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Abstract 

Knowing how to control a pathogen that infects more than one host species is of increasing 

importance because the incidence of such infections grows with continuing environmental change. 

Of concern are infections transmitted from wildlife to humans or livestock. To determine which 

options are available to control a pathogen in these circumstances, we analyse the pathogen 

invasion matrix for the multi-host susceptible-infected-susceptible model. We highlight the 

importance of both community structure and the column sum or row sum index, an indicator of 

both force of infection and community stability. We derive a set of guidelines for constructing culling 

strategies and suggest a hybrid strategy that has the advantages of both the bottom-up and the top-

down approaches, which we study in some detail. The analysis holds for an arbitrary number of host 

species, enabling the analysis of large-scale ecological systems and systems with spatial dimensions. 

We test the robustness of our methods by making two changes in the structure of the underlying 

dynamic model, adding direct competition and introducing frequency-dependent infection 

transmission. In particular, we show that the introduction of an additional host can eliminate the 

pathogen rather than eliminate the resident host. The discussion is illustrated with a reference to 

bovine tuberculosis.  

 

  



Introduction 

Apparent competition mediated by a pathogen (Holt and Pickering 1985; Hudson and Greenman 

1998) is an important aspect of the behaviour of a multi-host shared-pathogen system. Host species 

act as though they are in competition even if they are not directly competing for resources. Theory 

implies that the abundance of a species can be considerably reduced, and in some cases excluded, 

when a second host species acting as a reservoir for the infection invades its habitat (Haydon et al. 

2002). Several possible candidates for apparent competition in the wild have been suggested, for 

example, the exclusion of moose (Alces alces) and caribou (Rangifer tarandus) in Nova Scotia and 

New Brunswick, Canada, following the invasion of white-tailed deer (Odocoileus virginianus; 

pathogen, Parelaphostrongylus tenuis; Anderson 1972; Anderson and May 1986) and the decline in 

the United Kingdom of the gray partridge (Perdix perdix) in the presence of the ringnecked pheasant 

(Phasianus colchicus; pathogen, Heterakis gallinarum; Tompkins et al. 2001). 

Of particular concern are those pathogens that cross from wildlife species to humans or their 

livestock, threatening public health and economic livelihood. Several such pathogens emerged in the 

1960s. The Machupo virus in Bolivia in 1962 was spread by rodents acting as the reservoir host 

(Johnson et al. 1965; Garrett 1994), invading the territory of the naive and highly vulnerable human 

population as a result of changes in agricultural practice. For the Ebola virus in Zaire in 1976, fruit-

eating or insectivorous bats were the most likely reservoir host (Daszak et al. 2000). An important 

example of livestock affected by an infection that was spread by wildlife in the United Kingdom is 

that of bovine tuberculosis (TB; causative agent, Mycobacterium bovis). A recent large-scale field 

trial (the Randomised Badger Culling Trial; Donnelly et al. 2006; Bourne et al. 2007) showed that, 

although badgers (Meles meles) are the main source of the infection among wildlife (Krebs et al. 

1998), culling badgers does not always result in a reduction in bovine TB (Donnelly et al. 2003). This 

surprising result has been attributed to the disruption of badger communities caused by the culling 

(Woodroffe et al. 2006). 

In complex ecosystems, identifying the main reservoirs of infection can be a formidable challenge. 

This is illustrated by the continuing search for the source of the Ebola virus (Daszak et al. 2000) and 

the effort that has been made to unravel the dynamics of rabies epidemics in the Serengeti region of 

Tanzania (Cleaveland and Dye 1995). Without reliable information, control measures may be 

ineffective, if not counterproductive. 

Culling is one way of trying to control a pathogen, either through direct anthropogenic intervention 

or through the introduction of direct competitors or predators. For example, the Machupo virus 

epidemic was ended by the importation of domestic cats to act as predators. Vaccination, which 

transfers susceptible individuals to an immune class, is a more benign method of control (Roberts 

1996). However, vaccines may be unavailable or prohibitively expensive. Another approach is for the 

authorities to use regulatory controls and demand strict adherence to biosecurity standards to 

reduce inter- and intra-infection transmission rates (Ferguson et al. 2001). In cases of highly virulent 

diseases, quarantine may have to be imposed (McLean et al. 2006). 

Even if we restrict our attention to the first two non-regulatory methods of control, many issues still 

remain. Do we need to control all hosts to exclude the pathogen? If not, then which ones need to be 

controlled? Is it those that exert the largest force of infection, or is some other criterion more 

appropriate? In this article we address these issues, basing our analysis on the simplest non-trivial 



model available, the multiple-host susceptible-infected-susceptible (SIS) model (Dobson 2004). The 

key element in the analysis is the invasion matrix J, obtained from the SIS model in the 

approximation that the infection is rare. The stability properties of this matrix indicate whether the 

pathogen will invade or be excluded. 

Many of the familiar cases of generalist pathogens involve, in effect, only two host species, but there 

are other cases that involve more (e.g.,West Nile virus; Petersen and Roehrig 2001). The number of 

such cases is likely to increase with a better understanding of complex ecosystems and with 

continuing environmental change. Our analysis is, therefore, a general one, looking at multi-host 

systems of arbitrary size. This gives us the opportunity to model systems with a spatial dimension, 

where the same host on a different patch is considered to be a different host. This idea has been 

implemented for the phocine distemper virus affecting harbor seals (Phoca vitulina) in European 

waters (Swinton et al. 1998; Dobson and Foufopoulos 2001) and can be used to study social 

perturbation due to badger culling in the case of bovine TB. 

After introducing the equations of our model and deriving its pathogen invasion matrix, we keep the 

mathematical details to a minimum. A more complete discussion can be found in the appendix in the 

online edition of the American Naturalist.  

 

Fundamentals 

Two host species sharing a pathogen are modelled by the equations 

𝑑𝐻𝑖

𝑑𝑡
= 𝑟𝑖 (1 −

𝐻𝑖

𝐾𝑖
) 𝐻𝑖 − 𝛼𝑖𝐼𝑖 

𝑑𝐼𝑖

𝑑𝑡
= 𝑆𝑖(𝛽𝑖𝑖𝐼𝑖 + 𝛽𝑖𝑗𝐼𝑗) − 𝑑𝑖𝐼𝑖                                                          (1) 

where i,j=1,2 and i≠j, with density-dependent infection transmission (McCallum et al. 2001), no 

latency, and no natural immunity. Here Si, Ii, and Hi = Si + Ii are the ith host susceptible, infectious, 

and total population densities, respectively. Parameters ai, bi, 𝛼i, and 𝛾i denote per capita birth rate, 

(additive) natural mortality rate, infection-induced mortality rate, and recovery rate, respectively, 

for the ith host, with 𝑟𝑖 = 𝑎𝑖 − 𝑏𝑖 and 𝑑𝑖 = 𝑏𝑖 + 𝛾𝑖. Parameter 𝑑𝑖  measures the rate of population 

loss from the infectious state and its inverse, the average lifetime of the disease; 𝐾𝑖 is the ith host 

carrying capacity, and 𝛽𝑖𝑗 is the rate of infection transmission from host j to host i. For the moment, 

we suppose that the cross-transmission rate 𝛽𝑖𝑗 is nonzero (i≠j). With no direct competition, the two 

host species asymptotically tend to their own carrying capacity levels in the absence of the infection 

when ri>0. 

In the rare-invader approximation, it is assumed that the number of infectious hosts is initially so 

small that the total host population is close to its carrying capacity level; that is, Hi ≈ Si ≈ Ki. The 

infectious population equation then becomes 

𝑑𝐼𝑖

𝑑𝑡
= 𝐾𝑖(𝛽𝑖𝑖𝐼𝑖 + 𝛽𝑖𝑗𝐼𝑗) − 𝑑𝑖𝐼𝑖 



where i,j=1,2 and i≠j. In vector terms, dv/dt=J.v, where 𝑣 = (𝐼1, 𝐼2)𝑇, with T denoting the transpose 

operation and where J is the invasion matrix given by equation (2a) in the 2x2 case and by equation 

(2b) in the 3x3 case, 

𝐉 = [
𝐾1𝛽11 − 𝑑1 𝐾1𝛽12

𝐾2𝛽21 𝐾2𝛽22 − 𝑑2
]                                                      (2𝑎) 

𝐉 = [

𝐾1𝛽11 − 𝑑1 𝐾1𝛽12 𝐾1𝛽13

𝐾2𝛽21 𝐾2𝛽22 − 𝑑2 𝐾2𝛽23

𝐾3𝛽31 𝐾3𝛽32 𝐾3𝛽33 − 𝑑3

]                             (2𝑎) 

with obvious generalization for an arbitrary number of host species. There will be pathogen invasion 

when the leading eigenvalue 𝜆 of J is positive, and pathogen exclusion will occur when the leading 

eigenvalue 𝜆 of J is negative. At threshold, 𝜆 = 0, and so the determinant of J, det J, is also 0, being 

the product of the eigenvalues of J. So, the threshold for invasion lies on the curve (or surface) det 

J=0. 

 

Control of an Infected Two-Host System 

Control Options 

Our first objective is to determine which options are available for the exclusion of a pathogen that is 

infecting two host species, as described by model (1). Our primary control will be (partial) culling 

(i.e., forced increase in natural mortality), but as we will show, the results obtained apply equally to 

other controls, such as vaccination and restricted access to resources. We generalize the term 

“culling” to include these other controls. Culling affects only the diagonal elements of the invasion 

matrix J. For example, if we cull host 1 by x, then 𝑏1 and, hence, 𝑑1 will increase by x. So the (1, 1) 

element of J in matrix (2a) will decrease by x. 

The options for control depend on whether the host species is a reservoir host (i.e., a species that 

alone can support the pathogen). Figure 1 makes this distinction clear. It shows two possible 

configurations for the pathogen exclusion threshold TT in the x–y culling plane (where x and y 

denote the increases in the mortalities of host 1 and host 2, respectively, due to culling). 

Configuration A, with threshold TT intersecting neither culling axis, corresponds to both hosts being 

reservoir hosts. Both hosts need to be culled because there are no points in the pathogen exclusion 

region E where x=0 or y=0. In configuration B, the threshold TT intersects the X-axis, corresponding 

to host 2 not being a reservoir host. In this case, pathogen exclusion can be achieved by culling only 

reservoir host 1 (keeping y=0). That host 2 need not be culled would be obvious if host 1 were culled 

to extinction, but the objective is to exclude the pathogen and not the hosts. 

 



 

Figure 1: The pathogen invasion/exclusion threshold TT plotted against the culling of host 1 (x) and 

host 2 (y). Crossing TT from above, the pathogen invades; crossing TT from below, the pathogen is 

excluded; TT is the upper branch of a hyperbola with asymptotes shown as dashed lines intersecting 

at centre U with coordinates (p, q). In A, both hosts are reservoir hosts. In B, only host 1 is a reservoir 

host. The objective of the culling strategy is to reach exclusion region E from the origin O. 

 

In case B (fig. 1B), for single culling, the reservoir host needs to be culled by at least x0 to exclude the 

pathogen (where x0 is given by eq. [A2] in the appendix). If culling does not discriminate between 

susceptible and infectious hosts, then there is the possibility that the reservoir host will also be 

excluded. To avoid this, the value of x should not exceed the growth rate 𝑟1. If the limits 𝑥0 < 𝑥 < 𝑟1 

cannot be satisfied (e.g., if 𝑟1 < 𝑥0), then both hosts have to be culled (the hosts sharing the cost of 

lowered abundance in reducing the reservoir of infection to below critical size; fig. 1B). The problem 

does not arise if a test (for infection) and cull (if positive) strategy is in place. 

There is a third scenario in which neither host species is a reservoir host but together they form a 

reservoir community (i.e., a community that supports the pathogen). The threshold curve TT then 

crosses both axes, and the pathogen can be excluded by culling either one of the two hosts, subject 

to the proviso that neither host is excluded in the process. This scenario provides an example where 

a host species has to be culled even though it does not support the pathogen when alone. The 

connection between the geometry of figure 1 and the algebra of the matrix in equation (2a) can be 

found in “The Infection Threshold” in the appendix. 

 

Generalized Culling 

Besides direct culling, it is sometimes possible to control a host species by restricting access to 

resources (e.g., habitat or food), thereby reducing its effective carrying capacity K. We will refer to 

this as K-resource control. In “Generalized Culling” in the appendix, we show that, as far as threshold 

behavior is concerned, reducing K by 𝛿𝐾, for example, is equivalent to culling at a rate 

𝑥 =
𝑘𝑑

1 − 𝑘
                                                                             (3) 



Here, k p dK/K is the proportionate reduction in K, with 0 ≤ k ≤ 1, and 1/d is the average lifetime of 

the infection. 

Control by vaccination can be considered to be an example of K-resource control because one can 

show that vaccination reduces the equilibrium-susceptible population K by a proportionate amount 

𝑘 = 𝑝/[1 + (𝛾/𝑏)], where b is natural mortality, p is the proportion of the population vaccinated at 

birth, and g is the rate of loss of immunity. Equation (3) gives the equivalent culling rate. If 

vaccination does not offer lifelong protection (i.e., 𝛾 > 0), then vaccination may not be able to 

reduce the susceptible population sufficiently for pathogen exclusion to occur because 𝑘 < 1/[1 +

(𝛾/𝑏)] < 1. 

 

Controlling Three or More Hosts 

Stability of Host Species and Host Sub-communities 

As we have seen, the distinction between reservoir hosts and non-reservoir hosts (i.e., those not 

supporting the pathogen) is important. How do we use the invasion matrix to identify which host 

species is which? We are, for the moment, taking the off-diagonal elements (𝐾𝑖𝛽𝑖𝑗) to be positive 

(rather than 0), but the diagonal elements (𝐾𝑖𝛽𝑖𝑖 − 𝑑𝑖) can be of either sign. If positive, then the 

corresponding host, host i, is a reservoir host (and if negative, host i is a non-reservoir host), because 

𝐾𝑖𝛽𝑖𝑖 − 𝑑𝑖 = 𝑑𝑖(𝑅0𝑖 − 1), where 𝑅0𝑖 is the basic reproduction number for host i. 

To understand the properties of the invasion matrix J, we need to consider the invasion matrices of 

sub-communities of host species. They can be found straightforwardly from J by removing all the 

rows and columns relating to hosts outside the sub-community of interest. For example, consider 

the invasion matrix J for a four-host community, given as matrix (4a). The invasion matrix for the 

sub-community without host 1 is given in matrix (4b) as J1 and without hosts 1 and 2 in matrix (4c) as 

J12: 

𝐉 = [

0.2 0.3
0.1 0.1

0.4 0.5
0.2 0.3

0.2 0.4
0.3 0.6

−0.2 0.2
0.3 −0.5

]                                              (4𝑎) 

𝐉𝟏 = [
0.1 0.2 0.3
0.4 −0.2 0.2
0.6 0.3 −0.5

]                                                        (4𝑏) 

𝐉𝟏𝟐 = [
−0.2 0.2
0.3 −0.5

]                                                                   (4𝑐) 

Note that hosts 1 and 2 are reservoir hosts and hosts 3 and 4 are non-reservoir hosts. 

For the sake of brevity, we will say that a reservoir Sub-community (one that supports the pathogen) 

is unstable against pathogen invasion and a non-reservoir sub-community (one that does not 

support the pathogen) is stable against pathogen invasion. The sub-community of matrix (4c) is 

stable, whereas those of matrices (4a) and (4b) are unstable, as can be checked by finding their 

eigenvalues. To help analyse the properties of these sub-communities, there are some general rules 

that can be applied. The most important of these, to which we will refer several times later in 



“Discussion” as rule 1, is that a stable sub-community cannot contain within it a host or collection of 

hosts that support the pathogen. So there is no stable sub-community in matrix (4a) that contains 

hosts 1 or 2. A stable sub-community, therefore, contains only Non-reservoir hosts, but the converse 

is not necessarily true. If we increase the (1, 2) element of matrix (4c) to 0.4, we obtain an unstable 

sub-community containing only non-reservoir hosts. We will call a stable sub-community maximal if 

when adding any other host to it, it becomes unstable. The only maximal stable sub-community 

(MSS) of matrix (4a) is the one that consists of hosts 3 and 4. There would be two single-host MSSs 

(host 3 and host 4) if the (3, 4) element of matrix (4a) were 0.4. 

 

A Culling Algorithm 

Choose an MSS and add the other host species one by one, sufficiently culling the added host at 

each stage to render stable the extended community. This will be achieved if the culling, x, is greater 

than 𝑥0 = det 𝐉∗ / det 𝐉∗∗, where J∗ is the invasion matrix for the extended sub-community before 

culling and J∗∗ is the invasion matrix of the unextended sub-community (see “The Culling Algorithm” 

in the appendix for justification). So, 

𝑥 =
det 𝐉∗

det 𝐉∗∗
+ 𝑎                                                                             (5) 

where a is any positive number. For example, in invasion matrix (4a), first add host 2 to its MSS as 

defined by hosts 3 and 4. Then J∗ is given by matrix (4b) and J∗∗ is given by matrix (4c), and so, by 

equation (5), host 2 needs to be culled by an amount 𝑥 = (0.14/0.04) + 𝑎 = 0.35 + 𝑎. Culling host 

2 by this amount generates a sub-community with an invasion matrix given by matrix (4b) but with x 

subtracted from its (1, 1) element to allow for the culling. This forms the new matrix J∗∗ when host 1 

is added, whereas matrix (4a) with x subtracted from its (2, 2) element forms the new matrix J∗. So, 

at the second stage, a pathogen-free community is obtained by culling host 1 by the amount 

𝑦 =
−0.468 − 0.132𝑎

−0.04𝑎
+ 𝑏 = 3.3 +

11.7

𝑎
+ 𝑏                                       (6) 

 

Additional information is required to determine parameters a and b in equation (6). 

 

General Properties 

This “bottom-up” MSS culling strategy is just one of many ways of successfully culling a host 

community to exclude the pathogen. Whatever culling strategy is employed, there are some general 

observations we can make. First, all reservoir hosts have to be culled. If not, then we would end up 

(after culling) with a stable community that contained a reservoir host, which is in conflict with rule 

1. Second, we may have to cull some non-reservoir hosts. This is clear from the third scenario in the 

two-host case and from the discussion of matrix (4c). Third, the non-reservoir hosts that are not 

culled will form a stable sub-community. If they do not, then we would contradict a rephrased rule 

1: a stable (culled) community cannot contain within it an unstable sub-community. 



Rule 1 and other properties that we will use later follow from the Perron-Frobenius theorem (Cox 

and Miller 1970; Seneta 1973) when applied to the invasion matrix for an arbitrarily sized system 

with density-dependent transmission and no direct competition. This theorem is discussed in 

“Properties of Invasion Matrices” in the appendix. DeAngelis et al. (1979) and Hastings and Botsford 

(2006) have discussed the properties of similar matrices in solving particular ecological problems. 

 

Irreducibility 

For simplicity, we have until now supposed that the off-diagonal elements of the invasion matrix are 

all positive; in practice, however, direct transmission of the infection is significant only between a 

few pairs of hosts, and as such, many of these off-diagonal elements are effectively 0 (Dobson and 

Foufopoulos 2001). However, the results that we have obtained still apply, provided that the host 

community is irreducible, that is, that each host species can directly or indirectly infect all other host 

species. This property can easily be identified from the network graph describing the transmission of 

the infection within the community. This graph is constructed from the invasion matrix J by the 

following rule: there is a node for each of the n hosts of the nxn matrix J. If the (i, j) element of J is 

nonzero, draw a directed (arrowed) arc from node j to node i. The network graphs in figure 2A, 2C, 

and 2D are irreducible, whereas those in figure 2B and 2E are reducible (i.e., not irreducible). Host 2 

is unable to infect host 1 in figure 2B, and host 1 is unable to infect either host 2 or host 3 in figure 

2E. In figure 2C, host 1 cannot directly infect host 3 but can do so indirectly by first infecting host 2. 

 

 



 

Figure 2: Irreducible (A, C, D) and reducible (B, E) infection transmission networks. The node integer 

indexes the host species, whereas r denotes a reservoir host and nr denotes a non-reservoir host. 

Arrows on arcs indicate the direction of infection transmission; weights on arcs are the 

corresponding invasion matrix elements. See “Irreducibility” for discussion of culling strategies 

appropriate for the different network structures. 

 

 

Figure 2B models the Machupo virus epidemic, with rodents as the reservoir host (1r) and humans as 

the non-reservoir host (2nr) and with little or no transmission back to the reservoir host. Figure 2A is 

a simple network model for bovine TB based on the SIS model (eq. [1]). It assumes that badgers 

(host 1) and cattle (host 2) are both reservoir hosts (r) and as such can infect each other. Evidence 

for this comes from the work of Cox et al. (2005) and Woodroffe et al. (2006). 

Figure 2C and 2D differs in the positioning of the single reservoir host r. In figure 2C, the single 

reservoir host lies in the “star” position (as host 2), in direct communication with the other (non-

reservoir [nr]) hosts. One need only cull this star host, because the other hosts form a maximal 

stable community on their own. This observation generalizes to an arbitrarily sized system with 

(pairwise) direct transmission with only the star host. Vector transmission has a network with this 

structure, with the vector as the star host (Dobson and Foufopoulos 2001). If the reservoir host lies 



instead at one end of a chain of hosts (fig. 2D), then it may be that a second host has to be culled 

because hosts 2 and 3 together may support the pathogen. 

For reducible networks, the invasion matrix J becomes block diagonal as far as the eigenvalues are 

concerned (Seneta 1973), and each block can be treated as a separate invasion matrix. For figure 2E, 

the exclusion of the pathogen from hosts 2 and 3 does not depend on the state of host 1, and so the 

sub-community formed by host 2 and host 3 and the host 1 sub-community can be considered 

separately. 

 

Force of Infection 

Thus far we have looked for infection-control strategies that minimize the number of hosts that 

need to be culled. An alternative approach is to use the notion of “force of infection” as the basis for 

constructing the control strategy. To understand the issues involved, we need to refer to two further 

properties of the invasion matrix for an irreducible host community, which are highlighted in the 

Perron-Frobenius theorem. First, the leading eigenvalue l of the invasion matrix J (i.e., the 

eigenvalue with the largest real part) is in fact real and is positive when there is an invasion. If we 

cull all hosts by an amount greater than 𝜆, then the leading eigenvalue becomes negative and the 

pathogen is excluded (because this culling reduces all the diagonal elements of J by the same 

amount and is equivalent to subtracting a multiple of the identity matrix from J). The second 

relevant property of J is that 𝜆 is bounded above and below 

cmin ≤ l ≤cmax , (7a) 

rmin ≤ l ≤ rmax , (7b) 

where cmax is the maximum and cmin is the minimum of the column sums and rmax is the maximum 

and rmin is the minimum of the row sums. If cmin is positive, then the pathogen can invade (because 

then 𝜆 is positive), but if cmax is negative, then the pathogen is excluded. If cmax and cmin are of 

opposite signs, then the sign of 𝜆 is not determined by the constraints in equation (7a), and so more 

information is required. Similar arguments apply for the row sums. As an example, consider the 

following invasion matrices: 

𝑱 = [
0.5 0.1
0.3 −0.4

]                                                                      (8𝑎) 

𝑱 = [
−0.3 0.1 0.4
0.1 −0.2 0.5
0.1 0.2 0.1

]                                                         (8𝑏) 

𝑱 = [
𝐴 − 𝑑1 𝐵

𝐶 𝐷 − 𝑑2
]                                                            (8𝑐) 

For matrix (8a), the bounds are given by (i) 0.3 ≤𝜆 ≤ 0.8 and (ii) _0.1 ≤𝜆 ≤ 1.2. So the pathogen can 

invade because of inequalities (i), but inequalities (ii) are ambiguous on the issue. 

The bounds in equations (7) suggest an alternative strategy for excluding the pathogen, that is, 

culling host species according to their column sums. Precisely, if the ith column sum is positive, then 



we cull the ith host by more than that column sum. The (i, i) element, and hence the ith column sum, 

is reduced by the same amount. So, following this procedure, all column sums become negative and 

equation (7a) implies pathogen exclusion. The (non-reservoir) unculled hosts, with negative column 

sums, form a stable sub-community S that will not, in general, be maximal because there might be 

non-reservoir hosts with positive column sums that would keep S stable when they are added to S. 

For matrix (8a), both hosts are to be culled according to the top-down column-sum strategy, but 

only host 1 needs to be culled with the bottom-up MSS strategy. Our observations apply equally to 

row sums, and we note that only host 1 needs to be culled for the top-down row-sum strategy 

because the second row in matrix (8a) is negative. For matrix (8b), we need to only cull hosts 2 and 3 

using column sums, we must cull all three hosts using row sums, and we need to cull only host 3 

using the MSS strategy. 

There is a third strategy, a mixed strategy, where we combine aspects of the top-down and bottom-

up strategies. We cull hosts in the order defined by their column or row sums, stopping when the 

remaining hosts form a stable sub-community S1. For matrix (8b), host 3 (with the largest column 

sum) would be culled first, yielding the stable sub-community S1 of hosts 1 and 2. However, for the 

culled hosts, the minimum culling required is likely to be greater than the column or row sums if S1 

contains non-reservoir hosts with positive column or row sums, in order to compensate for their 

zero contribution to reducing the size of the infection reservoir. The bounds in equations (7a) and 

(7b) do not indicate by how much, however; this must be determined using a more detailed analysis. 

For example, according to equation (5), host 3 in matrix (8b) has to be culled by at least 𝑥0 =

det 𝐽/ det 𝐽3 = 1.12, where 𝐽3 is the invasion matrix for the 3 sub-community formed by host 1 and 

host 2. This is greater than the host 3 column sum, 1.0. 

An alternative intuitive measure of the impact on host species of host j being infected is the relative 

force of infection defined by ∑ 𝐾𝑖 𝛽𝑖𝑗/𝑑𝑗 (summed over i; Dobson and Foufopoulos 2001). If we cull 

in the order dictated by this measure, we are progressively weakening the strongest agents of 

infection in the community. However, this strategy does not necessarily lead to the same culling 

strategy as that specified by the mathematical measure based on column or row sums, as matrix (8c) 

shows. With A+C=18, B+D=15, 𝑑1 = 7, and 𝑑2 = 5, the column sum criterion gives the ordering as 

host 1 and then host 2, because A+C-𝑑1 > B+D-𝑑2. For the relative force of infection measure, the 

culling order is reversed because (𝐴 + 𝐶)/𝑑1 < (𝐵 + 𝐷)/𝑑2. This divergence in culling strategies 

arising from the duality between rows and columns and due to the different measures of influence is 

discussed further in “Optimization” in the appendix. 

 

Multiple Interactions 

Direct Competition 

Consider a two-host community with direct competition that is modeled by replacing the growth 

rate 𝑟𝑖(1 − 𝐻𝑖/𝐾𝑖) of model (1) by 𝑟1(1 −
𝐻𝑖

𝐾𝑖
− 𝑐𝑖𝐻𝑗), where 𝑖 ≠ 𝑗. Direct competition decreases the 

susceptible equilibrium level 𝐾𝑖 by 𝛿𝐾𝑖, where 𝑘𝑖 = 𝛿𝐾𝑖/𝐾𝑖 is given by 

𝑘𝑖 =
𝑢𝑖(1 − 𝑢𝑗)

1 − 𝑢𝑖𝑢𝑗
                                                                      (9) 



where 𝑖 ≠ 𝑗, 𝑢1 = 𝑐𝑞𝐾2/𝑟1, and 𝑢2 = 𝑐2𝐾1/𝑟2. Competition parameters 𝑢1 and 𝑢2 are considered to 

be less than 1 to ensure that direct competition does not exclude either host. 

If host 2 is a non-reservoir host and is the much stronger competitor (i.e., 𝑢2 ≈ 0), then the effect of 

introducing 2 host 2 to reservoir host 1 is to exclude the pathogen if the impact 𝑢1 on host 1 is 

strong enough. Host 2 acts as if it is culling host 1, with culling rate x given by equation (3) with 

equation (9) and 𝑢2 = 0; that is, 𝑥 = 𝑢1𝑑1/(1 − 𝑢1). Pathogen exclusion happens if x ≥ x0 (given by 

eq. [A2] in the appendix); that is, 𝑢1 > 1/(1 + 𝑑1/𝑥0 ). 

If host 1 has a non-negligible competitive impact on host 2, then the introduction of host 2 leads to a 

reduction in the carrying capacity of both hosts. The problem now is that the system may not be 

able to reach region E for pathogen exclusion (fig. 1) because the constraints 𝑢1 < 1 and 𝑢2 < 1 for 

host survival limit the region of (x,y) culling space that can be reached. Precisely, (x,y) is limited by 

the constraint 𝑥𝑦 ≤𝑑1𝑑2 derived from equations (3) and (9). This happens in the following numerical 

example: 

𝐾1𝛽11 = 1.25, 𝑑1 = 0.78, 𝐾1𝛽12 = 0.2, 𝐾2𝛽21 = 0.7, 𝐾2𝛽22 = 0.85, 𝑑2 = 0.05                       

Here the pathogen cannot be excluded without excluding one of the host species as well. However, 

for a second example, 

𝐾1𝛽11 = 0.8, 𝑑1 = 0.75, 𝐾1𝛽12 = 0.1, 𝐾2𝛽21 = 0.1, 𝐾2𝛽22 = 0.6, 𝑑2 = 0.5               (10) 

region E can be reached for certain values of 𝑢1 and 𝑢2, for example, 𝑢1 = 0.3 and 𝑢2 = 0.6. The 

general situation is illustrated in figure 3A, where we super-impose the control boundary CC, 

𝑥𝑦 = 𝑑1𝑑2 on the threshold plot of figure 1A. The region R of intersection in figure 3A shows that 

the arrival of a second host can lead to the exclusion of the pathogen that is infecting the first host 

although each host is unable to resist infection when alone. This happens because, in bringing the 

two hosts together, two forces are activated: the force of infection that promotes pathogen 

persistence and the force of direct competition that reduces host abundance and thus discourages 

pathogen persistence. 

 

Frequency Dependence 

Suppose density-dependent infection transmission (𝛽𝐼𝑆) is replaced by frequency-dependent 

transmission (𝛽𝐼𝑆/𝐻), where the transmission rate depends on the proportion (not the abundance) 

of infectious individuals in the total community (Hethcote et al. 2005). In modelling terms, this 

reformulation means replacing 𝐾𝑖 in the invasion matrix J with 𝐾𝑖/ ∑ 𝐻, where ∑ 𝐻 denotes the sum 

of all the host populations (Rudolph and Antonovics 2005). For the SIS model, this sum reduces to 

the sum of the susceptible populations (at their carrying capacity levels) in the rare-invader 

approximation. As a consequence, the invasion matrix J depends only on the ratios of the carrying 

capacities. 

 



 

Figure 3: The phenomenon of two reservoir hosts excluding the pathogen with direct competition 

(A) and frequency dependence (B). In A, the control feasibility boundary CC (i.e., the upper limit to 

control by direct competition without host exclusion) intersects the threshold TT, and pathogen 

exclusion is possible in the intersection region R. In B, 𝜑𝑖 = 𝛽𝑖𝑖/𝑑𝑖  acts as basic reproduction 

numbers, ∆= 𝛽12𝛽21/𝑑1𝑑2 is a measure of cross-infection, and v p K /K is the control variable (the 

ratio of carrying capacities). 𝑍 = (1 + 𝜃)2 det 𝐽/𝑑1𝑑2, where J is the invasion matrix. B shows the 

range of v and D, where pathogen exclusion is possible when both hosts satisfy the restriction 

𝜑𝑖 = 𝛽𝑖𝑖/𝑑𝑖 > 1. 

 

Consider the case of two host species where intra-transmission rates are sufficiently high such that 

𝜑𝑖 = 𝛽𝑖𝑖/𝑑𝑖 (where i=1,2). These indices act as basic re-production numbers, and we will refer to 

such hosts as reservoir hosts (see McCallum et al. 2001). If cross-infection (∆= 𝛽12𝛽21/𝑑1𝑑2) is 

sufficiently low and carrying capacities are not too different, then together these two hosts will 

exclude the pathogen. This is shown in figure 3B, where we plot Z (proportional to the determinant 

of the invasion matrix) against the control parameter 𝜃 = 𝐾2/𝐾1 (see “Generalized Culling” in the 

appendix for details). Thus, with frequency dependence it is possible to exclude a pathogen from a 

host by adding another (not directly competing) reservoir host. This is the phenomenon we observed 

with direct competition. For frequency dependence, there is an implicit second interaction, with the 

effective infection transmission rate within a species dependent on the states of the other species 

(see again “Generalized Culling” in the appendix). 

Frequency dependence has no impact on vaccination because, with vaccination, the total population 

𝐻𝑖 is not reduced. It shifts individuals between compartments, from susceptible to immune, keeping 

𝐻𝑖, ∑ 𝐻, and the frequency-dependent denominator constant. The invasion matrix depends on the 

carrying capacity levels, not just on their ratio. 

 

Discussion 



The first and often the most difficult task in eradicating a multi-host infection is determining the key 

reservoir hosts (Johnson et al. 1965; Cleaveland and Dye 1995; Haydon et al. 2002). When these are 

known, one must use models to test possible control strategies before they are implemented. Our 

purpose has been to contribute to an understanding of how one might be able to exploit the 

structure of epidemiological models to gain control over the pathogen. 

An exploration of the structure of the multi-host SIS model (eq. [1]), generalized to describe an 

arbitrary number of hosts, has led to the following observations that are of relevance in designing a 

culling strategy. All reservoir hosts need to be culled. In general, some non-reservoir hosts also need 

to be culled but not those with a negative column or row sum. The set of hosts with negative column 

or row sums and the set of unculled hosts both form sub-communities that are stable against 

pathogen invasion. Our proposed hybrid culling strategy, where we cull in order of decreasing 

column or row sums until a stable sub-community is encountered, combines the stable and unstable 

nesting properties of host sub-communities and the column or row sums as indicators of community 

instability. 

We have been able to derive these general results by focusing on the threshold properties of the 

system, as described by the pathogen invasion matrix. This matrix can easily be transformed into a 

nonnegative matrix, a class of matrices whose properties have been extensively studied elsewhere 

(Seneta 1973). We thereby avoid the difficult task of analysing the stability properties of equilibria 

where the pathogen coexists with its hosts. The rare-invader approximation, which we have used, 

separates the analysis into simpler tasks: first, an equilibrium analysis in the absence of infection and 

second, an invasion analysis based on the results of this equilibrium analysis.  

When extra structure is added to the SIS model, the threshold analysis can still apply. This is the case 

with direct competition, predation, and frequency dependence. The mathematics stays the same, 

with the invasion matrix related to a nonnegative matrix, but the biological interpretation requires 

clarification. When we say “when alone,” as we have throughout this section, we now mean “when 

alone with respect to infection but not with respect to other forces present.” In equation (10), 

neither host supports the pathogen at the susceptible population level when direct competition is 

present, but both do so if separation entails cutting both apparent and direct competition links. 

Latency can also be included within our methodology, as discussed in “Threshold Analysis of the 

Two-Host Susceptible-Exposed-Infectious-Recovered (SEIR) Model” in the appendix. We are 

currently performing detailed analyses of systems with added structure, and we hope to publish our 

findings in due course. 

In practice, the final choice of control strategy is determined by a wide range of considerations—

ecological, physical, regulatory, and economic—that are specific to the situation being considered. 

To illustrate this point, consider again our simple model of bovine TB, based on equation (1), with 

the network structure of figure 2A. In this model, it is assumed that both badgers and cattle are 

reservoir hosts infecting each other. According to our theory, the pathogen cannot be excluded just 

by testing and culling the cattle population; the badger population must be culled as well (King 

2007). However, the degree of culling required may not be consistent with conservation objectives 

or cost constraints (Bourne et al. 2007). For cattle, culling is limited by the efficiency of the testing 

procedures and, because of the cost involved, the frequency of testing (Cox et al. 2005). Subject to 

these qualifications, this simple model might provide a reasonable approximation when culling is 



proactive and done over a large area (Donnelly et al. 2006), but it is unlikely to do so with reactive 

culling where social disruption of badger communities can lead to an increase in bovine TB (Donnelly 

et al. 2003), an interesting example of compensatory mortality. This feedback mechanism can be 

modelled by adding more nodes to the network in figure 2A to describe different badger populations 

linked together by migration and infection transmission arising from increased ranging. We are 

currently investigating this model. 

Our general threshold methodology, applicable to a wide range of epidemiological models, provides 

valuable insights into how to design a suitable culling strategy to exclude a pathogen. It identifies 

which constraints may apply and which approaches or combination of approaches might best fit the 

ecological system being studied. 
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