ±0.0010 0
5 < 5.421382 1.060194 0.0005 ±0.0011 0
5 <= 5.421160 1.033338 0.0003 ±0.0010 0
5 == 5.420832 1.012703 -0.0001 ±0.0010 9215
5 != 5.420481 1.085840 -0.0004 ±0.0011 0
5 >= 5.420653 1.051449 -0.0002 ±0.0011 0
5 > 5.419979 1.044165 -0.0009 ±0.0010 0
6 < 5.419947 1.040180 -0.0010 ±0.0010 0
6 <= 5.418500 1.017661 -0.0024 ±0.0010 0
6 == 5.420138 1.021691 -0.0008 ±0.0010 9215
6 != 5.421374 1.094645 0.0005 ±0.0011 0
6 >= 5.420922 1.058717 0.0000 ±0.0011 0
6 > 5.420671 1.048630 -0.0002 ±0.0010 0
7 < 5.716858 1.387539 0.2960 ±0.0014 0
7 <= 5.641402 1.279383 0.2205 ±0.0013 4608
7 == 5.643428 1.283482 0.2225 ±0.0013 4607
7 != 5.200235 0.626614 -0.2207 ±0.0006 0
7 >= 5.125798 0.485354 -0.2951 ±0.0005 0
7 > 5.199680 0.624128 -0.2212 ±0.0006 0
8 < 5.482451 1.101441 0.0616 ±0.0011 0
8 <= 5.437518 1.066325 0.0166 ±0.0011 4607
8 == 5.436342 1.063603 0.0154 ±0.0011 4608
8 != 5.406059 1.027887 -0.0148 ±0.0010 0
8 >= 5.358139 0.993148 -0.0628 ±0.0010 0
8 > 5.404727 1.026829 -0.0162 ±0.0010 0
9 < 5.467923 1.101697 0.0470 ±0.0011 0
9 <= 5.406438 1.051033 -0.0145 ±0.0011 4607
9 == 5.419790 1.052137 -0.0011 ±0.0011 4608
9 != 5.420790 1.035139 -0.0001 ±0.0010 0
9 >= 5.373288 0.997365 -0.0476 ±0.0010 0
9 > 5.437700 1.045860 0.0168 ±0.0010 0

Schema mean sd above average Sol
10 < 5.481349 1.104830 0.0604 ±0.0011 0
10 <= 5.422098 1.055740 0.0012 ±0.0011 4607
10 == 5.421187 1.056004 0.0003 ±0.0011 4608
10 != 5.419925 1.032951 -0.0010 ±0.0010 0
10 >= 5.357749 0.994258 -0.0632 ±0.0010 0
10 > 5.420015 1.033797 -0.0009 ±0.0010 0
11 < 5.385125 0.943758 -0.0358 ±0.0009 0
11 <= 5.455657 1.102885 0.0348 ±0.0011 0
11 == 5.349893 0.897228 -0.0710 ±0.0009 0
11 != 5.493383 1.185560 0.0725 ±0.0012 0
11 >= 5.457862 1.142620 0.0370 ±0.0011 0
11 > 5.384137 0.979864 -0.0368 ±0.0010 9215
12 < 5.401587 1.013621 -0.0193 ±0.0010 0
12 <= 5.407264 1.023709 -0.0136 ±0.0010 4608
12 == 5.399789 1.014724 -0.0211 ±0.0010 4607
12 != 5.440903 1.078283 0.0200 ±0.0011 0
12 >= 5.439726 1.081894 0.0188 ±0.0011 0
12 > 5.435198 1.072511 0.0143 ±0.0011 0
13 < 5.393600 1.005139 -0.0273 ±0.0010 0
13 <= 5.420620 1.052961 -0.0003 ±0.0011 0
13 == 5.419422 1.051208 -0.0015 ±0.0011 0
13 != 5.421373 1.044389 0.0005 ±0.0010 4608
13 >= 5.446829 1.087792 0.0259 ±0.0011 0
13 > 5.421251 1.042247 0.0004 ±0.0010 4607
14 < 5.407715 1.022905 -0.0132 ±0.0010 0
14 <= 5.413683 1.033827 -0.0072 ±0.0010 0
14 == 5.400401 1.016918 -0.0205 ±0.0010 9215
14 != 5.441626 1.079657 0.0207 ±0.0011 0
14 >= 5.433470 1.069622 0.0126 ±0.0011 0
14 > 5.426515 1.057726 0.0056 ±0.0011 0
15 < 5.394988 1.007207 -0.0259 ±0.0010 0
15 <= 5.429938 1.064344 0.0090 ±0.0011 0
15 == 5.430083 1.064206 0.0092 ±0.0011 0
15 != 5.410615 1.028593 -0.0103 ±0.0010 4608
15 >= 5.448421 1.090379 0.0275 ±0.0011 0
15 > 5.410818 1.030977 -0.0101 ±0.0010 4607
16 < 5.414233 1.035495 -0.0067 ±0.0010 0
16 <= 5.426977 1.059495 0.0061 ±0.0011 0
16 == 5.407243 1.030172 -0.0137 ±0.0010 4607
16 != 5.434739 1.066421 0.0138 ±0.0011 0
16 >= 5.427646 1.060224 0.0067 ±0.0011 4608
16 > 5.414871 1.035411 -0.0060 ±0.0010 0
17 < 5.404515 1.012176 -0.0164 ±0.0010 0
17 <= 5.438065 1.070895 0.0172 ±0.0011 0
17 == 5.430419 1.063981 0.0095 ±0.0011 0
17 != 5.410146 1.028519 -0.0108 ±0.0010 4608
17 >= 5.439023 1.080056 0.0181 ±0.0011 0
17 > 5.403619 1.026794 -0.0173 ±0.0010 4607

In Figure 11, the fitness and Hamming distance of each local minima to the
unmutated Triangle Program is presented as a sunflower plot. We can observe
that solutions need to maintain some similarity to the original program to pass
all test cases. In addition, almost all local optima pass > 50% of the test cases.

10

 1
 2

 3
 4

 5
 6

 7
 8

 9
 10

 11
 12

 13
 14

 15
 16

 17

 0

 1

 2

 3

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Fraction

Mutation order

Tests failed after local search

Fraction

Fig. 9. Best fitness reached by local search hillclimber starting from high order
mutations. + non-zero value. Up to 9th order mutations, in most cases a pro-
gram which passes all the tests can be found. (Data by enumerating 1–4th order
mutations and sampling others, more than 1.5 1012 fitness evaluations.)

0 2000 4000 6000 8000 10000

0.
0

0.
4

0.
8

Iterations

S
uc

ce
ss

Fig. 10. Proportion of 1000 Iterated Local Search (ILS) runs that find a solution
that passes all test cases versus the number of iterations.

Figure 1 (page 1) shows the local optima network obtained from observing
a subset of the sampling described before. We only consider 100 ILS runs and
their first 1000 iterations. Since this process generated more than 60 000 nodes
and edges, only the edges are plotted for the sake of clarity. Edges are coloured if
they start and end at the same fitness. Other edges are painted black. The points
are positioned in the x-y plane using a force-directed layout algorithm and the
fitness is used for the z axis [67]. The fact that many nodes are at the same level
does not necessarily mean that they are part of the same plateau. Nevertheless,
we can observe that the fitness levels for 2, 3 and 5 failed test cases are densely
populated. In addition, the numerous clear paths between fitness levels provide
visual evidence of the relative ease with which the network can be traversed.

11

Fig. 11. Fitness vs Hamming distance of 2 372 805 unique local minima presented
as a sunflower plot. The number of petals is proportional to the number of points
at each coordinate. Note positive correlation between local optima fitness and
distance to the original program. Also many mutants that differ from the original
program in up to 12 out of 17 mutation points pass all test cases.

5 Conclusions

Although the Triangle Program is small, the number of possible Triangle Pro-
grams is huge. We have fully explored a regular subset of it. We reduced the size
of its search space by considering only potential improvements to the existing
code made by replacing its comparisons. Firstly we restricted the comparator
mutations. This enabled us to analyse a systematic subset of the whole im-
provement fitness landscape. Solutions in the subset are still solutions in the full
problem. There are many solutions all of which are readily found by high order
schema analysis. Since we use only the number of tests passed there are few
fitness levels and as expected there are large plateaux of neutral moves.

Secondly we returned to allowing all possible comparisons. This greatly in-
creases the size of the search space. By allowing more moves we are further from
the human written starting point and now schema analysis suggests global search
(e.g. via a genetic algorithm) may be deceived. On the other hand, local search
(including neutral moves) remains easy near the start point but its chance of
finding a solution falls as we move further from the human code. Nonetheless
even from a totally random starting point, hill climbing can improve test based
fitness.

These results suggest that the program improvement fitness landscape is not
as difficult to search as is often assumed.

Datasets http://www.cs.ucl.ac.uk/staff/W.Langdon/egp2017/triangle/

12

http://www.cs.ucl.ac.uk/staff/W.Langdon/egp2017/triangle/

References

1. Langdon, W.B.: Genetically improved software. In Gandomi, A.H., et al., eds.:
Handbook of Genetic Programming Applications. Springer (2015) 181–220

2. Langdon, W.B.: Genetic improvement of software for multiple objectives. In
Labiche, Y., Barros, M., eds.: SSBSE. LNCS 9275, Bergamo, Italy, Springer (2015)
12–28 Invited keynote.

3. Petke, J.: Preface to the special issue on genetic improvement. Genetic Program-
ming and Evolvable Machines (2017) Editorial Note.

4. Harman, M., Jones, B.F.: Search based software engineering. Information and
Software Technology 43(14) (2001) 833–839

5. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT press (1992)

6. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming
– An Introduction; On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, San Francisco, CA, USA (1998)

7. Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic
programming. Published via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk (2008) (With contributions by J. R. Koza).

8. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug
fixing. In Wang, J., ed.: 2008 IEEE World Congress on Computational Intelligence,
Hong Kong, IEEE (2008) 162–168

9. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches
using genetic programming. In Fickas, S., ed.: International Conference on Software
Engineering (ICSE) 2009, Vancouver (2009) 364–374

10. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming ap-
proach to automated software repair. In Raidl, G., et al., eds.: GECCO, Montreal,
ACM (2009) 947–954 Best paper.

11. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program repair with
evolutionary computation. Communications of the ACM 53(5) (2010) 109–116

12. Le Goues, C., Dewey-Vogt, M., Forrest, S., Weimer, W.: A systematic study of
automated program repair: Fixing 55 out of 105 bugs for $8 each. In Glinz, M.,
ed.: 34th International Conference on Software Engineering (ICSE 2012), Zurich
(2012) 3–13

13. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: A generic method
for automatic software repair. IEEE Transactions on Software Engineering 38(1)
(2012) 54–72

14. Le Goues, C., Forrest, S., Weimer, W.: Current challenges in automatic software
repair. Software Quality Journal 21 (2013) 421–443

15. Ke, Y., Stolee, K.T., Le Goues, C., Brun, Y.: Repairing programs with semantic
code search. In Grunske, L., Whalen, M., eds.: 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2015), Lincoln, Nebraska,
USA (2015)

16. Kocsis, Z.A., Drake, J.H., Carson, D., Swan, J.: Automatic improvement of Apache
Spark queries using semantics-preserving program reduction. In Petke, J., et al.,
eds.: Genetic Improvement 2016 Workshop, Denver, ACM (2016) 1141–1146

17. Petke, J., Harman, M., Langdon, W.B., Weimer, W.: Using genetic improvement
and code transplants to specialise a C++ program to a problem class. In Nicolau,
M., et al., eds.: EuroGP. LNCS 8599, Granada, Spain, Springer (2014) 137–149

13

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_hbgpa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2016_GPEM.html
http://dx.doi.org/10.1016/S0950-5849(01)00189-6
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/koza_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/banzhaf_1997_book.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/poli08_fieldguide.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Arcuri_2008_cec.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2009_ICES.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_conf_gecco_ForrestNWG09.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Weimer_2010_ACM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/LeGoues_2012_ICSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/DBLP_journals_tse_GouesNFW12.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/legouesWFSQJO2013.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Ke_2015_ASE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Kocsis_2016_GI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2014_EuroGP.html

18. Marginean, A., Barr, E.T., Harman, M., Jia, Y.: Automated transplantation of
call graph and layout features into Kate. In Labiche, Y., Barros, M., eds.: SSBSE.
LNCS 9275, Bergamo, Italy, Springer (2015) 262–268

19. Barr, E.T., Harman, M., Jia, Y., Marginean, A., Petke, J.: Automated software
transplantation. In Xie, T., Young, M., eds.: International Symposium on Software
Testing and Analysis, ISSTA 2015, Baltimore, Maryland, USA, ACM (2015) 257–
269 ACM SIGSOFT Distinguished Paper Award.

20. Harman, M., Jia, Y., Langdon, W.B.: Babel pidgin: SBSE can grow and graft
entirely new functionality into a real world system. In Le Goues, C., Yoo, S.,
eds.: Proceedings of the 6th International Symposium, on Search-Based Software
Engineering, SSBSE 2014. LNCS 8636, Fortaleza, Brazil, Springer (2014) 247–252
Winner SSBSE 2014 Challange Track.

21. Jia, Y., Harman, M., Langdon, W.B., Marginean, A.: Grow and serve: Growing
Django citation services using SBSE. In Yoo, S., Minku, L., eds.: SSBSE 2015
Challenge Track. LNCS 9275, Bergamo, Italy (2015) 269–275

22. Langdon, W.B., White, D.R., Harman, M., Jia, Y., Petke, J.: API-constrained
genetic improvement. In Sarro, F., Deb, K., eds.: Proceedings of the 8th Inter-
national Symposium on Search Based Software Engineering, SSBSE 2016. LNCS
9962, Raleigh, North Carolina, USA, Springer (2016) 224–230

23. Langdon, W.B., Harman, M.: Optimising existing software with genetic program-
ming. IEEE Transactions on Evolutionary Computation 19(1) (2015) 118–135

24. Langdon, W.B., Lam, B.Y.H., Modat, M., Petke, J., Harman, M.: Genetic im-
provement of GPU software. Genetic Programming and Evolvable Machines (2017)
Online first.

25. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs.
IEEE Transactions on Evolutionary Computation 15(4) (2011) 515–538

26. Bruce, B.R., Petke, J., Harman, M.: Reducing energy consumption using genetic
improvement. In Silva, S., et al., eds.: GECCO, Madrid, Spain, ACM, ACM (2015)
1327–1334

27. Bruce, B.R.: Energy optimisation via genetic improvement A SBSE technique
for a new era in software development. In Langdon, W.B., et al., eds.: Genetic
Improvement 2015 Workshop, Madrid, ACM (2015) 819–820

28. Burles, N., Bowles, E., Brownlee, A.E.I., Kocsis, Z.A., Swan, J., Veerapen, N.:
Object-oriented genetic improvement for improved energy consumption in Google
Guava. In Labiche, Y., Barros, M., eds.: SSBSE. LNCS 9275, Bergamo, Italy,
Springer (2015) 255–261

29. Burles, N., Bowles, E., Bruce, B.R., Srivisut, K.: Specialising Guava’s cache to
reduce energy consumption. In Labiche, Y., Barros, M., eds.: SSBSE. LNCS 9275,
Bergamo, Italy, Springer (2015) 276–281

30. Bokhari, M., Wagner, M.: Optimising energy consumption heuristically on android
mobile phones. In Petke, J., et al., eds.: Genetic Improvement 2016 Workshop,
Denver, ACM (2016) 1139–1140

31. Haraldsson, S.O., Woodward, J.R.: Genetic improvement of energy usage is only as
reliable as the measurements are accurate. In Langdon, W.B., et al., eds.: Genetic
Improvement 2015 Workshop, Madrid, ACM (2015) 831–832

32. Langdon, W.B., Petke, J., Bruce, B.R.: Optimising quantisation noise in energy
measurement. In Handl, J., et al., eds.: 14th International Conference on Parallel
Problem Solving from Nature. LNCS 9921, Edinburgh, Springer (2016) 249–259

33. Schulte, E., Dorn, J., Harding, S., Forrest, S., Weimer, W.: Post-compiler soft-
ware optimization for reducing energy. In: Proceedings of the 19th International

14

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Marginean_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Barr_2015_ISSTA.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_Babel.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/jia_2015_gsgp.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2016_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2013_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2016_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/bruce2015reducing.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Bruce_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Burles_2015_SSBSE.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Burles_2015_SSBSEa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Bokhari_2016_GI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Haraldsson_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Langdon_2016_PPSN.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte2014optimization.html

Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS’14, Salt Lake City, Utah, USA, ACM (2014) 639–652

34. Wagner, M.: Speeding up the proof strategy in formal software verification. In
Petke, J., et al., eds.: Genetic Improvement 2016 Workshop, Denver, ACM (2016)
1137–1138

35. Wu, F., Weimer, W., Harman, M., Jia, Y., Krinke, J.: Deep parameter optimisa-
tion. In Silva, S., et al., eds.: GECCO, Madrid, ACM (2015) 1375–1382

36. Walsh, P., Ryan, C.: Automatic conversion of programs from serial to parallel
using genetic programming - the paragen system. In D’Hollander, E.H., et al.,
eds.: Proceedings of ParCo’95. Volume 11 of Advances in Parallel Computing.,
Gent, Belgium, Elsevier (1995) 415–422

37. Williams, K.P.: Evolutionary Algorithms for Automatic Parallelization. PhD the-
sis, Department of Computer Science, University of Reading, Whiteknights Cam-
pus, Reading, UK (1998)

38. Williams, K.P., Williams, S.A.: Genetic compilers: A new technique for automatic
parallelisation. In: 2nd European School of Parallel Programming Environments
(ESPPE’96), L’Alpe d’Hoez, France (1996) 27–30

39. Langdon, W.B., Harman, M.: Evolving a CUDA kernel from an nVidia template.
In Sobrevilla, P., ed.: 2010 IEEE World Congress on Computational Intelligence,
Barcelona, IEEE (2010) 2376–2383

40. White, D.R., Clark, J., Jacob, J., Poulding, S.M.: Searching for resource-efficient
programs: low-power pseudorandom number generators. In Keijzer, M., et al., eds.:
GECCO, Atlanta, GA, USA, ACM (2008) 1775–1782

41. White, D.R.: Genetic Programming for Low-Resource Systems. PhD thesis, De-
partment of Computer Science, University of York, UK (2009)

42. Yeboah-Antwi, K., Baudry, B.: Embedding adaptivity in software systems using
the ECSELR framework. In Langdon, W.B., et al., eds.: Genetic Improvement
2015 Workshop, Madrid, ACM (2015) 839–844

43. Mrazek, V., Vasicek, Z., Sekanina, L.: Evolutionary approximation of software
for embedded systems: Median function. In Langdon, W.B., et al., eds.: Genetic
Improvement 2015 Workshop, Madrid, ACM (2015) 795–801

44. Burles, N., Swan, J., Bowles, E., Brownlee, A.E.I., Kocsis, Z.A., Veerapen, N.:
Embedded dynamic improvement. In Langdon, W.B., et al., eds.: Genetic Im-
provement 2015 Workshop, Madrid, ACM (2015) 831–832

45. Vasicek, Z., Mrazek, V.: Trading between quality and non-functional properties of
median filter in embedded systems. Genetic Programming and Evolvable Machines
(2017) Online first.

46. Petke, J.: Genetic improvement for code obfuscation. In Petke, J., et al., eds.:
Genetic Improvement 2016 Workshop, Denver, ACM (2016) 1135–1136

47. Harman, M., Jia, Y., Langdon, W.B., Petke, J., Moghadam, I.H., Yoo, S., Wu,
F.: Genetic improvement for adaptive software engineering. In Engels, G., ed.: 9th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS’14), Hyderabad, India, ACM (2014) 1–4 Keynote.

48. Landsborough, J., Harding, S., Fugate, S.: Removing the kitchen sink from soft-
ware. In Langdon, W.B., et al., eds.: Genetic Improvement 2015 Workshop, Madrid,
ACM (2015) 833–838

49. Harman, M., Jia, Y., Krinke, J., Langdon, W.B., Petke, J., Zhang, Y.: Search
based software engineering for software product line engineering: a survey and
directions for future work. In: 18th International Software Product Line, SPLC
2014, Florence, Italy (2014) 5–18 Invited keynote.

15

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wagner_2016_GI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Wu_2015_GECCO.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/ryan_1995_paragen.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/williams98.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.3499
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_cigpu.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White2_2008_gecco.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/White_thesis.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Yeboah-Antwi_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Mrazek_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Swan_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Vasicek_2016_GPEMa.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Petke_2016_GI.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_seams.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_seams.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Landsborough_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Harman_2014_SPLC.html

50. Lopez-Herrejon, R.E., Linsbauer, L., Assuncao, W.K.G., Fischer, S., Vergilio, S.R.,
Egyed, A.: Genetic improvement for software product lines: An overview and a
roadmap. In Langdon, W.B., et al., eds.: Genetic Improvement 2015 Workshop,
Madrid, ACM (2015) 823–830

51. Langdon, W.B., Petke, J., White, D.R.: Genetic improvement 2015 chairs’ wel-
come. In Langdon, W.B., et al., eds.: Genetic Improvement 2015 Workshop,
Madrid, ACM (2015) 791–792

52. Langdon, W.B., Harman, M.: Fitness landscape of the triangle program. In Veer-
apen, N., Ochoa, G., eds.: PPSN-2016 Workshop on Landscape-Aware Heuristic
Search, Edinburgh (2016) Also available as UCL RN/16/05.

53. Langdon, W.B., Petke, J.: Software is not fragile. In Parrend, P., et al., eds.: Com-
plex Systems Digital Campus E-conference, CS-DC’15. Proceedings in Complexity,
Springer (2015) 203–211 Invited talk.

54. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Transactions on Software Engineering 37(5) (2011) 649–678

55. Langdon, W.B., Harman, M., Jia, Y.: Efficient multi-objective higher order muta-
tion testing with genetic programming. Journal of Systems and Software 83(12)
(2010) 2416–2430

56. Cody-Kenny, B., Lopez, E.G., Barrett, S.: locoGP: improving performance by
genetic programming Java source code. In Langdon, W.B., et al., eds.: Genetic
Improvement 2015 Workshop, Madrid, ACM (2015) 811–818

57. Orlov, M., Sipper, M.: Flight of the FINCH through the Java wilderness. IEEE
Transactions on Evolutionary Computation 15(2) (2011) 166–182

58. Schulte, E., Forrest, S., Weimer, W.: Automated program repair through the evolu-
tion of assembly code. In: Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, Antwerp, ACM (2010) 313–316

59. Schulte, E., Fry, Z.P., Fast, E., Weimer, W., Forrest, S.: Software mutational
robustness. Genetic Programming and Evolvable Machines 15(3) (2014) 281–312

60. Schulte, E., Weimer, W., Forrest, S.: Repairing COTS router firmware without
access to source code or test suites: A case study in evolutionary software repair.
In Langdon, W.B., et al., eds.: Genetic Improvement 2015 Workshop, Madrid,
ACM (2015) 847–854 Best Paper.

61. Wright, S.: The roles of mutation, inbreeding, crossbreeding and selection in evo-
lution. In: Proceedings of the Sixth Annual Congress of Genetics. (1932) 356–366

62. Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Review 44(1) (2002)
3–54

63. Holland, J.H.: Genetic algorithms and the optimal allocation of trials. SIAM
Journal on Computation 2 (1973) 88–105

64. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learn-
ing. Addison-Wesley (1989)

65. Daolio, F., Tomassini, M., Verel, S., Ochoa, G.: Communities of minima in local
optima networks of combinatorial spaces. Physica A: Statistical Mechanics and its
Applications 390(9) (2011) 1684–1694

66. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: A new
model of combinatorial fitness landscapes. In Richter, H., Engelbrecht, A., eds.:
Recent Advances in the Theory and Application of Fitness Landscapes. Springer
(2014) 233–262

67. Ochoa, G., Veerapen, N.: Additional dimensions to the study of funnels in combi-
natorial landscapes. In: GECCO, ACM (2016) 373–380

16

http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Lopez-Herrejon_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2016_PPSNlandscape.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2015_csdc.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/langdon_2010_jss.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Cody-Kenny_2015_gi.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Orlov_2011_ieeeTEC.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/schulte10__autom_progr_repair_evolut_assem_code.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2014_GPEM.html
http://www.cs.bham.ac.uk/~wbl/biblio/gp-html/Schulte_2015_gi.html
http://www.blackwellpublishing.com/ridley/classictexts/wright.pdf
http://dx.doi.org/10.1137/S0036144501395952
http://dx.doi.org/10.1137/0202009
http://dx.doi.org/10.1016/j.physa.2011.01.005
http://dx.doi.org/10.1007/978-3-642-41888-4_9
http://dx.doi.org/10.1145/2908812.2908820

	Visualising the Search Landscape of the Triangle Program

