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Abstract. Non-negative Matrix Factorization (NMF) has been widely
exploited to learn latent features from data. However, previous NMF
models often assume a fixed number of features, say p features, where p
is simply searched by experiments. Moreover, it is even difficult to learn
binary features, since binary matrix involves more challenging optimiza-
tion problems. In this paper, we propose a new Bayesian model called
infinite non-negative binary matrix tri-factorizations model (iNBMT),
capable of learning automatically the latent binary features as well as
feature number based on Indian Buffet Process (IBP). Moreover, iNBMT
engages a tri-factorization process that decomposes a nonnegative matrix
into the product of three components including two binary matrices and
a non-negative real matrix. Compared with traditional bi-factorization,
the tri-factorization can better reveal the latent structures among items
(samples) and attributes (features). Specifically, we impose an IBP prior
on the two infinite binary matrices while a truncated Gaussian distri-
bution is assumed on the weight matrix. To optimize the model, we
develop an efficient modified maximization-expectation algorithm (ME-
algorithm), with the iteration complexity one order lower than another
recently-proposed Maximization-Expectation-IBP model [9]. We present
the model definition, detail the optimization, and finally conduct a se-
ries of experiments. Experimental results demonstrate that our proposed
iNBMT model significantly outperforms the other comparison algorithms
in both synthetic and real data.

Keywords: Infinite non-negative binary matrix tri-factorization, Infi-
nite latent feature model, Indian Buffet Process prior

1 Introduction

Non-negative matrix factorization (NMF), a popular matrix decomposition tech-
nique, has been widely applied in data analysis and machine learning [8]. Typi-
cally, NMF can be exploited to reveal from observations the latent features and
consequently be used in semantic recognition or clustering. However, previous
NMF models usually assume the number of features as a constant parameter,
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which is generally tuned or searched by trial and error. Such algorithms include
the methods proposed in [1][2][10]. Moreover, when the factor matrix is assumed
as binary, NMF is even challenging, since binary matrices usually lead to more
difficult optimization.

To tackle the above problems, we extend standard NMF to learn binary fea-
tures with a novel Bayesian model called infinite non-negative binary matrix
tri-factorization (iNBMT) in this paper. Different from traditional NMF, the
novel iNBMT model can select automatically from infinite latent features an op-
timal set by applying Indian Buffet Process (IBP) prior to the factor matrices.
In addition, we manage to decompose the input sample matrix Y into triple
matrix factors i.e., Y = ZWXT , where Z and X are two binary matrices, and
non-negative matrix W can be considered as a weight matrix. Compared from
bi-factorization typically involved in NMF, tri-factorization can better capture
latent features and reveal hidden structures underlying the samples [2]. Impor-
tantly, although two binary matrices are involved, we further propose an effi-
cient modified maximization-expectation algorithm (ME-algorithm), which can
be even fast used in very large matrix decomposition. In particular, the time
complexity of our proposed ME-algorithm proves one order lower than another
competitive model called Maximization-Expectation-IBP (ME-IBP) [9].

In the literature, there have been several proposals of NMF for binary ma-
trix decomposition. However, all of them have certain drawbacks. Binary Matrix
Factorization (BMF) proposed in [10] limits the input data to be binary; this
is however too strong in real cases. On the other hand, the correlated IBP-IBP
model enforces a product of two binary matrices to be still binary; such as-
sumption is in general invalid unfortunately. Despite of its good properties, the
recently-proposed Maximization-Expectation-IBP (ME-IBP) model [9] is slow
in optimization. In particular, the iteration complexity for the ME-IBP model
is O(γND), which is significantly higher than O(αN + βD), the iteration com-
plexity of our iNBMT model. Here, N and D, usually two big numbers, denote
respectively the number of observations and the dimensionality. α, β, and γ are
three coefficients.

2 Notation and Background

2.1 Indian Buffet Process

IBP can be considered as a prior defined on models with infinite binary matrices.
It is typically used to infer how many latent features each observation processes.
Suppose Y ∈ RN×D be generated by linear combination with K-dimensional
vector of latent factors W ∈ RK×D and the assignment matrix Z ∈ RN×K . The
observed data Y is then modeled as Y = ZW + ε. ε is noise term of distributed
independently over N (0, σI).

Let Z be a binary matrix where znk = 1 presents the latent feature k belongs
to the observation n. The following IBP prior on binary feature matrix Z is
derived by placing independent beta priors on Bernoulli. πk’s are generated
independently for each column following a Beta prior. And then each object
possessing feature k are generated independently from a Bernoulli with mean
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πk.

πk | (α) ∼ Beta(α/K, 1) , Z | πk ∼ Bernoulli(πk) ,

p([Z]) =
αK∏
h>0Kh!

e{−αHN}
K∏
k=1

(N −mk)!(mk − 1)!

N !
,

(1)

where Kh is the number of rows corresponding to the non-zero number h, mk =∑N
i=1 zik is the number of objects possessing feature k, and HN =

∑N
j=1

1
j is the

N th harmonic number.
The IBP inspired several infinite-limit versions of classic matrix factorization

models, e.g. infinite ICA models [6]. In infinite limit, Grinffiths et al. take the IBP
prior into the infinite limit by defining equivalence classes on binary matrices [5].
The equivalence classes are matrices permutating the order of columns through
eliminating all the null columns. Therefore, let K be unbounded and assume
that we allow the number of active features K+ to be learned from the data
while remaining finite with probability one. By defining a scheme to re-order the
non-zero columns of Z we can take K →∞ and find

p([Z]) =
αK+∏
h>0Kh!

e{−αHN}
K+∏
k=1

(N −mk)!(mk − 1)!

N !
. (2)

2.2 Maximization-Expectation Algorithm

The ME algorithm just reverses the roles of two steps in the classical EM algo-
rithm by maximization over hidden variables and marginalization over random
parameters [7]. Given a dataset Y, p(Y,Z,W) is a probabilistic model where
Z and W are all hidden random variables. To perform approximate MAP in-
ference, it is necessary to compute posterior or marginal probabilities such as
p(Z|Y), p(W|Y) or p(Y ). It can be viewed as a special case of a Mean-Field
Variational Bayes (MFVB) approximation to a posterior that cannot be com-
puted analytically. p(Z,W|Y) is approximated by q(Z)q(W) [4] if we assume
independent variational distributions.

In MFVB, the variational Bayesian approximation alternatively estimates
these distributions by minimizing the KL-divergence between the approximation
and the exact distribution: KL[q(Z)q(W)‖p(Z,W|Y)]. The results are close-
formed with the updates,

q(Z) ∝ exp(E[ln p(Y | Z,W)q(Z)]) , q(W) ∝ exp(E[ln p(Y | Z,W)q(W)]) .(3)

3 Infinite Non-negative Binary Matrix Tri-factorization
3.1 Model Description

The iNBMT model is applied on a real-valued observation data Y ∈ RN×D

where the rows and columns could be exchangeable. For a latent feature model,
we use the matrix F to indicate the latent feature values. Then our focus will be
on a distribution over observations conditioned on features p(Y|F), where p(F)
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is the prior over features. F can be expressed as the element-wise product of
these three components, F = Z

⊗
W
⊗

X, where a latent feature binary vector
xj is associated with each attribute, each item has a potential binary vector zi,
and a matrix W represents the interaction weights parameter. Furthermore, the
prior of the features is also defined by p(F) = p(Z)p(W)p(X).

In effect, we factorized Y into the linear inner product of the features and
weight, ZWXT, generated by a fixed observation process f (· ), as illustrated in
Fig. 1. This process is equivalent to factorization or approximation of the data:

Y | Z,W,X ∼ f (ZWXT , θ) ,

where θ are hyperparameters specific to the model variant.

Fig. 1. Representation of the iNBMT model. The process f (· ) applied to the linear
inner product of the three components. Here Z,X are infinite binary matrices, W
present non-negative matrix.

We now develop our iNBMT model using Bayesian non-parametric priors.
Specifically, IBP priors are imposed over binary matrices Z and X, while any
non-negative prior F (e.g. exponential and truncated Gaussian) is assumed on
the weight matrix W :

Z ∼ IBP(α) , X ∼ IBP(λ) , W ∼ F(W;µ, σ2
W ) .

We assumed the hyperparameters were estimated from the data. By placing
conjugate gamma hyperpriors on these parameters, we can have a straightfor-
ward extension to infer their values. Formally,

Y | Z,W,X, θ ∼ p(Y | θ) , θ = {α, λ, σY σW } ∼ Gamma(a, b) .

3.2 Linear-Gaussian iNBMT Model
To illustrate the iNBMT model for capturing the latent features, we set the
linear-Gaussian model as the observation distribution with mean ZWXT and
covariance (1/θ)I throughout this paper. This can be thought of a two-sided
version of the linear-Gaussian model.

The marginal probabilities of the linear-Gaussian iNBMT model, is shown
as below:

p(Y|Z,W,X, σ2
X) =

1

(2πσ2
Y )ND/2

exp− 1

2σ2
Y

tr((Y − ZWXT )T (Y − ZWXT )) .

The weight matrix W uses the truncated Gaussian priors with a zero-mean i.i.d.

p(W|0, σ2
W ) =

K∏
k=1

L∏
l=1

TN(akl; 0, σ2
W ) .
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The marginal probabilities p([Z]) and p([X]) are specified with infinite IBP prior
(given in Eq. (2)):

p(Z|α) =
αK+

K+!

K∏
k=1

(N −mk)!(mk − 1)!

N !
,

p(X|λ) =
λL+

L+!

L∏
l=1

[
(D −ml)!(ml − 1)!

D!
] .

From the Bayesian theorem, the posterior can be write as follows:

p(Y,Z,W,X|θ) = p(Y|Z,W,X, σ2
Y )p(W|0, σ2

W )p(Z|α)p(X|λ) ,

where the hyperparameters θ conjugate gamma priors on inference parameters.

3.3 Evidence of iNBMT

In this part, we will present the approximate MAP inference, derived from the
ME algorithm, for the linear-Gaussian iNBMT model.

Given the MFVB constraint, we determine the variational distributions by
minimizing the KL-divergence, D(q‖p), between the variational distribution and
the true posterior; this is equivalent to maximizing a lower bound on the evi-
dence:

ln p(Y|θ) = Eq[ln p(Y,Z,W,X|θ)] +H[q] +D(q‖p) (4)

≥ Eq[ln p(Y,Z,W,X|θ)] +H[q] (5)

≡ T , (6)

where H[q] is the entropy of q. The lower bound of evidence, T , for the linear-
Gaussian iNBMT model is:

T ≡ 1

σ2
Y

[−1

2
(ZE[W ]XT )(ZE[W ]XT )T + Z(E[W ]YT + Zγ)XT ]

+

K∑
k=1

[ln
(N −mk)!(mk − 1)!

N !
] +

L∑
l=1

[ln
(D −ml)!(ml − 1)!

D!
]

− lnK+!− lnL+! +

K∑
k=1

L∑
l=1

ϕkl + const ;

γ =
1

2

K∑
k=1

L∑
l=1

[E[wkl]
2 − E[w2

kl]]
T ,

ϕkl =− KL

2
ln(

πσ2
W

2
)− E[w2

kl]

2σ2
W

+H(q(wkl)) .

(7)

Here E[W] is a matrix with each element defined as E[wkl].
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3.4 Parameter Updates

The updates for the variational parameters of the non-negative W over the
truncate Gaussian distribution are shown as follows:

q(W) =

K∏
k=1

L∏
l=1

TN(wkl;µkl, σ
2
kl) =

K∏
k=1

L∏
l=1

N(µkl, σ
2
kl)

Φ(∞)−Φ(0)
,

where t = − µkl√
2σkl

,Φ(a) = 1
2 (1 + erf(a−µkl√

2σkl
)), Φ(∞) = 1, erf(·) is the Gaus-

sian error function. According to the upper tail truncation, the parameters are
updated as follows:

E[wkl] = µkl + σklλ(t) , E[w2
kl] = µklE[wkl] + σ2

kl ,

λ(t) =
√
2√

πet2 (1−erf(t))
.

Meanwhile, the mean and variance of truncated Gaussian distributions can be
updated as follows:

µkl =

{
τ2
∑N
n=1 z

T
nk(ynd −

∑
k′/k znk′E[wk′lx

T
dl])xdl,K →∞ ;

τ2
∑D
d=1 xdl(y

T
nd −

∑
l′/l x

T
dlE[wkl′znk′ ])z

T
nk, L→∞ .

(8)

σkd = τσY , (9)

where τ = (mT
kml+

σ2
Y

σ2
W

)−
1
2 . Then the entropy of truncated Gaussian distribution

is given as

H(q(wkl)) =
1

2σ2
kl

{E[wkl]
2 − E[w2

kl]− (E[wkl]− µkl)2

−[
1

2
ln

2

πσ2
kl

− ln(1− erf(t))]} .

The updates on Z and X are relatively straightforward by computing Eq. (3).
Given q(W), we compute MAP estimates of X,Z by maximizing the evidence
Eq. (7). Similar to variational IBP methods, we must split the expectation in Eq.
(6) into terms depending on each of the latent variables [3], with the benefit that
the binary variables updates are not affected by inactive features. Therefore, we
decompose the relevant terms of X in Eq. (7). Similarly, we also decompose the

terms depending on Z during updating. First, to decompose ln (D−ml)!(ml−1)!
D! ,

we define a quadratic pseudo-Boolean function:

f(xdl) =

{
0, if ml\d = 0 and xdl = 0 ;

ln
(D−ml\d−xdl)!(ml\d+xdl−1)!

D! , otherwise .

Here the subscript “.” indicates that the given variable is determined after remov-

ing the dth row from L. Therefore the terms
∑K+ [ln (D−ml)!(ml−1)!

D! ] is changed
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to:
∑L+

l=1 f(xdl) =
∑L+

l=1 xdl(f(xdl = 1)− f(xdl = 0)) + f(xdl = 0). Moreover, lnL!

becomes lnL+! = ln(L+\n +
∑L+

l=1 [1{ml\d=0}xdl])!, where 1{·} is the indicator
function. Here we show that the evidence lower bound Eq. (7) is well-defined in
the limit L→∞.

T (Xd·) = − 1

2σ2
Y

(An·Xd·T )(An·Xd·T )T + ωn·Xd·

+

K∑
k=1

[
(N −mk)!(mk − 1)!

N !
+ 1{ml\d=0}xdlϕkl]

+[xdl(f(xdl = 1)− f(xdl = 0)) + f(xdl = 0)]

− ln K!− ln(L+\l +

L+∑
l=1

[1{ml\d=0}ldl])! + const ,

where ωnk = − 1
σ2
Y

(An·Y
T
nd + γ) and An· = ZE[W ].

3.5 Complexity Analysis

In this part, we show that, under a linear-Gaussian likelihood model, the per-
iteration complexity of our model outperforms another recently-proposed latent
feature model via IBP [9]. The iNBMT model reduces many operations when
updating the parameters of non-negative matrix. q(W) is updated twice per it-
eration from Eq. (9). O(K2L) operations are involved when updating ZW, while
O(L2K) operations are needed in updating WXT . Hence it yields a per-iteration
complexity of O(N(K2L) +D(L2K)) for the p(W) updates. The latent feature
model via IBP proposed in [9] uses similar ME inference over the latent factors.
Its per-iteration complexity on q(W) is easily checked as O(NK2D). Updating
p(Y |Z) and p(Y |X) are independent of the remaining observations and only
require the computation of T (·). We can update T (Z) in O(N(K2 lnK)) oper-
ations and O(D(L2 lnL)) operations when updating X. The total per-iteration
complexity of iNBMF is then O(NK2(L + lnK) + DL2(K + lnL)). The tra-
ditional model just has an infinite variable Z, therefore its total per-iteration
complexity is O(NK2(D + lnK)). In practice, N and D are usually sufficiently
larger than K and L, hence, the per-iteration complexity of iNBMF can be writ-
ten as a simple form: O(αN +βD), while that of ME-IBP model is simplified as
O(γND), where α, β, and γ are small coefficients. Clearly, our proposed iNBMF
has the per-iteration complexity one order lower than that of the ME-IBP model.

4 Experiments

In this section, we conduct experimental analysis of our proposed iNBMT. We
study the latent features on a synthetic and a real digit dataset. We also compare
the performance of iNBMT with two competitive algorithms: Maximization-
Expectation-IBP (ME-IBP) and Correlated IBP-IBP (IBP-IBP).
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4.1 Synthetic Dataset
The synthetic dataset has 4, 500 samples consisting of 6×6 grey images. Different
from the dataset used in Griffiths [5], our dataset is added combination of three
different luminance, illustrating as Fig. 3(b). Each row of the observations Y was
a 36-dimension vector, which is generated by using Z to linearly combine a subset
of the four binary factors X. And W is loading different luminance combination
(see Fig. 2(a)). The input datasets are shown in Fig. 3(a) by adding Gaussian
noise σ = 0.8.

The first demonstration shown in Fig. 2 is used to evaluate various algo-
rithms’ ability to extract the latent features from the generated data. Fig. 2(c)
shows the inferred features are closely match the truth features, however, each
feature is repeated twice and have some noise. Compared with ME-IBP, the
learning features of IBP-IBP shown in Fig. 2(c) also repeated and learning more
noise. It is obvious that iNBMT outperforms other competitors by perfectly
matching the truth features as well as identifying the feature number automati-
cally.
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Fig. 2. Comparison of iNBMT, ME-IBP and IBP-IBP on synthetic dataset. iNBMT
perfectly matches the truth features.

We also show the reconstruction power of our iNBMT model in Fig. 3.1
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(b) Groundtruth
without noise
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(c) The reconstruc-
tion by NMBF
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(d) The reconstruc-
tion by ME-IBP

Fig. 3. Comparison of sample reconstruction on synthetic data. iNBMT best matches
the groundtruth than ME-IBP.

4.2 Digit Dataset
In this experiment, we further demonstrate the power of our iNBMT model
on handwritten digit images. The digit dataset contains 2, 000 64 × 64 samples

1 Since IBP-IBP is mainly for clustering, we do not show its (almost messy) recon-
struction results for fairness.
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which are randomly combined with the digits 0, 1, 2, 3 from the USPS dataset.
We then corrupted the images with Gaussian noise σ = 0.8. Some examples of
the randomly generated images and their corrupted version are shown in Fig. 4
(a) and (b).

It is interesting to see from Fig. 4(e), our proposed iNBMT not only captures
the latent features, i.e., each of the clear digits, but also their image contours.
Moreover, from the framework of iNBMT, W × XT can be thought of as a
set of basis images which can be added together with binary coefficients Z to
recover images. In particular, Fig.4(g) shows the basis images which are captured
by iNBMT. It is apparent that all digit combinations are detected. In terms
of reconstruction, iNBMT almost perfectly recovers the images, as shown in
Fig. 4(c). In comparison, ME-IBP extracts almost every different digit as the
latent features, and their reconstruction results are also worse than our method.
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(a) Corrupted
groundtruth
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(b) Groundtruth
w/o noise
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(c) Reconstruction
by NMBF
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(d) Reconstruction
by ME-IBP
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(e) Features learned by
iNBMT
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(f) Features learned
by ME-IBP
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(g) Basis images
learned by iNBMT

Fig. 4. Comparison of iNBMT and ME-IBP on Digits dataset. iNBMT clearly shows
the best performance. We did not report IBP-IBP, since it is difficult to obtain reason-
able results in this data set.

5 Conclusion

This paper proposes a new Bayesian model called infinite non-negative binary
matrix tri-factorizations model (iNBMT), capable of learning automatically the
latent binary features as well as feature number based on Indian Buffet Process
(IBP). iNBMT engages a tri-factorization process that decomposes a nonnegative
matrix into the product of three components including two binary matrices and
a non-negative real matrix; this is also different from bi-factorization exploited
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by many other NMF models. A series of experiments show that our proposed
model outperforms the other competitive algorithms.
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