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Abstract. Phase transitions play an important role in understanding
search difficulty in combinatorial optimisation. However, previous at-
tempts have not revealed a clear link between fitness landscape proper-
ties and the phase transition. We explore whether the global landscape
structure of the number partitioning problem changes with the phase
transition. Using the local optima network model, we analyse a number
of instances before, during, and after the phase transition. We compute
relevant network and neutrality metrics; and importantly, identify and
visualise the funnel structure with an approach (monotonic sequences)
inspired by theoretical chemistry. While most metrics remain oblivious to
the phase transition, our results reveal that the funnel structure clearly
changes. Easy instances feature a single or a small number of dominant
funnels leading to global optima; hard instances have a large number of
suboptimal funnels attracting the search. Our study brings new insights
and tools to the study of phase transitions in combinatorial optimisation.

1 Introduction

It has been recognised that phase transitions play an important role in analysing
combinatorial optimisation problems; yet a clear link between fitness landscape
structure and the phase transition phenomenon is still lacking. We use the local
optima networks model to analyse and visualise the global structure of Number
Partitioning fitness landscapes.

The Number Partitioning Problem (NPP) is defined as follows. Given a set
of N positive numbers L = {r1, r2, . . . , rN}, find a partition A ∪ B = L such
that the partition difference

D =

∣∣∣∣∣∑
ri∈A

ri −
∑
ri∈B

ri

∣∣∣∣∣
is minimised. The decision version of the NPP belongs to the class of NP-
complete problems which appear to require a super-polynomial amount of com-
putation time in the instance input size [1,2]. NP-hard optimisation problems are
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at least as hard as the corresponding decision problems. Many important practi-
cal optimisation problems are NP-hard and it is thus important to find efficient
approximate methods to solve them. Though requiring exponential time to be
solved in the worst case, several hard constraint-satisfaction problems show an
instance-dependent computational phase transition, meaning that below some
critical point, instances are typically easy to solve while they become hard to
solve above such a point. Well-known examples are the Boolean Satisfaction
Problem (SAT) [1,3], the Graph-Colouring problem [1,4], and the NPP [1,5].
The control parameter is a problem-dependent quantity that must be suitably
defined; for example, in SAT, it is the ratio of the number of clauses to the
number of variables, and the phase transition phenomenon has been observed in
both random and structured instances [6,7].

For problems undergoing a computational hardness phase transition it is of
interest to understand how it arises and what are the problems’ features that
characterise the transition. The original methodology was developed by physi-
cists and it is based on the statistical mechanics approach to physical phase
transitions such as the ferromagnetic/paramagnetic transition. An introduction
to this rather technical field as applied to hardness phase transitions can be
found in [8]. We consider, instead, fitness landscape analysis as a tool for revisit-
ing the phase transition phenomenon. In particular, the Local Optima Network
(LON) model [9,10]. Local optima networks compress the whole search space into
a graph, where nodes are local optima and edges are transitions among them
with a given search operator. Local optima are key features of fitness landscapes
as they can be seen as obstacles for reaching high quality solutions. The local
optima networks model emphasises the number, distribution and most impor-
tantly, the connectivity pattern of local optima in the underlying search space.
They are therefore an ideal tool for modelling and visualising the global struc-
ture of fitness landscapes. Among local optima network metrics, we particularly
study the presence and distribution of so-called funnels in the landscape.

The term ‘funnel’ was introduced in the protein folding community to de-
scribe “a region of configuration space that can be described in terms of a set
of downhill pathways that converge on a single low-energy structure or a set
of closely-related low-energy structures” [11]. It has been suggested that the
energy landscape of proteins is characterised by a single deep funnel, a feature
that underpins their ability to fold to their native state. In contrast, some shorter
polymer chains (polypeptides) that misfold are expected to have other funnels
that can act as traps. Energy landscapes are conceptually related to fitness
landscapes, and funnel structures have also been studied in heuristic continuous
optimisation [12,13], and more recently in combinatorial optimisation [14,15,16].

The next section overviews previous and related work. Section 3 presents
relevant definitions and algorithms related to local optima networks. Section 4
presents our fitness landscape analysis and visualisation. Finally, Section 5 sum-
marises our main findings and suggests directions of future work.



2 Background and Related Work

2.1 The number partitioning fitness landscape

The existence of the NPP hardness phase transition was first demonstrated nu-
merically by Gent and Walsh [5], who introduced the control parameter k and
estimated the transition point to occur around kc= 0.96. The control parameter
k corresponds to the number of significant bits in the encoding of the input num-
bers ri divided by N (the instance size), specifically k = log2(M)/N , where M is
the largest number in the set L = {r1, r2, . . . , rN}. For log2(M) and N tending
to infinity, the transition occurs at the critical value of kc = 1, such that for
k < 1, there are many perfect partitions with probability tending to 1, whereas
for k > 1, the number of perfect partitions drops to zero with probability tending
to 1 [5].

Further studies within the physics community, have confirmed the existence
of the NPP phase transition characterising it rigorously [17,18]. However, they
provide no direct answer to the question of what features of the corresponding
fitness landscapes, if any, are responsible for the widely different observed be-
haviour. A step in this direction was taken by Fontanari et al. [19] who studied
various landscape features before and after the transition, in particular consid-
ering barrier trees [20]. However, they were unable to find any effect of the tran-
sition on barrier tree features and other landscape metrics. Likewise, Alyahya
and Rowe [21] performed an exhaustive statistical analysis of NPP landscapes
for instances of size N = 20 and several number distributions, but did not find
any significant correlation between most landscape features and easy or hard in-
stances. They observed differences only in the number of global optima, which is
high before the phase transition and low after it, and in the existence of neutral
networks which are abundant in the easy phase and tend to disappear in the
hard phase.

Considering these studies and given the lack of a clear picture, we decided to
investigate additional landscape features based on local optima networks, and
the recently proposed approach to identifying multiple funnels in combinatorial
search spaces.

2.2 Multiple funnels in combinatorial landscapes

The big-valley hypothesis [22] suggests that on the travelling salesman prob-
lem (TSP) and other combinatorial optimisation problems, local optima are not
randomly distributed, instead they are clustered around one central global opti-
mum. Recent studies on TSP landscapes, however, have revealed a more complex
picture [23,15,14]. The big-valley seems to decompose into several sub-valleys or
multiple funnels. This helps to explain why certain iterated local search heuris-
tics can quickly find high-quality solutions, but fail to consistently find the global
optimum.

The procedure for identifying funnels on the TSP has evolved in recent work,
ranging from visual inspection of the fitness distance correlation plots [23], con-



nected components in the local optima networks [14], and 3D LON visualisa-
tion [15]. We propose here to use the notion of monotonic sequences from the-
oretical chemistry [24], which describes a sequence of local minima where the
energy of minima is always decreasing. We adapt this notion to the context of
fitness landscapes and consider a monotonic sequence as a sequence of local op-
tima where the fitness (costs) of solutions is non-deteriorating. The set of mono-
tonic sequences leading to a particular optimum has been termed ‘basin’ [24],
‘monotonic sequence basin’ [25] and ‘super-basins’ [26], in the theoretical chem-
istry literature. We chose here to call them ‘funnel basins’ or simply ‘funnels’
borrowing from the protein folding literature. We can distinguish the primary
funnel, as the one involving monotonic sequences that terminate at the global
optimum (there can be more than one). The primary funnel is separated from
other neighbouring secondary funnels by transition states laying on a so-called
‘primary divide’ [24]. Above such a divide, it is possible for a local optima to
belong to more than one funnel through different monotonic sequences.

The presence of multiple funnels has also been recently observed on binary
search spaces (NK landscapes) [16], where the authors observed a connection
between groupings (communities) in local optima networks and the notion of
funnels. Results confirm that landscapes consists of several clusters and the
number of clusters increases with the epistasis level. A higher number of clusters
leads to a higher search difficulty, measured by the empirical success rate of an
iterated local search implementation. The success rate was also found to strongly
correlate with the size of the cluster containing the global optimum.

There is evidence of clustering of solutions in Random Satisfiability prob-
lems [27] but a study of the funnel structure of SAT instances has not yet been
conducted.

3 Definitions and Algorithms

This section overviews the definitions and algorithms constituting the local op-
tima network model for the number partitioning problem.

3.1 Preliminaries

Fitness Landscape. A landscape [28] is a triplet (S, V, f) where S is a set of
potential solutions, i.e., a search space; V : S −→ 2|S|, a neighbourhood struc-
ture, is a function that assigns to every s ∈ S a set of neighbours V (s), and
f : S −→ R is a fitness function that can be pictured as the height of the
corresponding solutions.

In our study, the search space is composed of binary strings of length N ,
therefore its size is 2N . The neighbourhood is defined as the 1-move or bit-flip
operation, but definitions can be generalised to larger neighbourhoods.

Neutral neighbour. A neutral neighbour of s is a neighbour configuration x with
the same fitness f(s).

Vn(s) = {x ∈ V (s) | f(x) = f(s)}



The neutral degree of a solution is the number of its neutral neighbours. A
fitness landscape is neutral if there are many solutions with high neutral degree.
The landscape is then composed of several sub-graphs of configurations with the
same fitness value.

Plateau. A plateau, also known in the literature as a neutral network [29,30], is
a set of connected configurations with the same fitness value. Two vertices in a
plateau are connected if they are neutral neighbours, that is, if they differ by
one point mutation. With the bit-flip mutation operator, for all solutions x and
y, if x ∈ V (y) then y ∈ V (x). So in this case, the plateaus are the equivalence
classes of the relation R(x, y) iff (x ∈ V (y) and f(x) = f(y)).

Local optimum. A local optimum, which in the NPP case is a minimum, is a
solution s∗ such that ∀s ∈ V (s∗), f(s∗) ≤ f(s). Notice that the inequality is not
strict, in order to allow the treatment of the neutral landscape case.

In the presence of neutrality, local minima are identified by a stochastic hill-
climber h that, starting from any solution s, chooses the next best-improving
mutant at each iteration by splitting ties at random, until convergence on a local
optimum plateau.

Local optimum plateau. A plateau is a local optimum if all its configurations are
local optima.

3.2 Local Optima Networks

In order to construct the networks, we need to define their nodes and edges.
Nodes are local optima and edges represent escape probabilities. Local optima
networks for neutral landscapes have been studied before by Verel et al. [10];
we borrow their notation and definitions, but name a sequence of connected
solutions with the same fitness as plateaus rather than as neutral networks, to
avoid confusion with the local optima network terminology.

Since we are interested in determining the landscape’s funnel structure using
the notion of monotonic sequences, we only consider transitions between local
optima where fitness is non-deteriorating. This leads to a variant of the model
which we term Monotonic Local Optima Networks (M-LON). Furthermore, our
experiments revealed that neutrality is also present at the level of local optima
transitions, that is, there are connected components in the M-LON which share
the same fitness value. This leads us to define an even coarser model of the
landscape, where these M-LON plateaus are compressed into single nodes, we
termed this new model Compressed Monotonic Local Optima Networks (CM-
LON). Relevant formal definitions are given below.

LON nodes. The set of local optimum plateaus (formed of one or more local
optima), LOp = {lop1, lop2, . . . , lopn} corresponds to the node set of the local
optima network. The basin of attraction of a lopi is the set of solutions bi = {s ∈
S | h(s) = lopi with probability pi(s) > 0} and its size is |bi| =

∑
s∈S pi(s).



Monotonic Edges. The set of monotonic edges, ME is defined according to a
distance function d (minimal number of moves between two solutions), and a
positive integer D > 0. Edges account for the chances of jumping from a local
optimum plateau lopi into the basin of a non-deteriorating local optimum plateau
lopj after a controlled perturbation. Namely, if we perturb a solution s ∈ lopi by
applying D random moves, we obtain a solution s′ that will belong to another
basin bj with probability pj : that is, h(s′) = lopj with probability pj . The
probability to go from s to bj is then p(s→ bj) =

∑
s′∈bj p(s→ s′)pj(s

′), where

p(s → s′) = P (s′ ∈ {z | d(z, s) ≤ D}) is the probability for s′ to be within D
moves from s and can be evaluated in terms of relative frequency. Therefore, we
can draw an edge eij between lopi and lopj with weight wij = p(lopi → bj) =

1
|lopi|

∑
s∈lopi

pi(s)p(s→ bj).

Monotonic Local Optima Network (M-LON). The weighted, oriented local op-
tima network M-LON=(LOp,ME ) is the graph where the nodes lopi ∈ LOp are
the local optimum plateaus, and there is an edge eij ∈ ME , with weight wij ,
between two nodes lopi and lopj if wij > 0.

M-LON plateau. Is a set of connected nodes in the M-LON with the same fitness
value. Two nodes are connected if there is a monotonic edge between them.

Compressed LON nodes. The set of M-LON plateaus, CLOp = {clop1, clop2, . . . ,
clopn} corresponds to the node set of the compressed local optima network.

Compressed Monotonic Local Optima Network (CM-LON). The weighted, ori-
ented local optima network CM-LON = (CLOp,ME ) is the graph where the
nodes clopi ∈ CLOp are the M-LON plateaus. Weighted edges correspond to
the aggregation of the multiple edges from nodes in a plateau to single edges in
the compressed network. The weights of the multiple edges are added to consti-
tute the weight of the mapped edge.

3.3 Detecting the funnel structures

To detect the funnel structures we first identify the funnels’ ‘ends’ or ‘bottoms’.
To do so, we take advantage of the Compressed Monotonic Local Optima Net-
works. CM-LONs are directed graphs without loops. In a directed graph, one can
distinguish the outdegree (number of outgoing edges) from the indegree (number
of incoming edges); a source node is a node with indegree zero, while a sink node
is a node with outdegree zero. We consider the CM-LONs sinks as the funnel
bottoms.

We thus define the funnel sinks as the CM-LON nodes without outgoing
edges. Once the funnel sinks are detected, we can proceed to identify the funnel
basins (see Algorithm 1). This is done by finding all nodes in the CM-LON
graph which are reachable from each funnel sink. Breadth-First-Search is used
for this purpose. The set of unique nodes in the combined paths to a given funnel



sink corresponds to the funnel basin. The cardinality of this set corresponds to
the funnel size. Notice that the membership of a node to a funnel might be
overlapping, that is, a node may belong to more than one funnel, in that there
are paths from that node to more than one funnel sink. The relative size of the
primary funnel (or any other secondary funnel) is calculated as its size divided
by the total number nodes in the graph.

Data: CM-LON: Compressed monotonic local optima network, S: funnel sinks
Result: bsizes: funnel basin sizes vector, basins: funnel basins vector

i← 0
for s ∈ S do

basin[i]← breadthFirstSearch(CM-LON, s)
bsize[i]← length(fbasin[i])
i← i + 1

end
Algorithm 1: Identifying funnel basins.

4 Results and Analysis

One advantage of modelling landscapes as complex networks is the possibility
of visualising them. After describing the experimental setting, we visualise a set
of selected instances before, during, and after the phase transition. We continue
with a study of local optima network metrics, including the new set of funnel
measurements, and explore how they relate to the phase transition.

4.1 Experimental setting

In order to minimise the influence of the random creation of landscapes, we
considered 30 different and independent landscapes for each parameter combi-
nation: N and k. Measurements consider the distribution of values across these
30 landscapes. The empirical study considers N ∈ {10, 15, 20}, where N = 20
is the largest possible value allowing practical exhaustive enumeration of the
search space. The parameter k was varied from 0.4 to 1.2 in steps of 0.1. For
each landscape, we extract the full local optima network using code adapted
from Daolio et al. [31,32]. We then construct both the monotonic local optima
networks (M-LON) and the compressed monotonic local optima networks (CM-
LON). When extracting the local optima networks, we set the parameter D for
the maximum escape distance to D = 2.



4.2 Visualisation

We visualise CM-LONs for selected instances with N = 15 and k ∈ {0.4, 0.6,
0.8, 1.0}. Due to space constraints, the instance with k = 1.2 is not shown, but
it reflects a similar structure to that of k = 1.0

Network plots were produced using the R statistical language together with
the igraph and rgl packages. Graph layouts consider force-directed methods. Net-
works are decorated to reflect features relevant to search dynamic. Red nodes
correspond to global sinks, while blue nodes to suboptimal sinks; all other nodes
are grey. An edge’s width is proportional to its weight, which indicates the prob-
ability of transitions. That is, the most probable transitions are thicker in the
plots.

We explored two ways of visualising nodes. First, as rectangles (Figure 1)
with lengths proportional to plateau sizes (i.e. the number of single local op-
tima within a plateau). As the plots in Fig. 1 illustrate, for low values of k the
landscape global optima form a large plateau, and there are several other large
plateaus in the vicinity. With increasing k, the plateaus shrink, with nodes be-
coming single local optima for k ≥ 8. Neutrality at the optima network level is,
therefore, high for low values of k, gradually decreases with intermediate values
of k and finally disappears for k ≥ 0.8.

A second alternative is to visualise nodes with sizes proportional to their in-
coming strength (weighted incoming degree), as in Figure 2. Incoming strength
is relevant as it reflects the extent to which a node ‘attracts’ the search dynam-
ics; that is, it conveys the combined probability of a stochastic search process
reaching it. We present both 2D and 3D images. In the 3D visualisations, the x
and y coordinates are determined by the force-directed graph layout algorithm;
while fitness is visualised as the z coordinate. This provides a clearer representa-
tion of the funnel and sink concepts, bringing an almost tangible aspect to these
metaphors.

As Figure 2 illustrates, for k = 0.4 there is a single funnel structure easily
guiding the search to the single global optimum. For k = 0.6, a single domi-
nant central structure is still visible, but several different unconnected global
optima now stem out from it. For k ≤ 0.6 only optimal (red) sinks are observed,
indicating that instances are easy to solve. When k increases over 0.6, subopti-
mal (blue) sinks start to emerge; initially only a few of them, but the number
increases with increasing k. The number of optimal (red) sinks decreases and
rapidly becomes only two. Search thus become harder, as can be inferred from
the 2D and 3D visualisations of the landscape with k = 1.0; 16 blue sinks are
observed and their combined incoming strength exceeds that of the 2 red sinks.
Moreover, as indicated by the 3D image, some suboptimal blue sinks are deep,
that is, they are close in fitness to the optimal solution.

4.3 Metrics

Due to space constraints, we can only visualise a few examples. Therefore, we
turn to the statistical analysis of the complete dataset. Many features can be



(a) N = 15, k = 0.4 (b) N = 15, k = 0.6

(c) N = 15, k = 0.8 (d) N = 15, k = 1.0

Fig. 1: Local optima networks (CM-LONs) for selected NPP instances with
N = 15. Nodes are local optimum plateaus visualised as rectangles with length
proportional to their size (i.e. number of single local optima on them). Long
rectangles indicate large plateaus, while squares indicate single local optima.
For k = 0.4 the whole network is visualised, while for k ∈ {0.6, 0.8, 1.0}, the
fittest part of the network is shown.



(a) N = 15, k = 0.4, 1 optimum sink, 0 suboptimal sinks.

(b) N = 15, k = 0.6, 8 optimal sinks, 0 suboptimal sinks.

(c) N = 15, k = 1.0, 2 optimal sinks, 16 suboptimal sinks.

Fig. 2: Local optima networks (CM-LONs) for selected NPP instances with N =
15. Images are shown in 2D and a 3D projection (where the vertical dimension
corresponds to fitness). Node sizes are proportional to their incoming strength,
and edge thickness to their weight. Red nodes correspond to globally optimal
sinks, while blue nodes to suboptimal sinks. For k = 0.4 the whole network is
visualised, while for k ∈ {0.6, 1.0}, the fittest part of the network is shown.



collected from fitness landscapes and local optima networks [9,10]. Moreover,
a new set of metrics can be gathered from computing the landscape sinks and
funnel structure. We selected a subset of metrics after some preliminary experi-
ments, including some that corroborate previous findings, and new local optima
network metrics that intuitively relate to search dynamics. Figure 3 summarises
the results, showing metrics for local optima network cardinality (1st row), neu-
trality (2nd row), sinks and funnels (3rd and 4th rows). The last row in Fig. 3
shows the empirical search cost of an Iterated Local Search (ILS) implemen-
tation, using a single bit-flip best-improvement hill-climber and a two bit-flip
random perturbation.

Plot (a) confirms the surprising result, noted in previous studies [19,21], that
the number of local optima remains virtually invariable across different values
of k. Indeed most of the landscape metrics studied before: the size of the global
and local basins, the correlation between basin size and fitness [21], and several
barrier-tree metrics [19], are oblivious to the hardness phase transition. An ex-
ception is the number of global optima (plot b), which decreases progressively
to 2 at about k ≈ 1.

The rest of the landscape metrics reported in Fig. 3 can only be gathered
using the local optima network model, specifically the compressed monotonic
model (CM-LON) proposed in this article. The number of nodes in the CM-
LON, gradually increases with increasing k, which correlates to (d) the number
of distinct fitness values in the LON (Pearson’s correlation r ≈ 0.82). Other
metrics reflecting the amount of neutrality at the local optima network level
are: (e) the mean number of nodes in a LON plateau and (f) the proportion of
adjacent nodes that have the same fitness. Plot (e) reflects a sharp decrease from
lower to higher k values, more noticeable for the largest N ; which suggests that
the amount of neutrality is relevant to the phase transition.

Plot (g) presents the total number of sinks. This is divided into (h) the
number of globally optimal sinks and (i) the number of suboptimal sinks. The
bell shape for the number of globally optimal sinks appears because, for low
values of k, global optima are part of a single LON plateau which gets compressed
into one sink. Higher k show reduced neutrality, as seen in plots (d, e and f).
From the NPP definition, higher values of k also mean that the number of global
optima progressively decreases to reach 2 on average at k ≥ 1. The theoretical
minimum number of global optima is 2, where one solution is the negation of
the other. An illustration of this phenomenon is provided in Figures 1 and 2.
These metrics also hint to a transition starting to occur for values of k in the
range 0.6 and 0.8. Again, a sharper change is observed for the largest N . The
number of suboptimal sinks (plot i) is clearly relevant to search, as sinks act as
traps for the search process. Once a suboptimal sink is reached it is not possible
to escape, and the search stagnates in a suboptimal solution.

The plots in the fourth row show three metrics that also relate to search
dynamics. Plot (j) reflects the average relative size of global optima funnels,
that is, the fraction of local optima that lie on monotonic sequences leading to
a global optimum sink. Clearly, the larger this value, the more chances a search
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Fig. 3: Local optima network features averaged over 30 instances per value of
k (x-axis) and N (legend). The first row of plots illustrate cardinality metrics,
the second describes neutrality, and the third statistics on the number of sinks.
The fourth row shows metrics that relate to search dynamics: j) the fraction of
local optima that lie on monotonic sequences to a global optimum sink, k) the
aggregated incoming strength of optimal sinks, and l) the equivalent measure
for suboptimal sinks. The last row shows the empirical search cost of an ILS
algorithm on the same problem instances in terms of: m) success probability,
and n) number of function evaluations with restarts. All plots are in semi-log
scale.



process will have to find a path to an optimum. This metric decreases with
k, more sharply for N = 20, with a transition between 0.6 and 0.8. Plots (k)
and (l) report the weighted incoming degree (incoming strength) of the globally
optimal and suboptimal sinks, respectively. These values are clearly relevant to
search, the larger the aggregated incoming strength of optimal sinks, the higher
the probability of a search process successfully reaching one of them. On the
other hand, the larger the incoming strength of suboptimal sinks, the higher the
changes of getting trapped. Again, a transition gradually occurs for values of k
between 0.6 and 0.1.

Finally, the last row summarises the empirical cost of 1000 ILS runs in terms
of (m) probability of success with a stopping condition consisting of 215 function
evaluations, and (n) number of function evaluations when the ILS is combined
with random restarts until a global optimum is found [33]. We can notice a clear
relationship between the aggregate incoming strength of globally optimal sinks
and the probability of success. Figure 4a highlights this relationship with a scat-
ter plot fitted with a univariate linear regression model. This confirms the strong
correlation, with coefficient of determination R2 ≈ 0.94 (which corresponds to
Pearson’s r correlation). Figure 4b is the scatter plot for the probability of suc-
cess against the aggregate incoming strength of suboptimal sinks. Here, as we
might expect, the relation is reversed. The number of suboptimal sinks is also
inversely correlated to the probability of success (r ≈ −0.68). These are useful
relationships for future work on performance prediction since an approximation
of the number of sinks and their incoming strength might be estimated using
some sampling method.

Several of the metrics studied seem to reflect and explain the known hardness
NPP phase transition. The transition, however, seems to appear earlier than the
theoretical expected value of k = 1.0 [5,17,18], and is not exactly bracketed.
However, these trends can be explained in the following way. In theory, the
NPP computational phase transition becomes sharp only in the limit of infinite
system size N and for log2M , the number of bits in the input numbers, tending
to infinity as well keeping k finite. In practice, we can only simulate finite systems
because of computational limitations. A semi-rigorous argument [34] shows that
in this case the transition point, kc, becomes kc ≈ 1 − log2N

2N where the second
term accounts for finite-size effects. For example, with N = 15, kc is around 0.87
instead of one. This means that the phase transition is observed earlier and that
it is not sharp, rather the system changes more gradually approaching it, and
this is what we qualitatively observe in our numerical study.

5 Conclusions

Previous studies have failed to reveal clear links between the structure of fit-
ness landscapes and the hardness phase transition known to exist on number
partitioning problems when varying the critical parameter k. Most landscape
metrics, except the number of global optima, are oblivious to the phase tran-
sition, and surprisingly remain invariable for easy and hard instances of this
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Fig. 4: ILS success probability against a) the aggregate incoming strength of the
optimal sinks and b) the aggregate incoming strength of the suboptimal sinks.
The lines are univariate linear regression models. The equation and coefficient
of determination of each line are given in the plots.

problem. Our study sheds light into this puzzle, by considering new landscape
metrics obtained from fully enumerated local optima networks. In particular we
propose a local optima network model consistent with the monotonic sequences
studied in theoretical chemistry, where the so-called multi-funnel structure of en-
ergy landscapes is well established. Our study reveals clear connections between
the global structure of landscapes and the hardness phase transition. Easy in-
stances show a dominant funnel structure leading to a set or connected global
optima, or a small number or disjoint global optima (red nodes in Figures 2a
and 2b). On the other hand, hard instances reveal multiple suboptimal funnels
(blue nodes in Figure 2c), which explain why search gets trapped and is unable
to escape with the commonly used perturbation operators. We found a strong
correlation between the number, as well as the combined attracting strength, of
suboptimal (blue) sinks and empirical search difficulty on the studied instances.
Another important contribution of this work is to bring a more accessible visual
approach to understanding search difficulty in combinatorial optimisation.

Future work will consider larger NPP instances using sampling, probe other
number distributions, and most importantly, study whether other constraint
satisfaction problems such as MAX-SAT reveal a similar global funnel structure
explaining the hardness phase transition.
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