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ABSTRACT

Sub-arctic birch forests (Betula pubescens Ehrh. ssp.

czerepanovii) periodically suffer large-scale defolia-

tion events caused by the caterpillars of the geo-

metrid moths Epirrita autumnata and Operophtera

brumata. Despite their obvious influence on

ecosystem primary productivity, little is known

about how the associated reduction in below-

ground C allocation affects soil processes. We

quantified the soil response following a natural

defoliation event in sub-arctic Sweden by measur-

ing soil respiration, nitrogen availability and ecto-

mycorrhizal fungi (EMF) hyphal production and

root tip community composition. There was a

reduction in soil respiration and an accumulation

of soil inorganic N in defoliated plots, symptomatic

of a slowdown of soil processes. This coincided with

a reduction of EMF hyphal production and a shift

in the EMF community to lower autotrophic C-

demanding lineages (for example, /russula-lactar-

ius). We show that microbial and nutrient cycling

processes shift to a slower, less C-demanding state

in response to canopy defoliation. We speculate

that, amongst other factors, a reduction in the

potential of EMF biomass to immobilise excess

mineral nitrogen resulted in its build-up in the soil.

These defoliation events are becoming more geo-

graphically widespread with climate warming, and

could result in a fundamental shift in sub-arctic

ecosystem processes and properties. EMF fungi

may be important in mediating the response of soil

cycles to defoliation and their role merits further

investigation.
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INTRODUCTION

Mountain birch trees (B. pubescens Ehrh. ssp. cz-

erepanovii (Orlova) Hämet Ahti) comprise the

dominant treeline forests in most of the northern

Fennoscandia (Tømmervik and others 2009; Hof-

gaard and others 2013). This forest is responsive to

climate change, amongst other important drivers

such as changes in reindeer management (Tøm-

mervik and others 2009; Van Bogaert and others

2011). The birch treeline has been observed to have

advanced both in latitude in the last century

(Hofgaard and others 2013) and in elevation in the

last 34 years (Rundqvist and others 2011).

Insect outbreaks are important controls over

productivity in temperate, boreal (Hicke and others

2012) and sub-arctic ecosystems (Bjerke and others

2014). Cyclical outbreaks of the defoliating

Autumnal Moth (Epirrita autumnata) and the

Winter Moth (Operophtera brumata) are common

and widespread across the mountain birch forests

of Northern Scandinavia (Jepsen and others 2008).

These outbreaks occur in waves across the Scandes

mountains, with an approximate 10-year fre-

quency (Tenow and others 2007), causing consid-

erable damage to the canopy of B. pubescens forests

(Jepsen and others 2013) and contributing towards

large decreases in forest productivity (Bjerke and

others 2014). It is not clear whether the frequency

of these outbreaks is increasing with climate

change, but the area of forest affected has increased

by about 5� East in longitude, into the colder con-

tinent, and about 2� North in latitude over the last

century (Jepsen and others 2008). This is thought

to be due to a warming of winter climate, allowing

over-winter survival of eggs in areas that were

previously too cold (Jepsen and others 2008). With

the distribution and severity of defoliator insect

outbreaks expected to increase further with climate

change (Bale and others 2002; Jepsen and others

2008, 2011), it is important to understand how the

mountain birch forest ecosystem responds to such

disturbance. Furthermore, the potential links be-

tween forest dynamics and both net carbon fluxes

and surface energy budget underscore the need to

investigate the role of herbivores as modulators of

climate change impacts in these ecosystems (Moore

and others 2013).

Sub-arctic forests are known to influence soil

carbon (C) fluxes and metabolism by allocating

recently assimilated C belowground, stimulating

the decomposition of soil organic C and the release

of nutrients (Hartley and others 2012). Below-

ground transfer of labile C from trees to the rhi-

zosphere drives microbial activity, soil respiration

(Högberg and others 2001) and N immobilisation

(Kaiser and others 2011; Näsholm and others

2013a). Because defoliation reduces the ability of

sub-arctic birch forests to fix C (Heliasz and others

2011), it is expected that defoliation events strongly

reduce C inputs to the rhizosphere and slow bio-

geochemical cycles.

In addition to altering C allocation patterns,

defoliation events in sub-arctic ecosystems accel-

erate nitrogen (N) inputs into the soil via direct

frass addition, thereby potentially altering N cycling

(Kaukonen and others 2013). Nitrogen immobili-

sation in the soil is known to be driven by auto-

trophic C inputs (Kaiser and others 2011) and

belowground C allocation is positively correlated

with forest productivity (Litton and others 2007).

In productive temperate ecosystems, the N cycle

responds quickly to N additions from caterpillar

frass through redistribution of N into microbial

communities (Lovett and Ruesink 1995) or re-as-

similation by the affected trees (Russell and others

2004; Frost and Hunter 2007). In a less productive

ecosystem, such as the sub-arctic, reduced C supply

to the rhizosphere alongside frass addition may

result in an accumulation of ‘available’ N in the

soil, as has previously been observed (Kaukonen

and others 2013), and akin to an N-saturated

ecosystem (Aber 1992).

Ectomycorrhizal fungi (EMF) are a major recip-

ient of autotrophic C in forest ecosystems, with up

to 20% of plant C allocated belowground trans-

ferred to the EMF community (Högberg and others

2001; Hobbie 2006). This C supply allows EMF

species to maintain dominance in the organic

horizon of boreal forest soils over free-living fungi

(Lindahl and others 2007), but this dominance can

be disrupted by cutting the autotrophic C supply

(Lindahl and others 2010). Therefore, any reduc-

tion in C inputs belowground may translate directly

to a reduction in C supply to the mycorrhizosphere

(Gehring and others 1997; Högberg and others

2001). EMF fungi have a large capacity to immo-

bilise soil N in their biomass (Näsholm and others

2013a), and a reduction in EMF growth due to

defoliation could significantly reduce their capacity

to immobilise the free N that becomes available in

such events (Kaukonen and others 2013).

When trees are defoliated, it has been speculated

that EMF fungi with lower C demand from their

autotrophic host hold a competitive advantage over

species that require a larger C investment

(Saikkonen and others 1999; Markkola and others

2004). Widespread defoliation should therefore

drive a change in EMF community composition,

selecting for less C-demanding EMF taxa. A shift to
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exploration types (ET (Agerer 2001)), which pro-

duce less hyphal biomass, could have significant

feedbacks for C and N cycling in the soil.

Carbon allocation to EMF can stimulate N

immobilisation in low N environments by increas-

ing uptake and incorporation into hyphal biomass

(Näsholm and others 2013a). It has been shown

that efficient uptake of N by EMFs further inten-

sifies N limitation in the soil, thereby maintaining

their host’s reliance on them and competitively

excluding non-EMF plants (Näsholm and others

2013a). This cycle could be broken by disturbance

such as defoliation, where autotrophic C supply to

EMF is reduced (Kuikka and others 2003) and

mineral N becomes more readily available

(Kaukonen and others 2013). High mineral N

concentrations in the soil after defoliation events

may be due in part to reduced immobilisation by

EMF as a result of reduced C supply.

A mountain birch forest (B. pubescens ssp. cz-

erepanovii) in sub-arctic Sweden was defoliated by a

joint outbreak of the winter and autumnal moths

(O. brumata and E. autumnata) in early summer of

2013 after an outbreak the previous year. This gave

us the opportunity to measure the belowground

response of this ecosystem to the associated

reduction in autotrophic C supply. In particular, we

address the following research aims: 1. to measure

belowground C and N cycling in response to defo-

liation of the Betula canopy; 2. to compare hyphal

growth and root tip community composition of

ectomycorrhizal fungi in defoliated and non-defo-

liated plots; and 3. to understand better how

changes (if any) in soil C and N cycling link to

ectomycorrhizal community composition and

growth in a sub-arctic forest ecosystem.

MATERIALS AND METHODS

Study Site

Study sites were established in the treeline birch

forest near Abisko, Sweden (�68�18¢N, 18�49¢E).
The forest comprises mountain birch (B. pubescens

Ehrh. ssp. czerepanovii (Orlova) Hämet Ahti) with a

dominantly ericaceous understorey of Empetrum

hermaphroditum, Vaccinium myrtillus, Vaccinium vitis-

idaea, Vaccinium uliginosum and some shrubs

including Betula nana, Salix spp. and Juniperus

communis. The soil is a thin spodosol developed over

glacial till and bedrock typically of hard shale, with

a thin (<5 cm) O horizon. Soil pH of the organic

horizon is 4.5 ± 0.1 (mean ± standard error)

(Parker and others 2015). Further details on soil

properties can be found in Sjögersten and Wookey

(2002) and Hartley and others (2010). The forest

defoliation event by O. brumata and E. autumnata

began in May 2013 as budburst occurred across the

forest, although the exact timing was highly

dependent on local microclimates. The trees were

at their maximum extent of defoliation and cater-

pillars were no longer present in the trees by 19th

June 2013 (Figure 1). There was also widespread

defoliation due to an outbreak by the same species

the previous summer, which is unusual, but this

earlier outbreak was not documented in detail in

this study area.

STUDY DESIGN

Based on the visual extent of defoliation, replicate

trees across a forest stand were selected as either

non-defoliated (at least 95% of leaves remaining)

or defoliated (max. 5% of leaves remaining), with

n = 5 per group (Figure 1). The trees were selected

in geographical pairs over forested areas of

approximately 19,000 m2, and paired individuals

were, on average, 18 m apart and 58 m from the

closest other pair. In addition to the defoliated and

non-defoliated plots in one B. pubescens forest

stand, other forest stands were sampled to assess

defoliation impacts at the landscape scale (LS). LS

plots (24 in total, consisting of all trees within a

5 m radius of a central point) were distributed

across multiple stands of mountain birch which

showed contrasting degrees of defoliation (11.5–

96.1% canopy defoliated in July 2013) over a

2 km2 area. To quantify defoliation in each plot,

every B. pubescens individual was estimated for

percentage of leaves remaining, which was then

converted to percentage defoliated (assuming a full

canopy prior to defoliation). Defoliation values are

means of independent estimates by two observers.

Respiration and ion exchange measurements were

taken at the defoliated and non-defoliated paired

plots; ion exchange, EMF ingrowth and EMF root

tips assessments were taken at the LS plots.

Respiration

At defoliated and non-defoliated plots, two PVC

collars (15 cm diameter 9 7 cm high) were fixed to

the soil surface at 50 and 150 cm from the base of

each tree (Figure 1). To avoid disturbance to the

rhizosphere, collars were not pushed into the soil,

but were sealed to the soil using non-setting putty

(Plumber’s Mait�, Bostik Ltd, Stafford, UK). Collar

locations were selected to have low plant cover

within the collar (live understorey <20%, for both

defoliated and non-defoliated plots) and therefore
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capture soil respiration best while causing minimal

extra disturbance to the study system over the

short period of time available for measurement. A

good seal with the ground was confirmed as all

respiration measurements showed a linear increase

in CO2 concentration over time (over 90 s). Live

understorey plant cover was low (c 20%) and did

not differ between defoliated and non-defoliated

collars in the plots.

Soil respiration measurements (which included

both microbial and plant components, including

very low shoot components) were made with a

portable EGM-4 infrared gas analyser with a dark-

ened CPY-2 chamber (PP Systems International,

Amesbury, MA, USA). CO2 flux was measured five

times at each collar through June and July 2013,

after the defoliation event, and then twice in

September 2013. Follow-up respiration measure-

ments were made in June and July 2014 (one

measurement each month). In 2014, ‘defoliated’

trees did not re-grow their canopy, instead invest-

ing in new shoots at their base. Respiration rates

were calculated as the product of a linear function

of [CO2] increase over a period of 90 s within the

closed system. Tests with longer measurement

periods showed no improvement of fit. All collars

were measured within a two-hour period between

09:00 and 16:00 h local time.

Soil Inorganic Nitrogen Availability

Anion and cation exchange membranes

(2.5 9 5 cm; Resintech, West Berlin, NJ, USA)

were deployed in pairs approximately 5 cm apart to

measure soil inorganic N availability in summer

(10th–24th July 2013) and autumn (6th–20th

September 2013). Membranes were regenerated in

0.5 M HCl for one hour before being neutralised in

0.5 M NaCO3 for five hours, replacing the NaCO3

every hour. The membranes were inserted verti-

cally into the soil surface (0–5 cm) at the centre of

all LS plots. Care was taken to select soils with no

moss species (for example, Pleurozium schreberi)

associated with N-fixing cyanobacteria (DeLuca

and others 2002) to avoid measuring leached N

from this potential source. A knife was used to

create a vertical incision in the soil into which the

membrane was carefully inserted. The soil was

then pushed together to ensure good contact and

membranes were left in situ for 14 days. Mem-

branes were deployed in the same manner at the

paired defoliated and non-defoliated trees, in be-

tween the soil respiration collars at 0.75 m from the

base of the tree. After collection, adhering soil

particles were gently brushed away, after which the

membranes were rinsed with deionised water.

Membranes were stored at 3�C for 18 days before

extraction (100 rpm for 60 min in 35 ml 2 M KCl

(Qian and Schoenau 2002)). Extractable NH4
+ and

NO3
- was quantified using flow injection analysis

(FIAflow2, Burkard Scientific, Uxbridge, UK).

Control strips (n = 10 per season) were taken into

the field on the day of strip insertion but not placed

in the field. They were taken back to the lab and

stored at 3�C until field samples were analysed, at

which point they were processed in the same way.

The mean amount of NH4
+ or NO3

- adsorbed to

Figure 1. Two Betula

pubescens study trees

assigned to A ‘‘non-

defoliated’’ and B

‘‘defoliated’’ categories

based on the extent of

defoliation by Operophtera

brumata and/or Epirrita

autumnata on 19th June

2013. Collars to measure

soil respiration can be

seen at 50 and 150 cm

from the base of each

tree.
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control strips in each season was subtracted from

field samples as an analytical blank.

Ectomycorrhizal Hyphal Production

Nylon mesh bags (5 9 4 cm; 37 lm mesh size),

which allowed ingrowth of hyphae, anticipated to

be primarily of EMF fungi (analysis of community

DNA shows c 80% EMF (Wallander and others

2013)) but not roots (Wallander and others 2001,

2013), were filled with 25 g of sand from the shore

of Lake Torneträsk (68�21N, 18�49E). No plants

were present aboveground within 1 m of the sand

collection point. Sand was sieved to between 0.125

and 1 mm, rinsed under a flow of water for 1 min

then microwaved (800 W) for 12 min, reaching a

temperature of 98�C. This process was repeated and

the sand was rinsed a final time before drying for

48 h at 80�C. The sand-filled bags were inserted at

the LS plots within 0.5 m of the ion exchange

membranes at the centre of the plots. Bags were

inserted at the interface between organic and

mineral horizons where mycorrhizal activity is at

its highest (Lindahl and others 2007); in this case,

each bag was placed between 2 and 7 cm depth.

The bags were left in the field for 92 days between

16th June and 16th September 2013. This was

deemed to be an appropriate time period as C

allocation belowground continues into September

in this ecosystem (Sloan and others 2015; Blume-

Werry and others 2016). At collection, the sand

was removed from the bags and freeze dried using a

Modulyo� freeze drier (Thermo Fisher Scientific,

Waltham, MA, USA) for 72 h within 6 h of

recovery.

Sand (1 g) from each bag was sonicated for

10 min in 30 ml deionised water to disassociate the

fungal hyphae from the sand particles. A 4 ml ali-

quot of the water-hyphae suspension was filtered

onto a nitrate cellulose filter paper (0.45 lm pore

size) and fungal material was stained with trypan

blue (following Quirk and others (2012)). Hyphal

length was estimated under 9200 magnification

(Primo Star, Zeiss, Oberkochen, Germany) using

the line intersect method (Brundrett and others

1994). This was repeated on duplicate samples for

each mesh bag, a mean of which was taken as the

final measurement.

Ectomycorrhizal (EMF) Community
Composition

Root tips of non-defoliated and defoliated trees

were collected and analysed to identify the EMF

taxa colonising the roots. Samples were taken on

7th July 2013. Five pairs of defoliated and non-

defoliated trees were selected to sample EMF root

tips. Paired trees located within 5–10 m of each

other were designated ‘defoliated’ or ‘non-defoli-

ated’ based upon the percentage of leaves remain-

ing, where about 0 to 15% were designated as

‘defoliated’ and about 85 to 100% were designated

as ‘non-defoliated’. Three of these paired plots were

selected from the LS plots and two from two addi-

tional mountain birch stands. At each tree, organic

horizon soil was collected as 5.7 cm diameter cores

to a depth of 4 cm. Roots within each core were

rinsed of adhering soil particles under a stream of

tap water on a 1 mm-mesh sieve. From each sam-

ple, 48 individual EMF-infected root tips were ex-

cised from larger root fragments under a

stereomicroscope and stored in tap water at 4�C for

up to 14 days prior to DNA extraction. EMF root

tips were assumed to be of B. pubescens because the

understorey is primarily ericaceous (ericoid myc-

orrhizal), with other EMF species present at these

plots (B. nana) typically having very low cover

(8 ± 2% (Parker and others 2015)).

To characterise EMF communities, fungal DNA

of a random subset of 16 EMF root tips from a pool

of 48 per plot was sequenced. Single root tip DNA

was extracted with the Extract-N-Amp kit (Sigma,

USA), according to Avis and others (2003). Fungal

DNA was amplified using polymerase chain reac-

tion (PCR) with the ITS1F-ITS4 primer set (White

and others 1990; Gardes and Bruns 1993) at 0.35-

lM concentration in GoTaq G2 Master Mix (Pro-

mega, USA). The PCR consisted of a 3-min hot start

at 95�C, 35 cycles of 30 s at 95�C, 45 s at 60�C and

90 s at 72�C, and a final cycle of 5 min at 72�C.
Negative controls (diethylpyrocarbonate-treated

water) were included in each PCR run. PCR prod-

ucts were run in 0.05% ethidium bromide 1.5%

agarose (w/v) gels and photographed under UV

light to confirm single PCR amplicons. After pri-

mers and unincorporated nucleotides were re-

moved using ExoSAP (Affymetrix, Cleveland, OH,

USA), as described by Kennedy and Hill (2010),

amplicons were sequenced with the ITS4 primer on

a 3730XL Applied Biosystems sequencer by

Macrogen Corp. (Rockville, MD, USA). Sequence

chromatograms were edited in FinchTV 1.4.0

(Geospiza, Seattle, WA, USA) or 4peaks 1.7 (http://

nucleobytes.com/index.php/4peaks) to eliminate

spurious base calls on the flanking ends of se-

quences.

Fungal sequences were assigned to one of

approximately 80 described EMF lineages (Teder-

soo and Smith 2013) or to the genus level for non-

EMF fungi. Lineages are designated by a ¢/¢ (slash)
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followed by the dominant genus, genera, or higher

level taxon, for example, /cenococcum, /to-

mentella-thelephora and /atheliales3. We then

computed richness, evenness and diversity (Shan-

non and Simpson indices) of EMF lineages

according to McCune and Grace (2002). It is

important to note that only roots with fungal

infection were taken forward for DNA analysis;

therefore, diversity indices analysed here do not

take into account change in overall abundance of

ECMs, only the fungi present on roots.

STATISTICAL ANALYSES

Respiration data in 2013 and 2014 were analysed

separately using a repeated measures two-way

ANOVA following a linear mixed effects model

with distance from tree and defoliation status (de-

foliated or non-defoliated) as categorical main ef-

fects. Data were square root transformed to meet

the assumptions of the parametric analyses. A lin-

ear model was used to analyse the relationship

between NH4
+ adsorbed to cation exchange mem-

branes and the defoliation extent of the B. pubescens

on the LS plots once the response variable was

natural-log transformed. The relationship between

defoliation extent and EMF ingrowth was analysed

using a linear model. Once again, a natural-log

transformation of the response variable made the

data appropriate for parametric analysis. One out-

lying point was removed from the EMF ingrowth

analysis because it had a disproportionate effect on

the statistical model, violating the underlying

assumptions (Cook’s distance > 0.5). A conserva-

tive Bonferroni test on its residual confirmed that

this was indeed a statistical outlier (P = 0.0058)

(Kutner and others 2005).

We compared richness, evenness and diversity

(both Shannon’s and Simpson’s indices) of EMF

lineages present on root tips between defoliated

and non-defoliated trees with paired t tests. To test

a null hypothesis that EMF communities were not

affected by defoliation, we used the non-parametric

blocked multi-response permutation procedure in

PC-ORD (McCune and Mefford 2011). The raw

data matrix included counts of EMF fungal lineages

and non-EMF fungi in defoliated and non-defoli-

ated plots (n = 5). We considered plots as random

blocks, performed within-block median averaging,

and used distance function commensuration to

give equal weighting to variables in the calculated

Euclidian distance matrix (McCune and Grace

2002). EMF lineages were grouped into ET (Agerer

2001) based on their identification at lineage level.

Differences in relative abundance of different ETs

between defoliated and non-defoliated plots were

analysed by Holm–Tukey multiple comparisons

after a two-way ANOVA with defoliation status and

ET as fixed effects.

RESULTS

There was a marginally significant (P = 0.058)

positive linear relationship between the density of

trees (x) and extent of defoliation (y) of each tree,

as follows: y = 26.6 + 0.3x (R2 = 12%).

Defoliated plots had a significantly lower soil

respiration rate (2.63 lmol CO2 m-2 s-1) than

non-defoliated plots (3.96 lmol CO2 m-2 s-1) in

2013 when measured 50 cm from the tree

(P = 0.015; Table 1; Figure 2). However, the effect

of defoliation overall was not significant

(P = 0.068) due to a non-significant response to

defoliation at 150 cm from the tree. Overall, there

was a significant (P = 0.009) effect of distance on

respiration rates and no significant interaction

(P = 0.24) between distance and defoliation. The

same pattern, with lower respiration at 50 cm from

defoliated trees, continued into 2014.

There was a significant positive relationship be-

tween defoliation extent (% defoliated) and the

amount of NH4
+ sorbed to resin membranes during

both sampling periods (July and September, 2013).

The relationship was strongest in July (P < 0.001,

Figure 3A); however, it was still present in

September (P = 0.004, Figure 3B). There was also a

significant negative relationship between defolia-

tion extent and EMF hyphal production over the

months of June–September (P = 0.005, Figure 4).

Nitrate was present in very low, almost unde-

tectable, levels, and there was no significant rela-

tionship between amount of defoliation and

Loge + 1 transformed, membrane-sorbed nitrate in

either July (P = 0.76, R2 = 0.04%) or September

(P = 0.69, R2 = 0.04%). Nitrate data are presented

in Supplementary Information, Figures S1 and S2.

The EMF fungal communities present on root

tips were significantly affected by defoliation. EMF

fungal richness, evenness and diversity declined in

association with defoliation (Table 2). Fungal

community composition was altered, with some

EMF taxa increasing and others decreasing with

defoliation. The /cortinarius lineage was the most

abundant EMF taxon of both non-defoliated and

defoliated trees, representing 48–51% of relative

EMF abundance (Figure 5), and its relative abun-

dance was not affected by defoliation. In contrast,

defoliation significantly affected the relative abun-

dance of the /russula-lactarius lineage, which in-

creased from 20% to 44% in non-defoliated and
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defoliated trees, respectively. Additionally, the

EMF lineages /tomentella-thelephora, /tomentel-

lopsis, /piloderma, /cantharellus, /inocybe, /hyd-

nellum-sarcodon, /amphinema-tylospora and

/boletus, which together accounted for about 30%

of EMF fungi of non-defoliated trees, collectively

declined to 3% of the EMF community of defoli-

ated trees. The lineages /hygrophorus, /melin-

iomyces and /cenococcum were present as EMF

symbionts of roots obtained from single defoliated

plots and were not detected in non-defoliated plots.

Non-mycorrhizal fungi most closely related to root

endophytes that included Phialocephala fortinii,

P. sphaeroides and Meliniomyces variabilis, and free-

living litter decomposers (two Mycena spp.) were

recovered mainly from EMF roots of defoliated

trees (Table S1).

Amongst EMF lineages, those with high

extraradical mycelium biomass (medium- and

long-distance soil exploration strategy (Hobbie and

Agerer 2010)) declined in relative abundance, from

colonising 76% of EMF roots of non-defoliated

trees to 43% of EMF roots of defoliated trees (Fig-

ure 5). This decline of high-biomass EMF ET with

defoliation coincided with increased relative

abundance of contact ET (consisting of /russula-

lactarius) and of non-mycorrhizal fungi (Figures 5

and 6).

DISCUSSION

This study documents a series of changes in soil

processes in response to defoliation that, taken to-

gether, suggest a slowdown of biogeochemical

Table 1. Analysis of Variance of Defoliation, Distance from the Base of the Tree, and Their Interaction
Effects on Soil Respiration

Data y transformation Factor d.f. F P

2013 Respiration Square root Distance from tree 1,8 11.68 0.009

Defoliation 1,8 4.46 0.068

Distance*Defoliation 1,8 1.62 0.24

2014 Respiration Square root Distance from tree 1,8 8.83 0.017

Defoliation 1,8 3.25 0.11

Distance*Defoliation 1,8 1.65 0.24

Statistical results correspond to data shown in Figure 2.
Significant (P < 0.05) factors are highlighted in bold.

Figure 2. Soil respiration measured over the growing season of 2013 and 2014 at non-defoliated (closed triangles) and

defoliated (open circles) plots at A 50 cm and B 150 cm from study trees. Error bars represent ± one standard error of the

mean (n = 5). * signifies a significant (P < 0.05) effect of defoliation within the statistical model in that year and distance

from the tree, according to one degree of freedom Wald tests. Results of a factorial ANOVA test on the whole dataset are

shown in Table 1.
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cycling. The data suggest that a reduction in ecto-

mycorrhizal (EMF) production and a shift in EMF

community composition could be important con-

tributory factors involved in the slowdown of C and

N cycling in the soil.

Previous work in this system has shown that

large defoliation events drastically reduce the

strength of the ecosystem C sink (Heliasz and oth-

ers 2011). Here we demonstrate that the reduction

in C assimilation also slows the loss of C from the

soil (as respiration). This was only statistically sig-

nificant, however, closer to the tree base (at 50

cm), presumably where the tree has a greater

influence on soil carbon cycling rates. These data

suggest that the belowground respiration rate is

sensitive to a reduction in aboveground C assimi-

lation, as observed in experimental girdling and

trenching experiments (Högberg and others 2001;

Brzostek and others 2015). The effect of the defo-

liation on C cycling across the rest of the forest

(‡150 cm from tree base) may be negligible, as we

observed no reduction in respiration further away

from study trees. There will therefore be large areas

of forest soil where soil CO2 efflux may not be di-

rectly affected by the defoliation of the canopy,

although subtler (undetected here) effects cannot

be ruled-out, and could relate, for example, to

changes in soil thermal and/or moisture regimes in

response to defoliation.

This study in forest plots which have undergone

almost complete defoliation in a relatively unpro-

ductive ecosystem (Myneni and others 2001;

Karlsen and others 2008) shows the opposite re-

sponse to more productive ecosystems, which

experienced a smaller reduction in belowground C

allocation. In a temperate deciduous system,

belowground respiration rates increased in re-

sponse to relatively mild defoliation (8% less foli-

age than control; (Frost and Hunter 2004)). This

was similar to patterns of increased C allocation

belowground by plants in response to partial

Figure 3. Resin membrane-sorbed ammonium (lmol NH4
+ cm-2 membrane) at LS plots in A July and B September in

relation to defoliation extent of B. pubescens (% defoliated). July: y ¼ e0:034x� 4:19, R2 = 0.56. Non-linear regression:

d.f. = 1,22, t = 5.49, P < 0.001. September: y ¼ e0:027x� 4:05 R2 = 0.31. Non-linear regression: d.f. = 1,21, t = 2.43,

P = 0.0036).

Figure 4. Hyphal ingrowth in relation to defoliation of

B. pubescens (% defoliated) at the LS plots. Line represents

y ¼ e�0:017xþ3:26, R2 = 0.30, without statistical outlier.

Non-linear regression: d.f. = 1,20, t = 3.17, P = 0.0048.

Statistical outlier is identified as an open circle; no other

points were statistical outliers.
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herbivory (Bardgett and Wardle 2003; Orians and

others 2011): Here the authors explained the in-

crease in C flux as being due to a combination of

increased root growth, turnover, activity and labile

C input, all as mechanisms to recover N that was

lost from leaf biomass (Frost and Hunter 2004). All

of these processes depend on a high flux of auto-

trophic C to maintain roots and associated mycor-

rhizal symbionts (Litton and others 2007; Ekblad

and others 2013; Brzostek and others 2015);

something that was not possible in the present

study as the defoliated trees suffered almost com-

plete defoliation. In a subalpine forest suffering a

bark beetle outbreak, as productivity decreased

with tree death, ecosystem respiration decreased,

signifying an overall slowdown of the forest C cycle

(Moore and others 2013). This is analogous to the

present study system; soil carbon cycling in sub-

arctic forests relies on autotrophic C supply to

stimulate the activity of microbial communities and

continue the decomposition of soil organic matter

(Hartley and others 2012). Our study demonstrates

that when this C supply is cut, cycling in the soil

slows, further supporting the hypothesis that it is

recently fixed carbon that drives this cycle (Hartley

and others 2012).

Table 2. Effect of Defoliation on Ectomycorrhizal Fungal Community Richness (S), Evenness (E), Shannon
Diversity (H¢), Simpson Diversity (D¢) and Composition

S E H¢ D¢ Composition

Non-defoliated 4.8 ± 1.4 0.83 ± 0.07 1.2 ± 0.31 0.60 ± 0.12

Defoliated 2.6 ± 0.9 0.43 ± 0.19 0.5 ± 0.24 0.28 ± 0.13

P > |t| 0.04a 0.05a 0.04a 0.05a 0.04b

Values are means ± standard error (n = 5).
aPaired t-test.
bBlocked multi-response permutation procedure t statistic.

Figure 5. Main Relative abundance of ectomycorrhizal (EMF) fungal lineages and non-mycorrhizal (NM) fungi sequenced

from ectomycorrhizal root tips of non-defoliated (grey bars) and defoliated (white bars) Betula. Error bars are standard error

of the mean (n = 5) and undefined for unreplicated fungal lineages. Absence in replicates was treated as zero for mean

relative abundance calculation. Relative abundance of non-ectomycorrhizal fungi is shown but excluded from analysis.

Inset relative abundance of all but /cortinarius and /russula-lactarius lineages expressed on 0–12 scale.
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Free nitrogen (NH4
+) in the soil was increased by

an order of magnitude in extreme cases of defolia-

tion compared to relatively unaffected areas of for-

est. Furthermore, free NH4
+–N in the soil increased

exponentially with defoliation extent, implying that

accumulation of N in the soil results from multiple

processes as opposed to simply being a linear func-

tion of frass input or any other single factor. It is

therefore clear that the N cycle in this system was

drastically altered by defoliation. One important

likely change in N flux with defoliation was a

reduction in root uptake (Kosola and others 2001).

Additionally, although not measured directly, it is

reasonable to assume that insect frass input scaled

linearly with the severity of defoliation in the forest

(Lovett and Ruesink 1995; Lovett and others 2002).

Therefore, the large amount of freeNobserved in the

soil was probably a product of increased direct N

input via frass, as well as on-going mineralisation

(Sjögersten and Wookey 2005), which was not bal-

anced by an increase in uptake by roots and micro-

bial biomass (Lovett and Ruesink 1995). In fact, root

growth and uptake of N were likely dramatically

reduced in the severely defoliated plots (Kosola and

others 2001; Cigan and others 2015; Saravesi and

others 2015). In this case, the argument for reduced

root activity due to reductions in autotrophic C

supply is also supported by the observed reduction in

soil respiration rates, similar to what is observed

when trees are girdled (Högberg and others 2001). In

contrast to NH4
+–N, exchangeable NO3

-–N was

present at very low levels and was not related to the

extent of defoliation of the forest canopy (Figures S1

and S2). Although not addressing defoliation effects,

previous work by Sjögersten and Wookey (2005)

identified a similar predominance (�2 orders of

magnitude) of NH4
+–N over NO3

-–N in a nearby

mountain birch forest. Furthermore, isotope tracing

studies have also shown that available NO3
-–N is

significantly lower than NH4
+–N in the soil, and is

relatively unresponsive to defoliation events

(Christenson and others 2002).

Work at a different defoliated sub-arctic birch

forest in Finland also showed that free N avail-

ability increased in defoliated plots, with the au-

thors of this study suggesting that defoliation shifts

the decomposer community to one in which bac-

teria become more dominant, while the fungal

decomposition pathway is weakened (Kaukonen

and others 2013). Therefore we speculate that N

immobilisation by bacteria may have increased in

the current study as their growth can be stimulated

by the addition of free N when in combination with

equally accessible C inputs (Bååth and others

1978), as is the case with defoliation events (Lovett

and Ruesink 1995).

We documented a decline in EMF hyphal pro-

duction with increasing defoliation which was

likely caused directly by a reduction in C supply

from the defoliated host trees (Gehring and Whi-

tham 1991; Gehring and others 1997; Kuikka and

others 2003)). This decline in hyphal production

was concomitant with a shift in the composition of

the remaining EMF community. This has previ-

ously been observed in the soil after defoliation

(Saravesi and others 2015) and in the present

study, on root tips. Growth of EMF mycelium is

known to be most directly influenced by the

amount of carbon that is made available by auto-

trophic hosts (Ekblad and others 2013; Wallander

and Ekblad 2015). Experimental reduction of this

autotrophic C supply leads to loss of EMF biomass

in the soil (Högberg and others 2001). Linked to C

fluxes, EMF fungi are also an important sink for N

in boreal forests (Mikusinska and others 2013;

Näsholm and others 2013b) and can contain up to

200 kg N ha-1 in their biomass (Wallander and

others 2004). It has been suggested that EMF fungi

immobilise more N, and transfer less to trees, in low

N environments in order to maintain their host’s

reliance on them (Näsholm and others 2013b).

Therefore, a reduction in EMF hyphal production,

as was observed here, may have contributed to the

flush of inorganic N as the EMF failed to immobilise

the excess N from the larval frass input (Lovett and

Ruesink 1995).

Figure 6. Effect of defoliation (non-defoliated in white

defoliated in black), on relative abundance of non-myc-

orrhizal fungi and exploration types (ETs) of ectomyc-

orrhizal fungi. Absence within replicates was counted as

zero for mean relative abundance calculation. Bars

are ± one standard error of the mean. Asterisks indicate

defoliation affected relative abundance of an ET (Holm–

Tukey test) at P < 0.05.
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The shift in community composition of the

remaining EMF root tips in defoliated plots may

also have had a significant role in the reduced

immobilisation of N. There was a shift in the EMF

fungi colonising B. pubescens roots from medium

and long-distance ET in non-defoliated plots to

smooth-mantled contact lineages such as /russula-

lactarius in the defoliated plots (Agerer and others

2012). This is consistent with the hypothesis that

when a host tree is defoliated, EMF species with a

lower C requirement hold a competitive advantage

over those that invest in more extensive soil

exploration (Saikkonen and others 1999; Markkola

and others 2004). A similar shift to increased

dominance of the /russula-lactarius lineage on

EMF root tips and a reduction of mycelial biomass

on EMF roots was observed in another mountain

birch forest in response to defoliation (Saravesi and

others 2015). The opposite occurred in a warming

experiment on the Alaskan tundra where the bio-

mass of B. nana increased; there, a shift to the more

explorative Cortinarius spp. from the lower plant C

investment Russula spp., was observed, presumably

as a result of increased plant C supplied below-

ground (Deslippe and others 2011). In this study,

Cortinarius spp. remained unchanged in relative

abundance, which could be of ecological signifi-

cance; Cortinarius spp. are thought to be of partic-

ular importance to N cycling in arctic and boreal

ecosystems because they use oxidative enzymes to

extract N from complex organic molecules (Böde-

ker and others 2014) and could be important spe-

cies in the transfer of N to host plants (Deslippe and

others 2015). Species of Cortinarius have been

shown to reduce expression of genes related to

oxidative enzyme production under N fertilisation

(Bödeker and others 2014). Here, where direct

uptake of excess N under defoliated conditions

would seem more favourable, Cortinarius spp. may

have also reduced use of enzymes, which may slow

decomposition of soil organic carbon. In our study,

the shift in the composition of the EMF community

likely contributed to the reduction of EMF hyphal

production that was observed in highly defoliated

plots and may also have indirectly contributed to-

wards high concentrations of free NH4
+–N in the

soil.

An intriguing change in fungal community

composition on root tips observed here was a clear

increase in non-mycorrhizal endophytes. Although

these fungi are common across the world, espe-

cially in stressful environments, their ecological

function is largely unknown (Rodriguez and others

2009). One suggestion is that they become pre-

ferred as a low C cost symbiont when a plant is

under stress in order to protect roots from patho-

gens (Mandyam and Jumpponen 2005), which is a

reasonable explanation in this case. Alternatively,

evidence has suggested that root endophytes can

increase on roots in response to defoliation and that

this may be in order to take advantage of root die-

back (Saravesi and others 2014). Further work

addressing why root endophytes increase beneath

defoliated forests is clearly an interesting avenue of

research and may shed further light on this poorly

understood group of fungi.

Moth outbreaks in this area are known to be

limited by minimum winter temperature, with a

temperature lower than around—35 �C known to

freeze and kill over-wintering eggs (Tenow and

Nilssen 1990). Increases in temperature and con-

current reductions in the number of days be-

low—35 �C have been shown to increase the range

of both E. autumnata and O. brumata (Jepsen and

others 2008). The latter has undergone particularly

large increases in its range as it is more sensitive to

cold temperatures than E. autumnata. In this study,

there was an observed, although weak relationship

between the density of trees and severity of defo-

liation. This was likely due to conditions that

determine insect survival over winter through the

differential probability of lethal super-cooling of

eggs (Tenow and Nilssen 1990). At a larger scale,

lethal winter air temperatures can be influenced by

topography (Tenow and Nilssen 1990). At smaller

scales, the availability of over-wintering sites can

be the critical control of caterpillar survival and

resulting defoliation (Bylund 1997). This was evi-

dent in old forests that had high outbreak numbers

(many stems and over-wintering sites) and young

forest with the opposite (Bylund 1997). Relation-

ships such as these may be useful, in combination

with ecosystem studies such as this and others

(Heliasz and others 2011; Kaukonen and others

2013; Saravesi and others 2015), to derive a better

understanding of the larger scale influence of

Winter and Autumn Moths on whole ecosystem

processes.

Herbivorous insect distributions and populations

are known to be particularly responsive to winter

and summer temperature increases (Bale and oth-

ers 2002) and with this in mind, along with the

observed past changes in moth ranges in relation to

warming (Jepsen and others 2008), it appears likely

that this kind of disturbance will increase in

severity and magnitude in the coming century

(Bale and others 2002) and may also have the

potential to modulate forest expansion.

In summary, a large-scale defoliation event by

O. brumata and E. autumnata caused a number of
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cascading effects in sub-arctic mountain birch for-

ests. A reduced delivery of autotrophic C to the

rhizosphere may have contributed towards accu-

mulation of mineral N in the soil, which may have

been linked in part to the altered composition and

growth of the EMF community. In defoliation

events, the accumulation of free N in the soil is

initiated by frass inputs (Lovett and others 2002),

but this phenomenon may persist in this study

ecosystem because the influence of trees in the soil

is diminished to the point where they can no longer

drive immobilisation, either by direct uptake

(Russell and others 2004) or through EMF fungi

(Näsholm and others 2013b). We argue that the

defoliated mountain birch forest resembles an N-

saturated ecosystem (Aber 1992) where biological

immobilisation of N cannot keep pace with inputs

due to a reduction in ‘top-down’ control. A re-

search priority remains to measure further the

longevity of response observed here in order to

understand better the stoichiometry of C and N in

the wake of these important disturbances. The EMF

community is known to be a key link between

changes in autotrophic C supply and cycling of C

and N in the soil. Defoliation events are a feature of

many forest ecosystems (particularly in sub-arctic,

boreal and temperate regions), yet we still know

little of the complex processes and cascading

interactions that they drive. In an era of rapid

environmental changes, where short-lived and

mobile insect species are able to respond rapidly to

new opportunities for range expansion, the sever-

ity of ‘outbreak’ years will likely have more pro-

found ecosystem impacts. Further work needs to

focus on the interactions and potentially non-linear

effects of defoliation events to understand better

how these important ecological events exert con-

trol over ecosystem processes and the C budget of

these forests.
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