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Abstract 
There are few continuous palaeoenvironmental records spanning the Holocene in Andean Southern 
Patagonia near the Northern Patagonian Ice Field (~47°S).  Insights into the environmental context for 
human-landscape interactions have relied mostly on data extrapolated from distant extra-Andean locations 
that suggest limited environmental change during the Holocene.  La Frontera (46°52’S), a high altitude 
site on the southern beech forest-steppe ecotone boundary in the Río Zeballos valley provides 
lithostratigraphical and palaeoecological evidence, constrained by 14C dating and tephrochronology, for 
dynamic environmental change during the last ~8000 years. An initial amelioration in environmental 
conditions after c. 8210 cal. BP was followed by a reversal to colder conditions between c. 7420 and 6480 
cal. BP, coincident with initial human occupation within the Paso Roballos and Lago Pueyrredón basin.  
Between c. 6480 and 3700 cal. BP the woodland / steppe composition continued to fluctuate in response 
to climatic change.  After c. 3700 cal. BP a gradual shift to more stable and temperate conditions, 
punctuated by increased fire activity, is contemporary with the later phases of human occupation 
extending up into the Paso Roballos-Río Zeballos corridor. 
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Introduction 

 

A growing body of palaeoenvironmental evidence from southern South America, particularly Patagonia 

(~38–56oS) points towards a region that experienced significant climate change during the last glacial / 

interglacial transition (LGIT, c. 18,000-11,500 cal. BP).  Palaeoecological studies, principally pollen 

analysis to reconstruct past vegetation changes, have allowed us to infer the dramatic nature of the climate 

changes during the LGIT (for example: Heusser 1995; McCulloch and Davies, 2001; Markgraf et al., 

2007; Moreno, 1997; Moreno and León, 2003). 

 

However, there are few continuous palaeoenvironmental records spanning the Holocene in Andean 

Southern Patagonia near the Northern Patagonian Ice Field (~47°S).  Insights into the environmental 

context for human-landscape interactions have mostly relied on data extrapolated from distant extra-

andean and lower altitude locations (De Porras et al., 2012, 2014; Gilli et al., 2005; Horta et al., 2016; 

Mancini et al., 2005; Markgraf et al., 2007; Villa-Martinez et al., 2012).  Most palaeoecological proxies 

require sufficient moisture to ensure continued sediment accumulation and preservation.  In Central 

Patagonia the west-east precipitation gradient is very steep.  Therefore, the majority of extant records are 

geographically close to the higher precipitation along the southern Andes.  The impression given by the 

majority of these high-resolution studies from Patagonia is that the Holocene (c. 11,500 cal. BP to 

present) in central Patagonia is a period where the vegetation is dominated by Nothofagus (southern beech) 

and characterised by few changes in the vegetation cover of the landscape. Further north in the 

Archipiélago de los Chonos, Haberle and Bennett (2004) and at Lago Mallín Pollux, near Balmaceda, 

Markgraf et al. (2007) infer a shift to higher levels of effective moisture after c. 7,500 cal. BP and such 

conditions persisted to the present. In contrast to these relatively ‘stable’ Holocene records there are others 

that indicate sub-millenial scale variability in the latitudinal position and intensity of the southern westerly 

winds (SWWs) during the Holocene (e.g. Gilli et al., 2005; Moy et al., 2008).  



 

Within the study area, four archaeological sequences allow us to assess the extent to which the area was 

occupied by mobile hunter-gatherers in the past and the intensity of place use. The dates for human 

occupations come from the stratigraphical sequences at four locations (Figure 1).  The Sol de Mayo I (660 

m a.s.l.) and Colmillo Sur I (730 m a.s.l.) rock shelters and the Lago Columna I (600 m a.s.l.) cave are all 

located in the Ghio-Columna river catchment in Paso Roballos.  The Alero Mauricio II (670 m a.s.l.) rock 

shelter is situated further north in the Zeballos-Jeinemeni river catchment.  A synthesis of available dates 

for occupation of sites within the Jeinemeni-Ghio corridor suggests four periods of occupation from 7150-

6795; 3455-2015; 1260-730 and 470-315 cal. BP (2σ ages recalibrated using SHcal13 Hogg et al., 2013; 

Mengoni Goñalons et al., 2013). The Jeinemeni and Zeballos valley was occupied from the end of the 

mid-Holocene (c. 3000 cal. BP), whereas the occupation history of Paso Roballos starts earlier (c. 7000 cal. 

BP).  

 

The intensity of occupation was measured by changes in the frequencies of rock and mineral raw materials 

used for on-site knapping of tools, and in lithic artefact assemblage composition (Mengoni Goñalons et 

al., 2013).  While archaeofaunal assemblages were dominated by guanaco (Lama guanicoe), a species that is 

ubiquitous in all the contexts analysed.  Places may have been occupied for different lengths of time and 

then abandoned but sites in the southern portion of the corridor were more persistently occupied and the 

intensity of place use shows variations over time (Figuerero Torres and Mengoni Goñalons 2010; 

Mengoni Goñalons et al. 2013). 

 

To explore the timing and nature of environmental changes within the Jeinemeni-Ghio corridor, we 

present a reconstruction of the vegetation using pollen analysis of sediments from a high altitude small 

closed basin located above the valley floor.  The palaeoenvironmental record provides an insight into the 



landscape, climatic conditions and the potential resources offered to the hunter-gatherers during the 

periods of occupation. 

  

Figure 1. Study area and places indicated in the text.  The inset map indicates the location of the study 
area within Patagonia. Archaeological sites indicated (1) Sol de Mayo I, (2) Colmillo Sur I, (3) Lago 
Columna I and (4) Alero Mauricio II. Image from Google Earth. 
 

The Study Area  

 

The study area comprises a north-south corridor which follows the frontier between Argentina and Chile 

between 46o30’S and 47o10’S (Figure 1).  The corridor can be divided into two sub-areas: a) the northern 

part, which ranges from the southern shore of Lago Buenos Aires at Los Antiguos southwards along the 

Jeinemeni and Zeballos basin and b) the southern area of Paso Roballos containing the basin of Lago 

Ghio. The corridor lies between the higher grounds of the Meseta del Lago Buenos Aires (1400-1900 m 

a.s.l.) to the east and the cordilleran mountains (2300-2700 m a.s.l.) to the west and probably formed a 

natural route-way for people to move between the larger lake basins to the north and south (200-600 m 

a.s.l.). The Ghio valley is part of the large ancient glacial valley that also holds Lago Pueyrredón. 

 



The Patagonian climate system is dominated by the role of the SWWs, a zone of storm tracks that produce 

high levels of rainfall over the Andes and sustain the maritime ice fields along the southern Andes and the 

Cordillera Darwin (Garreaud et al., 2013).  The SWWs migrate seasonally in response to winter-summer 

changes in the extent of Antarctic sea ice and latitudinal pressure changes and so precipitation is 

distributed across a large latitudinal range (McCulloch, 2011).  The orographic nature of the rainfall over 

the Andes produces a hyper-humid environment along the western flanks of the southern Andes and semi-

arid conditions in the eastern lee of the mountains.  The current vegetation patterns of Patagonia closely 

reflect the spatial distribution of precipitation and the latitudinal temperature gradient.  The west-east 

precipitation gradient is markedly steep in the study area in the rain-shadow of the North Patagonian ice 

fields.  The steep precipitation gradient is evidenced in the short (~100 km), longitudinal distance from 

temperate woodland (Nothofagus pumilio and Nothofagus antarctica) to the west to the drier steppe 

vegetation to the east. 

 

Materials and methods 

 

A 300-cm profile was sampled using a D-section Russian corer (Jowsey, 1966) from a kettle hole located at 

46°52'11.94"S, 71°52'37.63"W and at an altitude of 997 m a.s.l. within Estancia La Frontera.  The basin 

is located 41 km south of the town of Los Antiguos and above the Río Zeballos valley (Figure 1).  The 

core sections were sealed in layflat tubing and returned to the Palaeoenvironmental Laboratory at the 

University of Stirling for analysis.  Cores are stored at a constant 4oC to inhibit microbial activity. 

 

The stratigraphy of the core was photographed in the field and the sediments described.  The gross-

stratigraphy is characterised by loss-on-ignition.  Contiguous samples were dried at 105oC and then 

combusted at 550oC (LOI550). The gross stratigraphy is presented in Figure 2. 

 



Fossil pollen samples were prepared using standard pollen preparation procedures including Sodium 

hydroxide and Acetolysis (Moore et al., 1991).  The use of Hydrofluoric acid was restricted for the basal 

bluish-grey clay and silt rich sediments to preserve any tephra particles in the pollen samples. To enable 

the assessment of the total concentrations of pollen in each sample, tablets containing Lycopodium 

clavatum spores of known concentration were added to each sample and the spores counted alongside the 

fossil pollen (Stockmarr, 1971). Pollen, aquatic and cryptogrammic spores and charcoal particles 

(<180μm), were identified to a Total Land Pollen (TLP) sum of >300 using an Olympus BX43 light 

microscope at ×400 magnification with critical identifications made at ×800 and assisted by a pollen 

reference collection and photomicrographs (Heusser, 1971; Markgraf and D’Antoni, 1978; Moore et al., 

1991). Local pollen assemblage zones (LPAZs) were identified based on major Land Pollen changes, 

stratigraphy and supported by stratigraphically constrained cluster analysis (Grimm, 1987).  The 

percentage pollen is presented in Figure 3 and pollen and charcoal accumulation rates are presented in 

Figure 4. 

 

Figure 2 .  Gross stratigraphy of the La Frontera core and percentage organic content.  Tephra 
layers and location of 14C dates are indicated and the age-depth model calculated using CLAM Rev. 2.2, 
(Blaauw, 2010). 
 

 



To provide information about the depositional environment of the pollen, each grain was assessed for its 

state of preservation using five categories: normal, broken, crumpled, corroded and degraded (Berglund 

and Ralska-Jasiewiczowa, 1986; Tipping, 1987). Grains that are broken and/or crumpled are likely to 

indicate damage due to mechanical processes such as through abrasion during transport. Pollen is best 

preserved in waterlogged (anaerobic) and acidic conditions and so corrosion and degradation suggest 

chemical processes whereby pollen is ‘digested’ by microbial activity under drier aerobic conditions. The 

assessment of the state of preservation of the pollen grains also has the dual purpose of indicating the 

extent of taphonomic alteration of the original pollen assemblage.  A high level of degradation of the 

pollen may result in the differential preservation of pollen that is more resistant such as grains of 

Asteraceae subfam Cichorioideae and spores of Polypodiaceae and the loss of more fragile pollen such as 

Cyperaceae (Bunting and Tipping, 2000).  The pollen preservation results are presented in Figure 4. 

 

Sediment stratigraphy 

 

The basal sediments, 300–278 cm, comprise bluish-grey clays and silts.  At 278–274 cm, there are fine 

sub-centimetre black layers, identified as charcoal, intercalated with the bluish-grey clays and silts.  The 

basal bluish-grey clays and silts are then overlain by a 6-cm dark olive-green coarse silt and fine sand layer 

(274–268 cm) which has been identified as a tephra layer.  Above the tephra layer is a further layer of dark 

brown–blackish organic mud with lenses of fine clay and silt within (268–262 cm).  The organic mud is 

overlain, 262–258 cm, by a creamy-white fine silt layer, with a thin (sub-centimetre) layer of brown 

organic mud above.  Between 258 cm and 211 cm, there are bluish-grey clays and fine silts with sub-

millimetre horizontal banding.  Between 224 and 218 cm, there is layer of pale-brown mud, increasing in 

organic content upwards to a sharp contact with more bluish-grey clays and fine silts above. 
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Figure 4.  La Frontera summary pollen preservation diagram (includes only land pollen taxa), total land 
pollen and charcoal accumulation rates. 
 

At 211 cm, there is a sharp increase in organic content and the remaining core stratigraphy is characterised 

by a fine organic mud with varying proportions of organic content (LOI550: 55–35%).  At 168-165 cm 

and 138-140 cm, there are two discrete fine silt layers which have been identified as tephra layers.  A 

further diffuse mineral layer at 106-104 cm was found to comprise of diatoms and mineral inwash 

material.  There is also a significant reduction in organic content at the very top of the core, between 8 and 

3 cm.  

 

Tephrochronology 

 

Larger tephra layers were visually identified in the core stratigraphy and microscopic tephra layers were 

located in the LOI550 profile and within pollen samples.  Tephra samples were extracted using a Sulphuric 



acid digestion process accelerated by the addition of small quantities of Nitric acid while simmering on a 

hotplate (Dugmore et al., 1992).  The isolated mineral residue was washed in distilled water and studied 

optically.  We particularly focused on the concentrations of volcanic glass based on shard morphology, 

vesicularity and isotropism under plane-polarized light.  The geochemical composition of the glass 

component of tephra has been found to be consistent over distance from the source volcano (Dugmore et 

al., 1995; Hunt and Hill, 1993). 

 

Four tephra samples were isolated at 274-268, 262-258, 168-165 and 140-138 cm. The tephra was 

mounted, ground and polished to 75-μm thickness for Electron Microprobe Analysis.  Individual glass 

shards were targeted for the analysis of ten major elements (Na2O, MgO, Al2O3, K2O, CaO, FeO, SiO2, 

P2O5, TiO2, MnO) with 3-μm beam condition of 15kV and 2nA (Hayward, 2011).  A minimum of ten 

glass analyses was accepted to characterise geochemically a layer (Hunt and Hill, 1993) (Table 1). 

 

Chronology 

 

The chronology of the core is constrained by five AMS ages and supplemented by the chronostratigraphic 

correlation of four regional tephra layers (Table 2). The radiocarbon ages were calibrated to calendar years 

using CALIB 7.10 SHcal13 (Hogg et al., 2013; Stuiver and Reimer, 1993).   

 

The tephra layer at 268-274 cm is geochemically fingerprinted to the large eruption of Volcán Hudson 

(H1) (Naranjo and Stern, 1998, 2004; Prieto et al., 2013; Stern et al., 2016).  The maximum age for H1 

of 7241 ± 23 14C yr BP used here (Stern et al., 2016) is older than that of 6890 ± 100 14C yr BP, given by 

Prieto et al. (2013), but, as a similar exercise for the Volcán Reclus R1 layer has demonstrated, improved 

accuracy may be achieved by selecting ages from higher-resolution sediment and peat cores (McCulloch 



Table 1. Major element analyses of the glass component of the La Frontera tephra layers. 
138-140 cm unknown tephra (3654 ± 35 14C yr BP)
SiO2 53.95 53.65 53.64 53.50 53.37 53.29 53.23 53.15 52.89 52.57
TiO2 1.91 1.73 1.47 0.92 1.52 1.02 1.50 1.86 1.89 1.85
Al2O3 15.24 14.72 15.37 20.18 16.25 19.66 16.28 14.47 13.77 13.60
FeO 10.45 11.80 10.67 6.03 8.77 7.40 9.44 10.48 10.86 10.99
MnO 0.19 0.20 0.19 0.08 0.16 0.11 0.17 0.20 0.19 0.20
MgO 3.58 4.11 4.55 3.27 5.53 3.05 4.87 4.16 4.48 4.51
CaO 8.20 7.47 8.27 10.88 10.07 10.07 9.00 8.49 8.63 8.55
Na2O 3.96 3.75 3.45 3.91 3.59 3.69 3.95 3.95 3.79 4.00
K2O 1.69 2.08 1.66 0.84 0.95 1.04 1.56 1.75 1.81 1.83
P2O5 0.49 0.38 0.36 0.19 0.33 0.23 0.35 0.41 0.45 0.44
Total 99.67 99.90 99.63 99.81 100.55 99.55 100.35 98.93 98.74 98.55
165-168 cm Volcán Hudson – H2 (4545 ± 35 14C yr BP)
SiO2 70.54 69.93 68.41 68.32 68.27 68.19 67.95 67.57 67.46 66.88
TiO2 0.87 0.96 0.88 0.87 0.88 0.85 0.87 0.86 0.88 0.87
Al2O3 15.92 14.41 15.21 14.91 15.66 14.92 15.39 15.14 15.29 15.19
FeO 3.78 3.22 3.53 3.41 3.38 3.43 3.74 3.26 3.41 3.64
MnO 0.13 0.11 0.13 0.11 0.13 0.12 0.13 0.12 0.13 0.13
MgO 0.88 0.61 0.88 0.84 0.81 0.82 0.92 0.85 0.87 0.83
CaO 2.00 1.63 2.03 2.04 1.85 1.96 2.09 1.97 1.90 1.93
Na2O 0.55 5.63 5.57 5.58 5.59 5.77 5.71 5.66 5.84 5.64
K2O 2.54 3.33 3.30 3.19 3.24 3.54 3.17 3.44 3.33 3.34
P2O5 0.15 0.17 0.14 0.15 0.15 0.14 0.15 0.14 0.13 0.16
Total 97.36 100.01 100.07 99.42 99.94 99.74 100.13 99.01 99.24 98.61
268-274 cm Volcán Hudson – H1 (7241 ± 23 14C yr BP)
SiO2 65.79 65.77 65.71 65.11 64.96 64.94 64.40 64.22 64.14 63.61
TiO2 1.14 1.16 1.17 1.14 1.13 1.28 1.18 1.19 1.26 1.29
Al2O3 15.52 15.67 15.52 15.56 15.34 15.72 15.50 16.15 15.61 15.14
FeO 4.30 4.52 4.62 4.38 4.64 5.23 4.61 4.78 5.06 5.03
MnO 0.15 0.16 0.16 0.16 0.14 0.15 0.16 0.16 0.16 0.16
MgO 1.19 1.18 1.18 1.16 1.17 1.56 1.34 1.22 1.54 1.50
CaO 2.51 2.60 2.73 2.57 2.51 3.25 2.93 3.00 3.04 3.05
Na2O 5.76 5.92 5.86 5.86 6.22 2.86 5.81 6.07 5.79 5.84
K2O 3.03 2.98 2.87 2.84 2.90 2.64 2.73 2.78 2.77 2.75
P2O5 0.26 0.24 0.27 0.23 0.24 0.34 0.28 0.31 0.31 0.33
Total 99.66 100.19 100.09 99.00 99.25 97.96 98.95 99.89 99.68 98.71

 
Table 2. Radiocarbon dates and ages for tephra layers correlated to the La Frontera record.  14C dates have 
been calibrated using CALIB Rev. 7.10 and SHcal 13.14c. (Stuiver and Reimer, 1993; Hogg et al., 2013).  

Depth (cm) Material 14C yr BP (1σ) δ13CVPDB‰ cal. BP (1σ) Lab Code 
0-1 Core sampled in 2010 
84-85 bulk 2,095 ± 29 -27.6 1938 – 2078 SUERC-54486
138-140 Unknown eruption 
140-141 bulk 3,654 ± 35 -28.9 3870 – 3975 SUERC-49368
165-168 Volcán Hudson (H2) 
168-169 bulk 4,545 ± 35 -30.6 5054 – 5286 SUERC-49369
215-216 bulk 5,940 ± 37 -31.7 6667 – 6774 SUERC-49367
258-262 Mentolat (Men1) 
  6,895 ± 201 n/a 7628 – 7713 n/a 
264-265 bulk 7,176 ± 38 -25.4 7935 – 8000 SUERC-49366
268-274 Volcán Hudson (H1) 
  7241 ± 231 n/a 7971 – 8021 n/a 

1 from Stern et al. (2016) 



and Bentley, 1998; McCulloch et al., 2005).  The older age of 7241 ±23 14C yr BP is also consistent with 

the minimum age for H1 of 7176 ± 38 14C yr BP from La Frontera.   

 

The second tephra layer at 262-258 cm is visually and stratigraphically correlated to an eruption of Volcán 

Mentolat (Men1) as reduction of the tephra layer to clay / silt particles prevented electron microprobe 

analysis of the glass component.  The Men1 tephra layer is dated to 6895 ± 20 14C yr BP (Stern et al., 

2016).  The third tephra layer at 165-168 cm is geochemically fingerprinted to the eruption of H2 

(Volcán Hudson) and is dated here to a maximum age of 4545 ± 35 14C yr BP.  Current 14C dating for the 

H2 tephra layer found elsewhere has a broad age range (Stern et al., 2016) and so this 14C date further 

helps to constrain the timing of this eruption.  The fourth tephra layer at 138-140 cm has a mafic 

geochemistry and its source is at present unknown (C. Stern personal Communication, 2015).  The 

maximum timing of the eruption is here dated to 3654 ± 35 14C yr BP. 

 

To constrain the palaeoenvironmental record from La Frontera, the combined AMS and 

tephrochronology (Table 2) was used to produce a calibrated age-depth model using the programme 

CLAM Rev. 2.2 (Blaauw 2010) and the weighted mean age was used for each centimetre depth (Figure 2). 

The events of instantaneous deposition (i.e. the tephra layers) are included in the age-depth model. 

 

Pollen Stratigraphy 

 

The basal bluish-grey clays and fine silts did not yield sufficient pollen to achieve a TLP sum. 

   

LPAZ LF-1 (300-258 cm; c. 8210-7420 cal. BP) 

The intermittent nature of the pollen spectra in this zone, so closely sandwiched between the basal clays 

and silts with the overlying clays and silts of LPAZ LF-2 and the inclusion of the H1 and Men1 tephra 



layers, restricts the characterisation of the vegetation at the time of the onset of accumulation at the site.  

The basal pollen assemblage suggests a forest-steppe ecotone margin with Nothofagus dombeyi type (~25%) 

(hereafter simply referred to as Nothofagus) and dryland taxa of Asteraceae (~20%), Poaceae (~15%), 

Caryophyllaceae (25%) and Cyperaceae (~35%).  The upper two pollen samples indicate a replacement of 

the Asteraceae and Caryophyllaceae ground cover with a higher proportion of Poaceae (~60%).  Charcoal 

particles were abundant in the basal organic muds beneath H1 and between H1 and the Mentolat tephra 

layer.  The accumulation rate of pollen below H1 is low at the base of LPAZ LF-1 and increases to ~1000 

grains cm-2yr-1 in the organic rich mud between H1 and the Mentolat tephra layer.  The pollen is less well 

preserved in LPAZ LF-1 with ~65% of pollen in a degraded or corroded state at the base of the core. 

 

LPAZ LF-2 258-211 cm; c. 7420-6480 cal. BP) 

Insufficient pollen was recovered from the bluish-grey clays and silts except for one sample, which 

achieved a TLP sum of just over 100.  The pollen was also less well preserved (~50% crumpled) and so is 

reported in the diagram with caution.  The lower pollen sample in LPAZ LF-2 indicates an increase in 

arboreal content (Nothofagus ~60%) and a corresponding reduction in herb cover.  The organic rich layer 

at 218-224 cm yielded a TLP sum of >300 and contained the highest accumulation rate of pollen for the 

entire record, with ~5700 grains cm-2 yr-1.  The composition of this assemblage indicates more arboreal 

cover (~60%) and Poaceae (~35%).  This assemblage is very similar to the pollen spectra in LPAZ LF-3.  

However, the upper boundary of LPAZ LF-2 at 211 cm marks the end of deposition of the bluish-grey 

clays and silts.  

 

LPAZ LF-3 211-175 cm; c. 6480-5230 cal. BP) 

This zone is characterised by the higher, though fluctuating, level of arboreal content (~10 to 80%) and 

Poaceae (20 to 90%).  The lower levels of the zone have a small proportion of Asteraceae subf. 

Asteroideae.  The pollen sample at the upper boundary of the LPAZ LF-3 also has very high charcoal 



content.  The pollen was still poorly preserved with high levels of mechanical damage and moderate levels 

of oxidation and lower fluctuating levels of pollen accumulation. 

 

LPAZ LF-4 175-136 cm; c. 5230-3700 cal. BP) 

 This zone is dominated by Nothofagus (~80%) and lower proportions of Poaceae (~10 to 20%) and the 

virtual absence of charcoal.  The increase in tree pollen is supported by the higher concentration of 

Nothofagus pollen and diminished proportion of Poaceae.  Concurrent with the rise in tree cover is an 

increase in the proportion of normal pollen grains after the deposition of H2.  The gradual decline in the 

concentration of Nothofagus and reduction in well-preserved pollen from the middle of LPAZ LF-4 

precedes the dramatic decline in tree cover at the boundary between LPAZs LF-4 and LF-5 that is 

reflected in the percentage data and concurrent with the deposition of a tephra layer of unknown source. 

 

LPAZ LF-5 (136-85 cm; c. 3700-2020 cal. BP) 

The lower section of this LPAZ is dominated by a peak in Poaceae (~80%, ~1500 grains cm-2 yr-1) and a 

marked increase in poorly preserved pollen.  There follows a gradual trend in reducing Poaceae, increasing 

Nothofagus and Cyperaceae pollen along with the improving condition of the pollen grains.  This trend is 

partially reflected in a reduction in the proportions of Poaceae pollen although Nothofagus numbers 

remain static.  At ~110 cm, there is a substantial peak in the accumulation of charcoal particles 

contemporary with a brief peak in Poaceae.  At the top of LPAZ LF-5, there is a peak in the aquatic pollen 

of Myriophyllum. 

 

LPAZ LF-6 (85-15 cm c. 2020-350 cal. BP) 

This LPAZ is characterised by the dominance of Nothofagus pollen (~80-90%) and low proportions of 

Poaceae and Asteraceae (<10%).  The pollen concentrations remain consistent at ~1500 grains per cm-2 yr-

1 and the grains are relatively well preserved with normal grains >40% and indicators of oxidising 



conditions consistently below 20%.  Cyperaceae remains stable at ~30% and small proportions of 

Myriophyllum persist throughout the LPAZ. 

 

Discussion 

 

The nature and timing of the onset of early Holocene conditions is not recorded at La Frontera.  Bluish-

grey clays, silts and small (<1cm) clasts indicative of glacial-like conditions were sampled at the base with a 

minimum age of > c. 8210 cal. BP.  This may suggest that, following the retreat of the principal 

Patagonian ice fields between 14,500 and 10,000 14C yrs BP (Glasser et al., 2016), at this higher altitude 

ice cover persisted into the early Holocene.  Alternatively, there may have been a hiatus between the 

melting of the montane ice / snow cover and the onset of conditions suitable for the growth and 

preservation of organic material. 

 

The accumulation of organic sediments and the pollen assemblage in LF-1 (c. 8210-7420 cal. BP) suggests 

the approach of woodland, perhaps krummholz in character, and open ground alpine cover of Asteraceae, 

Caryophyllaceae and Poaceae.  The site, which was likely a wetter basin, had a covering of sedges.  After 

the deposition of the Volcán Hudson H1 tephra, the more diverse ground cover was rapidly replaced by 

grasses. It is unclear to what extent the deposition of the tephra affected the early vegetation cover or 

whether the continued temperate climate enabled a succession in the herbaceous cover.  The presence of 

much charcoal in the sediment likely suggests a higher incidence of fires at that time.  It is unlikely that 

the H1 tephra particles scorched the vegetation on landing as the source volcanoes are too distant and the 

tephra would have long cooled in the atmosphere before being deposited on the ground.  There has been 

much debate about the role of natural versus human causes for fire in the landscape (Markgraf et al., 

2007).  There is sparse evidence for human occupation in the cordilleran region during this period.  

However, the nature of palaeoenvironmental evidence is such that we cannot identify the source of 



ignition but we can infer that the fuel, in this case grassland and Nothofagus, was relatively dry and so drier 

climatic conditions persisted at that time.  The interpretation of drier climatic conditions is further 

supported by the higher presence of degraded pollen, which is indicative of drier, more aerobic conditions 

at the site at that time. 

 

The bluish-grey clays and fine silts, with sporadic pollen content between c. 7420 and 6480 cal. BP (LF-2) 

are characteristic of a solifluction deposit, which suggests a shift to colder, periglacial conditions at the 

higher altitude of the Rio Zeballos valley.  The proportion of Nothofagus pollen within the lower level of 

the clays is perhaps contradictory but the TLP achieved for this level was ~100 and it is probable that the 

Nothofagus came from lower altitude woodland and enriched the reduced site-local pollen input.   

Towards the top of this section of soliflucted clays, there is a gradual increase in organic content and 

higher Nothofagus pollen is recorded in a level of organic rich mud suggesting the return of more 

temperate conditions.  However, this was of short duration and there was a rapid, though brief return to 

periglacial conditions.  During LPAZ LF-2, it is likely that the tree-line was lower and the bare ground 

surrounding the site inhospitable for human occupation except perhaps for short periods during the 

austral summer months. Nevertheless, at lower elevations in the Paso Roballos area, the rock shelter Sol de 

Mayo I (c. 6940 – 6970 cal. BP) is among the earliest archaeological evidence for human occupation 

during this period (Mengoni Goñalons et al., 2013) (Table 3).  

 

Table 3. Phases of human occupation (indicated by grey shading) identified in the Jenimeni-Ghio 
corridor (from Mengoni et al., 2013). 
Site  Lago Ghio-Paso Roballos  Rio 

Jenimeni 
 

Occupation  
(cal. BP 2σ) 

 
Sol de 
Mayo I 

Lago 
Columna I 

Colmillo 
Sur I   

Alero 
Mauricio II La Frontera 

315-470     LF-6 
730-1260     LF-5 
2015-3455     LF-4 
6795-7150     LF-2 

 



 

After c. 6480 cal. BP, there is a marked transition from the solifluction desposits to more organic rich 

muds which suggest a shift to more temperate conditions.  Initially, Asteraceae and to a lesser extent 

Caryophyllaceae colonise bare ground, but they again appear to have been out-competed by the 

Nothofagus woodland and grasses.  A rising tree-line / eastwards shift in the forest-steppe ecotone boundary 

is suggested by the gradual increase in Nothofagus pollen indicating the development of open canopy forest 

(De Porras et al., 2012) and the reduction in grass pollen.  However, this was reversed, the forest cover 

reduced, and grass pollen increased at c. 5800 cal. BP.  Drier climatic conditions are inferred from the 

higher proportions of corroded and degraded pollen and so it is likely the site lay close to the forest-steppe 

ecotone boundary at this time.  The reduction in tree cover was dramatically accelerated by a fire event at 

c. 5310 cal. BP that appears to have reduced Nothofagus pollen from ~70% to less than 10% and grasses 

correspondingly increased.  This pattern is replicated in the pollen accumulation rates.  This event would 

have significantly opened up the landscape, which can often be seen in modern fire events in Patagonia.  

There is limited evidence for human occupations at lower altitudes (300-400m a.s.l.) and none as yet 

within the study area during this period of drier conditions and shifting vegetation cover (Table 3).  

 

Between c. 5300 and 3700 cal. BP, Nothofagus woodland recovered to form relatively closed canopy forest 

with only small grass cover indicated and a shift to more humid conditions is inferred.  The increase in 

effective moisture is further supported by the virtual absence of charcoal during this period and the higher 

proportion of normal pollen suggesting more anaerobic conditions.  There was also a small but significant 

presence of the aquatic Myriophyllum sp.  During this period, the Volcán Hudson H2 tephra layer (c. 

5160 cal. BP) is deposited but with no apparent impacts on the pollen record. The archaeological evidence 

follows the same pattern as in the previous period, in that the occupations are located at lower altitudes 

and no sites of occupation for this time have been identified in our study area.  

 



At c. 3920 cal. BP, the deposition of an unknown tephra layer is just before a dramatic reduction in 

woodland cover and an expansion of grasses.  There are no charcoal peaks at this time and it is unlikely 

that a single Andean volcanic eruption could have caused a regional climatic cooling that could have led to 

such a dramatic loss of tree cover.  However, the pattern of change may not be as obvious as the 

percentage pollen data suggests.  There was a gradual reduction in the proportion of normally preserved 

pollen which started earlier at c. 4500 cal. BP (from the middle of LF-4) and this was matched by a trend 

in reducing Nothofagus pollen accumulation reaching a minima at c. 3500 cal. BP.  These lines of evidence 

suggest a more gradual deterioration in climate, perhaps with a lagged response in the Nothofagus cover, 

which reached a tipping point coincident with and perhaps further stressed by the volcanic eruption and 

deposition of the tephra layer, which was then followed by the expansion of grasses in response to the 

opening up of the landscape. 

 

After c. 3500 cal. BP, there is a gradual reduction in grasses and a return of Nothofagus forest.  More 

humid-temperate conditions are indicated by the corresponding increase in normally preserved pollen and 

a rise in the proportion of sedges.  This trend is briefly punctuated by a substantial fire event at c. 2670 

cal. BP.  The trend in increasing proportions of Nothofagus pollen was briefly reversed and there is a 

corresponding increase in grass pollen.  At the top of LF-5, a significant increase in effective moisture is 

inferred from the continued expansion of Nothofagus reaching closed canopy forest at c. 2100 cal. BP and 

a dramatic peak, though of short duration in Myriophyllum suggesting an increase in standing water at the 

site. During this period, we see a peak in human activity in the study area (Table 3).  There are human 

occupations in both areas of the Jeinemeni-Ghio corridor and there is an increase in the number of places 

used in the Paso Roballos. Occupations appear to be relatively more intense in the use of lithic and faunal 

resources and, at a local scale, places are reoccupied showing more persistence and continuity in human 

activity. 

 



After c. 2100 cal. BP the dominance of Nothofagus indicates the persistence of humid-temperate 

conditions with a significant rise in the elevation of the treeline / eastwards shift in the forest-steppe 

ecotone boundary.  During this LPAZ, the proportion of normally preserved pollen reaches its highest 

levels and pollen accumulation rates are relatively stable suggesting a uniform rate of sediment 

accumulation.  During this period, there are more places that have human occupation both in our study 

area and in the neighbouring Chacabuco, Pueyrredón-Posadas and Salitroso basins, although occupations 

along the Paso Roballos-Río Zeballos valleys are less intense in the use of resources and are less persistent 

(Mengoni Goñalons et al., 2013). 

 

The majority of published palaeoenvironmental records from central Patagonia suggest that during the 

early Holocene, the regional pattern of vegetation, in response to increasing humidity and temperature, 

achieved a climax steady state which few perturbations, climate, volcanic or human, were able to disrupt.  

In contrast, the palaeoenvironmental record from La Frontera suggests a sequence of Holocene 

environmental changes that have not been visible to us before.  This is likely due to the site’s high altitude 

and easterly location close to the tree-line / forest-steppe / ecotone boundary which means it is probably 

sensitive to relatively small climatic variations in snow cover at higher altitude and to the length of the 

growing season. 

 

The archaeological sequences in the Jeinemeni valley are closer and more exposed to the fluctuations in the 

La Frontera core whereas the archaeological sequences in Paso Roballos area are located further away and 

at a slightly lower altitude. Forest expansion and the eastward displacement of the forest-steppe ecotone 

boundary would have made natural resources more available to the hunter-gatherers living at lower 

altitudes and so we would expect to see more evidence for persistent occupation in the Paso Roballos area 

during such periods.  Our synthesis of the La Frontera palaeoenvironmental record and the archaeological 

records suggests that human occupations in the Paso Roballos area do appear to be more persistent 



through time than in the Jeinemeni valley. During the more humid-temperate conditions recorded during 

LF-5, there appears to be more evidence for occupations across the Jeniemeni-Ghio corridor although 

there are also gaps in the occupation sequences. During the more humid-temperate periods, there also 

appears to be a change in the intensity of resource use, for example, occupations dating to 2155-3450 cal. 

BP are more intense in lithic resource use than later periods (795-1280 cal. BP) in the study area 

(Mengoni Goñalons et al., 2009). It is at this time that there is an increase in the frequency of dated 

occupations both in our study area and in the adjoining valleys of the river Chacabuco and the   

Pueyrredón-Posadas and Salitroso lakes. However, when environmental conditions are either colder or 

ameliorated there is not necessarily a corresponding change in the presence, persistence or intensity of 

human occupation in either portion of the corridor.  

 

Conclusion 

 

The palaeoenvironmental record from La Frontera suggests the site was sensitive to longitudinal shifts in 

the forest-steppe ecotone and / or altitudinal movements in the Nothofagus treeline.  The onset of the 

record reflects drier temperate conditions at c. 8200 cal. BP which was followed by a dramatic and 

sustained period of cooling between c. 7400 and 6500 cal. BP characterised by periglacial activity occuring 

at ~1000m a.s.l.  This was followed by a gradual return, although punctuated by a further cooling event, 

to drier temperate conditions that persisted until c. 5300 cal. BP.  There followed a shift to more humid 

conditions and the development of more closed-canopy Nothofagus forest although with several episodes of 

forest contraction at c. 3470 and 2670 cal. BP.  From c. 2100 to 350 cal. BP, more stable and humid 

conditions prevailed leading to the development of stable closed-canopy Nothofagus forest. 

 

To understand better the human-environment dynamic, this project has brought together the 

resconstruction of landscape change through palaeoenvironmental techniques with the record of human 



occupation in the Paso Roballos - Río Jeinemeni study area.  Despite the differences in spatial and 

temporal scales, we are able to see that the first period of occupation identified in the archaeological record 

took place, albeit at a lower altitude, during the period of significant cooling between c. 7400 and 6500 

cal. BP.  The later phases of occupation occur at a time of more temperate climate, increased woodland 

resources and greater frequency of fires. 
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