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Abstract

Gyrodactylus salaris (Monogenea, Platyhelminthes) is a notifiable freshwater pathogen

responsible for causing catastrophic damage to wild Atlantic salmon stocks, most notably in

Norway. In some strains of Baltic salmon (e.g., from the river Neva) however, the impact is

greatly reduced due to some form of innate resistance that regulates parasite numbers,

resulting in fewer host mortalities. Gyrodactylus salaris is known from 17 European states;

its status in a further 35 states remains unknown; the UK, the Republic of Ireland and certain

watersheds in Finland are free of the parasite. Thus, the parasite poses a serious threat if it

emerges in Atlantic salmon rearing regions throughout Europe. At present, infections are

generally controlled via extreme measures such as the treatment of entire river catchments

with the biocide rotenone, in order to remove all hosts, before restocking with the original

genetic stock. The use of rotenone in this way in EU countries is unlikely as it would be in

contravention of the Water Framework Directive. Not only are such treatments economically

and environmentally costly, they also eradicate the potential for any host/parasite evolution-

ary process to occur. Based on previous studies, UK salmon stocks have been shown to be

highly susceptible to infection, analogous to Norwegian stocks. The present study investi-

gates the impact of a G. salaris outbreak within a naïve salmon population in order to deter-

mine long-term consequences of infection and the likelihood of coexistence. Simulation of

the salmon/ G. salaris system was carried out via a deterministic mathematical modelling

approach to examine the dynamics of host-pathogen interactions. Results indicated that in

order for highly susceptible Atlantic strains to evolve a resistance, both a moderate-strong

deceleratingly costly trade-off on birth rate and a lower overall cost of the immune response

are required. The present study provides insights into the potential long term impact of G.

salaris if introduced into G. salaris-free territories and suggests that in the absence of
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external controls salmon populations are likely to recover to high densities nearing 90% of

that observed pre-infection.

Introduction

Gyrodactylus salarisMalmberg, 1957 is a viviparous (i.e., live-bearing) freshwater ecto-parasite

that infects both wild and farmed populations of Atlantic salmon (Salmo salar L.), potentially

resulting in juvenile host mortality. It is an Office International des Epizooties (OIE) listed

pathogen that was first described from the fins and skin of a Baltic Atlantic salmon strain from

a hatchery in Sweden located near the Indalsälv river [1]. The parasite is believed to be native

to the waters of northern Russia, western Sweden and northern Finland [2], but is now known

to be widely distributed throughout Europe [3–10] and recently confirmed in Romania [11].

In Norway, the parasite has caused catastrophic damage to wild populations of Atlantic salmon

parr since it was first observed the mid-1970s after a period of mass salmon mortality [12–15].

Moreover, this parasite is known to have been introduced to Norway on at least three separate

occasions [16] and can reduce salmon stock in rivers by approximately 85% on average [10].

Within 5 years of initial introduction to a susceptible host population reductions in outbound

smolts can be as high as 98% [10,12,17]. This has caused severe damage to the Norwegian

economy and to wild salmon fisheries. Although infections in salmon hatcheries have been

reported, such infections are more readily controlled, however, if left untreated salmon mortal-

ity can reach 100% [10]. In the years post introduction, G. salaris has been reported from 50

rivers, 13 Atlantic salmon hatcheries and 26 rainbow trout (Oncorhynchus mykissWalbaum)

hatcheries in Norway and subsequently managed through coordinated intervention [18]. Sub-

sequent losses to the Norwegian salmon industry up until 2004 exceeded US$ 655m [19]. The

last time loss figures were estimated annual loss of wild juvenile salmon was suggested to be in

the region of 250–500 metric tonnes as a consequence of parasitic infection reducing the aver-

age density of salmon parr in infected rivers [19]. Such annual loss costs the Norwegian econ-

omy over US$ 55m per annum through surveillance and eradication (circa US$ 23m per

annum) along with losses incurred by fisheries, associated industries and tourism (circa US$

34m per annum) [14]. Hence, G. salaris poses a serious threat if it establishes in territories that

are currently G. salaris free [9].

Though G. salaris has had a huge impact in Norway, some Baltic strains of Atlantic salmon

appear to be more resistant to the parasite than the Atlantic strains [19]. Bakke et al. [20] was

the first study to show a difference in the immune response between two strains of salmon. In

particular, they showed that parasite numbers grew exponentially on individual fish from an

Atlantic strain of Atlantic salmon from the rivers Lone and Alta (Norway), whereas on a Baltic

strain of Atlantic salmon from the river Neva (Russia) there was some initial growth in parasite

numbers, but those numbers peaked and then generally decreased to zero. This clearly demon-

strated some differences in susceptibility of these salmon strains to G. salaris through the abil-

ity of the some Baltic strains to exhibit some form of resistance or immune response [19–23].

It has been highlighted that the resistance observed in some Baltic salmon strains, such as

those from the Neva river, is due to the presence of the parasite in the Baltic watershed since

the last glacial period allowing an evolutionary selection process within the host [22]. This sup-

ports the hypothesis that G. salaris is a recent (c. 40 years) introduction to Norwegian rivers

and potentially explains why Norwegian Atlantic salmon are particularly susceptible to the

parasite.
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Due to the impact of G. salaris on Norwegian salmon, extreme measures have been taken to

try and control and eradicate the parasite. These measures include the treatment of entire river

catchments with the biocide rotenone [24] to remove all hosts (and hence, G. salaris), before

restocking with the original genetic stock [12,14,25,26]. The use of rotenone in this way in EU

countries is unlikely as it would be in breach of the Water Framework Directive [27]. Not only

are such treatments economically and environmentally costly, they also eradicate the potential

for any host/parasite evolutionary process to occur.

Currently the only European countries recognised as free from G. salaris infection are the

United Kingdom [28,29], the Republic of Ireland [9,30,31], and some areas of Finland [9,32].

Other countries such as Portugal, Spain and France, where G. salaris has been previously

recorded, are believed to be misidentifications with a morphologically similar species Gyrodac-
tylus teuchis Lautraite, Blanc, Thiery, Daniel et Vigneulle, 1999 [32,33]. The collection of fur-

ther material from these states is required to determine their current G. salaris status. Recently,

however, it was proposed that G. salaris and G. thymalli Žitňan, 1960, another morphologically

similar and closely-related, but benign parasite of grayling, Thymallus thymallus L., may repre-

sent a single species of Gyrodactylus that comprises several pathogenic and non-pathogenic

strains on a number of primary hosts [34]. The study [34] analysed microRNA loci from a

small number of populations of Gyrodactylus from Atlantic salmon and grayling hosts and

made the proposal that the two species should be synonymised, however, this has not yet been

formally accepted by the OIE and as such this synonymisation is yet to be accepted by the sci-

entific community [11].

Despite the fact G. salaris is not present in the UK but G. thymalli is, it has been demon-

strated that UK salmon populations have similar levels of susceptibility to infection as those

in Norway [15,23,35,36]. Due to this, G. salaris is regarded to pose a serious disease threat to

the UK’s valuable wild and farmed salmon populations [37]; a report to the Scottish Govern-

ment advised if G. salaris were introduced into Scotland, as an example of potential impact,

then the potential losses would be estimated at £44.8 million per annum to the Scottish econ-

omy, £34.5 million to Scottish household income each year and 1,996 full time equivalent

jobs lost in Scottish employment [38]. It is also likely that G. salaris, if introduced, would

spread within and between UK rivers before it is detected [2]. Due to this, contingency plans

were drawn up setting out a series of actions to follow in the event of an outbreak [37]. Using

mathematical modelling approaches based on the existing knowledge of G. salaris, the pres-

ent study aims to simulate salmon/G. salaris interaction dynamics in order to investigate the

potential for natural recovery of susceptible salmon populations post introduction of G. sal-
aris infection.

The majority of previous mathematical modelling work concerning the salmon/G. salaris
system has been centred on risk and statistical analysis highlighting areas such as routes of

infection, transmission and risk of introduction [2,39–43]. Some work has been carried out to

study the effects of G. salaris on different stages of the salmon life-cycle [44] as well as the effect

of other gyrodactylid species such as Gyrodactylus turnbulli Harris, 1986 on guppies, Poecilia
reticulata Peters, 1859 [45,46]. More recently stochastic models have become popular in study-

ing G. salaris infections in salmon and modelling techniques such as Leslie matrix population

models and individual based models have also been employed [47–49]. Though a great deal of

effort has been placed on understanding the risks and routes by which the parasite may be

introduced, little has been done to predict its long-term impact. Moreover, not much is known

about what may happen should control efforts similar to those employed in Norway not be

possible.

In the present study a series of host-macroparasite models are developed, first considering a

single fish host and incorporating that into a population model. The effects that an increased
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immune response has on the host and parasite populations are analysed demonstrating the dif-

ference in susceptibility between a highly susceptible salmon strain and a resistant strain.

Finally, some mutation and replacement is incorporated to determine how strong an immune

response the hosts develop and what types of trade-offs and parameter values are required to

allow a fully susceptible host to evolve into a primarily resistant host.

Methods

Individual fish model

To model parasite numbers on an individual host a deterministic ordinary differential

equation (ODE) approach is taken. For the number of parasites, P, a simple exponential

growth model is assumed, with replication rate μ, death rate ε and dislodgement rate λ. In

addition, we include an immune response, I, exhibited by the host which activates at ratem
as parasite numbers grow; this in turn increases the parasite death rate by a rate ρI. Finally,

the immune response decays at a continuous rate ξ. The equations for these are shown in

Eq (1) below:

dP
dt
¼ Pðm � ε � rI � lÞ

dI
dt
¼ mP � xI

ð1Þ

Full salmon population model

The individual fish host model was expanded by scaling up the equations in Eq (1), to a popu-

lation of hosts and parasites. Here the host population,H, is assumed to follow a logistic

growth function, a being the birth rate, b the natural death rate and s representing density-

dependent competition, with an additional death rate dependent on parasite burden, αM. The

equations for average parasite burden,M= P/H, or density of parasite per host (where P is the

total on-host parasite density), and immune response, I, are taken from Eq (1), but expanded

in that the parasite burden decreases due to deaths of the host due to infection, α, and birth of

new (initially parasite-free) hosts. The on-host parasite distribution is assumed to follow a

Poisson distribution across the host population, which is taken into account in the parasite-

induced death rate, α. Both Poisson and negative binomial distributions were considered with

each giving similar results, the Poisson however, simplified the model significantly and thus

was chosen. The off-host parasite density,W, is assumed to increase as the parasites leave the

host (either by choice or host death) and decrease due to parasite death, σ, or parasite latching

on to hosts at a rate β, which in turn increases parasite burden. It is important to note that

actual parasite death rates are highly dependent on many factors such as environmental condi-

tions (e.g. temperature), water quality, salinity, etc. [50,51]. In the present study, however, we

consider a simplified worst case scenario such that we have a highly pathogenic strain of para-

site and a highly susceptible Atlantic salmon strain.

The dynamics for the model take the form in Eq (2). Further details of the model’s deri-

vation are presented in the Supplementary Information (S1 Appendix). Parameter values

used in all models are given in Table 1. Parameter values regarding the UK were used where

Natural Recovery of Atlantic Salmon Populations following the Introduction of G. salaris
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available.

dH
dt

¼ ða � b � sHÞH � aMH

dM
dt

¼ ðm � ε � rI � l � a � aÞM þ bW

dI
dt

¼ mM � xI

dW
dt

¼ MH½lþ bþ sH þ að1þMÞ� � sW � bWH

ð2Þ

With macro-parasite models, such as those used in the present study, fish-to-fish transmis-

sion is not shown explicitly in the model, but is rather an implicit feature modelled through

the distribution of parasites across the fish population. This is due to the fact that P gives the

total number of on-host parasites which remains unchanged as parasites switch between fish

hosts, and due to the large number of parasites involved in these systems, the effect on the dis-

tribution of parasites is negligible.

Results

Single host model

Using the single host model, Eq (1), two different cases were considered (Fig 1): firstly, a highly

susceptible Atlantic salmon strain with no immunity,m� 0; secondly, a resistant salmon

strain,m> 0 (m = 0.0175). Model simulations showed parasite numbers grew exponentially

on the susceptible host, whereas on the resistant host parasite numbers decayed to zero. In the

case of the resistant host initial parasite growth over the first 7 days was similar to the highly

susceptible host, however, parasite population growth slowed thereafter, peaking at around

20 days, before decreasing to zero/low levels. These behaviours approximately follow the

Table 1. List of parameter values used to inform salmon/G. salaris host parasite models.

Parameter Description Estimate/day Source

a Maximum salmon birth rate 0.02 Assumed

b Salmon natural death rate 0.00057 [52]

K Salmon carrying capacity 0.125 [52]

s Density dependent constraint 0.000155 Estimated using K for 1000 m2

μ G. salaris birth rate (Norway) 0.1825 [20]

G. salaris birth rate (UK)* 0.1708 [15]

ε G. salaris on-host death rate 0.08 [50]

σ G. salaris off-host death rate 0.14–0.17 [42]

λ Rate the parasites leave the hosts 0.06 Assumed

β Parasites attach rate to hosts 0.0585 Assumed

α Parasite induced death rate of host 0.02 [45]

m Rate hosts develop an immune response 0–0.0175 Assumed

ξ Decay rate of immune response 0.0055 Assumed

ρ Rate of increase in parasite mortality due to resistance 1 Adjusted in values of m

* parameter value used in this study

doi:10.1371/journal.pone.0169168.t001
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PLOS ONE | DOI:10.1371/journal.pone.0169168 December 29, 2016 5 / 17



experimental results observed by Bakke et al. [20] at water temperatures of 12˚C on Atlantic

Lone and Baltic Neva salmon hosts.

Full salmon population model

Firstly, the model in Eq (2) was simulated to consider a fully susceptible host with a negligible

immune response, i.e.m� 0. Here, following the introduction of the parasite into the system

the model shows a fast drop in the number of hosts. This mirrors the results in the field, e.g., in

Norway where the parasite can reduce the salmon parr population by up to 98% within 5 years

[12]. As host extinction has not been witnessed, and the average reduction in salmon is 86%

(and sometimes lower), we can assume that althoughm 6¼ 0, it must be very small. As we

increase the amount of immune response,m (Fig 2A), we very quickly see that the host (equi-

librium) population recovers and the average parasite burden decreases. In fact, only negligible

values form produces a reduction approaching 100%, and even a small amount of resistance

significantly improves host population size. Moreover, host numbers approach their pre-infec-

tion levels, and parasite burden approaches zero, asm gets large. Interestingly the greatest

Fig 1. Output from the model in Eq (1) for parasite numbers, with m = 0 (susceptible salmon strain—

solid line) and m > 0 (resistant salmon strain—dashed line).

doi:10.1371/journal.pone.0169168.g001
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effect on host and parasite numbers occurs at lower increases in immune responsem, with

only marginal effects for largerm.

The trade-off

So far we have assumed that the immune response mounted by the host is cost free. This, how-

ever, has been shown not to be the case. One prime example of this is a study of furunculosis

in brook trout, Salvelinus fontinalis (Mitchill) [53], in which it was shown that an increase in

immunity had a negative effect on the host’s birth rate; they observed approximately a 7 to

12% decrease in the birth rate of the trout that exhibited resistance to infection. Although

there is no evidence to support or deny that a similar trade-off exists in salmon, for the remain-

der of this study we hypothesise there is a cost of the immune response. In particular, we take a

trade-off such that the development of an effective immune response, as measured here bym,

can have a significant negative effect on host birth rate a, such that a = a(m)with a’(m) < 0.
Although the form of a(m) is unknown, we make two assumptions: i) whenm = 0, a = 0.02

(maximum birth rate) representing a highly susceptible salmon strain, and ii) when

m = 0.0175 (our maximum resistance), birth rate a is reduced by 10% representing a resistant

salmon strain. We initially take a linear trade-off (straight line) passing through these two

points to allow us to interpolate a for intermediatem.

The addition of this trade-off has a marked effect on the host population. In particular, at

high levels of immune response,m, the cost of a lower birth rate begins to outweigh the benefit

of higher immune response (and subsequent lower parasite burden) and the host population

begins to decrease (Fig 2B). Here an optimal level of immunity now exists which maximises

the host population whenm = 0.010.

Fig 2. Plot of host (equilibrium) population H (solid line) and parasite burden M (dashed line). (A) with no trade-off; (B) with a linear trade-off on

host birth rate. The dotted line represents the (fully susceptible) host population before the parasite outbreak.

doi:10.1371/journal.pone.0169168.g002
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Mutation and replacement of hosts

The optimal immune response observed may not, however, represent the level ofm that the

host species evolve to; this instead would likely be determined by the level ofm which opti-

mises the growth rate of the host population. To study the long-term evolution of immune

response, we take a mutation and replacement approach, broadly following that of adaptive

dynamics [54].

Consider a single resident host strain of salmon, with immune responsem and population

densityH existing alone in an environment, with the dynamics as given in Eq (2). Now sup-

pose a mutation creates a host with slightly different immune response bm, with population

density bH . Mutations are generally small, and hence, the difference betweenm and bm is small.

Here bM andbI are the (average) parasite burden and immune response for this mutant host

strain. If this new type is initially rare, then we can write down the fitness of this mutant type,

i.e. the long-term growth rate of this mutant population, as

rðbm;mÞ ¼ aðbmÞ � b � sHðmÞ � a bMðbm;WðmÞÞ ð3Þ

Here bM is the average parasite burden on a mutant host. We make the assumption that par-

asites will reach their “average” (equilibrium) burden on the new mutant host type bM quickly,

when compared to the natural fish lifespan—a reasonable assumption given the much shorter

generation time of the parasite. The full derivation of the fitness is given in the Supplementary

Information (S3 Appendix). If the fitness is positive, then the mutant host type will increase in

number, generally replacing the existing resident host type, whereas if the fitness is negative

the mutant will die out. For simplicity, we assume no ‘intermediate strains’ due to cross-breed-

ing. The fitness is used to calculate the location of the evolutionary singular point and deter-

mine whether it is an evolutionary steady state, ESS, i.e. an evolutionary end point.

To demonstrate the evolutionary behaviour more clearly, we numerically simulate evolu-

tion using a similar mutation and replacement approach, using the full mutant-resident

dynamics—details of which are presented in the Supplementary Information (S3 Appendix).

This has been shown to be a good approximation to the analytical approach using the fitness

in Eq (3) and has the benefit of not making the assumption about the parasite burden being at

equilibrium. Starting from a highly susceptible salmon strain, we plot howm evolves through

time. Fig 3A plots the strains present following each mutation and shows howm evolves over

time with a (linear) trade-off. Here ‘time’ means the number of mutation events that occur—as

we do not currently know how often mutations occur, we leave time deliberately in terms of

these mutation events. In addition, the colouring represents the total host population present.

For the first 100 time steps, the system is parasite-free, hence minimal resistance and maxi-

mum host population (Fig 3A). At time step 100, however, we introduce a small number of

(free-living) parasites. Immediately the population of host drops (Fig 3B). Resistance then

begins to be selected for, leading to an increase inm (Fig 3A). This in turn leads to an increase

in host population and a lower parasite burden (Fig 3B). The level of immune response eventu-

ally settles at an intermediate level, i.e. an ESS, with the host population normally distributed

about this resistance level (Fig 3A- inset). This is at approx.m = 0.0075 here, slightly below the

optimalm (� 0.010) which maximises the host population.

Trade-off shape

So far we have only considered a linear trade-off—whereby each benefit (i.e. unit increase in

immune response,m) always comes at the same cost (i.e. same decrease in birth rate, a). We

now vary the trade-off shape by means of a parameter θ (see Supplementary Information,

Natural Recovery of Atlantic Salmon Populations following the Introduction of G. salaris
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S3 Appendix, for specific details). Specifically, a positive θ represents an ‘acceleratingly costly

trade-off’, whereby each benefit comes at an increasing (accelerating) cost (i.e. larger decrease

in birth rate, a); with larger θ giving a greater effect. Conversely, a negative θ represents a

‘deceleratingly costly trade-off’, whereby each benefit comes at a decreasing (decelerating) cost

(i.e. a smaller decrease in birth rate, a). Finally θ = 0 represents a linear trade-off [54].

In Fig 4 we plot how the evolutionary singular point (ESS)m� changes as we change the

shape of the trade-off (θ values); where the ESS is denoted by the thick black line. The host

evolves to increase their resistance levelm if currently below the ESS, and evolve to decrease

resistance if above. In addition, the contour lines represent the equilibrium host density. We

immediately gain two main results from this. Firstly, that the evolutionary singular points are

always just below the maximum host density for each specific value of θ, meaning that the opti-

mal value ofm which maximises the host population is not the same value ofm that maximises

host fitness. Secondly, for strong deceleratingly costly trade-offs, as θ! -1, the host evolves to

maximise the immune responsem, whereas for weakly deceleratingly costly or acceleratingly

costly trade-offs, the host evolves to an intermediate value ofm. This suggests a limited range

of trade-offs that allow a highly susceptible salmon host strain to evolve into a highly resistant

host strain.

Virulence. In Fig 5A, we plot the evolutionary singular points (ESS) for varying levels of

parasite virulence, in terms of a higher or lower parasite-induced host death rate, α. Higher

levels of virulence, common in G salaris [15,23,35,36], encourages the evolution of a stronger

immune response.

Cost of resistance. In Fig 5B, we show the equivalent results for the lower and upper esti-

mates for the cost of resistance, as given by Cipriano et al. [53], 7% and 12% respectively (as

opposed to the ‘averaged’ 10% initially taken). As would be expected, the location of the evolu-

tionary singular points (ESS) is lowered as the cost of resistance is increased, implying that the

hosts evolve a lower immune response,m, if more costly. This suggests that for the host to

evolve into a highly resistant strain, the cost of being highly resistant must not be too high.

Fig 3. In (A) we plot how m evolves over time, with a linear trade-off; the colour of the line denotes the total host population at that time. The inset

graphs give the distribution of resistance levels in the host population at time = 100, just prior to parasite invasion, and at time = 300, when the

population reaches its ESS. In (B) we plot the host population and parasite burden over time, corresponding to m evolving.

doi:10.1371/journal.pone.0169168.g003

Natural Recovery of Atlantic Salmon Populations following the Introduction of G. salaris
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Discussion

Wild Atlantic salmon populations the world over are currently threatened, with numbers in

some regions in decline [55]. The catastrophic impact that infections by G. salaris can have on

susceptible salmon populations, and the consequential financial implications, have already

been witnessed in Norway [12,17,56,57]. In the years post introduction to Norway, G. salaris
has since been reported from many other river systems throughout Europe [3–8,10]. The aim

of the present study was to explore the long-term interactions between populations of Atlantic

salmon and the monogenean parasite G. salaris in order to make predictions on the natural

recovery of salmon populations post introducing such an infection into an environment con-

taining susceptible salmon host populations such as the United Kingdom.

In the present study models were used to study the possible differences between strains of

Atlantic salmon to determine the mechanisms evolved by some Baltic strains in order to be

able to beat infection and in some cases coexist with low levels of G. salaris infection. Model

Fig 4. Plot of the evolutionary singular point (ESS—thick black line) for various shapes of trade-off.

Here θ < 0 represents a deceleratingly costly trade-off; θ > 0 represents an acceleratingly costly trade-off; and

θ = 0 (dashed line) represents a linear trade-off—as taken in Fig 3 simulation. The host evolves such that the

immune response m either increases or decreases (vertically on the plot) to the singular point—see

Supplementary Information (S4 Appendix) for derivation of this line. The thin contour lines represent the total

host population size for corresponding values of m and θ. The parameters are as given in Table 1.

doi:10.1371/journal.pone.0169168.g004
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outcomes have highlighted that simple host-parasite models can show the varying levels of

resistance as seen in the Atlantic Lone and Baltic Neva salmon systems, with the addition of an

immune response. Models were used to investigate the possibility highly susceptible strains of

Atlantic salmon evolving traits and resulting trade-offs to become more like their resistant

counterparts.

Results from the present study highlight salmon will evolve to a more resistant state and

therefore be able to naturally recover from G. salaris infection if the salmon immune response

is allowed to evolve. This evolution would be subject to a trade-off such that host birth rate is

negatively correlated with resistance. Such recovery would result in host coexistence, poten-

tially at relatively high host densities, nearing 90% to that observed in the absence of infection,

with low parasite densities. The level of immune response however depends on several factors:

In order for a susceptible host to gain the level of resistance witnessed in some Baltic salmon

strains, it requires both a moderate-strong deceleratingly costly trade-off (i.e., the host pays a

large cost in the creation of the immune response, for lowm, and then the additional costs for

improving that immune response, increasingm, are less and reducing) and a lower overall cost

of the immune response. In addition, the virulence of parasite can play a significant part, with

higher virulence rates leading to lower host population sizes but higher resistance levels; con-

versely, lower virulence rates leads to higher host populations with lower resistance levels. For

this reason, the water chemistry can play a crucial part in how salmon evolve as identical

strains of parasite can have different virulence rates solely due to environmental factors.

In general, mathematical models represent a simplified version of a system, as such, there

are always going to be certain limitation. Future studies would do well to build on the models

herein and explicitly model the seasonal effects and implications of the salmon and gyrodacty-

lid life-cycles. Salmon spawning, for example, primarily takes place once a year between mid-

October and late February [58]. Similarly, salmon do not spend their entire life in a river and

in fact spend the majority of their adult life at sea, returning to their natal river to spawn.

Fig 5. Plot of the evolutionary singular point (ESS) for various shapes of trade-off: θ < 0 deceleratingly costly, θ > 0

acceleratingly costly and θ = 0 (dashed line) linear. The colour of each line is defined by the average host density along that line,

as represented on the colour bar. In (A) the virulence of the pathogen is varied, with α = 0.02 being the baseline value. In (B) the cost

of resistance is varied, with 10% being the baseline.

doi:10.1371/journal.pone.0169168.g005
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Though it is possible for some salmon parr to mature sexually in a river without the need to

run to sea, and hence, stay to participate in spawning [59]. Such behaviours will have an

important impact on the length of time it would take for a population of salmon to recover

from G. salaris infections due to the time between salmon leaving and returning to infected

rivers.

Salinity and water temperature are very important in determining G. salaris survival. Gyro-
dactylus salaris is a freshwater parasite and survival is only possible in waters with a salinity

between 0–20ppt at temperatures of 3˚C—20˚C [50,51]. The survival of G. salaris in low salin-

ity waters has been shown to be negatively correlated with water temperature and hence, para-

sites can survive longer, both on and off a host, in such waters at lower temperatures [51].

Environment can also play an important role; in situations where water velocity is high,

detached parasites have the potential to drift further down a river and infect new populations

of hosts. Infection may also have an impact on the way in which salmon interact with each

other, for example, in populations of guppies, P. reticulata, (where individuals are infected

with Gyrodactylus turnbulli) females have been observed preferring, and selecting, males with

low parasite burdens [60]. Furthermore, changes in host feeding behaviour has also been wit-

nessed with feeding response and feeding activity significantly negatively correlated with para-

site load [61].

Whilst the varying degrees of pathogenicity of the different G. salaris strains was not explic-

itly modelled in the present study, future studies would do well to include such information

into predictive models. Different strains of G. salaris have been shown to have varying effects

on salmon hosts [16]. The three currently known clades of G. salaris include G. salaris sensu
stricto—a highly pathogenic strain only found on Atlantic salmon (Clade I); a strain found on

salmon from the river Göta älv in Sweden (Clade 2); and a strain that was found on salmon

from the rivers Lærdalselva, Drammenselva and Lierelva in Norway and on rainbow trout

from a fish farm in Lake Bullaren, Sweden [16]. A further strain of G. salaris has been found

on rainbow trout in Denmark [3,4]. This variant of the G. salaris parasite shows low virulence

towards Atlantic salmon and under experimental conditions, on isolated hosts, this strain

showed limited reproduction or no establishment at all [62]. Lindenstrom et al. [63], however,

observed high susceptibility to this strain in rainbow trout and noted that this strain of the par-

asite greatly resembles G. salaris sensu stricto.
As highlighted earlier, fish-to-fish transmission was modelled through the distribution of

parasites across the fish population and not as an explicit feature in the model. The models

proposed consider the total densities of a G. salaris population within a salmon host popula-

tion. It would also be interesting to take an approach looking into the density of G. salaris pop-

ulations on individual hosts within a population with particular focus on the impact that fish-

to-fish transmission has on the dynamics of infection. It is known that juvenile Atlantic

salmon are highly territorial [59,63] and hence have a high chance of becoming infected due to

fish-to-fish contact when defending a territory against an infected individual. Moreover, fish-

to-fish contact between dead infected hosts and live uninfected hosts as well as live infected

hosts and live uninfected hosts also provide important routes for G. salaris spread [64,65].

Aggregation of parasites on hosts also has an important impact on the evolutionary and

population dynamics of both parasites and hosts [66,67]. Many studies have been carried out

in this area in order to develop our understanding of what causes heterogeneity in the distribu-

tion of macroparasites within a host population [68]. Parasite aggregation in the wild is often

complex, in macro-parasitic infections the majority of hosts are observed harbouring a low

number of parasites with a minority of hosts harbouring a large number [69]. Such skewed

aggregations have been shown to follow a negative binomial distribution [66,67,69]. The nega-

tive binomial distribution, (defined as s2 =m +m2/k, where s2 andm are the variance and
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mean respectively) quantifies the (inverse) degree of aggregation via the parameter k [70] such

that for small k parasite aggregation is increased, whereas for large k aggregation decreases.

The negative binomial distribution converges on the logarithmic series as k!0 and on the

Poisson for k≳ 20 [68,71]. Due to the complicated life-cycle of G. salaris and its similarities

with micro- as well as macro-parasites we used a Poisson (defined as s2 =m) to model parasite

aggregation in the present study, thus, allowing parasites to be randomly (and evenly) distrib-

uted throughout the host population. This simplified model analyses considerably whilst still

allowing for important observations to made on the dynamics of infection. Previous studies

have considered a Poisson distribution when modelling free-living G. salaris parasites [72].

Moreover, the effect on the distribution of parasites is negligible due to the large number of

parasites considered in the present models.

Even though the literature concerning G. salaris infections in salmon is vast, models would

greatly benefit from more accurate and up to date parameter estimates. Experimental studies

undertaken exclusively for this reason would be worthwhile in order to obtain estimates for

currently unknown parameters. Through our research we have determined that more data are

required in order to accurately parameterise the rate at which parasites leave, attach to and kill

hosts.

At present the United Kingdom and Ireland are the only known countries to officially

establish complete freedom from G. salaris infections [10,28–30,37]. As highlighted earlier,

Atlantic salmon populations in the UK are believed to be just as susceptible as those found in

Norway [15,35], hence, if G. salaris was introduced a similar environmental impact to that of

Norway can be expected. Extreme measures have been adopted in an attempt to control and

eradicate G. salaris infections. While eradication is preferred, this rarely happens and hence

“management and control” is what is actually being carried out and alternative methods of

treatment such as aluminium have been trialled [73]. It is understandable that survivors are

undesirable as we may see the development of resistance in the parasite population with conse-

quentially continued catastrophic effects on the host population, however, we also would like

to see the evolutionary process occur where there is adaptation or co-evolution to the extent

that parasite and host to co-exist without mortality and parasite numbers are maintained at

low levels or are removed by the host. Our results highlight that the current practice of treating

entire river catchments with rotenone before restocking with salmon from the original genetic

stock [12,14,25,26] may be severely damaging the potential for any evolutionary process to

occur.

Results from the present study have provided evidence that in the absence of intervention

salmon populations should naturally recover from G. salaris infection, however, the timescale

required for this to happen remains unknown. Furthermore, model output suggests suscepti-

ble populations would evolve such that they reach a level of resistance required to coexist with

the parasite and recover to relatively high densities, nearing 90% of that observed pre-infec-

tion. Gyrodactylus salaris and its impact on susceptible hosts must continue to be studied in

order to aid in contingency planning and defence against introduction and emergence.

Supporting Information

S1 Fig. Schematic representation of salmon-Gs model.

(TIF)

S2 Fig. The trade-off between host birth rate, a, and the rate hosts mount an immune

response to the parasite (resistance), m.
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