
Proceedings of CIBB 2014 1

TOWARDS HIGH-PERFORMANCE HAPLOTYPE ASSEMBLY
FOR FUTURE SEQUENCING

Marco Aldinucci(1), Andrea Bracciali(2), Nadia Pisanti(3), Massimo Torquati(3)

(1) Turin University
Computer Science Department, aldinuc@di.unito.it

(2) Stirling University
Computer Science and Mathematics, abb@cs.stir.ac.uk

(3) Pisa University
Computer Science Department, {pisanti,torquati}@di.unipi.it

Keywords: Haplotype, minimum error correction, multi-core, parallel programming.

Abstract. The problem of Haplotype Assembly is an essential step in human genome
analysis. Being the well known MEC model for its solution NP-hard, it is currently ad-
dressed by using algorithms that grow exponentially with the length of DNA fragments
obtained by the sequencing process. Technological improvements will reduce fragmen-
tation, increase fragment length and make such computational costs worst. WHATSHAP

is a recently proposed novel approach which moves complexity from fragment length
to fragment sovrapposition, improving the perspective of computational costs, but Hap-
lotype Assembly still remains a demanding computational problem. Directions towards
high-performance computing Haplotype Assembly for future sequencing, based on par-
allel WHATSHAP, are discussed in this paper.

1 Scientific Background
Human genome is diploid, i.e. each chromosome comes in two copies, each of which

is a haploid chromosome coming from one of the two parents (one allele per parent).
Single Nucleotide Polymorphisms (SNPs) are single DNA positions in a chromosome
where the nucleotide can differ in distinct individuals, e.g. in parents, and therefore be
different in the two DNA copies of a single individual.

Haplotyping is the task of phasing the SNPs, i.e., assigning their values to either of
the two DNA copies (alleles) inherited from parents. Genomic data obtained from a
sequencing experiment is a mixture of the two copies of the chromosomes in the form
of many DNA fragments coming from either of the two alleles, called reads, which have
not been assembled yet into contiguous sequences of whole chromosomes. When SNPs
phasing is performed directly on such raw sequencing reads, we talk about haplotype
assembly: each read is assigned to one of the two alleles. Therefore, reads that exhibit
different values on the same SNP position must necessarily belong to different alleles.

Arbitrarily re-labelling the alleles with 0 and 1, the input data can be represented as
a n × m matrix F , with n the number of reads and m the number of SNPs sites. The
i-th read (i-th row of F ) is represented with a string in the alphabet {0, 1,−} where a
value 0 (resp. 1) at column j tells that the i-th read has the value of allele 0 (resp. 1).
The value − means that the read does not cover the jth SNP position.

A conflict is an SNP position where two reads rp and rq have different values (that
is, a 0 and a 1). Reads that have distinct allele values at a common SNP are assumed to
come from different chromosome copies. A correct haplotype assembly corresponds to
a bipartition of the rows of F into two sets F0 and F1 such that each one of these two
sets is conflict free. Unfortunately, due to sequencing errors, in real data such bipartition

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Stirling Online Research Repository

https://core.ac.uk/display/77611973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Proceedings of CIBB 2014 2

does not exist. The problem thus becomes that of detecting a minimal amount of errors
to be corrected (or removed) in order to have a conflict free bipartition.

In literature, there are several models for the haplotype assembly problem corre-
sponding to different optimization problems: Minimal Error Correction (MEC) cor-
rects the minimum number of errors, by turning 0s into 1s or viceversa; Minimal Error
Removal (MER) removes the minimum number of errors, by turning 0s or 1s into −s;
Minimal Fragment Removal (MFR) removes the minimum number of conflicting frag-
ments. We focus on detecting sequencing errors (and not mapping errors, i.e. erroneous
assignments of a read to a position in the genome), thus concentrating on MEC and
MER. The two have been proved to be equivalent, and actually both can be reduced to
finding a MAX-CUT in a graph and therefore are NP-hard.

Several proposals and tools have been put forward to solve MEC in the last ten years,
such as [11, 8] based on a greedy heuristic to assemble the haplotype of a genome, [5]
a method to sample a set of likely haplotypes under the MEC model, and faster follow-
up based on the definition of a graph [6], and an iterative greedy heuristic to optimize
the MAX-CUT of that graph [4]. The latter outperforms [11, 8, 5] and shows similar
accuracy to [5]. Other reductions of MEC to MAX-SAT are in [10, 7].

Since the problem is NP-hard, all practical solutions to MEC are either statisti-
cal/heuristics approaches, or are exact fixed-parameter tractable algorithms, in which
case complexity turns out to be exponential in the number of SNPs per read or in the
read length. Due to the way in which sequencing biotechnologies evolve providing ever-
increasing read length, methods with fixed parameter tractability exponentially linked
to read length (or to the number of SNPs per read, which also grows with read length)
will perform worse and worse with future-generation longer reads.

In [12], some of the authors introduced WHATSHAP, the first exact fixed-parameter
tractable algorithm for solving MEC that, importantly, is exponential in the sequenc-
ing coverage. This parameter is the maximum number of different reads that cover a
single SNP position. WHATSHAP results to be quite accurate, due to the fact that it ac-
tually solves wMEC, a weighted generalisation of MEC in which a confidence degree is
associated to each 0 and 1 and less confident values are the most likely to be corrected.

WHATSHAP is still a computationally demanding algorithm. For instance, experi-
ments with a coverage limited to up to 20× can be managed with a time cost in the
order of the hour on a single core of a standard desktop machine. It is worth remarking
that higher coverages may occur in practice and even small increases may have sub-
stantial impact. Interestingly for future perspectives, datasets with higher coverage are
desirable since they could further improve the accuracy of WHATSHAP.

Considering also that the analysis of a whole genome may require the solution of
several (a few tens) independent instances of haplotype assembly, it is clearly worth
exploring the possibility of a parallel version of WHATSHAP.

2 Materials and Methods

2.1 WHATSHAP

WHATSHAP takes as input the fragment table F , one row per read (a DNA fragment)
and one column per SNP position with values in {0, 1,−}, and computes minimum-cost
conflict-free partitions of the set of reads F . WHATSHAP, in a dynamic programming
style, incrementally builds a cost matrix C with as many columns as F (i.e., again, one
column per SNP position). Column j of C will contain all the possible bipartitions of
the reads and their associated (minimal) cost for making them conflict-free. Such a cost
will be determined by considering the information available up to column j of F . More
precisely, given the set Fj of all active reads that covers the jth position in F (that is,
with either a 0 or a 1 but not a −), WHATSHAP computes the minimum cost of all the



Proceedings of CIBB 2014 3

posible bipartitions (R, S) of Fj and the costs associated to make such a bipartitions
conflict-free, written C(j, (R, S)).

In general, a read spanning over several consecutive positions will induce constraints
on the possible partitions, as it must be consistently assigned to the same allele through-
out all the positions on which it is active in F , and this may require corrections. There-
fore, when computing the cost of the partitions of Fj at column j, the costs paid for
“compatible” partitions of Fj−1 must be taken into account.

Entries in the first column of C have the form C(1, (R, S)), with (R, S) a bipartition
of F1. In this case, the cost of (R, S) only depends on making R and S conflict free with
respect to the first column of F . R ⊆ F1 can be made conflict free by flipping all 0s into
1s, at a cost that is equal to the sum of all the weights associated to the 0s that must be
flipped, denoted as W (1)1R, or by flipping all 1s into 0s, paying W (1)0R. Summing up
(taking the most advantageous alternative),

C(1, (R, S)) = min{W (1)1R,W (1)0R}+min{W (1)1S,W (1)0S}.

When considering the jth column, both the contribution of the column itself (computed
in the same way as in the first column), and the cost that any specific bipartition inherites
from previous columns must be taken into account.

Consider, for instance, C(j, (R, S)), with j > 1 and (R, S) a bipartition of Fj . The
local contribution of column j is, again, just the cost of the best way to make R and S
conflict free over the column j of F (first row in the formula below).

To this cost, the cost of keeping (R, S) consistent on all the columns i < j has to
be added. This cost is the minimal cost of C(j − 1, (R′, S ′)), for any (R′, S ′) which
is “compatible” with (R, S). A partition (R, S) defined at j and one (R′, S ′) defined
at j − 1 are compatible, written (R, S) ∼= (R′, S ′), if each element in Fj ∩ Fj−1, i.e.
the reads active in both j and j − 1, is assigned to the same subset in both (R, S) and
(R′, S ′). It is important to note that, because of the incremental way of proceeding, the
cost in the immediately preceeding column j − 1 summarises all the corrections made
in columns 1 to j − 1 for keeping (R′, S ′) error free. Summing up,

C(j, (R, S)) = min{W (j)1R,W (j)0R}+min{W (j)1S,W (j)0S}+
min(R′,S′)∼=(R,S) C(j − 1, (R, S))

The schema of the generic jth step of the algorithm consists in defining all the possible
(R, S) at j and then performing the following three steps:

(a) determine the minimal ”local” cost for making the jth column conflict-free by
flipping some bits on the column according to their weights and possible corrections;

(b) select the minimal-cost partition amongst those computed at step/column j − 1
which are compatible with the chosen partition making conflict-free the jth column;

(c) determine the total cost for the current partition as the sum of the two mimima
from the previous two points.

2.2 High Performance Computing: methodological aspects
After a long period of hardware evolution based on boosting single-core chip perfor-

mances by increasing clock-frequency and instruction-level parallelism, the focus now
has shifted to increasing cores per chip, while preserving power consumption. However,
sequential code gets no or very small performance benefit from new multi-core chips,
which typically have lower single-core complexity and clock. Since new multi-core
platforms are de-facto small-scale on-chip parallel machines, performances can only be
increased by using thread-level parallelism, but writing parallel programs is inherently
more difficult than writing sequential code, and developers, including bioinformatics
scientists, need to mange the trade-off between high-end performances and time to so-
lution. Parallel software engineering adopted high-level sequential language extensions



Proceedings of CIBB 2014 4

and coding patterns aimed at simplifying the porting of sequential code to parallel ar-
chitecture and guaranteeing performances [3]. Parallel design patterns [9] have been
recognised to be able to support the exploitation of current highly parallel architectures
and make programming simpler and more efficient. They provide tested and efficient
parallelism exploitation patterns as composable building blocks, which are at an higher
level of abstraction than traditional approaches, MPI say, where the programmer is fully
responsible for parallelism.

The FastFlow framework [1, 2] provides parallel design patterns suitable to support
performance and code reuse for a parallel implementation of WHATSHAP on a multi-
core architecture. Importantly from the methodological viewpoint, minimal changes to
the original sequential code are required. Technically, FastFlow allows read-after-write
dependencies to be synchronised in shared data structures, hence avoiding the usage of
the typically much slower classical mutual exclusion mechanisms. In these settings, a
thread that receives a task is allowed to write the data of that specific task, e.g., the data
of the current column, and read all other shared data structures, e.g. the data of the
previous column. A FastFlow implementation of WHATSHAP will be discussed in the
next section. It is interesting to mention that FastFlow can uniformly be used to sup-
port the parallel execution of the multiple instances of haplotype assembly needed for
a whole genome, which are fully independent and can be best concurrently executed in
an embarrassingly parallel fashion on truly independent platforms, such as, distributed
clusters or cloud infrastructures, with no performance degradation due to the concurrent
usage of resources, which instead may happen on multi-core architectures. The Fast-
Flow task-farm parallel pattern, which will be discussed for multi-core WHATSHAP in
the next section, can also be used to support multiple instances of parallel WHATSHAP

on a cloud infrastructure, which is considered to be an enabling technology for bioin-
formatics and computational biology, since it can provide a large amount of computing
power and storage in an elastic and on-demand fashion.

3 Results
Several aspects must be considered when attempting to solve Haplotype Assembly

by means of a parallel WHATSHAP. We will here focus on considering the reads of
a single chromosome, recalling that different chromosome induce completely indepen-
dent instances of the problem, whose solution can be trivially computed in parallel. We
consider a multi-core architecture, where a parallel WHATSHAP can exploit the physical
shared memory and avoid to move data between threads, a typical source of overhead.
This, greatly simplifies the porting of the sequential to the parallel version, but also
introduces new problems related to data sharing.

Which tasks carried out by WHATSHAP can be and are worth of being parallelised
in these settings? WHATSHAP traverses a big matrix by sequentially exploring its
columns, and for each column generates a cost matrix through a costly subset con-
struction. In order to parallelise the algorithm, it is important to clearly understand data
dependencies.

Parallelising the traversal of the matrix, i.e. assigning to different executors the
traversal of a subsets of the columns of the matrix, would be a natural and potentially
very effective parallelisation, but the data dependency of each column on the previous
one makes this parallelisation not so straightforward. This is currently under study.

On the other hand, the cost matrix generation phase clearly consists of independent
activities which, within the same column, do not require synchronisation. Both the
computation of the minimal local cost for making the jth column of the F table non-
conflicting (see step (a) on page 3) and the selection of the minimal-cost among those
computed at the previous (j − 1)th column (step (b)) are independent over all possible
bipartitions (R, S) of Fj . Each bipartition (R, S) can theoretically be run in parallel.



Proceedings of CIBB 2014 5

Figure 1: The task-farm-with-feedback skeleton of FastFlow. Each entity is a concurrent thread. The
Emitter thread (E) produces and schedules tasks towards a pool of Workers threads (W).

In order to ascertain the actual viability of such fine-grained parallelisation, some
profiling of the application has been carried out on a modern multi-core workstation (2
CPUs Intel Xeon E5-2695 @2.40GHz, 64GB RAM) running Linux CentOS 6.5 x86 64
and using a version of Venter’s chromosome one data, where coverage has been limited
to 20×. WHATSHAP terminated in about half an hour.

Exponential times in the coverage of a column (the number of active reads on that
column) have been observed quite regularly. Columns with a coverage up to 16× require
a maximum time of 1.8ms to be processed, columns with a coverage of 16 − 18×
require a maximum of 7.5ms, columns with a coverage of 19 − 20× can be processed
with times in the interval 14.5 − 31ms. This profiling clearly shows the exponential
complexity of the algorithm. It is worth remarking that 20× is an imposed constraint on
the dataset. Due to overheads, only columns with a coverage of 19− 20× and times of
about 20−30ms are worth being parallelised. It is interesting to observe the distribution
of the above classes of columns: 1− 16× columns are about 17% of the total, 16− 18×
are 15% and 19− 20× are 68%. These data shows that about 70% of the computational
cost of WHATSHAP can anyway benefit from the discussed fine-grained parallelisation.
Importantly, the gain will improve with larger coverages, which are expected following
the current technological trends, and desirable in order to improve accuracy.

The FastFlow task-farm-with-feedback pattern (Fig.1) provides the needed abstrac-
tion for implementing the proposed parallelisation. It consists of a sequential stage
called Emitter (E), which emits and schedule the tasks, and a stage containing the pool
of Worker threads (W), each one executing the tasks provided by the Emitter. In the
task-farm-with-feedback, the Workers send the results back to the Emitter. It is possible
to exploit both Emitter–Workers pipeline parallelism and parallelism among Workers.
The sequential WHATSHAP is so split in three concurrent parts:

1. the computation of all possible bipartitions for each given column, which is com-
puted by the Emitter thread;

2. the computation of the local minimum-cost in both the step (a) and (b) (see
page 3), computed by the Worker threads;

3. the computation of the overall minimum cost for each bipartition, computed by
the Emitter.

As soon as one possible bipartition has been computed, a task containing the reference
to that bipartition is sent (offloaded) to one of the available workers using a suitable
scheduling policy (the framework allows us to use one of the predefined scheduling
policies or to define a new one). The worker Wi receiving the task (containing one
or even more possible bipartitions just computed by the Emitter) computes the local



Proceedings of CIBB 2014 6

minimal costs and sends them back to the Emitter. The Emitter after having received all
results from the workers, executes a local reduce, a result collection phase, to find the
overall minimum cost for the partition under consideration.

The proposed parallelisation is quite direct and, importantly, requires minimal changes
to the sequential code. Furthermore, this is a typical case in which one can obtain the
best results because of the high-degree of the parallelisation, which involves the many
entries of the large fragment table F , corresponding to many (small) tasks that can be
executed in parallel on the available cores. As a further enhancement, it is also possible
to (partially) overlap in a three stage pipeline i) the time spent for generating all possible
valid bipartitions, ii) the time spent for computing both the steps (a) and (b) and iii) the
time for computing the total cost of the current partition (step (c)).

4 Conclusions
WHATSHAP is an interesting approach for the solution of the haplotype assembly

problem in genome sequencing. This algorithms appears particularly interesting in the
light of future-generation sequencing technologies capable of managing longer DNA
fragments, which will cause the complexity of traditionally used algorithms to explode.

However, the intrinsic complexity of the problem and the increasingly high demand
for sequencing call for more efficient apporaches. We believe that these will be sup-
ported by the provision of multi-core programming. We have identified FastFlow as a
particularly suitable framework for a parallel WHATSHAP and proposed and analysed a
possible parallel implementation.

References
[1] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati. Fastflow: high-level and efficient

streaming on multi-core. In Programming Multi-core and Many-core Computing Systems, Parallel
and Distributed Computing, chapter 13. Wiley, March 2014.

[2] M. Aldinucci, M. Torquati, C. Spampinato, M. Drocco, C. Misale, C. Calcagno, and M. Coppo.
Parallel stochastic systems biology in the cloud. Briefings in Bioinformatics, June 2013.

[3] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patter-
son, K. Sen, J. Wawrzynek, D. Wessel, and K. Yelick. A view of the parallel computing landscape.
Communications of the ACM, 52(10):56–67, 2009.

[4] V. Bansal and V. Bafna. HapCUT: an efficient and accurate algorithm for the haplotype assembly
problem. Bioinformatics, 24(16):i153–159, 2008.

[5] V. Bansal, A.L. Halpern, N. Axelrod, and V. Bafna. An MCMC algorithm for haplotype assembly
from whole-genome sequence data. Genome Research, 18(8):1336–1346, 2008.

[6] R. Cilibrasi, L. van Iersel, S. Kelk, and J. Tromp. On the complexity of several haplotyping prob-
lems. In R. Casadio and G. Myers, editors, Proceedings of the Fifth International Workshop on
Algorithms in Bioinformatics (WABI), volume 3692 of Lecture Notes in Computer Science, pages
128–139, Berlin, 2005. Springer.

[7] D. He, A. Choi, K. Pipatsrisawat, A. Darwiche, and E. Eskin. Optimal algorithms for haplotype
assembly from whole-genome sequence data. Bioinformatics, 26(12):i183–i190, 2010.

[8] S. Levy et al. The diploid genome sequence of an individual human. PLoS Bio, 2007.

[9] T. Mattson, B. Sanders, and B. Massingill. Patterns for parallel programming. Addison-Wesley
Professional, 2004.

[10] S.R. Mousavi, M. Mirabolghasemi, N. Bargesteh, and M. Talebi. Effective haplotype assem-
bly via maximum Boolean satisfiablility. Biochemical and biophysical research communications,
404(2):593–598, 2011.

[11] A. Panconesi and M. Sozio. Fast hare: a fast heuristic for the single individual SNP haplotype
reconstruction. In I. Jonassen and J. Kim, editors, Proceedings of the Fourth International Workshop
on Algorithms in Bioinformatics (WABI), volume 3240 of Lecture Notes in Computer Science, pages
266–277, Berlin, 2004. Springer.

[12] M. Patterson, T. Marschall, N. Pisanti, L. van Iersel, L. Stougie, G. W. Klau, and A. Schönhuth.
Whatshap: Haplotype assembly for future-generation sequencing reads. In RECOMB, pages 237–
249, 2014.


