Accepted refereed manuscript of:

Faye M, Dacheux L, Weidmann M, Diop SA, Loucoubar C, Bourhy H, Sall AA & Faye O (2017) Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus, *Journal of Virological Methods*, 243, pp. 120-130.

DOI: <u>10.1016/j.jviromet.2016.12.019</u>

© 2017, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Accepted Manuscript

Title: Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus

Author: Martin Faye Laurent Dacheux Manfred Weidmann Sylvie Audrey Diop Cheikh Loucoubar Hervé Bourhy

Amadou Alpha Sall Ousmane Faye

PII: S0166-0934(16)30558-4

DOI: http://dx.doi.org/doi:10.1016/j.jviromet.2016.12.019

Reference: VIRMET 13191

To appear in: Journal of Virological Methods

Received date: 12-10-2016 Revised date: 26-12-2016 Accepted date: 27-12-2016

Please cite this article as: Faye, M., Dacheux, L., Weidmann, M., Diop, S.A., Loucoubar, C., Bourhy, H., Sall, A.A., Faye, O., Development and validation of sensitive real-time RT-PCR assay for broad detection of rabies virus, *Journal of Virological Methods* (2017), http://dx.doi.org/10.1016/j.jviromet.2016.12.019

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	<u>Title</u> : Development and validation of sensitive real-time RT-PCR assay for
2	broad detection of rabies virus
3	
4	Martin Faye ¹ , Laurent Dacheux ² , Manfred Weidmann ³ , Sylvie Audrey Diop ⁴ , Cheikh
5	Loucoubar ⁵ , Hervé Bourhy ² , Amadou Alpha Sall ¹ & Ousmane Faye ^{1*}
6	
7	1. Virology Pole, Institut Pasteur of Dakar, 220 Dakar, Senegal
8	2. Institut Pasteur, Lyssavirus Dynamics and Host Adaptation Unit, National Reference Centre for Rabies,
9	WHO Collaborating Center for Reference and Research on Rabies, Paris, France
10	3. Institute of Aquaculture University of Stirling, FK9 4LA Stirling Scotland, UK
11	4. Service of infectious diseases, hospital FANN, Dakar, Senegal
12	5. G4 Biostatistics, Bioinformatics and Modelization, Institute Pasteur of Dakar, 220 Dakar, Senegal
13	
14	*Corresponding author: Dr Ousmane FAYE
15	Virology Pole,
16	Institut Pasteur de Dakar, BP 220 Dakar, SENEGAL
17	Phone: +221.338399223
18	Fax: +221.338399210
19	Email: ofaye@pasteur.sn
20	
21	
22 23	
23 24	
25	
26	

27	Abstract
28	Rabies virus (RABV) remains one of the most important global zoonotic pathogens. RABV
29	causes rabies, an acute encephalomyelitis associated with a high rate of mortality in humans
30	and animals and affecting different parts of the world, particularly in Asia and Africa
31	Confirmation of rabies diagnosis relies on laboratory diagnosis, in which molecular
32	techniques such as detection of viral RNA by reverse transcription polymerase chain reaction
33	(RT-PCR) are increasingly being used.
34	In this study, two real-time quantitative RT-PCR assays were developed for large-spectrum
35	detection of RABV, with a focus on African isolates. The primer and probe sets were targeted
36	highly conserved regions of the nucleoprotein (N) and polymerase (L) genes.
37	The results indicated the absence of non-specific amplification and cross-reaction with a
38	range of other viruses belonging to the same taxonomic family, i.e Rhabdoviridae, as well as
39	negative brain tissues from various host species. Analytical sensitivity ranged between 100 to
40	10 standard RNA copies detected per reaction for N-gene and L-gene assays, respectively
41	Effective detection and high sensitivity of these assays on African isolates showed that they
42	can be successfully applied in general research and used in diagnostic process and epizootic
43	surveillance in Africa using a double-check strategy.
44	
45	Keywords: Rabies virus (RABV), real-time RT-qPCR assays, molecular techniques,
46	broad detection, Africa
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	

1	T . 4 I 4	
	Introduction	
	mu vaucuvii	

59	
60	

61 Rabies is a lethal and neglected zoonotic disease with significant public health impact in 62 many parts of the world, especially in developing countries (1, 2). Rabies can affect 63 almost all mammals, including humans (3). Indeed, rabies causes at least 59,000 human 64 deaths annually worldwide, with 36.4% of them occurring in Africa alone (1, 4). 65 Human exposures occur mainly through dog bites and children are the most affected by the 66 disease, with 4 out of every 10 deaths occurring in children under the age of 15 (3, 5). 67 However, in some industrialized countries, rabies virus transmission was also reported 68 through transplantation of organs from donors whose rabies infection had not been 69 recognized. These cases of rabies virus transmission by tissues transplantation were mostly 70 due to a long incubation period in the donor (6, 7, 8). 71 Rabies is an incurable disease and clinical presentation in humans can be sometimes difficult 72 to distinguish from encephalitis symptoms caused by other viral infections (9). In this context, 73 laboratory diagnosis is essential to confirm the diagnosis (10). Moreover, the diagnosis of 74 rabies is often confirmed late in the course of the disease or *postmortem* because prognosis 75 depends on history of exposure and clinical findings, and timely and reliable diagnosis may be 76 very important for the prevention of rabies in the relatives of the patient and the healthcare 77 workers. This fatal encephalitis is caused by virus members of the Lyssavirus genus (order 78 79 Mononegavirales, family Rhabdoviridae) including Rabies virus (RABV). RABV is a 80 neurotropic enveloped pathogen encompassing a negative single-stranded RNA that is around 81 12 kb (kilobases) in size. As for all lyssavirus members, the RABV genome encodes five 82 proteins with the nucleoprotein (N), the phosphoprotein (P), the matrix protein (M), the 83 glycoprotein (G) and the polymerase (L) separated by four non-coding intergenic regions 84 (IGRS) of different lengths and surrounded by two untranslated regions (UTR) (5). In 85 addition, RABV presents a wide range of animal host reservoir and a large genetic diversity, 86 with particularly four phylogenetic groups circulating in Africa with Africa 1 and 4 lineages, 87 and with Africa 2 and 3 clades (11, 12). Thus, diagnostic tools which are able to broadly 88 detect RABV are required. 89 Currently, the "gold standard" technique for confirming postmortem cases is the direct 90

91 viral nucleocapsid antigens in tissues section of skin biopsies. However, viral antigens are 92 often only detectable at the final phase of the disease and not always by the FAT. Also, this

fluorescent antibody test (FAT) (13, 14). For intra-vitam diagnosis, this method can detect

technique presents limits in the case of ante-mortem non-neural sample material or decomposed tissues. Furthermore, repeated sampling of skin biopsies is not practical for improvement of sensitivity of the FAT (10, 14, 15). To overcome the limits of FAT, several conventional and hemi-nested reverse transcription polymerase chain reaction assays (RT-PCR) targeting the N or L gene, have been developed (16, 17, 18, 19, 20, 21, 22) and widely applied for the intra-vitam diagnosis of human rabies routine diagnosis. Indeed, the N gene is the most conserved region among the RABV genome which is the reason for its frequent use as target for rabies virus diagnostic assays (23). Also, the L gene harbours highly conserved regions which have targeted for molecular detection (22, 24). Despite a higher sensitivity, hemi-nested RT-PCR presents some disadvantages in terms of workload, risk of contamination, and time. Thus, several real time molecular tests targeting the N or L gene have been developed to complement conventional diagnosis of rabies and rabies-related viruses (10, 21, 25, 26, 27, 28, 29, 30). However, none of them have been validated against African strains from a large diversity of geographical origins, except a recent study (31). In this paper, we describe the validation of two sensitive and specific real-time RT-PCR assays with TaqMan probes targeting conserved regions of the N and L genes, which were developed for broad detection of African RABV strains. The detection capacity on clinical specimens and sensitivity of the assays suggest their suitable application in human as well as veterinary diagnostic fields. The assays could complement and add value to existing methods.

111112113

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

2. Materials and methods

114

115

116

117

118

119

120

121

122

123

124

2. 1. Primers and probes design

Initially, in order to design an assay capable of detecting African RABV isolates, full length genome sequences of two Africa 2 isolates available on GenBank database, corresponding to DRV-NG11 (GenBank Ac. No. KC196743) and CAR_11/001h (GenBank Ac. No. KF977826), were used. Multiple alignments were carried out using clustalW algorithm implemented in the Mega 6.0 software (32). We selected conserved regions of the N gene and the L gene for development of two detection systems. Both primers and TaqMan probes were designed using Primer3web® software (version 4.0.0, Whitehead Institute for Biomedical Research). To avoid non-specific cross-reactions with others lyssaviruses, primers and probe were validated by BLAST analysis on NCBI. To ascertain their broad spectrum of detection,

all primers and probes were analyzed *in silico* with sequences of a large panel of isolates from different parts of Africa. Primers and probes were synthetized by TIBMol-Biol (Berlin, Germany).

128129

130

131

132133

134

135

136

137

138

139

140

141

142

143

144

145

146

2. 2. Samples and viral RNA extraction

A total of 16 RABV isolates from experimentally infected mouse brain tissues preserved in the archive of the national reference center for rabies virus (NRC-Rabies) at Institut Pasteur of Dakar, Senegal (NRC-Rabies IPD) and previously confirmed as rabies positive by FAT, was used in this study. In addition, 61 other RABV isolates from FAT-confirmed primary brain samples or experimentally infected mouse brain samples, provided by the NRC-Rabies at Institut Pasteur, Paris, France (NRC-Rabies IPP) (14), were also included. Furthermore, in order to assess the specificity of the two RABV detection assays, a panel of 20 primary brain specimens provided by NRC-Rabies IPP from a range of important animals for rabies virus transmission, and previously confirmed to be negative by FAT, was also tested. In addition, 15 other major representatives of rhabdoviruses other than RABV and from the archive of NRC-Rabies IPD were also tested. Finally, 19 clinical specimens including skin biopsy, saliva and cerebrospinal fluid (CSF) samples received at NRC-Rabies IPP and collected from human patients suspected of rabies infection were evaluated with both of these molecular tools. All extractions from isolates provided by NRC-Rabies IPD were performed using the QIAamp® Viral RNA Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions. The RNA was suspended in a final volume of 60 µl elution buffer and kept at -80°C until testing. For samples and isolates provided by NRC-Rabies IPP, extraction and storage were performed as previously described (31).

147148149

150

151

152

153

154

155

156

157

2. 3. Real-time RT-PCR (RT-qPCR) assays

A similar RT-qPCR protocol was used for the detection of both N and L genes. All samples were tested in duplicate and RT-qPCR was performed using the Quantitect Probe RT-PCR kit (Qiagen, Hilden, Germany) in a 20 μl reaction mixture containing 2x QuantiTect probe RT-PCR master mix, 0.25 μl of QuantiTect RT mix, 400 nM PCR primers and 200 nM TaqMan probes and 5 μl of 1:10 diluted RNA in RNase-free water. Positive controls containing master mix with standard RNA of each system and negative controls consisting of master mix with sterile RNase-free water were included in each run. The reaction was carried out on a 7500 Fast Real Time system cycler or on a 7500 Real Time system cycler (Applied Biosystems,

130	roster City, 03) using the following temperature piorne: I cycle of reverse transcription at
159	50°C for 10 min, 1 cycle of denaturation at 95°C for 15 min, followed by 40 cycles of 95°C
160	for 15 s and 60°C for 1 min. The RT-qPCR reactions were analyzed using the 7500 software
161	(v2.0.1).
162	
163	2. 4. Specificity testing
164	The specificity, representing the probability that the assay gives a negative result without
165	presence of the targeted nucleotide region, was calculated by the formula $Sp = a / (a + c)$;
166	where ${\bf a}$ is the number of true negatives samples and ${\bf c}$ is the number of false positives. The
167	specificity was determined using a panel of FAT negative samples and a panel of non-RABV
168	rhabdoviruses.
169	
170	2. 5. Analytical sensitivity assessment
171	
172	2. 5. 1. Standard curves generation
173	Plasmids were generated by inserting the amplified RT-qPCR amplicons into pCRII (Life
174	Technologies, GmbH, Darmstadt) and standard RNAs were synthetized with T7 RNA-
175	polymerase by TIB MolBiol (Berlin, Germany) according to manufacturer's
176	recommendations.
177	Serial 10-fold dilutions of standard RNAs, from 10 ⁸ to 1 molecule, were prepared in RNase-
178	free water. Corresponding mean Cq (quantification cycle) values obtained per triplicates per
179	standard dilution were then plotted proportionally to the logarithm of the input copy numbers
180	to generate a quantitative standard.
181	
182	2. 5. 2. Analytical testing
183	The quantitative standards were used to evaluate the diagnostic assays performances such as
184	limit of detection (LOD), the coefficient of correlation (R ²) and the amplification efficiency
185	(E) values. The LOD value represents the concentration where at least 50% of replicates of
186	each dilution were detected. A linear model regression test was performed using R (version
187	3.0.2, The R Foundation for Statistical Computing) to determine the value of R ² , indicating
188	the goodness of regression. The E value was calculated with the formula $E=10^{(\text{-1/slope})}\text{-1}$.
189	Relative RABV genome copies in tested samples was calculated through the formula ${f q}=$

 $10^{(Cq-b)/a}$; where a is the slope, b is the intercept from a standard curve of each specific target gene and Cq is the quantification cycle number. Furthermore, the Pearson correlation efficient where a coefficient of 1 represents a good correlation was also calculated.

2. 5. 3. Determination of sensitivity

- The sensitivity is defined as the probability that an assay give positive results in the presence of specific target. This was calculated by the formula $\mathbf{Se} = \mathbf{d}/(\mathbf{d}+\mathbf{b})$; where \mathbf{b} represents the number of false negatives and \mathbf{d} is the number of true positives. Positive and negative predictive values were also calculated by formulas $\mathbf{PPV} = \mathbf{d}/(\mathbf{d}+\mathbf{c})$ and $\mathbf{NPV} = \mathbf{a}/(\mathbf{b}+\mathbf{a})$, where \mathbf{a} is the number of true negatives samples and \mathbf{c} is the number of false positives.
- Moreover, a **ROC** («Receiver Operating Characteristic») analysis was performed, using the statistical software XLSAT (Version 2015.5.01.23654, *Copyright Addinsoft 1995-2015*) to identify the threshold value below which the test should be considered positive. Accuracy of assays was measured by the area under the ROC curve (**AUC**) with 95% confidential interval (CI) of AUC. An area higher than 0.9 represents an excellent test and a value of 0.5, a worthless test (33, 34).
 - Finally, the comparability between Cq values given by these two quantitative assays was assessed using a Bland-Altman analysis where the agreement between these two measurements was quantified by using a graphical approach. Statistical limits of agreement are calculated by using the mean and the standard deviation of the differences between assays with 95% CI (35).

2. 5. 4. Repeatability and inter-laboratory concordance

The inter-assay and intra-assay repeatability were determined by coefficients of variation (CVs) of Cq value. Indeed, RNA of the RABV isolate SA217695SEN was extracted and amplified 10 times in the same run, for the assessment of intra-assay repeatability and in 10 different runs by the same operator, in the same laboratory to evaluate inter-assay repeatability. Inter-laboratory concordance was evaluated using a range of anonymous samples which have been initially received, extracted and analyzed at the NRC-R IPP in the framework of its participation in 2015 in an inter-laboratory trial organized by the European Union reference laboratory for rabies, which is located in Nancy, France (36). The test panel tested with the two newly developed RT-qPCR consisted of nine anonymous samples, either uninfected or infected with various lyssavirus species and which have been previously

223	extracted by NRC-R IPP and storage at -80°C until use. Details of this trial have been
224	provided elsewhere (36).
225	Results obtained with both of these tools were compared to previous RT-qPCR results of the
226	NRC-R IPP in terms of Cohen's kappa coefficient (k), which is measure of the agreement
227	between two raters. Statistical analysis was performed using XLSAT where the statistical
228	significance was set to $p < 0.05$.
229	
230	2. 5. 5. Comparison with conventional hemi-nested RT-PCR
231	Suckling newborn-mices were inoculated experimentally by the RABV isolate
232	SA217695SEN and a virus titer of 6.7 $10^7\mathrm{ID}_{50}/\mathrm{mL}$ was obtained according to the method of
233	Reed and Muench (1938) (37). Ten-fold serial dilutions of this virus stock were used to
234	compare the sensitivity of the two RT-qPCR methods with that of a conventional hemi-nested
235	RT-PCR (RT-hnPCR) in the conditions which have been previously described (22).
236	
237	2. 5. 6. Clinical sensitivity testing
238	Testing of a collection of nineteen RABV-positive or negative specimens including CSF,
239	saliva and biopsy skin, was also carried out in duplicate to confirm the reliability of the new
240	L-gene RT-qPCR.
241	
242	
243	3. Results
244	
245	3. 1. Primers analysis
246	BLAST analysis of designed primers and probes showed high homology with target regions
247	of RABV sequences available from GenBank database. In silico analysis also revealed limited
248	number of mismatches for primers and probes with sequences from other parts of Africa
249	belonging to lineage Africa 1 and clade Africa 2 (Supplementary Table A.1) (Supplementary
250	Figures A.1 and A.2). The TaqMan probes were labeled 5' FAM (6-carboxyfluorescein) / 3'
251	BlackBerry Quencher (BBQ) and details are listed in Table 1.
252	
253	3. 2. Specificity

In order to ensure the specificity of the new systems and to evaluate the occurrence of nonspecific cross-reactivity, 16 isolates previously characterized RABV field samples and 15 different rhabdoviruses other than RABV species were tested in duplicate with both of the assays (Table 2). Fluorescent detection was obtained only with RABV isolates whereas nontargeted viruses were not detected. These results suggested that the designed primer pairs and probes exhibited no cross-reactivity with other species of lyssavirus (with Mokola and Lagos bat lyssaviruses) or other rhabdoviruses (Table 2). The amplicons size for some RABV isolates detected with each system was verified by 2% agarose gel electrophoresis and the amplified fragments were sequenced using the respective forward and reverse primers of the corresponding systems. A BLAST analysis of obtained sequences showed high identity rate with the target region of the RABV isolate CAR_11/001h (GenBank Ac. No. KF977826) belonging to the Africa 2 phylogenetic clade. Then, these primers and probes were highly selective for RABV detection. In addition, we analyzed a panel of 20 FAT-negative primary brain samples from different vertebrate hosts important in RABV transmission. All were negative with both assays and confirmed that specificity was complete (Supplementary Table A.2).

269270271

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

3. 3. Analytical sensitivity

- 272 Diagnostic test performances of the new assays were assessed using several parameters.
- Analytical curves generated showed a LOD of 100 and 10 copies per reaction obtained for N-
- gene assay and L-gene assay, respectively with RABV isolate SA217695SEN (**Figure 1**).
- 275 Regression line slope values were determined for N gene and L gene assays, with -3.08 and -
- 276 3.1, respectively, which are close to the optimal slope value of -3.3. Significant respective
- 277 linear regression p-values of 1.833e-09 and 6.977e-12 for N gene and L gene assays,
- 278 respectively, and coefficients of correlation (\mathbb{R}^2) values higher than 0.99 indicated the
- 279 goodness of the regression lines. Furthermore, high efficiency values (E) were obtained with
- both of these assays. A Pearson correlation test between the two regression curves revealed a
- coefficient of 0.99 (p < 0.0001) suggesting that correlation between the Cq values obtained by
- both RT-qPCR methods was excellent (**Figure 1**).
- 283 To ascertain the broad detection capacity of established assays, various RABV isolates from
- different parts of the world, were tested. Considering detection of African RABV isolates, the
- L-gene system was able to detect all isolates tested while the N-gene assay detected only 90%
- 286 of strains giving no-fluorescence signal with four isolates belonging to Africa-1 lineage,

- 287 including isolates from Somalia (93002SOM and 93006SOM), Tanzania (96013TAN) and 288 Morocco (87012MAR) (Table 3a). Furthermore, the L-gene system also detected 100% of 289 tested isolates from other counties of the world. Considering these isolates, the N-gene assay 290 had a limited detection scale (55%) with no fluorescence signal with 9 isolates from Poland 291 (96140POL), Germany (92001GER), Saudi Arabia (87001ARS), Turkey (94009TUR), Laos 292 (99008LAO), Afghanistan (02052AFG), Russia (91041RUS) and one skunk isolate from 293 USA (91004USA) (**Table 3b**) (38). 294 Results of all previous tests summarized in Table 4 were used for sensitivity determination 295 and ROC analysis as previously described (39). A sensitivity of 100% and 78.70% (CI 95%; 296 68.40-89.00%) was found for the RABV L-gene assay and RABV N-gene assay, respectively, 297 when compared to the reference technique. In addition, a PPV of 100% for each assay and 298 NPVs of 100% and 72.91% (CI 95%; 56.76-82.79%) for L gene assay and N gene assays 299 were obtained respectively (Fischer's exact test p < 0.0001). All previously FAT- negative 300 samples provided an undetermined mean Cq value after 40 cycles. Based on the results of the 301 ROC analysis, we determined a Cq of 39.70 as the cut-off value below which reactions are 302 positives for the L-gene assay and the N-gene assay, considering a 95% confidence interval. 303 A Cq value above these cut-off values or an undetectable Cq was considered negative. An 304 AUC of 1 was determined for each assay revealing that the tests have an excellent accuracy 305 (Figure 2). Furthermore, Bland-Altman plot analysis also reported a non-significant bias 306 (mean difference) of 1.920±6.875 (95% limits of agreement: -11.56 to 15.40), demonstrating 307 that these two methods are approximatively equivalent (**Figure 3**). 308 Intra-run and inter-run CVs of 1.67 % and 2.20 %, respectively, were found for the RABV N-309 gene assay while the RABV L-gene assay showed intra-run and inter-run CVs of 1.08 % and 310 2.16 %, respectively; indicating that assays are robust and highly repeatable(Table 4). In 311 addition, the k of 1±0.31 (95% CI; 0.38-1.61) indicates that assays are accurate, detecting 312 only RABV strains and giving 100% concordance to previous results obtained by the NRC-R 313 IPP using a RT-qPCR (31) with the same samples (p=0.001), and concordant with the results 314 expected for this inter-laboratory trial with RABV isolates (**Table 5**). 315
- Simultaneously, both RT-qPCR assays and conventional hemi-nested RT-PCR were performed as previously described (22) on 13 ten-fold dilutions of the RABV isolate SA217695SEN with a titer of $6.7 \, 10^7 \, \text{ID}_{50}/\text{mL}$. The RABV L-gene assay detected until 0.00067 $\, \text{ID}_{50}/\text{mL}$, corresponding to 28 genome copies using the L-gene quantification equation. However, conventional hemi-nested RT-PCR and RABV N-gene assay presented a

320 detection limit of 6.7 ID₅₀/mL, corresponding to 75 copies of genome using N-gene 321 quantification equation (Table 6). 322 The RABV L-gene RT-qPCR assay was selected as the most sensitive technique for detection 323 of RABV and was thus applied for the screening of human clinical samples from patients 324 suspected of rabies infection. The clinical detection of RABV RNA was analyzed in duplicate 325 using a panel of human samples from the archive of the NRC-R IPP and which were 326 previously tested using a RT-qPCR assay (31). Compared to the latter technique considered as 327 the reference test, all 4 previous RABV-positive samples were correctly detected with RABV-328 L TaqMan probe assay, whereas any cross-reactivity was detected with all 15 RABV-negative 329 specimens. Thus, the proposed RABV-L gene assay gave a 100% concordance to the previous 330 diagnosis results obtained with the RT-qPCR assay performed by NRC-R IPP (31), 331 demonstrating its effectiveness to detected RABV in clinical specimens with high sensitivity, 332 and its suited use as diagnostic tool in human RABV cases (**Table 7**).

333334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

4. Discussion

Despite rapid and sensitive RABV methods developed in recent years (27, 28, 30, 31, 42), only a few of them have been validated for the detection of African RABV strains with a large diversity of origin (21, 30, 31). Development of rapid and suitable molecular diagnostic tools for large-scale detection RABV isolates is important for routine diagnostic testing and epidemiological surveillance, particularly in Africa where rabies remains endemic. In this study, we developed two TaqMan real-time assays for broad detection of African RABV isolates in samples and for intra-vitam diagnosis in humans and post-mortem diagnosis in animals. These assays are based on conserved regions on N and L RABV genes. Oligonucleotide sequences for each assay were designed for wide detectability of African RABV isolates (**Table 1**, Supplementary **Figures A.1** and **A.2**) (22). Regarding the specificity assessment and their selectivity to detect RABV on a large range of samples, the new primers pairs and probes showed a high specific rate and no cross detection of other tested rhabdoviruses and none of the 6 other lyssaviruses species tested. These results were also confirmed by sequencing a selected number of amplicons obtained from positive results. Moreover, evaluation of the analytical sensitivity proved that assays can detect a low amount of RABV RNA with estimated LODs ranging from 100 to 10 copies of RNA target per reaction, which indicates that our assays are highly sensitives, similar to previously reported

353	assays for viral RNA detected by TaqMan real-time RT-PCR (21, 31, 40, 41, 42). In addition,
354	the high coefficients of determination (\mathbf{R}^2) and very good efficiencies $(\mathbf{E} > 100\%)$ demonstrate
355	that they can both be successfully applied to quantitative analysis of viral loads in tested
356	samples infected with RABV.
357	However, with the high genetic diversity of RABV, development of a single sensitive real
358	time assay covering all widely known phylogroups remains a challenge (43, 27). During the
359	validation of the N-gene and L-gene based RT-qPCR assays, the broad detection spectrum
360	was assessed through a large panel of RABV isolates representing different continents, with a
361	focus on African isolates. Indeed, African strains were detected by both assays with a high
362	coverage rate, mainly with the L gene-based assay. Thus our assays offer good performances
363	on detection of African isolates and could be a useful complement for a recent published
364	method (31) which presents some limits in detection of RABV isolates from Senegal
365	belonging to the Africa 2 clade. Evaluation of the broad detection performance of our assays
366	on isolates from other regions of the world displayed an excellent coverage level of the
367	RABV L-gene RT-qPCR, whereas the RABV N-gene assay was limited with important non-
368	African RABV strains. The reduced sensitivity of the N-gene assay despite good in silico
369	profiles and performance demonstrated by the assays could be explained with the presence of
370	secondary structure formation of the target area which may make it less accessible for the N-
371	gene oligonucleotides during the RT-step (44, 45). All the RABV isolates tested (61 isolates
372	belonging to the phylogenetic lineage cosmopolitan and clades Africa 2 and 3) were
373	successfully detected, mainly with the L gene-based assay which provides a test with a large
374	spectrum of RABV detection.
375	Although in the comparative analysis, the L gene-based assay offered better performances
376	than the N-gene assay regarding sensitivity and predictive values, it seems reasonable to
377	perform a double-check strategy on tested samples, using both assays in order to increase
378	reliability during use in routine rabies identification or epidemiological surveys as previously
379	reported for others lyssaviruses (46, 31). Moreover, high AUC value found in ROC analysis
380	predicted that both assays are useful for accurate detection of RABV in positive samples.
381	Furthermore, the assays showed a good agreement between measurements as shown by the
382	Bland-Altman analysis results, confirming their ability to be used efficiently for RABV
383	detection. Additionally, inter-assay and intra-assay variability below 3% and strong inter-
384	laboratory concordance results ensure the repeatability and the RABV specificity of the two
385	assay systems. Our assays, particularly the L-gene based assay, could be used accurately in
386	different geographical contexts for RABV detection

387	We used ten-fold dilutions of the RABV isolate SA217695SEN with a titer of 6.7 107
388	ID ₅₀ /mL and obtained with L-gene assay lower LOD value than with the hemi-nested RT-
389	PCR (22), although it has to be confirmed with a larger panel of isolates. The L-gene based
390	assay was able to detect RABV with as low as 6.7 10 ⁻⁴ ID ₅₀ /mL and could be successfully
391	applied in RABV diagnostic process, particularly on decomposed material or samples with
392	low viral load (15, 47). Furthermore, compared to the hemi-nested RT-PCR, the established
393	RT-qPCRs offer some important advantages in reduction of workload and run time, while
394	providing a higher sensitivity compared to the conventional RT-PCR.
395	Based on its better performances, the L gene-based assay was chosen for determination of the
396	detection capacity with clinical specimens in comparison with a previously existing RT-qPCR
397	(31) considered as the reference technique. We evaluated the usefulness of the L-gene based
398	assay for the intra-vitam diagnosis of rabies in human using a collection of positive and
399	negative specimens including skin biopsy, saliva and cerebro-spinal fluid. Compared to the
400	RT-qPCR assay from the NRC-R IPP (31) considered as the reference test, our L-gene based
401	assay provided a strong concordance and the sensitivity was also high. This technique could
402	be useful in clinical diagnostic as reliable quantitative tools for ante-mortem rabies diagnosis
403	in humans (22, 31).
404	Finally our assays, particularly the L-gene based assay, could be a complement for existing
405	methods for rabies diagnosis (21, 31, 46, 48, 49) with a high specificity, sensitivity and
406	repeatability and more suitable for broad detection of African RABV strains.
407	
408	Conflict of interest statement
409 410	We declare that we have no conflict of interest.
411	we declare that we have no conflict of interest.
412	Acknowledgements
413 414	This study was supported by the International Institute Pasteur Network. We would like to
415	thank the team of Unit of Arboviruses and viral hemorrhagic fevers of Institut Pasteur
416	DAKAR, SENEGAL.
417	
418	References
419 420	1. Hampson K, Coudeville L, Lembo T, Sambo M, Kieffer A, Attlan M, et al. Estimating the global burden of
421	endemic canine rabies. PLoS Negl Trop Dis. 2015;9(4):e0003709.doi: 10.1371/journal.pntd.0003709. 2. Anderson, A., Shwiff, S.A., 2013. The cost of canine rabies on four continents. Transbound. Emerg
422	Dis., http://dx.doi.org/10.1111/tbed.12168.

3. Dietzschold B, Schnell M, Koprowski H. Pathogenesis of rabies. Curr Top Microbiol Immunol. 2005; 292:45–56. http://dx.doi.org/10.1007/3-540-27485-5_3.

423 424

- 4. World Health Organization, 2013. Expert Consultation on Rabies, Second report. World Health Organ. Tech. Rep. Ser. 982. pp. 1–150.
- 5. Delmas O, Holmes EC, Talbi C, Larrous F, Dacheux L, Bouchier C, et al. Genomic diversity and evolution of the lyssaviruses. PLoS One. 2008 Apr 30;3(4):e2057.
- 429 6. Ross RS, Wolters B, Hoffmann B, Geue L, Viazov S, Grüner N, Roggendorf M, Müller T. Instructive even after a decade: Complete results of initial virological diagnostics and re-evaluation of molecular data in the German rabies virus "outbreak" caused by transplantations. Int J Med Microbiol. 2015 Oct; 305(7):636-43. doi: 10.1016/j.ijmm.2015.08.013.
- Vora NM, Orciari LA, Niezgoda M, Selvaggi G, Stosor V, Lyon GM 3rd, Wallace RM, Gabel J, Stanek
 DR, Jenkins P, Shiferaw M, Yager P, Jackson F, Hanlon CA, Damon I, Blanton JD, Recuenco S,
 Franka R. Clinical management and humoral immune responses to rabies post-exposure prophylaxis
 among three patients who received solid organs from a donor with rabies. Transpl Infect Dis. 2015 Jun;
 17(3):389-95. doi: 10.1111/tid.12393.

438

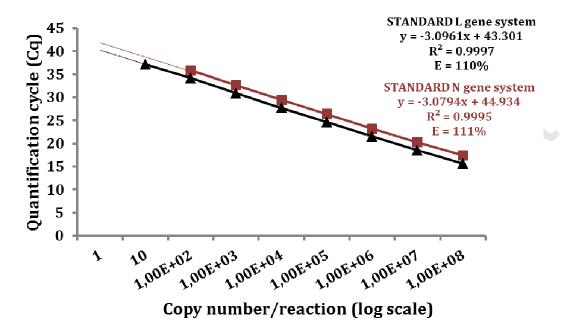
439

440

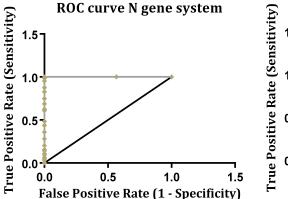
441

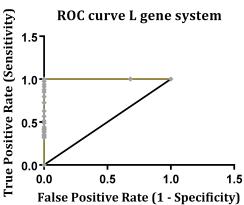
442

443

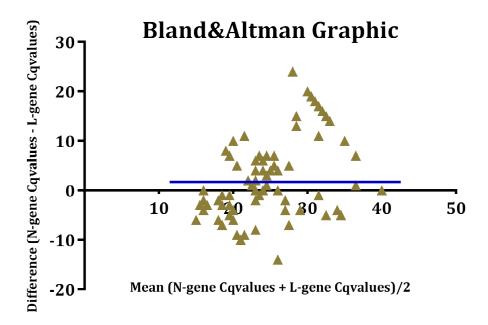

- 8. Vora NM, Basavaraju SV, Feldman KA, Paddock CD, Orciari L, Gitterman S, Griese S, Wallace RM, Said M, Blau DM, Selvaggi G, Velasco-Villa A, Ritter J, Yager P, Kresch A, Niezgoda M, Blanton J, Stosor V, Falta EM, Lyon GM 3rd, Zembower T, Kuzmina N, Rohatgi PK, Recuenco S, Zaki S, Damon I, Franka R, Kuehnert MJ; Transplant-Associated Rabies Virus Transmission Investigation Team. Raccoon rabies virus variant transmission through solid organ transplantation. JAMA. 2013 Jul 24;310(4):398-407. doi: 10.1001/jama.2013.7986.
- 444 9. Jackson AC, Warrell MJ, Rupprecht CE, Ertl HC, Dietzschold B, O'Reilly M, et al. Management of rabies in humans. Clin Infect Dis. 2003; 36:60–3. http://dx.doi.org/10.1086/344905.
- 446 10. Dacheux L, Wacharapluesadee S, Hemachudha T, Meslin FX, Buchy P, Reynes JM, et al. More accurate insight into the incidence of human rabies in developing countries throughvalidated laboratory techniques. PLoS Negl Trop Dis. 2010;4(11):e765.
- 449 11. Bourhy, H., Reynes, J. M., Dunham, E. J., Dacheux, L., Larrous, F., Huong, V. T., Xu, G., Yan, J., 450 Miranda, M. E. & Holmes, E. C. (2008). The origin and phylogeography of dog rabies virus. J Gen Virol 89, 2673–2681.
- 452 12. Talbi C, Holmes EC, de Benedictis P, Faye O, Nakouné E, Gamatié D, Diarra A, Elmamy BO, Sow A, Adjogoua EV, Sangare O, Dundon WG, Capua I, Sall AA, Bourhy H. Evolutionary history and dynamics of dog rabies virus in western and central Africa. J Gen Virol. 2009 Apr; 90(Pt 4):783-91. doi: 10.1099/vir.0.007765-0.
- 456 13. WHO. Expert Consultation on Rabies—Second report. Geneva, Switzerland: World Health Organisation; 2013. 139 p
- 458 14. OIE. Rabies. 2013. In: Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2016. Paris:
- 461
 15. Fooks, A.R., Johnson, N., Freuling, C.M., Wakeley, P.R., Banyard, A.C., McElhinney, L.M.,
 462
 463
 464
 15. Fooks, A.R., Johnson, N., Freuling, C.M., Wakeley, P.R., Banyard, A.C., McElhinney, L.M.,
 465
 466
 467
 468
 469
 469
 460
 461
 462
 463
 464
 464
 465
 466
 466
 467
 468
 469
 469
 460
 460
 461
 462
 463
 464
 464
 465
 466
 467
 468
 469
 469
 460
 460
 461
 462
 463
 464
 464
 466
 467
 468
 469
 469
 460
 460
 460
 461
 462
 463
 464
 464
 465
 466
 466
 467
 467
 468
 469
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
 460
- 465 16. Heaton P. R, Johnstone P, McElhinney L. M, Cowley R, O'Sullivan E, and Whitby J. E. "Heminested 466 PCR assay for detection of six genotypes of rabies and rabies-related viruses," Journal of Clinical Microbiology,vol.35,no.11,pp.2762–2766, 1997.
- 468 17. Araújo DB, Langoni H, Almeida MF, Megid J. Heminested reverse-transcriptase polymerase chain reaction (hnRT-PCR) as a tool for rabies virus detection in stored and decomposed samples. BMC Res Notes. 2008 Jun 4; 1:17. doi: 10.1186/1756-0500-1-17.
- 471 18. Panning M, Baumgarte S., Pfefferle S, Maier T, Martens A, and Drosten C, "Comparative analysis of rabies virus reverse transcription-PCR and virus isolation using samples from a patient infected with rabies virus, "Journal of Clinical Microbiology,vol.48,no.8,pp.2960–2962,2010.

- 474 19. De Benedictis P, de Battisti C, Dacheux L, et al., "Lyssavirus detection and typing using pyrosequencing," Journal of Clinical Microbiology, vol. 49, no.5, pp.1932–1938, 2011.
- 476 20. Wacharapluesadee S, Phumesin P, Supavonwong P, Khawplod P, Intarut N, Hemachudha T. Comparative detection of rabies RNA by NASBA, real-time PCR and conventional PCR. J Virol Methods. 2011 Aug; 175(2):278-82. doi: 10.1016/j.jviromet.2011.05.007. Epub 2011 May 11.
- 21. Coertse, J., Weyer, J., Nel, L.H., Markotter, W., 2010. Improved PCR methods for detection of African rabies and rabies-related lyssaviruses. J. Clin. Microbiol. 48 (11), 3949–3955.
- 481 22. Dacheux L, Reynes JM, Buchy P, Sivuth O, Diop BM, Rousset D, Rathat C, Jolly N, Dufourcq JB, Nareth C, Diop S, Iehlé C, Rajerison R, Sadorge C, Bourhy H. A reliable diagnosis of human rabies based on analysis of skin biopsy specimens. Clin Infect Dis. 2008 Dec 1; 47(11):1410-7. doi: 10.1086/592969.
- 485 23. Kissi B1, Tordo N, Bourhy H. Genetic polymorphism in the rabies virus nucleoprotein gene. Virology. 486 1995 Jun 1;209(2):526-37.
- 487 24. Poch, O., Blumberg, B.M., Bouguelert, L., Tordo, N., 1990. Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J. Gen. Virol. 71, 1153–1162.
- 490 25. Hayman, D.T., Banyard, A.C., Wakeley, P.R., Harkess, G., Marston, D., Wood, J.L., Cunningham, A.A., Fooks, A.R., 2011. A universal real-time assay for the detection of Lyssaviruses. J. Virol. Methods 177 (1), 87–93.
- 493 26. Fischer M, Freuling CM, Müller T, Wegelt A, Kooi EA, Rasmussen TB, Voller K, Marston DA, Fooks AR, Beer M, Hoffmann B. Molecular double-check strategy for the identification and characterization of European Lyssaviruses. J Virol Methods. 2014 Jul; 203:23-32. doi: 10.1016/j.jviromet.2014.03.014.
- 496
 497
 498
 498
 499
 27. Hoffmann, B., Freuling, C.M., Wakeley, P.R., Rasmussen, T.B., Leech, S., Fooks, A.R., Beer, M., Müller, T., 2010. Improved safety for molecular diagnosis of classical rabies viruses by use of a TaqMan real-time reverse transcription-PCR "double check" strategy. J. Clin. Microbiol. 48 (11), 3970–3978.
- 500 28. Wacharapluesadee S, Tepsumethanon V, Supavonwong P, Kaewpom T, Intarut N, Hemachudha T., Detection of rabies viral RNA by TaqMan real-time RT-PCR using non-neural specimens from dogs infected with rabies virus. J Virol Methods. 2012 Sep; 184(1-2):109-12. doi: 10.1016/j.jviromet.2012.05.013.
- 504 29. Hayman DT, Johnson N, Horton DL, Hedge J, Wakeley PR, Banyard AC, Zhang S, Alhassan A, Fooks AR. Evolutionary history of rabies in Ghana. PLoS Negl Trop Dis. 2011 Apr 5; 5(4):e1001. doi: 10.1371/journal.pntd.0001001.
- 507 30. Muleya W, Namangala B, Mweene A, Zulu L, Fandamu P, Banda D, Kimura T, Sawa H, Ishii A.
 508 Molecular epidemiology and a loop-mediated isothermal amplification method for diagnosis of
 509 infection with rabies virus in Zambia. Virus Res.2012Jan; 163(1):160-8. doi:
 510 10.1016/j.virusres.2011.09.010.
- 511 31. Dacheux L, Larrous F, Lavenir R, Lepelletier A, Faouzi A, Troupin C, Nourlil J, Buchy P, Bourhy H.
 512 Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection. PLoS Negl Trop Dis. 2016 Jul 5;10(7):e0004812.
- 514 32. Kumar, S., Nei, M., Dudley, J., Tamura, K., 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9, 299–306.
- 516 33. Swets, J., 1988. Measuring the accuracy of diagnostic systems. Science 240,1285–1293.
- 517 34. Karimollah Hajian-Tilaki. ROC curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 2013; 4 (2): 627-635.
- 519 35. Davide Giavarina. Understanding Bland Altman analysis. Biochem Med (Zagreb). 2015 Jun; 25(2): 141–151. doi: 10.11613/BM.2015.015.

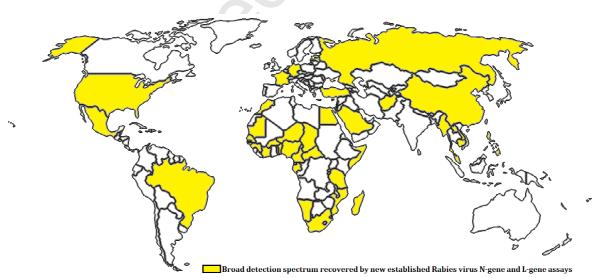

521 36. European Union Reference Laboratory for Rabies (2015) Inter-laboratory test for rabies diagnosis. 522 Proficiency test report Diag-06-2015-V1-EN. 523 37. Reed and Muench. A simple method of estimating fifty per cent endpoints. The American Journal of 524 Hygiene. Vol 27. May 1938. 525 38. Troupin C, Dacheux L, Tanguy M, Sabeta C, Blanc H, Bouchier C, Vignuzzi M, Holmes EC, Bourhy 526 H. Large scale phylogenetic analysis reveals the complex evolutionary trajectories of rabies virus 527 among different carnivore hosts. Submitted. 528 39. OIE:Terrestrial Manual 2013. CHAPTER 1.1.5. PRINCIPLES AND METHODS OF VALIDATION 529 OF DIAGNOSTIC ASSAYS FOR INFECTIOUS DISEASES. May 2013. 530 40. Farhadi; Saeede Salehi; Setare Adibzadeh; Farzaneh Aboualizadeh; Parniyan Alavi; Negin Nikouyan; 531 Mohammad Ali Okhovat; Reza Ranjbaran; Gholam Reza Rafiei Dehbidi; Arash Shakibzadeh: 532 Development of an In-House TaqMan Real Time RT-PCR Assay to Quantify Hepatitis C Virus RNA in 533 Serum and Peripheral Blood Mononuclear Cells in Patients With Chronic Hepatitis C Virus Infection. 534 Hepat Mon. 2015 August; 15(8): e28895. DOI: 10.5812/hepatmon.28895. 535 41. Choudhary N, Wei G, Govindarajulu A, Roy A, Li W, Picton DD, Nakhla MK, Levy L, Brlansky RH: 536 Detection of Citrus leprosis virus C using specific primers and TaqMan probe in one-step real-time 537 reverse-transcription polymerase chain reaction assays. J Virol Methods. 2015 Nov; 224:105-9. doi: 538 10.1016/j.jviromet. 2015.08.022. 539 42. Deubelbeiss A, Zahno ML, Zanoni M, Bruegger D, Zanoni R. Real-Time RT-PCR for the Detection of 540 Lyssavirus Species. J Vet Med. 2014; 2014:476091. doi: 10.1155/2014/476091. 541 43. World Health Organisation, 2013. Expert Consultation on Rabies, Second report. World Health Organ. 542 Tech. Rep. Ser. 982. pp. 1-150. 543 44. Kuo KW, Leung MF, Leung WC. Intrinsic secondary structure of human TNFR-I mRNA influences the 544 determination of gene expression by RTPCR. Mol Cell Biochem 1997;177:1-6. 545 45. Myers, T.W., Gelfand, D. H., Reverse transcription and DNA amplification by a *Thermus thermophilus* 546 DNA polymerase. Biochemistry 1991, 30, 182–192. 547 46. Fischer M, Freuling CM, Müller T, Wegelt A, Kooi EA, Rasmussen TB, Voller K, Marston DA, Fooks 548 AR, Beer M, Hoffmann B. Molecular double-check strategy for the identification and characterization 549 of European Lyssaviruses. J Virol Methods. 2014 Jul; 203:23-32. doi: 10.1016/j.jviromet.2014.03.014. 550 47. McElhinney LM, Marston DA, Brookes SM, Fooks AR. Effects of carcase decomposition on rabies 551 infectivity and detection. J Virol Methods. 2014 Oct; 207:110-3. 552 10.1016/j.jviromet.2014.06.024. 553 48. Suin V, Nazé F, Francart A, Lamoral S, De Craeye S, Kalai M, Van Gucht S: A two-step lyssavirus 554 real-time polymerase chain reaction using degenerate primers with superior sensitivity to the 555 fluorescent antigen test. Biomed Res Int. 2014; 2014:256175. doi: 10.1155/2014/256175. 556 49. Black EM, Lowings JP, Smith J, Heaton PR, McElhinney LM. A rapid RT-PCR method to differentiate 557 six established genotypes of rabies and rabies-related viruses using TaqManTM technology. Journal of 558 Virological Methods 105 (2002) 25 - 35. 559 560 561


562

563564



<u>Figure 1</u>: Standard curves of the TaqMan RT-qPCR assays using RABV-nucleoprotein gene-specific probe (N) and RABV-polymerase gene-specific probe (L). The slope equation, the correlation coefficient (R²) and the efficiency (E) of each linear regression curve are shown in the figure. These standard curves were established using the RABV isolate SA217695SEN, and results are indicated as RNA copy number detected per reaction.



<u>Figure 2</u>: ROC curves of the developed assays using XLSTAT. The AUC value of 1 indicate that the assays have excellent accuracy for RABV genome when samples are positives.

<u>Figure 3</u>: Bland-Altman graphic of differences between N-gene and L-gene assays plotted against average Cq values of the two measurements. The bias of 1.920±6.875 (CI 95%; -11.56 - 15.40) units is represented by the gap between X axis (zero differences) and the line of equality (blue) parallel to the X axis.

<u>Figure 4</u>: Broad detection spectrum of news RABV assays. The countries where tested strains originated are colored in yellow, showing a significant detection scale of established RABV N-gene and L-gene diagnostic assays.

Page 18 of 28

Table 1: Oligonucleotide sequences of primers and probes designed in this study

Name	Type	Length	Sense	Sequence 5'-3'	Gene	Position ^a	GC (%)	Tm (°C) ^b	Product Size (nt)
RABVRPN1	primer	20	Sense	GCTCTGGGCTGGTGTCGTTC	Nucleoprotein	707-726	65.00	58.87	
RABVPN	probe	23	Sense	6FAM-CGAGCCARGGCAGGAGACTGCGGBBQ	Nucleoprotein	819-841	73.91	67.74	193
RABVFPN2	primer	20	Antisense	TACGGGGACTTCCCGCTCAG	Nucleoprotein	880-899	65.00	59.14	
RABVRPL1	primer	20	sense	GGTTTCCGGDGCYGTDCCTC	Polymerase	9472-9491	65.00	58.94	
RABVPL	probe	27	sense	6FAM-CCCGTCAYATAGGGTCRGCTCARGGGCBBQ	Polymerase	9561-9587	66.66	67.36	208
RABVFPL2	primer	20	Antisense	CCTAGGGGAGACYTTGCCRT	Polymerase	9660-9679	65.00	59.02	

FAM, fluorescein amidite; BBQ, blackberry quencher;

a, corresponding nucleotide positions of RABV strain CAR_11/001h (GenBank Ac. No. KF977826)

b, melting temperature (°C) **nt,** nucleotides

Table 2: Description and results of rhabdoviruses isolates used in this study for Specificity assessment

							N gene		L gene	
Isolates	Virus	Genus	References	Place of isolation	year of isolation	Species	Mean Cq value ^a	SD	Mean Cq value ^a	SD
SA221203SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2011	Mellivora capensis (honey badger)	23.40	0.078	18.05	0.312
SA217694SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2011	Canis lupus familiaris (dog)	18.40	0.432	19.99	0.114
SA217695SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2011	Canis lupus familiaris (dog)	16.81	0.015	19.24	0.099
SA217750SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2011	Canis lupus familiaris (dog)	17.31	0.191	21.89	0.467
SA218152SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2011	Canis lupus familiaris (dog)	23.16	0.142	21.74	0.099
SH155966SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2001	Homo sapiens (human)	18.20	0.015	18.73	0.184
SH177846SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2005	Homo sapiens (human)	30.23	0.156	35.26	0.000
SA194858SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2008	Canis lupus familiaris (dog)	17.18	0.008	20.37	0.219
SA204014SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2010	Canis lupus familiaris (dog)	25.16	0.121	14.86	0.128
SA206776SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2010	Canis lupus familiaris (dog)	25.15	0.015	15.00	0.036
SA252888SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2013	Canis lupus familiaris (dog)	26.75	0.099	20.26	0.425
SA252913SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2013	Canis lupus familiaris (dog)	23.52	0.114	16.39	0.057
SA262037SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2013	Canis lupus familiaris (dog)	25.15	0.170	24.16	0.396
SA262503SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2014	Canis lupus familiaris (dog)	23.22	0.057	21.01	0.071
SA262518SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2014	Canis lupus familiaris (dog)	22.77	0.078	21.21	0.538
SA267115SEN	Rabies (RABV)	Lyssavirus	from CRORA database	Senegal	2014	Canis lupus familiaris (dog)	22.46	0.368	22.62	0.142
DakAnB1094	Kolongo (KOLV)	unassigned	JX276998	Central African Republic	1970	Euplectes afra (bird)	Neg	Neg	Neg	Neg
AnY1307	Mokola (MOKV)	Lyssavirus	NC_006429	Cameroon	1973	Crocidura spp. (shrews)	Neg	Neg	Neg	Neg
AnB373d	Sandjimba (SJAV)	unassigned	JX277024	Central African Republic	1970	Acrocephalus schoenobaenus (bird)	Neg	Neg	Neg	Neg
AnB4289	Nasoule (NASV)	unassigned	JX277012	Central African Republic	1973	Andropadus virens (bird)	Neg	Neg	Neg	Neg
AnD42443	Lagos Bat (LBV) 3	Lyssavirus	NC020807	Senegal	1985	Eidolon helvum (fruit bat)	Neg	Neg	Neg	Neg
AnB672	Lagos Bat (LBV) 2	Lyssavirus	from CRORA database	Central African Republic	1974	Micropteropus pusillus (fruit bat)	Neg	Neg	Neg	Neg
An K 6909	Lagos Bat (LBV) 4	Lyssavirus	from CRORA database	Guinea	1985	Nycteris gambiensis (Gambian Slit-faced Bat)	Neg	Neg	Neg	Neg
LBVNIG1956	Lagos Bat (LBV) 6	Lyssavirus	EF547431	Nigeria	1956	Eidolon helvum (fruit bat)	Neg	Neg	Neg	Neg
DakHD763	Le Dantec (LDV)	Ledantevirus	AY854650	Senegal	1965	Homo sapiens (human)	Neg	Neg	Neg	Neg
DakAnD5314	Keuraliba (KEUV)	Ledantevirus	JX276996	Senegal	1968	Tatera kempi (gerbil)	Neg	Neg	Neg	Neg
ArD89384	Chandipura (CHNV)	Vesiculovirus	from CRORA database	Senegal	1992	Phlebotomus sp. (sandflies)	Neg	Neg	Neg	Neg
SudAr1275	Obodhiang (OBOV)	Ephemerovirus	HM856902	Sudan	1963	Mansonia uniformis (mosquitoes)	Neg	Neg	Neg	Neg
ArY31-65	Nkolbisson (NKOV)	Ledantevirus	JX277015	Cameroon	1965	Eretmapodites leucopus (mosquitoes)	Neg	Neg	Neg	Neg
DakAnB439	Garba (GARV)	unassigned	KM204982	Central African Republic	1970	Corythornis cristata (bird)	Neg	Neg	Neg	Neg
SAAr1995	Mossuril (MOSV)	Hapavirus	KM204993	Mozambique	1959	Culex sitiens (mosquitoes)	Neg	Neg	Neg	Neg

Rabies virus

Rabies virus

SD: standard deviation

Neg: negative; no cross-reactitvity

CRORA: WHO Reference Centre for a: Mean Cq value from duplicates

Arboviruses and Hemorragic Fevers; Institut Pasteur, BP 220, Dakar, Senegal

Table 3a: Results of evaluation of Spectrum of detection in Africa

						N gene assay		L gene assay	
Isolate	Origin	Species	Year	reference	Phylogenetic clade - subclade	Mean Cq value ^a	SD	Mean Cq value ^a	SD
93012MAU	Mauritania	dog	1993	KX148237	Africa-2	27.35	0.685	31.39	0.049
93011MAU	Mauritania	dog	1993	KX148236	Africa-2	16.83	1.180	26.30	0.615
91031MAU	Mauritania	dog	1991	NRC-Rabies IPP	Africa-2	16.21	1.660	25.22	0.289
90024GUI	Guinea	dog	1990	KX148244	Africa-2	17.28	0.000	23.32	0.028
92038CI	Ivory Coast	dog	1992	KX148233	Africa-2	21.56	0.098	23.93	0.148
90003CI	Ivory Coast	dog	1990	NRC-Rabies IPP	Africa-2	17.82	0.042	22.24	0.113
90026CI	Ivory Coast	dog	1990	NRC-Rabies IPP	Africa-2	16.32	0.487	26.03	0.926
01007CI	Ivory Coast	dog	2001	KX148235	Africa-2	14.85	0.289	22.06	1.385
92037CI	Ivory Coast	dog	1992	KX148232	Africa-2	23.23	0.120	24.46	1.046
95047HAV	Burkina Faso	dog	1995	KX148230	Africa-2	15.88	0.070	16.30	0.572
86036HAV	Burkina Faso	dog	1986	KX148234	Africa-2	11.78	0.127	17.65	0.615
90012NIG	Niger	dog	1990	KX148229	Africa-2	19.045	0.289	20.18	0.014
90010NIG	Niger	dog	1990	KX148231	Africa-2	14.235	0.388	17.35	0.247
86070NGA	Nigeria	dog	1986	NRC-Rabies IPP	Africa-2	26.4	0.028	23.31	1.520
86003BRE	Nigeria	dog	1986	KX148201	Cosmopolitan - AF1a	26.15	0.226	22.41	0.763
95002 CAM	Cameroon	dog	1994	KX148242	Africa-2	15.41	0.197	16.75	0.028
88003CAM	Cameroon	dog	1987	KX148243	Africa-2	17.93	0.028	19.14	0.077
88006CAM	Cameroon	dog	1987	NRC-Rabies IPP	Africa-2	18.38	1.350	21.46	0.622
96009TCH	Chad	dog	1996	KX148241	Africa-2	13.96	0.063	18.06	0.275
92018TCH	Chad	dog	1992	NRC-Rabies IPP	Africa-2	24.36	0.296	23.78	0.544
97138TCH	Chad	dog	1997	NRC-Rabies IPP	Africa-2	15.07	0.707	20.9	0.098
90021TCH	Chad	dog	1990	KX148240	Africa-2	15.49	0.021	17.70	0.968
86097BEN	Benin	Cat	1986	KX148107	Africa-2	15.10	0.021	17.23	0.056
94289RWA	Rwanda	dog	1994	KX148205	Cosmopolitan - AF1b	28.74	0.021	22.23	0.134
92028CAR	Central African Republic	dog	1992	NRC-Rabies IPP	Cosmopolitan - AF1b	26.42	0.197	28.1	0.395
92029CAR	Central African Republic	dog	1992	KX148208	Cosmopolitan - AF1b	23.68	0.544	21.72	1.046
86031MOZ	Mozambique	dog	1986	KX148203	Cosmopolitan - AF1a	26.73	0.346	16.29	0.268
87021AFS	South Africa	Human	1981	KX148103	Cosmopolitan - AF1b	27.69	0.346	21.12	0.197
92030NAM	Namibia	dog	1992	KX148204	Cosmopolitan - AF1b	22.91	0.806	14.66	0.339
86092EGY	Egypt	Human	1979	KX148101	Cosmopolitan – AF4	25.90	0.021	26.36	0.063
95049GAB	Gabon	dog	1995	KX148202	Cosmopolitan - AF1a	30.14	0.417	25.02	0.155
93002SOM	Somalia	dog	1993	KX148198	Cosmopolitan - AF1a	Neg	Neg	25.47	0.311
96013TAN	Tanzania	dog	1996	KX148206	Cosmopolitan - AF1b	Neg	Neg	19.75	2.008
93006SOM	Somalia	Jackal	1993	KX148199	Cosmopolitan - AF1a	Neg	Neg	22.40	0.120
87012MAR	Morocco	dog	1987	NRC-Rabies IPP	Cosmopolitan - AF1a	Neg	Neg	33.39	0.141
88008ETH	Ethiopia	dog	1988	KX148200	Cosmopolitan - AF1a	28.11	0.240	23.99	0.113
04031MAR	Morocco	dog	2004	KX148195	Cosmopolitan - AF1a	26.13	0.007	20.09	0.113
90016MAR	Morocco	dog	1990	KX148196	Cosmopolitan - AF1a	27.78	0.219	22.62	0.240
98002MAD	Madagascar	Human	1998	KX148210	Cosmopolitan - AF1c	24.77	0.162	28.52	0.155
15005AFS	South Africa	Mongoose	2014	NRC-Rabies IPP	Africa-3	23.78	0.601	31.34	0.049
15002AFS	South Africa	Mongoose	2014	KX148221	Africa-3	25.24	0.014	21.06	0.728
		J							

Neg: negative or no fluorescence signal

Cq : quantitative Cycle number

a: Mean Cq value from duplicates

SD: standard deviation

Determination of clades and subclades were done according to Troupin C, et al., submitted (38)

NRC-Rabies IPP: National Reference Renter for rabies virus database at Institut Pasteur, Paris, France

Table 3b: Results of evaluation of Spectrum of detection in other parts of the world

						N gene assay		L gene assay	
Isolates	Origin	Species	Year	Reference	Phylogenetic clade - subclade	Mean Cq value ^a	SD	Mean Cq value ^a	SD
91047FRA	France	Fox	1991	KX148127	Cosmopolitan - WE	27.11	0.162	22.73	0.155
96002FRA	France	Fox	1996	KX148126	Cosmopolitan - WE	27.38	0.077	20.41	1.301
96140POL	Poland	Raccoon dog	1993	KX148120	Cosmopolitan – CE	Neg	Neg	16.31	0.106
92001GER	Germany	Fox	1991	KX148135	Cosmopolitan - WE	Neg	Neg	22.68	0.289
93039EST	Estonia	Raccoon dog	1991	KX148149	Cosmopolitan - NEE	35.35	0.353	22.33	0.049
86054YOU	Bosnia and Herzegovina	Wolf	1986	KX148145	Cosmopolitan - EE	37.08	0.353	25.54	0.007
87001ARS	Saudi Arabia	Fox	1987	NRC-Rabies IPP	Cosmopolitan - ME1a	Neg	Neg	33.08	0.183
94009TUR	Turkey	Dog	1993	KX148165	Cosmopolitan - ME2	Neg	Neg	26.22	0.000
94272РНІ	Philippines	Dog	1994	KX148259	Asian - SEA4	31.25	0.084	32.22	0.127
99009BUR	Burma	Dog	1999	NRC-Rabies IPP	ND	19.15	0.007	33.4	0.183
99008CBG	Cambodia	Dog	1999	KX148252	Asian - SEA3	32.05	0.007	36.51	0.014
99010LAO	Laos	Dog	1999	KX148255	Asian - SEA3	Neg	Neg	29.60	0.459
02043СНІ	China	Dog	ND	NRC-Rabies IPP	Asian - SEA2a	36.55	0.070	36.11	1.096
02045CHI	China	Dog	ND	NRC-Rabies IPP	Asian – SEA2a	32.28	0.905	35.91	0.100
91014MEX	Mexico	Dog	1991	KX148110	Cosmopolitan - AM2a	Neg	Neg	21.32	0.353
86001BRE	Brazil	Dog	1986	KX148216	Cosmopolitan - AM3a	19.04	0.007	27.42	0.063
91001USA	USA	Skunk	1982	KX148213	Cosmopolitan - AM1	35.61	0.339	20.81	0.141
91004USA	USA	Skunk	1991	KX148224	Arctic-related - A	Neg	Neg	23.64	0.480
02052AFG	Afghanistan	Dog	2002	KX148225	Arctic-related - AL1b	Neg	Neg	22.40	0.028
91041RUS	Russia	Fox	1991	NRC-Rabies IPP	Cosmopolitan - CA1	Neg	Neg	23.18	1.011

Neg: negative or no fluorescence signal

Cq: quantitative Cycle number

a: Mean Cq value from duplicates

SD: standard deviation

 $Determination \ of \ clades \ and \ subclades \ were \ done \ according \ to \ Troup in \ C, \textit{et al.}, \ submitted \ (reference \ 38)$

 $\textbf{NRC-Rabies IPP:} \ \textbf{National Reference Renter for rabies virus database at Institut Pasteur, Paris, France$

 $\textbf{ND:} \ not \ determined$

Table 4: Results of repeatability test and summary of results used for determination of Analytical specificity and sensitivity

		N GENE ASSAY			L GENE ASSAY	
Intra-run CV		1.67 %			1.08 %	
Inter-run CV		2.20 %,			2.16 %,	
	Positive samples		Negative samples	Positive samples		Negative samples
Positive	64		0	77		0
Negative	13		35	0		35
TOTAL	77		35	77		35
Specificty		100%			100%	
Sensitivity		78.70% (CI 95%; 68.40-89.00%)			100%	
Positive Predictive Value (PPV)		100%			100%	
Negative Predictive Value (NPV)		72.91% (CI 95%; 56.76-82.79%)			100%	

^{%:} percentage

Page 23 of 28

All samples were previously tested by the reference technique, FAT

CV: coefficient of variation

Table 5: Description of isolates used and results of inter-laboratory concordance

						Interlaboratory trial	NRC-R IPP	NRC-R IPD	NRC-R IPD
Identification	Isolate	virus	Spieces	Origin	Year	Expected results ^a	Combo RT-qPCR	N-gene assay	L-gene assay
1	CVS 27 13-14	RABV (rabies virus)	Fixed strain	/	/	Positive	Positive	Positive	Positive
2	GS7 18-13	RABV (rabies virus)	Vulpes vulpes	France	1986	Positive	Positive	Positive	Positive
3	GREECE 03-15	RABV (rabies virus)	Vulpes vulpes	Greece	2012	Positive	Positive	Positive	Positive
4	BBLV 02-15	BBLV (Bokeloh bat lysssavirus)	Myotis natterreri	France	2012	Positive	Positive	Negative	Negative
5	DUVV 02-12	DUVV (Duvenhage virus)	Homo sapiens sapiens	South Africa	1971	Positive	Positive	Negative	Negative
6	EBL-1a 08-14	EBLV-1 (European Lagos bat virus 1)	Eptesicus serotinus	France	2002	Positive	Positive	Negative	Negative
7	EBL-2 01-15	EBLV-2 (European Lagos bat virus 2)	Myotis daubentonii	United kingdom	2004	Positive	Positive	Negative	Negative
8	Negative 17-13	/	Vulpes vulpes	France	2012	Negative	Negative	Negative	Negative
9	Negative 17-13	/	Vulpes vulpes	France	2012	Negative	Negative	Negative	Negative

 $a: Expected\ results\ by\ European\ Union\ Reference\ Laboratory\ for\ Rabies\ during\ interlaboratory\ trial\ 2015\ (36).$

Assays detected only RABV strains and gave results 100% concordant with previous results obtained with the combo RT-qPCR (31) from NRC-R IPP, used as reference technique. A Cohen's kappa coefficient (k) of of 1±0.31 (95% CI; 0.38-1.61) (p= 0.001) were obtained. Assays were also concordant with expected results of interlaboratory trial on the same samples.

Table 6: Detection limit of RABV by new established gRT-PCR assays and conventional hemi-nested RT-PCR

TITERS ID50/mL	L GENE qRT-PCR	L GENE qRT-PCR N GENE qRT-PCR			Hemi-nested PCR	
	Mean Cq value ^a	SD	Mean Cq value ^a	SD	Electrophorese gel results	
6.7E+07	11.00	0.141	15.61	0.820	(+++)	
6.7E+06	12.74	0.212	18.08	0.049	(+++)	
6.7E+05	15.63	0.346	21.23	0.007	(+++)	
6.7E+04	19.57	1.378	24.61	0.60	(++)	
6.7E+03	24.58	0.516	28.55	0.381	(++)	
6.7E+02	28.51	0.636	31.79	0.622	(++)	
6.7E+01	31.74	0.919	36.82	0.021	(+)	
6.7	33.51	0.487	39.16	0.487	(+)	
0.67	36.63	0.084	Neg	Neg	Neg	
0.067	37.44	0.084	Neg	Neg	Neg	
0.0067	38.07	0.035	Neg	Neg	Neg	
0.00067	38.83	0.254	Neg	Neg	Neg	
0.000067	Neg	Neg	Neg	Neg	Neg	

Neg: negative or no fluorescence signal

Cq : quantitative Cycle number

a: Mean Cq value from duplicates

(+++): highest band intensity

(++): average band intensity

(+): lowest band intensity

Ten fold-serial dilutions of RABV isolate SA217695SEN with an initial virus titer of 6.7 $10^7 \, \text{ID}_{50}/\text{mL}$ were tested with new assays. The reference technique were the RT-hnPCR previously described (22).

Page 25 of 28

Table 7: Clinical sensibility assessment on intra-vitam human speciemens

Patient Code	Origin	Hospital service	Sample	Technique	NRC-R IPP combo RT- qPCR	NRC-R IPD L-gene assay	Final diagnosis
H14-0004	France	CHU Mondor	Cerebro-spinal fluid	qRT-PCR	Negative	Negative	
H14-0004	France	CHU Mondor	Skin biospy	qRT-PCR	Positive	Positive	
H14-0004	France	CHU Mondor	Saliva day1	qRT-PCR	Negative	Negative	
H14-0004	France	CHU Mondor	Saliva day2	qRT-PCR	Negative	Negative	RABV-positive patie
H14-0004	France	CHU Mondor	Saliva day3	qRT-PCR	Negative	Negative	
H14-0004	France	CHU Mondor	Saliva day4	qRT-PCR	Negative	Negative	
H14-0004	France	CHU Mondor	Saliva day6	qRT-PCR	Negative	Negative	
H14-0004	France	CHU Mondor	Saliva day8	qRT-PCR	Negative	Negative	
H14-0007	Italia	CHU Milan	Skin biospy	qRT-PCR	Positive	Positive	
H14-0007	Italia	CHU Milan	Cerebro-spinal fluid day1	qRT-PCR	Positive	Positive	RABV-positive patie
H14-0007	Italia	CHU Milan	Cerebro-spinal fluid day2	qRT-PCR	Positive	Positive	
H14-0008	France	CH Garches	Skin biospy	qRT-PCR	Negative	Negative	RABV-negative patie
H14-0008	France	CH Garches	Saliva	qRT-PCR	Negative	Negative	idiby negative patro
H14-0009	France	CH Bastia	Skin biospy	qRT-PCR	Negative	Negative	
							RABV-negative pation
H14-0009	France	CH Bastia	Cerebro-spinal fluid	qRT-PCR	Negative	Negative	
H14-0010	France	CHU Cayenne	Skin biospy	qRT-PCR	Negative	Negative	
							RABV-negative pation
H14-0010	France	CHU Cayenne	Saliva	qRT-PCR	Negative	Negative	
H14-0011	France	CHU Cayenne	Biospy skin	qRT-PCR	Negative	Negative	
							RABV-negative pati
H14-0011	France	CHU Cayenne	Saliva	qRT-PCR	Negative	Negative	

RABV: rabies virus

NRC-R IPD L-gene assay were 100% concordant to the previous diagnosis results obtained with the combo RT-qPCR (31) from NRC-R IPP, used as reference technique.

625			
626			
627	Graphical Abstract		
628			
			[↑] △Rn
	Rab	M protein G Protein G Protein Envelope L Protein P Protein	2,000,000 - Fisteral Sample L000,000 - Threshold CT
		Molecular di	PCR cycle number agnosis assays
	Virus transmitted by infected saliva through bite or wound Animal and Human Infection	Broad de	Transit direction spectrum recovered by some middlinded Radion virus by grow and gave aways:
629			
630			
631			
632			
633			
634			
635			
636			
637			

593	Highlights
594	Two reliable real-time quantitative RT-PCR assays were developed for RABV detection
595 596	Primer and probe sets were targeted to highly conserved regions in nucleoprotein and polymerase
597 598	Sensitivity ranged between 100 to 10 standard RNA copies per reaction for N-gene and L-gene assays, respectively.
599 600	These assays can be successfully applied on African isolates for research and diagnostic
601	
602	
603	
604	
605	
606	
607	
608	
609	
610	
611	
612	
613	
614	
615	
616	
617	
618	
619	
620	
621	
622	
623	
624	